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Abstract

The time complexity of wait-free algorithms in “nor-
mal” executions, where no failures occur and pro-
cesses operate at approximately the same speed, is
considered. A lower bound of logn on the time com-
plexity of any wait-free algorithm that achieves ap-
prozimate agreement among n processes is proved. In
contrast, there exists a non-wait-free algorithm that
solves this problem in constant time. This implies an
Q(logn) time separation between the wait-free and
non-wait-free computation models. On the positive
side, we present an O(logn) time wait-free approxi-
mate agreement algorithm; the complexity of this al-
gorithm is within a small constant of the lower bound.

1 Introduction

In shared-memory distributed systems, n in-
dependent asynchronous processes communicate
by reading and writing to shared memory. In
such a computing environment, it is possible for
processes to operate at very different speeds,
e.g., because of implementation issues such as
communication and memory latency, priority-
based time-sharing of processors, cache misses
and page faults. It is also possible for processes
to fail entirely. Wait-free algorithms have been
proposed as a mechanism for computing in the
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face of variable speeds and failures: a wait-free
algorithm guarantees that each nonfaulty process
terminates regardless of the speed and failure of
other processes ([11, 14]). The design of wait-
free algorithms has been a very active area of
research recently (see [11]).

Because wait-free algorithms guarantee that
fast processes terminate without waiting for slow
processes, wait-free algorithms seem to be gen-
erally thought of as fast. However, while it is
obvious from the definition that wait-free algo-
rithms are highly resilient to failures, we believe
that the assumption that such algorithms are fast
requires more careful examination.

We study the time complezity of wait-free and
non-wait-free algorithms in “normal” executions,
where no failures occur and processes operate
at approximately the same speed. We select
this particular subset of the executions for mak-
ing the comparison, because it is only reason-
able to compare the behavior of the algorithms
in cases where both are required to terminate.
Since wait-free algorithms terminate even when
some processes fail, while non-wait-free algo-
rithms may fail to terminate in this case, the
comparison should only be made in executions
in which no process fails, i.e., in failure-free ex-
ecutions. The time measure we use is the one
introduced in [13], and used to evaluate the time
complexity of asynchronous algorithms (for ex-
ample in [2, 6, 17, 19]). To summarize, we are
interested in measuring the time cost imposed
by the wait-free property, as measured in terms
of extra computation time in the most normal
(failure-free) case.



In this paper, we address the general question
by considering a specific problem—the approz:-
mate agreement problem studied, for example, in
[7]; we study this problem in the context of a par-
ticular shared-memory primitive—single-writer
multi-reader atomic registers. In this problem,
each process starts with a real-valued input, and
(provided it does not fail) must eventually pro-
duce a real-valued output. The outputs must
all be within a given distance ¢ of each other,
and must be included within the range of the in-
puts. This problem, a weaker variant of the well-
studied problem of distributed consensus (e.g.,
[10]), is closely related to the important prob-
lem of synchronizing local clocks in a distributed
system.

Approximate agreement can be achieved very
easily if waiting is allowed, by having a desig-
nated process write its input to the shared mem-
ory; all other processes wait for this value to be
written and adopt it as their outputs. It is easy
to see that the time complexity of this algorithm
is constant—independent of n, the range of in-
puts and €. On the other hand, there is a rel-
atively simple wait-free algorithm for this prob-
lem, which we describe in Section 3, and which
is based on successive averaging of intermediate
values. The time complexity of this algorithm
depends quadratically on n, and logarithmically
on the size of the range of input values and on
1/e. A natural question to ask is whether the
time complexity of this algorithm is optimal for
wait-free approximate agreement algorithms.

Our first major result is an algorithm for the
special case where n = 2, whose time complexity
is constant, i.e., it does not depend on the range
of inputs or on & (Section 4). The algorithm
uses a novel method of overcoming the uncer-
tainty that is inherent in an asynchronous en-
vironment, without resorting to synchronization
points or other waiting mechanisms (cf. [6]): this
method involves ensuring that the two processes
base their decisions on information that is ap-
proximately, but not exactly, the same.

Next, using a powerful technique of integrating
wait-free (but slow) and non-wait-free (but fast)
algorithms, together with an O(logn) wait-free
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input collection function, we generalize the key
ideas of the 2-process algorithm to obtain our
second major result: a wait-free algorithm for
approximate agreement whose time complexity is
O(logn) (Section 5). Thus, the time complexity
of this algorithm does not depend on either the
size of the range of input values or on ¢, but it
still depends on n, the number of processes.

