Distrib. Comput. (2003) 16: 71-74
Digital Object Identifier (DOI) 10.1007/s00446-002-0072-6

Some perspectives on PODC

Nancy Lynch!

DISTRIBUTED;
COMPUTTING

(© Springer-Verlag 2003

Massachusetts Institute of Technology, 545 Tech Square, Cambridge, MA 02139, USA (e-mail: lynch@theory.ics.mit.edu)

Hagit Attiya and Sergio Rajsbaum asked me quite some time
ago to write a “personal perspective" paper for PODCs 20th
anniversary. Although they gave me plenty of warning, I'm
afraid I’'m writing this at the last minute. So this may be a bit
stream-of-consciousness.

Since I’'m one of the people who started the PODC confer-
ence in the first place, I'll begin by writing down my memories
of how it all started. Now, we’re going back more than twenty
years here, and I suspect my memory isn’t completely accu-
rate, especially about the ordering of events. But I’'ll do my
best, and I hope you will find the story interesting in any case.
Then I’ll say a little about my view of how PODC has evolved.
I'1l describe the relationship I see between formal modeling
(one of my own interests) and the algorithmic research that
forms the core of PODC. Finally, I'll conclude with a few
words about where I think PODC might go in the future.

1 Ancient history

My own interest in the theory of distributed systems began
around 1978, while I was on the faculty of Information and
Computer Science (ICS) at Georgia Tech. After having worked
for many years in complexity theory for sequential computing,
I'was hunting around for a new research area. Distributed com-
puting was becoming a hot new area of systems research and
development, and Phil Enslow, a very energetic senior faculty
member at Georgia Tech, was leading an effort to develop this
area as a focus area for ICS at Georgia Tech. I read all the pa-
pers I could find that related to distributed computing and that
had a theoretical slant: papers by Dijkstra on concurrent com-
puting, papers by Lamport on time in distributed systems, and
papers by many people on mutual exclusion and distributed
database concurrency control. One paper that especially at-
tracted my attention was a little note by Cremers and Hibbard
[1] that proved a lower bound on the size of memory needed
for 2-process mutual exclusion. This was the first example I
encountered of an impossibility result for distributed comput-
ing, and I found the general concept and the specific ideas
quite fascinating.

It was pretty clear from what I was hearing about practi-
cal distributed computing that the general area was going to
become very important in practice. At the same time, it was

clear that distributed computing was hard to think about. Many
problems, algorithms, and proposed system designs were de-
scribed somewhat informally, and it wasn’t always clear what
the algorithms and designs were supposed to do and why they
were correct. It seemed that this important area was in need
of a theory. So this looked to me like a great choice for a new
research area.

The theory I had in mind was modeled after the already-
existing theory for sequential computing, which included for-
mal computing models like Turing machines and Random Ac-
cess Machines, clever algorithms that could be described and
analyzed in terms of these models, some lower bound and re-
ducibility results, and applications of the algorithms for real
computing. The work that I thought was needed for distributed
computing included defining formal models for distributed
systems, designing and analyzing algorithms, proving lower
bounds and other impossibility results, and relating it all to ac-
tual distributed systems. Very little of this existed at the time.

I started talking with others about working on a theory for
distributed computing. One of the people I talked with was
Mike Fischer, with whom I had worked several years earlier
at MIT. During a breakfast discussion at a STOC or FOCS
conference, I discovered that Mike had also recently gotten
interested in distributed computing, and wanted to work on its
theory. In fact, he had similar views about what such a theory
would entail: it would be a lot like the field of analysis of
algorithms, but for distributed algorithms instead of sequential
algorithms.

We started by working together on algorithms and lower
bounds for the mutual exclusion problem. At the time, Jim
Burns was a PhD student working with me at Georgia Tech
and Gary Peterson was working with Mike at the University of
Washington; Jim and Gary collaborated with us on some early
projects involving mutual exclusion. Mike and I exchanged
several visits, culminating in a very productive Winter Quarter,
1980, which Mike spent at Georgia Tech. During that quarter,
we worked on many different problems in distributed comput-
ing theory, starting with mutual exclusion and other resource
allocation problems.

