A Tight Lower Bound for k-Set Agreement

Soma Chaudhuri* Maurice Herlihy!

Abstract: We prove tight bounds on the time needed
to solve k-set agreement, a natural generalization
of consensus. We analyze this problem in a syn-
chronous, message-passing model where processors
fail by crashing. We prove a lower bound of | f/k]+1
rounds of communication for solutions to k-set agree-
ment that tolerate f failures. This bound is tight,
and shows that there is an inherent tradeoff between
the running time, the degree of coordination required,
and the number of faults tolerated, even in idealized
models like the synchronous model. The proof of this
result is interesting because it is a geometric combi-
nation of other well-known proof techniques.

1 Introduction

Most interesting problems in concurrent and dis-
tributed computing require processors to coordinate
their actions in some way. It can also be important
for protocols solving these problems to tolerate pro-
cessor failures, and to execute quickly. Ideally, one
would like to optimize all three properties—degree
of coordination, fault-tolerance, and efficiency—but
in practice, of course, it is usually necessary to make
tradeoffs among them. In this paper, we give a precise
characterization of the tradeoffs required by studying
a family of basic coordination problems called k-set
agreement.

In k-set agreement [Cha91], each processor starts
with an arbitrary input value and halts after choos-
ing an output value. These output values must satisfy
two conditions: each output value must be some pro-
cessor’s input value, and the set of output values cho-

*226 Atanasoff Hall, Dept of Computer Science, lowa State
University, Ames, IA 50011; chaudhur@cs.iastate.edu.

tDEC Cambridge Research Lab, One Kendall Sq, Bldg 700,
Cambridge, MA 02139; herlihyQ@crl.dec.com.

{MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139; lynch@theory.lcs.mit.edu.

SDEC Cambridge Research Lab, One Kendall Sq, Bldg 700,
Cambridge, MA 02139; tuttle@crl.dec.com.

0272-5428/93 $03.00 © 1993 IEEE

206

Nancy A. Lynch? Mark R. Tuttle?

sen must contain at most k distinct values. The first
condition rules out trivial solutions in which a single
value is hard-wired into the protocol and chosen by
all processors in all executions, and the second con-
dition requires that the processors coordinate their
choices to some degree. This problem is interesting
because it defines a family of coordination problems of
increasing difficulty. At one extreme, if n is the num-
ber of processors in the system, then n-set agreement
is trivial: each processor may simply choose its own
input value. At the other extreme, l-set agreement
requires that all processors choose the same output
value, a problem equivalent to the consensus problem
[LSP82, PSL80, FL82, FLP85, Dol82, Fis83]. Con-
sensus is well-known to be the “hardest” problem,
in the sense that all other decision problems can be
reduced to it.! Between these extremes, as we vary
the value of k from n to 1, we gradually increase the
degree of processor coordination required.

We consider this family of problems in a syn-
chronous, message-passing model with crash failures.
In this model, n processors communicate by send-
ing messages over a completely connected network.
Computation in this model proceeds in a sequence of
rounds. In each round, processors send messages to
other processors, then receive messages sent to them
in the same round, and then perform some local com-
putation and change state. This means that all pro-
cessors take steps at the same rate, and that all mes-
sages take the same amount of time to be delivered.
Communication is reliable, but up to f processors can
fail by stopping in the middle of the protocol.

In this model, we prove that any protocol solv-
ing k-set agreement and tolerating f failures requires
| f/k]+1 rounds of communication in the worst case,
assuming n > f + k + 1. This lower bound is tight,
matching a protocol given by Chaudhuri [Cha91].

1 Consensus arises in applications as diverse as on-board air-
craft control [W+ 78], database transaction commit [BHG87],
and concurrent object design [Her91].

Since consensus is just l-set agreement, our lower
bound implies the well-known lower bound of f + 1
rounds for consensus when n > f + 2 [FL82]. More
important, the running time r = | f/k] + 1 demon-
strates that there is a smooth but inescapable tradeoff
among the number f of faults tolerated, the degree k
of coordination achieved, and the time r the proto-
col must run. In addition, the lower bound proof
itself is interesting because of the geometric proof
technique we use, combining ideas due to Chaud-
huri [Cha91, Cha93], Fischer and Lynch [FL82], Her-
lihy and Shavit [HS93], and Dwork, Moses, and Tut-
tle [DM90, MT88).

The synchronous model is a special case of almost
every other realistic model, so any lower bound in this
model holds in these models as well. Moreover, our
techniques may be helpful in understanding how to
prove (possibly) stricter lower bounds in these more
complex models.

2 Overview

We start with an informal overview of the ideas used
in the lower bound proof. For the remainder of this
paper, suppose P is a protocol that solves k-set agree-
ment and tolerates the failure of f out of n processors,
and suppose P halts in r < | f/k] + 1 rounds. This
means that all nonfaulty processors have chosen an
output value at time r in every execution of P. In
addition, suppose n > f 4 k + 1, which means that
at least k + 1 processors never fail. Our goal is to
consider the global states that occur at time r in exe-
cutions of P, and to show that in one of these states
there are k + 1 processors that have chosen k + 1 dis-
tinct values, violating k-set agreement. Our strategy
is to consider the local states of processors that oc-
cur at time r in executions of P, and to investigate
the combinations of these local states that occur in
global states. This investigation depends on the con-
struction of a geometric object. In this section, we
use a simplified version of this object to illustrate the
general ideas in our proof.