At this point, it is natural to ask whether
the logarithmic dependence on = is inherent for
wait-free approximate agreement algorithms, or
whether, on the other hand, there is a constant-
time wait-free algorithm (independent of n). Our
third major result shows that the logn depen-
dency is inherent: any wait-free algorithm for
approximate agreement has time complexity at
least logn (Section 6).! This implies an Q(logn)
time separation between the non-wait-free and
wait-free computation models.

We note that the constant time 2-process algo-
rithm behaves rather badly if one of the processes
fails. In the full paper we prove, for any wait-free
approximate agreement algorithm, a tradeoff be-
tween the time complexity and the number of
operations performed by a single process.

In practice, the design of distributed systems
is often geared towards optimizing the time com-
plexity in “normal executions,” i.e., executions
where no failures occur and processes run at
approximately the same pace, while building in
safety provisions to protect against failures (cf.
[15]). Our results indicate that, in the asyn-
chronous shared-memory setting, there are prob-
lems for which building in such safety provisions
must result in performance degradation in the
normal executions. This situation contrasts with
that occurring, for example, in synchronous sys-
tems that solve the distributed consensus prob-
lem. In that setting, there are early-stopping al-
gorithms (e.g., [8]) that tolerate failures, yet ter-
minate in constent time when no failures occur.

Recent work has addressed the issue of
adapting the usual synchronous shared-memory
PRAM model to better reflect implementation

!The lower bound is attained in an execution where
processes run synchronously and no process fails.



issues, by reducing synchrony (see [6]) or by re-
quiring fault-tolerance (see [12]). To the best of
our knowledge, the impact of the combination of
asynchrony and fault-tolerance (as exemplified
by the wait-free model) on the time complex-
ity of shared-memory algorithms has not previ-
ously been studied. In [18], Martel, Subramonian
and Park present efficient fault-tolerant asyn-
chronous PRAM algorithms. Their algorithms
optimize total number of operations rather than
time and employ randomization. Another ma-
jor difference is that they assume that inputs are
stored in the shared memory, so that every pro-
cess can access the input of every other process.

2 Model and Time Measure

In this section we briefly describe the systems
and the time measure we will consider.? A sys-
tem consists of n processes pp,...,pn—1. Each
process is a deterministic state machine, with
possibly an infinite number of states. Processes
communicate by reading and writing to single-
writer multi-reader atomic registers. Processes
may fail, that is, undetectably stop executing
operations from some point on (a fail-stop fail-
ure). Due to asynchrony, other processes cannot
distinguish between a fail-stopped process and
a slow one. An algorithm that guarantees that
each non-faulty process completes its execution,
even in the face of up to n — 1 failures is called
a wait-free algorithm.

We now define how to measure the time a com-
putation takes. We assign times to events (each
event is either a read or a write operation) in
a given execution subject to the following con-
straints: (a) the time associated with the first
event of any process is at most 1, and (b) the
time between two events of the same process is
at most 1. The time of a finite execution is the
largest amount of real time that can be associ-
ated with the last event in that execution. The
time between two events in an execution is the
largest amount of real time that can elapse be-
tween these two events under any time assign-

2Qur definitions are standard and are similar to the
ones in, e.g., [2, 11, 14, 17).

ment to this execution. Loosely speaking, this
amounts to normalizing the time relative to the
rate of the slowest process. For example, if in a
given time interval one process takes 1 step and
another takes 100, the time measured is 1. (This
definition is formalized in [17]; an equivalent def-
inition appears in [13] and is used in [6].) The
time complezity of an algorithm A is the supre-
mum of the running times over all failure-free
executions of A and all processes p;.

3 Basic Solutions

We start by defining the approzimate agreement
problem and describing non-wait-free and wait-
free algorithms to solve it. Later in the paper
(Section 5), both algorithms are used as “sub-
routines” in the logarithmic time approximate
agreement algorithm.

In the approzimate agreement problem, pro-
cesses start with real-valued inputs, zg, ..., Zn-1,
and a constant ¢ > 0 (the same ¢ for all pro-
cesses); all nonfaulty processes are required to
decide on real-valued outputs ¥o,.-.,¥n-1, such
that the following conditions hold:

Agreement: |y; — y;| < ¢, for all 4,5, and

Validity: y; € range({zo,...,Zn-1}), for all 4.