Since consensus is a special case of k-set agree-
ment, it is helpful to review the standard proof of the
f +1 round lower bound for consensus [FL82, DS83,
Mer85, DM90] to see why new ideas are needed for
k-set agreement. Suppose that the protocol P is a
consensus protocol, which means that in all execu-
tions of P all nonfaulty processors have chosen the
same output value at time r. Two global states g,
and g, at time r are said to be similar if some non-
faulty processor p has the same local state in both
global states. The crucial property of similarity is

207

that the decision value of any processor in one global
state completely determines the decision value for any
processor in all similar global states. For example, if
all processors decide v in g;, then certainly p decides
v in g;. Since p has the same local state in g; and g5,
and since p’s decision value is a function of its local
state, processor p also decides v in g,. Since all pro-
cessors agree with p in g9, all processors decide v in
g2, and it follows that the decision value in g; deter-
mines the decision value in g;. A similarity chain is
a sequence of global states, g1,...,g¢, such that g; is
similar to g;41. A simple inductive argument shows
that the decision value in g; determines the decision
value in g,. The lower bound proof consists of show-
ing that all time 7 global states of P lie on a single
similarity chain. It follows that all processors choose
the same value in all executions of P, independent of
the input values, violating the definition of consensus.

The problem with k-set agreement is that the de-
cision values in one global state do not determine the
decision values in similar global states. If p has the
same local state in g; and g3, then p must choose
the same value in both states, but the values chosen
by the other processors are not determined. Even if
n — 1 processors have the same local state in g; and
g2, the decision value of the last processor is still not
determined. The fundamental insight in this paper
is that k-set agreement requires considering all “de-
grees” of similarity at once. We capture these degrees
of similarity with a compact geometric generalization
of similarity chains.

We start with a k-dimensional simplezx in k-
dimensional Euclidean space [Cha93, HS93]. A sim-
plex is just the natural generalization of a triangle to
k dimensions: for example, a 0-dimensional simplex
is a vertex, a 1-dimensional simplex is an edge linking
two vertices, a 2-dimensional simplex is a solid trian-
gle, and a 3-dimensional simplex is a solid tetrahe-
dron. The simplex contains a number of grid points,
which are the points in Euclidean space with inte-
ger coordinates. We triangulate this simplex with
respect to these grid points via a collection of smaller
k-dimensional simplexes. We call this triangulated
simplex the Bermuda Triangle B, since all fast pro-
tocols vanish somewhere in its interior. We then label
each grid point with an ordered pair (p, s) consisting
of a processor identifier p and a local state s in such
a way that for each simplex T in the triangulation
there is a global state g consistent with the labeling
of the simplex: for each ordered pair (p,s) labeling
a corner of T', processor p has local state s in global
state g.

A simplified Bermuda Triangle B is illustrated in
Figure 1. In this figure, P is a protocol for 5 proces-

cooc? cocc? cc?aa
cccea ecceb
coc?a coc?b cc?aa
ccean ccebd
cc?aa ?bb c??aa
-
ccaan cebbb
c?ann <?bbb cb?aa
canaa cbbbd
Tanan 7bbbb ?b?aa
asana bbbbb
Tamaa L BTaE L BBTan bbb bbbb? bb?aa

Figure 1: The Bermuda Triangle for 5 processors and a l-round protocol for 2-set agreement.

sors solving 2-set agreement in 1 round. We have la-
beled grid points with local states, but we have omit-
ted processor ids and many intermediate nodes for
clarity. The local states in the figure are represented
by expressions such as bb7aa. Given 3 distinct in-
put values a, b, c, we write bb?aa to denote the local
state of a processor p at the end of a round in which
the first two processors have input value b and send
messages to p, the middle processor fails to send a
message to p, and the last two processors have input
value a and send messages to p. In Figure 1, following
any horizontal line from left to right across B, the in-
put values are changed from a to b. The input value
of each processor is changed—one after another—by
first silencing the processor, and then reviving the
processor with the input value b. Similarly, moving
along any vertical line from bottom to top, proces-
sors’ input values change from b to c.

The complete labeling of the Bermuda Triangle
B—which would include processor ids—has the fol-
lowing property. Let (p, s) be the label of a grid point
xz. If z is a corner of B, then s specifies that each
processor starts with the same input value, so p must
choose this value if it finishes protocol P in local state
s. If x is on an edge of B, then s specifies that each
processor starts with one of the two input values la-
beling the ends of the edge, so p must choose one of
these values if it halts in state s. Sumilarly, if z is in
the interior of B, then s specifies that each processor
starts with one of the three values labeling the cor-
ners of B, so p must choose one of these three values
if it halts in state s.

208

Now let us “color” each grid point with output val-
ues. Given a grid point & labeled with (p,s), let us
color & with the value v that p chooses in local state s
at the end of P. This coloring of B has the property
that the color of each of the corners is determined
uniquely, the color of each point on an edge between
two corners is forced to be the color of one of the
corners, and the color of each interior point can be
the color of any corner. Colorings with this property
are called Sperner colorings, and have been studied
extensively in the field of algebraic topology. At this
point, we exploit a remarkable combinatorial result
first proved in 1928: Sperner’s Lemma [Spa66, p.151]
states that any Sperner coloring of any triangulated
k-dimensional simplex must include at least one sim-
plex whose corners are colored with all £ + 1 colors.
In our case, however, this simplex corresponds to a
global state in which k+ 1 processors choose k+1 dis-
tinct values, which contradicts the definition of k-set
agreement. Thus, in the case illustrated above, there
is no protocol for 2-set agreement halting in 1 round.

We note that the idea of applying Sperner’s Lemma
to a geometric structure like the Bermuda Triangle
has been used in previous work by Chaudhuri [Cha9l,
Cha93]. She also proves a lower bound of | f/k] + 1
rounds for k-set agreement, but for a very restricted
class of protocols. In her work, a protocol’s deci-
sion function can depend only on vectors giving par-
tial information about which processors started with
which inputs, but cannot make any use of any other
information recorded in a processor’s local state. The
technical challenge in this paper is to construct a la-

beling of vertices with processor ids and local states
that will allow us to prove a lower bound for arbi-
trary protocols, including protocols that have proces-
sors make arbitrary use of the information in their
local states.

3 The Model

We use a synchronous, message-passing model with
crash failures. The system consists of n processors,
P1,- .., Pn. Processors share a global clock that starts
at 0 and advances in increments of 1. Computation
proceeds in a sequence of rounds, with round r lasting
from time r — 1 to time r. Computation in a round
consists of three phases: first each processor p sends
messages to some of the processors in the system, pos-
sibly including itself, then it receives the messages
sent to it during the round, and finally it performs
some local computation and changes state. We as-
sume that the communication network is totally con-
nected: every processor is able to send distinct mes-
sages to every other processor in every round. We also
assume that communication is reliable (although pro-
cessors can fail): if p sends a message to ¢ in round r,
then the message is delivered to ¢ in round r.

Processors follow a deterministic protocol that de-
termines what messages a processor should send and
what output a processor should generate as a function
of its local state. Processors can be faulty, however,
and any processor p can simply stop in any round
r. In this case, processor p follows its protocol and
sends all messages the protocol requires in rounds 1
through r — 1, sends some subset of the messages it is
required to send in round r, and sends no messages in
rounds after 7. We say that p is silent from round r if
p sends no messages in round r or later. We say that p
is active through round r if p sends all messages in
round 7 and earlier.

A full-information protocol is one in which every
processor broadcasts its entire local state to every
processor, including itself, in every round [PSLS80,
FL82, Had83]. One nice property of full-information
protocols is that every execution of a full-information
protocol P has a compact representation called a
communication graph [MT88]. The communication
graph G for an r-round execution of P is a two-colored
graph. The vertices form an n x r grid, with proces-
sor names 1 through n labeling the vertical axis and
times 0 through r labeling the horizontal axis. The
node representing processor p at time 7 is labeled with
the pair (p,¢). Given any pair of processors p and ¢
and any round i, there is an edge between (p,i — 1)
and (g, t) whose color determines whether p success-

209

p3 «
P2 .
141 >

] 1 2 3

Figure 2: A three-round communication graph.

fully sends a message to ¢ in round i: the edge is
green if p succeeds, and red otherwise. In addition,
each node (p,0) is labeled with p’s input value. Fig-
ure 2 illustrates a three round communication graph;
in this figure, only green edges are indicated explic-
itly. We refer to the edge between (p,¢ — 1) and (g, ¢)
as the round i edge from p to ¢, and we refer to the
node (p, i — 1) as the round i node for p since it repre-
sents to point at which p sends its round ¢ messages.
We define what it means for a processor to be silent
or active in terms of communication graphs in the
obvious way. In the stopping failure model, all com-
munication graphs have the property that if a round
i edge from p is red, then all round j > 7 + 1 edges
from p are red (meaning p is silent from round i+ 1).

Since a communication graph G describes an exe-
cution of P, it also determines the global state at the
end of P, so we sometimes refer to G as a global com-
munication graph. In addition, for each processor p
and time ¢, there is a subgraph of G that corresponds
to the local state of p at the end round ¢, and we re-
fer to this subgraph as a local communication graph.
The local communication graph for p at time ¢ is the
subgraph G(p,t) of G induced by the node (p,t) and
all earlier nodes reachable from (p,t) by a sequence
(directed backwards in time) of green edges followed
by at most one red edge. In the remainder of this pa-
per, we use graphs to represent states. Wherever we
used “state” in the informal overview of Section 2, we
now substitute the word “graph.” Furthermore, we
assume that all executions of a full-information pro-
tocol run for exactly r rounds and produce output at
exactly time r, and we assume that processors send
local communication graphs instead of local states.