This problem has a simple (1) time non-wait-
free solution, which we will call wait-approx. A
designated process po maintains a single-writer
multi-reader atomic register, Vp, to which it
writes its input value as soon as it starts the al-
gorithm, and on which it decides. All processes
repeatedly read V, until it is set to a value that
is not 1 and decide on this value.

We next outline a wait-free algorithm wait-
free-approx for approximate agreement. For lack
of space we only outline a simple variant for the
case of two processes. Each of the processes
pi, i € {0,1} has a register which it can write
and the other can read. Here and elsewhere, we
let 7 denote the index of the other process, i.e.,
7= 1- 1. Due to the asynchrony in the system,
it is impossible to have processes agree on one



of the input values (see [10, 9, 16]). Thus, our
algorithm has them gradually converge from the
input values zo and z; to values that are only
¢ apart. A process p; repeatedly does the fol-
lowing: It writes its value v; (initially the input
value z;) into its register and reads p;’s register.
If p; reads L from v, it can never know when p;
will write its input value (p; could fail and never
write); thus, p; must decide on its own value.
If p; reads a non-1 value from v;, it checks if
|vs — v;| < €. If so, p; decides on its own value.
If not, p; sets v; to be @ and repeats.

The following scenario is possible: p; reads p;’s
input value and is delayed just before writing
Yid% 0 its register; then p; repeatedly reads and
writes, cutting the interval in half till its value
is very close to p;’s input; finally, p; completes
the write so that in fact, p; moved “too far” to-
wards p;’s old value. However, in every such step
of O(1) time (in which both p; and p; perform a
read and a write), the diameter of the proposed
values, |v;— s, is cut by at least ahalf, and so the
values converge in O(log(®=%+)) time. The algo-
rithm is wait-free, since each process can reach a
decision independently of the other taking steps.

The algorithm for n > 2 processes is similar in
flavor, but more complicated in the mechanisms
used to synchronize among processes. It uses the
rounds structure of [3]. In place of every read
or write of the two process algorithm, it uses a
single-writer atomic snapshot memory operation
[1] that takes O(n?) time. In the full paper we
present this algorithm and prove:

Theorem 3.1. Procedure wait-free-approx is a
wait-free algorithm for the approrimate agree-
ment problem whose running time on input
(Zoy...,Zn—1) is at most

O(n2 Tog( d'iam({:co,e. .. ,mnkl}))) .

4 Fast 2-Process Algorithm

We now show that, for two processes, there ex-
ists an approximate agreement algorithm whose
time complexity is constant; i.e., it does not de-
pend on the range of input values or . Key ideas
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from this algorithm will be used in the n process
algorithm of Section 5. The intuition underlying
this algorithm is as follows: It is clear from the
definition of time that as long as p; reads p;’s
register and sees no change, either p; is running
very fast (and not much time has elapsed), or p;
has failed. Thus, p; may continue to take steps as
long as it sees no change, without degrading the
time complexity for failure-free executions. Of
course, if p; does not take any steps at all, then,
in order to guarantee the wait-free property, p;
must eventually decide (unilaterally) on its own
value. Thus, in order to get the required constant
time complexity, it is necessary that p; know to
within ¢ what value p; will decide on, if and when
p; does appear; similarly for p;. However, an in-
herent difficulty of the model is that a process p;
cannot know if p; read its latest written value or
the value written in p;’s preceding write. Tak-
ing the midpoint of the input range (as in the
former 2-process algorithm) will not help, since
the uncertainty among the two writes of p; could
mean a difference of #5% in p;’s decision, a dif-
ference possibly greater than . Our solution is
to have the decisions change only gradually with
each step, so that this uncertainty will result only
in € inaccuracy.

More specifically, each process p; starts by
writing its input and initializing a counter ¢; in
the shared memory. It then keeps increment-
ing this counter until either it has taken [|z;|/€]
steps without seeing the other and decides on its
own value z;, or p; has taken a step, in which
case p; makes a decision that depends on the rel-
ative size of both processes counters, both input
values, and ¢£. The decision is biased towards
the input value of the process with the larger
counter, in quanta that are less than or equal
to €. The exact decision value is given by the
function bias (Figure 1).