The crucial property of a full-information proto-
col is that every r-round protocol for k-set agreement
can be simulated by an r-round full-information pro-
tocol, and hence that we can restrict attention to full-
information protocols when proving the lower bound
in this paper (see [PSL80, FL82, Had83, MT88]).

4 k-set Agreement

The k-set agreement problem [Cha9l] is defined as
follows. We assume that each processor p; has two
private registers in its local state, a read-only input
register and a write-only output register. Initially,
pi’s input register contains an arbitrary input value
from a set V containing at least k+1 values vy, . . ., vk,
and its output register is empty. A protocol solves the
problem if it causes each nonfaulty processor to halt
after writing an output value to its output register
in such a way that every processor’s output value is
some processor’s input value, and the set of output
values chosen has size at most k.

5 Bermuda Triangle

In this section, we define the basic geometric con-
structs used in our proof that every protocol P solv-
ing k-set agreement and tolerating f failures requires
at least | f/k]+1 rounds of communication, assuming
n>f+k+1.

We start with some preliminary definitions. A sim-
plez S is the convex hull of k+ 1 affinely-independent?
points zy,...,zx in Euclidean space. This simplex
is a k-dimensional volume, the k-dimensional ana-
logue of a solid triangle or tetrahedron. The points
Zo, ...,z are called the vertices of S, and k is the
dimension of S. We sometimes call S a k-simplex
when we wish to emphasize its dimension. A simplex
F is a face of S if the vertices of F' form a subset
of the vertices of S (which means that the dimension
of F is less than or equal to the dimension of S). A
set of k-simplexes Sy, ..., Se is a triangulation of S if
S =S51U---US, and the intersection of S; and S; is
a face of each® for all pairs ¢ and j. The vertices of a
triangulation are the vertices of the S;. Any triangu-
lation of S induces triangulations of its faces in the
obvious way.

Let B be the k-simplex in k-dimensional Eu-
clidean space with vertices (0,...,0), (¥,0,...,0),
(N,N,0,...,0), ..., (N,...,N), where N is a huge
integer defined later in Section 6.3. The Bermuda
Triangle B is a triangulation of B defined as follows.
The vertices of B are the grid points contained in
B: these are the points of the form z = (z1,...,zk),
where the z; are integers between 0 and N satisfy-
ing €1 > z9 > .-+ > zx. Informally, the simplexes
of the triangulation are defined as follows: pick any

2Points g,...,z5 are affinely independent if z; —
zg,...,Tk — Tg are linearly independent.

3Notice that the intersection of two arbitrary k-dimensional
simplexes S; and S; will be a volume of some dimension, but
it need not be a face of either simplex.

210

grid point and walk one step in the positive direction
along each dimension. The k + 1 points visited by
this walk define the vertices of a simplex, and the tri-
angulation B consists of all simplexes determined by
such walks. For example, the 2-dimensional Bermuda
Triangle is illustrated in Figure 1. This triangulation,
known as Kuhn’s triangulation, is defined formally as
follows [Cha93]. Let ej,...,ex be the unit vectors;
that is, e; is the vector (0,...,1,...,0) with a single
1 in the ith coordinate. A simplex is determined by
a point yo and an arbitrary permutation fi, ..., fi of
the unit vectors ey, . .., ex: the vertices of the simplex
are the points y; = y;_; + f; for all ¢ > 0. When we
list the vertices of a simplex, we always write them in
the order yo, ..., yx in which they are visited by the
walk.

For brevity, we refer to the vertices of B as the
corners of B. The triangulation B induces triangu-
lations of the one-dimensional faces of B, and these
induced triangulations are called the edges of B. The
simplexes of B are called primitive simplezes.

Each vertex of B is labeled with an ordered pair
(p, L) consisting of a processor id p and a local com-
munication graph £. As illustrated in the overview in
Section 2, the crucial property of this labeling is that
if S is a primitive simplex with vertices yo, ..., ¥k,
and if each vertex y; is labeled with a pair (¢, L),
then there is a global communication graph G such
that each ¢; is nonfaulty in G and has local commu-
nication graph £; in G. Constructing this labeling
is the subject of the next three sections. We first
assign global communication graphs G to vertices in
Section 6, then we assign processors p to vertices in
Section 7, and then we assign ordered pairs (p, £) to
vertices in Section 8, where £ is the local communi-
cation graph of p in G.

6 Graph Assignment

In this section, we label each vertex of B with a global
communication graph. Actually, for expository rea-
sons, we augment the definition of a communication
graph and label vertices of B with these augmented
communication graphs instead. Constructing this la-
beling involves several steps.

6.1 Augmented Graphs

In this section, we extend the definition of a com-
munication graph to make the processor assignment
in Section 7 easier to describe. We augment com-
munication graphs with tokens, and place tokens on
the graph so that if processor p fails in round ¢, then
there is a token on the node (p, j — 1) for processor

p in some earlier round j < i. In this sense, ev-
ery processor failure is “covered” by a token, and the
number of processors failing in the graph is bounded
from above by the number of tokens. In the next few
sections, when we construct long sequences of these
graphs, tokens will be moved between adjacent pro-
cessors within a round, and used to guarantee that
processor failures in adjacent graphs change in a or-
derly fashion. For every value of ¢, we define graphs
with exactly £ tokens placed on nodes in each round,
but we will be most interested in the two cases with
£ equal to 1 and k.

For each value £ > 0, we define an £-graph G to
be a communication graph with tokens placed on the
nodes of the graph that satisfies the following condi-
tions for each round i, 1 < i< r:

1. The total number of tokens on round 7 nodes is
exactly £.

2. If a round i edge from p is red, then there is a
token on a round j < 7 node for p.

3. If a round i edge from p is red, then p is silent
from round i + 1.

We say that p is covered by a round i token if there
is a token on the round i node for p, we say that p
is covered in round i if p is covered by a round j < i
token, and we say that p is covered in a graph if p is
covered in any round. Similarly, we say that a round
i edge from p is covered if p is covered in round i.
The second condition says every red edge is covered
by a token, and this together with the first condition
implies that at most £r processors fail in an f-graph.
We often refer to an ¢-graph as a graph when the
value of £ is clear from context or unimportant. We
emphasize that the tokens are simply an accounting
trick, and have no meaning as part of the global or
local state in the underlying communication graph.

We define a failure-free ¢-graph to be an ¢-graph in
which all edges are green, and all round i tokens are
on processor p; in all rounds i.

6.2 Graph operations

We now define four operations on augmented graphs
that make only minor changes to a graph. In particu-
lar, the only change an operation makes is to change
the color of a single edge, to change the value of a
single processor’s input, or to move a single token
between adjacent processors within the same round.
The operations are defined as follows:

1. delete(i,p,q): This operation changes the color
of the round i edge from p to g to red, and has

211

no effect if the edge is already red. This makes
the delivery of the round i message from p to ¢
unsuccessful. It can only be applied to a graph
if p and ¢ are silent from round i+ 1, and p is
covered in round 1.

2. add(i,p, q): This operation changes the color of
the round i edge from p to ¢ to green, and has
no effect if the edge is already green. This makes
the delivery of the round i message from p to ¢q
successful. It can only be applied to a graph if p
and ¢ are silent from round ¢ + 1, processor p is
active through round ¢ — 1, and p is covered in
round .

3. change(p,v): This operation changes the input
value for processor p to v, and has no effect if
the value is already v. It can only be applied
to a graph if p is silent from round 1, and p is
covered in round 1.

4. move(i,p, q): This operation moves a round i to-
ken from (p,i—1) to (g, —1), and is defined
only for adjacent processors p and ¢ (that is,
{p,9} = {pj, pj+1} for some j). It can only be
applied to a graph if p is covered by a round
¢ token, and all red edges are covered by other
tokens.

It is obvious from the definition of these operations
that they preserve the property of being an ¢-graph:
if G is an ¢-graph and T is a graph operation, then
7(G) is an €-graph. We define delete, add, and change
operations on communication graphs in exactly the
same way, except that the condition “p is covered in
round " is omitted.

6.3 Graph sequences

We now define a sequence o[v] of graph operations
that can be applied to any failure-free graph G to
transform it into the failure-free graph G[v] in which
all processors have input v. We want to emphasize
that the sequences o[v] differ only in the value v.
For this reason, we define a parameterized sequence
o[X1,...,X¢] to be a sequence of graph operations
with free variables Xi,...,X, appearing as parame-
ters to the graph operations in the sequence.

Given a graph G, let G;[v] be the graph identi-
cal to G, except that processor p; has input v. In
the case of ordinary communication graphs, a result
by Moses and Tuttle [MT88] implies that if G and
Gi[v] are failure-free graphs, then there is a “similar-
ity chain” of graphs between G and G;[v]. In their
proof—a refinement of similar proofs by Dwork and
Moses [DM90] and others—the sequence of graphs

they construct has the property that each graph in
the chain can be obtained from the preceding graph
by applying a sequence of the add, delete, and change
graph operations defined above. The same proof
works for augmented communication graphs, pro-
vided we insert move operations between the add,
delete, and change operations to move tokens between
nodes appropriately. With this simple modification,
we can prove the following.

Lemma 1: For each i, there is a parameterized se-
quence o;[v] with the property that for all values v
and failure-free graphs G, the sequence o;[v] trans-
forms G to G;[v].

By concatenating such operation sequences, we can
transform G into G[v] by changing processors’ input
values one at a time:

Lemma 2: Let o[v] = o1[v]---0,4[v]. For every

value v and every failure-free graph G, the sequence

o[v] transforms G to G[v].

Now we can define the parameter N used in defining
the shape of B: N is the length of the sequence a{v],
which is exponential in r.