The code for fast-2-approx for process p; is
given in Figure 2. The inputs to each process p;
are real numbers z; and ¢.® Each process main-
tains a single-writer multi-reader atomic regis-

3Although € is described as a parameter, it is guar-
anteed that all processes have exactly the same value of
€.



function bias (v",v1,c% ! e);

begin
1: if 1° = v*= 0 then return 0
2: else if ¢® < ¢! then return
0_,1 .
o+ (01 — min{cle, o' [})
3: else return
1_n .
0 + m(\vo\ — min{c, [v°|})
fi;
end;

Figure 1: The bias function.

function fast-2-approx (z, ¢);
begin
increase-counter(z, Jfl) ;
(’DO, vlv CO: cl> = <VOv ‘/17 COv Cl>7
if ¢ = L then return '
else return bias (v, v?,c% ct, €);
end;

oW

function increase-counter (v, maz);
begin
L (VG = (0,0)
2: while C; = | and C; < maz
do C; := C; + 1 od;
end;

Figure 2: Fast 2-process algorithm

ter with two fields: V;—the input value, a real
number, and C;—the counter, an integer. In the
code, any assignment to a shared variable im-
plies a write, and a reference to the value of a
shared variable implies a read. Upper case vari-
ables denote shared variables, while all lower case
variables are local, and are usually local versions
of the corresponding upper case shared variable.
The algorithm ensures the following:

Lemma 4.1. Assume py and p; return from
fast-2-approx. Let 1 € {0,1}, and let ¢; and ¢
be the values of C; read by p; and p;, resp., in
Line 2 of fast-2-approx. Then, ¢; — 1 < ¢; < ¢;.
u

This implies that values returned by bias based
on the values of the counters differ by at most €.

59

Theorem 4.2. There ezxists a wait-free algo-
rithm for the 2-process approrimate agreement
problem whose time complezity is O(1). n

5 Fast n-Process Algorithm

In this section, we present a fast (O(logn) time)
wait-free approximate agreement algorithm for n
processes. We begin by showing how one can re-
duce, in constant time, the problem of n-process
approximate agreement with n arbitrary input
values to a special case of the problem where the
set of input values is included in the union of two
small intervals. We then show that n processes
with values in two small intervals can “simu-
late,” in O(log n) time, two virtual processes run-
ning the fast approximate agreement algorithm
of Section 4 on two input values. Combining the
two algorithms yields an O(logn) wait-free ap-
proximate agreement algorithm.

The algorithm uses an alternated-interleaving
method of combining wait-free (resilient but
slow) and non-wait-free (fast but not resilient)
algorithms to obtain new algorithms that are
both resilent and fast. Alternated procedures
are enclosed within begin-alternate and end-
alternate brackets. This construct means that
the algorithm alternates strictly between execut-
ing single steps of the two alternated procedures,
and terminates when either of them terminates.*
When an alternation is used in an assignment
statement, the value assigned is the value re-
turned by the procedure that terminates first.
It is straightforward to show that the time for
execution of an alternation of two procedures is
at most twice that of the fastest one.

The constant time reduction to two s.aall in-
tervals is encapsulated in procedure n-to-2 (Fig-
ure 3). The idea is simple: interleave the execu-
tion of the slow wait-free-approx procedure with
that of the fast wait-approx. The resulting algo-
rithm is wait-free since even if n —1 processes fail,
wait-free-approx will terminate. It takes at most

*We remark that this is just a coding convenience, used
to simplify the control structure of the algorithm. It is
implemented locally at one process and does not cause
spawning of new processes.



O(1) time in the failure-free execution since wait-
approx terminates within O(1) time. However,
some processes (group a) might finish the alter-
nated execution with a value from wait-approx,
while others (group b) finish with a value from
wait-free-approx. We thus did not solve the ap-
proximate agreement problem, but we did guar-
antee that the values are included in the union
of two small intervals. The procedure returns an
output value v; and a group g¢; € {a, b} to which
p; is said to belong. It is guaranteed that output
values for processes in the same group g; € {a, b}
are at most €/12 apart.

The second part of the algorithm solves n-
process approximate agreement in O(log n) time,
assuming that processes are partitioned into two
groups with approximately the same value in
each group. The solution is based on having the
processes in group a (resp. b) jointly simulate
a virtual process pp (resp. pi) that execute the
function fast-2-approx of Figure 2.