6.4 Graph merge

Speaking informally, we will use each sequence o[v;]
of graph operations to generate a sequence of graphs,
and we will use this sequence of graphs to label ver-
tices along the edge of B in the ith dimension. Then
we will label vertices in the interior of B by perform-
ing a “merge” of the graphs on the edges in the dif-
ferent dimensions.

The merge of a sequence H;, ..
graph defined as follows:

., H of graphs is a

1. an edge e is colored red if it is red in any of the
graphs M1, ..., M, and green otherwise, and

2. an initial node (p, 0) is labeled with the value v;
where ¢ is the maximum index such that (p, 0} is
labeled with v; in #;, or v if no such i exists,
and

3. the number of tokens on a node (p, i) is the sum

of the number of tokens on the node in the graphs
Hi, .oy He.

The first condition says that a message is missing
in the resulting graph if and only if it is missing in
any of the merged graphs. To understand the second
condition, notice that for each processor p; there is
a integer s; with the property that p;’s input value
in changed to v; by the s;th operation appearing in

212

o[vi]. Now choose a vertex z = (21, ...,) of B, and
imagine walking from the origin to z by walking along
the first dimension to (z,,0,...,0), then along the
second dimension to (z1,22,0,...,0), and so forth.
In each dimension %, processor p;’s input is changed
from v;_; to v; after s; steps in this dimension. Since
2y > x3 > -+ > xi, there is a final dimension ¢ in
which p;’s input is changed to v;, and never changed
again. The second condition above is just a compact
way of identifying this final value v;.

Lemma 3: Let # be the merge of the graphs
Hi,...,Hx. If Hy,...,Hi are l-graphs, then # is
a k-graph.

6.5 Graph assignments

Now we can define the assignment of graphs to ver-
tices of B. For each value v;, let F; be the failure-free
l-graph in which all processors have input v;. Let
z = (x1,...,2zx) be an arbitrary vertex of B. For
each coordinate z;, let g; be the prefix of o{v;] con-
sisting of the first z; operations, and let #; be the
1-graph resulting from the application of ¢; to F;_;.
This means that in H;, some set py, . . ., p; of adjacent
processors have had their inputs changed from v;_,
to v;. The graph G labeling = is defined to be the
merge of H;,...,Hi. We know that G is a k-graph
by Lemma 3, and hence that at most rk < f proces-
sors fail in G.

Remember that we always write the vertices of a
primitive simplex in a canonical order yo, ..., y%. In
the same way, we always write the graphs labeling the
vertices of a primitive simplex in the canonical order
Go, - ..,Gk, where G; is the graph labeling y;.

6.6 Graphs on a simplex

The graphs labeling the vertices of a primitive sim-
plex have some convenient properties. For this sec-
tion, fix a primitive simplex S, and let yp,. ..,y be
the vertices of S and let Gy, ..., Gy be the graphs la-
beling the corresponding vertices of S. Our first result
says that any processor that is uncovered at a vertex
of S is nonfaulty at all vertices of S.

Lemma 4: If processor g is not covered in the graph
labeling a vertex of S, then ¢ is nonfaulty in the graph
labeling every vertex of S.

Our next result shows that we can use the bound
on the number of tokens to bound the number of pro-
cessors failing at any vertex of S.

Lemma 5: If F; is the set of processors failing in G;
and F = U; F;, then |F| < rk < f.

We have assigned graphs to S, and now we must
assign processors to S. A local processor labeling of
S is an assignment of distinct processors qo, . . ., gx to
the vertices yo, ...,y of S so that ¢; is uncovered in
G; for each y;. A global processor labeling of B is an
assignment of processors to vertices of B that induces
a local processor labeling at each primitive simplex.
The final important property of the graphs labeling
S is that if we use a processor labeling to label S with
processors, then S is consistent with a single global
communication graph. The proof of this requires a
few preliminary results.

Lemma 6: If G;_; and G; differ in p’s input value,
then p is silent from round 1 in Go,...,Gx. If Gy
and G; differ in the color of an edge from p to ¢ in
round t, then p and ¢ are silent from round ¢ + 1 in

Go, ..., Gk

Lemma T7: If G;_; and G; differ in the local commu-
nication graph of p at time t, then p is silent from
round t + 1 in Gy, ..., Gx.

Lemma 8: If p sends a message in round r in any
of the graphs Go,...,Gk, then p has the same local
communication graph at time r—1 in all of the graphs

Go, - -, G-

Finally, we can prove the crucial property of prim-
itive simplexes in the Bermuda Triangle:

Lemma 9: Given a local processor labeling of S, let
o, - - -, qx be the processors labeling the vertices of S,
and let £; be the local communication graph of ¢; in
G;. There is a global communication graph G with
the property that each ¢; is nonfaulty in G and has
the local communication graph £; in G.

7 Processor Assignment

What Lemma 9 at the end of the preceding section
tells us is that all we have left to do is to construct
a global processor labeling. In this section, we show
how to do this. We first associate a set of “live”
processors with each communication graph labeling a
vertex of B, and then we choose one processor from
each set to label vertices of B.

7.1 Live processors

Given a graph G, we construct a set of c = n —rk >
k + 1 uncovered (and hence nonfaulty) processors.
We refer to these processors as the live processors
in G, and we denote this set by live(G). These live
sets have one crucial property: if G and G’ are two

213

S« {1,...,n}
foreachi=1,...,n
count « 0

foreach j=1¢,i—1,...,1,i+1,...
if count = m; then break
if j € S then
S« S~-{j}
count < count + 1
live(G) « S

Figure 3: The construction of live(G).

graphs labeling adjacent vertices, and if p is in both
live(G) and live(G'), then p has the same rank in both
sets. As usual, we define the rank of p; in a set R of
processors to be the number of processors p; € R
with j < 1.

Given a graph G, we now show how to construct
live(G). This construction has one goal: if G and G’
are graphs labeling adjacent vertices, then the con-
struction should minimize the number of processors
whose rank differs in the sets live(G) and live(G').
The construction of live(G) begins with the set of all
processors, and removes a set of rk processors, one
for each token. This set of removed processors in-
cludes the covered processors, but may include other
processors as well. For example, suppose p; and p; 41
are covered with one token each in G, but suppose p;
is uncovered and p;;, is covered by two tokens in G'.
For simplicity, let’s assume these are the only tokens
on the graphs. When constructing the set live(G), we
remove both p; and p; 41 since they are both covered.
When constructing the set live(G'), we remove p;1,
but we must also remove a second processor corre-
sponding to the second token covering pi;1. Which
processor should we remove? Notice that if we choose
to remove p; again, then no processors change rank.
In general, the construction of live(G) considers each
processor p in turn. If p is covered by m, tokens in
G, then the construction removes m, processors by
starting with p, working down the list of remaining
processors smaller than p, and then working up the
list of processors larger than p if necessary.

Specifically, given a graph G, the multiplicity of p
is the number m, of tokens appearing on nodes
for p in G, and the multiplicity of G is the vec-
tor m = (my,,...,mp,). Given the multiplicity of G
as input, the algorithm in Figure 3 computes live(¢).
In this algorithm, processor p; is denoted by its in-
dex i. This construction has two obvious proper-
ties: If ¢ € live(G) then m; = 0 (i is uncovered),

and E};ll m; <i—1.

The assignment of graphs to the corners of a sim-
plex has the property that once p becomes covered on
one corner of S| it remains covered on the following
corners of S:

Lemma 10: If p is uncovered in the graphs G; and
G;, where 7 < j, then p is uncovered in each graph

Gi,Giv1,---,Gj.

Finally, because token placements in adjacent
graphs on a simplex differ in at most the movement
of one token from one processor to an adjacent pro-
cessor, we can use the preceding lemma to prove the
following;:

Lemma 11: If p € live(G;) and p € live(G;), then p
has the same rank in live(G;) and live(G;).

7.2 Processor labeling

We now choose one processor from each set live(G)
to label the vertex with graph G. Given a ver-
tex £ = (21,...,%x), we define plane(z) = Zle z;
(mod k + 1).

Lemma 12: If x and y are distinct vertices of the
same simplex, then plane(z) # plane(y).

We define a global processor labeling 7 as follows:
given a vertex z labeled with a graph G, we define
7 to map x to the processor having rank plane(z) in

live(G).

Lemma 13: The mapping 7 is a global processor la-
beling.

We label the vertices of B with processors according
to the processor labeling .

8 Ordered Pair Assignment

Finally, we assign ordered pairs (p, L) of processor
ids and local communication graphs to vertices of B.
Given a vertex z labeled with processor p and graph
G, we label x with the ordered pair (p, L) where L is
the local communication graph of p in G. The follow-
ing result is a direct consequence of Lemmas 9 and 13.
It says that the local communication graphs of pro-
cessors labeling the corners of a vertex are consistent
with a single global communication graph.

Lemma 14: Let qo,...,qx and Ly,...,L; be the
processors and local communication graphs labeling
the vertices of a simplex. There is a global communi-
cation graph G with the property that each ¢; is non-
faulty in G and has the local communication graph

L;ingG.

214

9 Sperner’s Lemma

We now state Sperner’s Lemma, and use it to prove
a lower bound on the number of rounds required to
solve k-set agreement.

Informally, a Sperner coloring of B assigns a color
to each vertex so that each corner vertex ¢; is given
a distinct color w;, each vertex on the edge between
¢; and c¢; is given either w; or w;, and so on. More
formally, let S be a simplex and let F be a face of S.
Any triangulation of S induces a triangulation of F
in the obvious way. Let T be a triangulation of S. A
Sperner coloring of T assigns a color to each vertex
of T' so that each corner of T has a distinct color, and
so that the vertices contained in a face F' are colored
with the colors on the corners of F| for each face F' of
T. Sperner colorings have a remarkable property: at
least one simplex in the triangulation must be given
all possible colors.