The following straightforward simulation is ex-
pressed by Lines 1-2 of the function increase-
counter in Figure 3. The counter Cy of fast-2-
approx is replaced by a joint counter, which is
defined to be the sum of local counters C;, for all
1 in group a. Each step of the simulated counter
Cy is implemented by O(n) steps of the joint
counter for a. Each step of this joint counter
is, in turn, implemented by a single step of one
of the individual counters in group a. Similarly,
the processes in group b simulate counter C; of
fast-2-approx. In Line 2 of increase-counter, in or-
der to decide on the values of the joint counters
of a and b, a process reads the values of all local
counters. If the counter simulated by p;’s group
is not large enough and the counter simulated
by the other group is 1, then p; advances the
counter simulated by its group (by incrementing
its local counter C;), and repeats. Otherwise, p;
exits increase-counter.

One can see that, in an execution where pro-
cesses operate synchronously, each iteration of
the while loop in Line 2 of increase-counter has
O(n) time complexity since reading all memory
locations to calculate the simulated counter takes
O(n) steps. However, one can improve the time

complexity based on the following observation.
If p; ever detects that all processes have set their
counters (in Line 1 of increase-counter), then it
knows that one of the following holds: either
some process from the other group has set its
local counter (and hence that group’s simulated
counter), to a value other than 1, or the other
group is empty. In the former case, the loop
predicate in Line 2 must be true, while in the
latter case, the final value for the other group’s
counter will be L. In either case, p; can stop
executing increase-counter, and be guaranteed to
correctly simulate the behavior of the 2-process
algorithm. In order to detect in less than O(n)
time that all processes have set their counters, we
use an O(logn) non-wait-free synch procedure,
described in Section 5.2, whose termination en-
sures this condition. To acheive the better time,
the algorithm alternates synch with the (wait-
free) loop in Line 2 of increase-counter.

The delicate synchronization provided by
synch and its effect on the rest of the algorithm
guarantee that after some process exits increase-
counter, individual counter values increase at
most by 3. Thus, after exiting increase-counter,
a process can perform an O(log n) wait-free fast-
collect, described in Section 5.2, in order to col-
lect all the values needed to decide on the re-
turned value in Lines 3-4. The above property
ensures that the simulated counter values used
by different processes do not differ much.

5.1 The Algorithm

In addition to the shared data structures used by
wait-free-approx and wait-approx, process p;,i €
{0,...,n — 1} has a single-writer multi-reader
atomic register with the following fields: V;—the
value returned in p;’s first phase; G;—denoting
the group to which p; belongs; C;—p;’s contri-
bution to its group’s counter; T;—p;’s increase-
counter termination flag.

In the code we abuse notation and denote by
V9, where g is a group’s name, the “group’s
value” calculated as follows: if ¢ = g; then it
is V;, and if g # g; then it is an arbitrary V; such



function fast-n-approx (z, £);
begin

(v,9) := n-to-2(z,£) ;

increase-counter(v, g, ;%ﬂ’—) ;

(7, §, €) := fast-collect (V,G,C);

if ¢? = | then return ¢

else return bias(v®,v°,c%,cb,e/6n);

end;

Ll

function n-to-2 (z, £);

begin
(v,9) := begin -alternate
1: (wait-free-approx (z,£/12), a)
and
2: (wait-approx (z), b);
end-alternate;
3:  return (v,g)
end;

function increase-counter (v, g, maz);
begin
1: (Vi, Gi, G) = (v,g,0);
begin-alternate
2: while C% = | and CY < maz
do C; :=C; +1 od;
and
3: synch (C);
end-alternate;
4: T, := true;
end;

Figure 3: Fast n-process algorithm

that p; is in group g if there is any, and L, other-
wise. The value v is calculated in a similar man-
ner from the corresponding local copies. (Recall
our convention that lower case letters stand for
local variables and upper case letters for shared
variables.) When g is a group name, g denotes
the other group’s name, e.g., if g = a then § = b.
The notation C9, for g € {a,b}, stands for the
sum of those C; such that G; = g and C; # L,
if there is any such C;, and 1, otherwise. The
value ¢9 is calculated in a similar manner from
the corresponding local copies.
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function fast-collect (R);

begin
1: =1,
2: while I < n do
3: R; := concatenate (R;, R(i 1) mod n);
4 1= |Ri);

od;

5: return truncate(R;, n);

end;

Figure 4: Fast information collection.

5.2 Fast Information Collection
and Synchronization

Before presenting the proof of correctness for the
algorithm we present the procedures for infor-
mation collection and synchronization. We start
with a wait-free algorithm for input collection—
returning the current values in the entries of an
array R. The time complexity of the algorithm
is O(logn).

This problem is interesting on its own as it un-
derlies any problem of computing a function, e.g.,
max or sum, on a set of initial values that reside
in the shared memory.® Once a process collects
all the values, computing the function can be
done locally in constant time. Since (logn)is a
lower bound on the time for the information col-
lection problem (see, e.g., [5]), this implies that
for problems whose output depends on all the ini-
tial values in memory, and only on them, there
exists an optimally fast wait-free solution.

Our algorithm, presented in Figure 4, is a wait-
free variation of the pointer-jumping technique
used in PRAM algorithms (e.g., [20]). For a se-
quence R and a nonnegative integer n we define
truncate(R,n) to be the first n elements of R if
|R| > n, and R, otherwise. The initial value
L is treated like any other value and may be
returned by the algorithm for entries that have
not yet been set. In the full version of the pa-

®Note that these problems are very different from the
decision problems considered until now in this paper,
where inputs are local to the processes and do not reside
in the shared memory.



procedure synch(R);

begin
1: repeat until R; # 1;
2: li=1
3: while I < n and Ti4i moan # 1 do
4: repeat until Ri{imodn # 13
5: R; := concatenate (Ri, R(i11) mod n);
6: l:= |,R|‘,

od;

end;

Figure 5: Fast synchronization.

per we prove that any invocation of fast-collect
returns within O(logn) time after all processes
invoke fast-collect and that the values returned
by fast-collect are not too old.

The synchronization procedure, synch, is a
variant of fast-collect. Since it is used within an
alternate construct, it is possible that synch is
aborted without completing and returning “nor-
mally.” To cope with this possibility, we asso-
ciate with the shared array R to which synch is
applied, a special termination array T. T; is set
to true if p; terminates, i.e., aborts or returns
from synch;. Procedure synch guarantees that, if
it is completed by some process, then either all
the entries of the array are non-1 values, or for
some j, T; = true. The procedure is not wait-
free. The code appears in Figure 5. In the full
version of the paper we prove that any invocation
of synch terminates within O(log n) time after all
processes set R; # 1 and invoke synch.

5.3 Correctness Proof

As in the proof of the 2-process algorithm (Sec-
tion 4), the crucial point in the proof of the al-
gorithm is showing that, in Lines 3-4 of fast-n-
approx, processes use “close” values for ¢® and cb.
We show that the value of an arbitrary counter
when some process invokes fast-collect is at most
3 less than the maximal value this counter ever
attains. This implies that, for each local counter,
the values read by two different processes differ
at most by 3. Thus, we have:
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Lemma 5.1. Suppose i,j € {0,...,n — 1}
and g € {a,b}. Assume the values returned by
fast-collect; and fast-collect; calculate to ¢ and
c?, respectively. Then |cf — c]| < 3n. [ |

Using this lemma and the fact that when bias
is applied to “close” real numbers and “close”
counters it returns “close” values, we can prove
that the algorithm satisfies the agreement prop-
erty.

Theorem 5.2. There exists a wait-free algo-
rithm for the m-process approrimate agreement
problem whose time complezity is O(logn). B

6 A logn Time Lower Bound

In this section, we show that the logn depen-
dency exhibited by the algorithm of Theorem
5.2 is inherent: the time complexity of any wait-
free algorithm for n-process approximate agree-
ment is at least log n. Together with wait-approx,
this result shows that there are problems for
which wait-free algorithms take more time (by an
Q(log n) factor) than non-wait-free algorithms.

We require a few definitions. In the rest of
this section, we assume that each process has
only one register to which it can write. Since the
size of registers is not restricted and since only
one process may write to each register, there is
no loss of generality in this assumption. Let R;
be the register to which p; writes. Let a sys-
tem configuration consist of the states of the
processes and the registers. Formally, a configu-
ration C is a vector (sq,...,8n-1,%1,...) Where
s; is the state of process p; and v; is the value
of the register R;. An initial configuration is
a configuration in which every process’s state
is an initial state and all shared variables are
set to L. For a configuration C and a pro-
cess p;, let st(p;,C) be the pair consisting of
the state of p; and the value of R; in C, ie.,
st(p;,C) = (state(p;,C),val(R;,C)). For the
rest of this section, fix some ¢ < 1.