Lemma 15 (Sperner’s Lemma): If B is a trian-
gulation of a k-simplex, then for any Sperner coloring
of B, there exists at least one k-simplex in B whose
vertices are all given distinct colors.

Let P be the protocol whose existence we assumed
in the previous section. Define a coloring x» of B
as follows. Given a vertex r labeled with processor p
and local communication graph £, color & with the
value v that P requires processor p to choose when
its local communication graph 1s £. This coloring is
clearly well-defined, since P is a protocol in which all
processors chose an output value at the end of round
r. Formalizing the argument sketched in the intro-
duction, we can show that y, is a Sperner coloring.

Lemma 16: If P is a protocol for k-set agreement
tolerating f faults and halting in » < | f/k| rounds,
then xp 1s a Sperner coloring of B.

Consequently, we can use Sperner’s Lemma to
prove that there exists a global state in which & + 1
processors choose k + 1 distinct values.

Theorem 17: If n > f + k + 1, then no protocol
for k-set agreement can halt in fewer than | f/k] +1
rounds.

Technical Report: A full version of this work will
soon be available for electronic distribution. Send the
one-word message “help” to techreports@crl.dec.com
for information.

Acknowledgements: This work was performed
while the first author was visiting MIT. The first and
third authors were supported in part by NSF grant
CCR-89-15206, in part by DARPA contracts N00014-
89-J-1988, N00014-92-J-4033, and N00014-92-J-1799,
and in part by ONR contract N00014-91-J-1046.

References

[BHGS7]

[Cha91]

[Cha93)

[DM90]

[Dol82]

[DS83)

[Fis83]

[FL82]

[FLP85]

Philip A. Bernstein, Vassos Hadzilacos,
and Nathan Goodman. Concurrency
Control and Recovery in Database Sys-
tems. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1987.

Soma Chaudhuri. Towards a complexity hi-
erarchy of wait-free concurrent objects. In
Proceedings of the 8rd IEEE Symposium on
Parallel and Distributed Processing. IEEE,
December 1991. Also appeared as Technical
Report No. 91-024, Iowa State University,
1991.

Soma Chaudhuri. More choices allow
more faults: Set consensus problems in to-
tally asynchronous systems. Information
and Computation, 105:132-158, July 1993.
A preliminary version appeared in ACM
PODC, 1990.

Cynthia Dwork and Yoram Moses. Knowl-
edge and common knowledge in a Byzan-
tine environment: Crash failures. Informa-
tion and Computation, 88(2):156-186, Oc-
tober 1990.

Danny Dolev. The Byzantine gener-
als strike again. Journal of Algorithms,
3(1):14-30, March 1982.

Danny Dolev and H. Raymond Strong.
Authenticated algorithms for Byzantine
agreement. SIAM Journal on Computing,
12(3):656-666, November 1983.

Michael J. Fischer. The consensus problem
in unreliable distributed systems (a brief
survey). In Marek Karpinsky, editor, Pro-
ceedings of the 10th International Collo-
quium on Automata, Languages, and Pro-
gramming, pages 127-140. Springer-Verlag,
1983. A preliminary version appeared as
Yale Technical Report YALEU/DCS/RR-
273.

Michael J. Fischer and Nancy A. Lynch. A
lower bound for the time to assure inter-
active consistency. Information Processing
Letters, 14(4):183-186, June 1982.

Michael J. Fischer, Nancy A. Lynch, and
Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty proces-
sor. Journal of the ACM, 32(2):374-382,
1985.

215

[Had83]

[Her91]

[HS93]

[LSP82]

[Mer85]

[MT88]

[PSL80]

[Spa66]

[W+78]

Vassos Hadzilacos. A lower bound for
Byzantine agreement with fail-stop proces-
sors. Technical Report TR-21-83, Harvard
University, 1983.

Maurice P. Herlihy. Wait-free synchro-
nization. ACM Transactions on Program-
ming Languages and Systems, 13(1):124-
149, January 1991.

Maurice P. Herlihy and Nir Shavit. The
asynchronous computability theorem for t-
resilient tasks. In Proceedings of the 25th
ACM Symposium on Theory of Computing,
pages 111-120. ACM, May 1993.

Leslie Lamport, Robert Shostak, and Mar-
shall Pease. The Byzantine generals prob-
lem. ACM Transactions on Programming
Languages and Systems, 4(3):382-401, July
1982.

Michael Merritt. Notes on the Dolev-Strong
lower bound for byzantine agreement. Un-
published manuscript, 1985.

Yoram Moses and Mark R. Tuttle. Pro-
gramming simultaneous actions using com-
mon knowledge. Algorithmica, 3(1):121-
169, 1988.

Marshall Pease, Robert Shostak, and Leslie
Lamport. Reaching agreement in the pres-
ence of faults. Journal of the ACM,
27(2):228-234, 1980.

E.H. Spanier. Algebraic Topology. Springer-
Verlag, New York, 1966.

J. H. Wensley et al. SIFT: Design and
analysis of a fault-tolerant computer for
aircraft control. Proceedings of the IEEE,
66(10):1240-1255, October 1978.