The synchronized schedule is the schedule in
which processes take steps in round-robin or-



der starting with po, essentially operating syn-
chronously. The sequence of r rounds in the
round-robin order is denoted o.. We denote the
configuration resulting from the application of
such a finite schedule o, to a configuration C by
Co,. For any configuration C, the corresponding
synchronized ezecution from C (denoted (C, 0;))
is uniquely determined by the algorithm. Note
that this is a failure-free execution. k

We now define the set of processes that could
have influenced p;’s state at time r in the syn-
chronized execution from a configuration C. Let
C be a configuration; by induction on r > 0,
define the set INF(p;,r,C), for every process p;:

1. r = 0: INF(pi,r,C) = {pi}, for every i €
{0,...,n—1}.

2. r > 1: if p;’s rth step in (C, 0,) is a read of
R;, then INF(p;,r,C) = INF(p;,r —1,C)U
INF(p;,v — 1,C). If p;’s rth step is a write
(to R;) then INF(p;,r,C) = INF(p;,r —
1,C).

The next lemma formalizes the intuition that
INF includes all the process that can influence
p’s state up to time 7.

Lemma 6.1. Let C; and C, be two configu-
rations, let p; be any process and let r > 0. If
st(p;, C1) = st(pj, C2) for allp; € INF(p;,r,C1),
then st(p;, C10,) = st(p;, C20,).

Theorem 6.2. Any wait-free algorithm for the
n-process approzimate agreement problem has
time complezity at least logn.

Proof sketch: Assume that A is a wait-free
approximate agreement algorithm. Suppose, by
way of contradiction, that in all failure-free exe-
cutions some process decides before time logn.

Let o be the infinite synchronized schedule,
i.e., the limit of o,.. Consider the execution
of A under o from the initial configuration Cp
where processes start with inputs (0,...,0). Let
t be the time associated with the first decision
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event in (Co, o); without loss of generality, let po
be the process associated with this event. By
assumption, t < logn. By the validity prop-
erty, pp must decide on 0 since all processes
start with 0. Note that, by induction on r,
|INF(p;,r,C)| < 27, for every configuration C,
r>0and i€ {0,...,n —1}. Since t < logn
it must be that [INF(po,T,Co)] < 2T < n.
Thus, there exists some process that is not in
INF(po,t, Co); without loss of generality, assume
Pn-1 € |INF(po, T, Co)|-

Informally, to complete the proof, we create
an alternative execution in which p,_; “starts
early” with input 1, runs on its own and thus
must eventually decide on 1. We then let the rest
of the processes execute as if they are in the syn-
chronized execution from Cp and use Lemma 6.1
to show that process po still decides on 0, which is
a contradiction to the agreement property, since
e< 1. n

7 Discussion and Further Research

For approximate agreement, the answer to the
question whether wait-free algorithms are fast is
not binary, rather it is quantitative: we have pre-
sented a relatively fast, O(logn) time, wait-free
algorithm for n-process approximate agreement.
On the other hand, logn is a lower bound on
the time complexity of any wait-free approximate
agreement algorithm, and there exists an O(1)
time non-wait-free algorithm.

Using the emulators of [4], our algorithms
can be translated into algorithms that work in
message-passing systems. The algorithms have
the same time complexity (in complete networks)
and are resilient to the failure of a majority of the
processes.

There are many ways in which our work can be
extended. An interesting direction is to consider
the impact on our results of using other shared
memory primitives. Another is to see whether
the techniques presented in this paper, both for
algorithms and lower bounds, can be applied to
other problems. We believe, for example, that
the O(1) time algorithm for 2-process approxi-



mate agreement can be generalized to any deci-
sion problem of size 2. It is interesting to explore
whether similar results can be proved for prob-
lems that require repeated coordination (e.g., £-
ezclusion).

Finally, there remains the fundamental unan-
swered question raised by this work: Are there
O(logn) time wait-free algorithms for all prob-
lems that have wait-free solutions?
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