At some point during that quarter, we had the bright idea
of inviting some people that we wanted to work with to visit
us for a week or so. Among these visitors was Leslie Lam-
port. He told us about his many ideas involving time and dis-



72

tributed computing, about atomic, safe, and regular registers,
about strong and weak precedence relationships between reg-
ister operations, about connections between relativity theory
and distributed computing, about why computations in dis-
tributed systems are “really” partial orders, etc. Just before
Leslie’s visit, we obtained an interesting draft paper that he
had written, entitled “The Albanian Generals Problem”. We
found this paper so fascinating that we spent the time just be-
fore Leslie’s visit proving a lower bound on the number of
rounds needed to solve this problem, and also spent much of
Leslie’s visit talking about the problem. Mike Merritt, who
was then a graduate student at Georgia Tech, also participated
in these discussions.

At some point around then — probably after Leslie’s visit
but I really can’t remember — Phil Enslow organized a work-
shop on distributed computing at Georgia Tech. This was a
serious workshop, which was supposed to actually produce
something: a document delineating the important research
problems in this new area. Phil divided the workshop par-
ticipants into working groups, each of which was supposed to
cover a sub-area. Mike Fischer, Leslie Lamport, Jim Burns,
and I (and some other people) were assigned to a working
group on “theory of distributed systems”, and we produced
some kind of document describing important research prob-
lems in this area. Unfortunately, I don’t remember anything at
all about what we or any of the other working groups wrote;
given that we wrote it quickly and late at night, I suspect it
wasn’t too interesting.

After this workshop, Mike, Leslie, and I talked about the
desirability of having another workshop in distributed com-
puting theory sometime soon (but this time without requiring
participants to actually produce anything). We didn’t do any-
thing about this idea for a while. The next thing I remember
is that, at some theory conference, Mike Fischer and I met
Robert Probert, a Canadian professor, and learned that he was
interested in founding a regular conference that would have its
home in Canada. He thought that distributed computing theory
would provide a good topic for such a conference. Although
we had so far been thinking of a one-time workshop, after
Mike and I discussed the matter with Robert, we agreed that
starting a regular conference was also a reasonable idea. The
basic plan we agreed on was that Mike and I would organize
the technical program, and Robert would handle most of the
organization and logistics. I don’t recall Leslie’s involvement
at this stage — I think he was really more interested in having
a small workshop than a big, general conference.

We advertised the conference as a forum in which dis-
tributed systems researchers and distributed computing theory
researchers could meet and talk to each other about research
issues of common interest. In keeping with this dual orienta-
tion, we worked to obtain sponsorship from both the systems
and the theory communities — thus, the conference was created
under the auspices of both SIGOPS and SIGACT. The scope
of the research to be covered was quite broad, including all
the distributed computing topics we could think of. We con-
sidered any theory paper or systems paper that could be seen
as expressing a “principle” for distributed computing as fair
game for submission.

There was one more thing the conference needed: a name.
The name “Principles of Distributed Computing” was pretty
easy to come up with, by analogy with “Principles of Program-

N. Lynch

ming Languages”. We used the word “Principles” instead of
“Theory” on purpose, to make it clear that we weren’t just
looking for papers containing theorems. With this name, it
was pretty clear we should use the initials PODC.

But we still had to figure out how to pronounce the initials
“PODC”. I first realized this when I was about to present our
plans for the conference at a STOC business meeting. Reading
it like an English word didn’t come out right — it’s basically
unpronounceable (unlike POPL, which is pronounced easily
as “Popple”). So, the only solution was to pronounce the final
letter “C” separately. There were two choices: “Pod-cuh” or
“Pod-see”. The second of these won easily on esthetic grounds.

2 How PODC evolved

Behaving democratically, Mike and I elected Mike as the pro-
gram chair of the first PODC, which was held in Ottawa (with
Nicola Santoro doing local arrangements), and me as pro-
gram chair of the second, which was held in Montreal (with
Gordon Cormack doing local arrangements). As I recall, both
conferences were pretty widely advertised, and got plenty of
submissions and plenty of attendees.

Those first two conferences were notably broad in scope,
with papers covering a wide range of systems and theory top-
ics. A good number of systems researchers attended, along
with theoretical researchers. The breadth of the conference
papers, and the wide variety of interests of the participants,
made these conferences a lot of fun. However, some partici-
pants thought that the scope was too broad — that the confer-
ences didn’t have enough of a focus on any particular topic.
For instance, I recall that Robin Milner attended one of the
conferences but found that, for his taste, there weren’t enough
papers involving fundamental issues of semantics of concur-
rency.

The character of PODC that has evolved in the ensuing
years was certainly not evident at the first two meetings. In
fact, those conferences had relatively few papers on distributed
algorithms, which have been the main focus of more recent
PODC conferences. Rather, along with some papers about al-
gorithms, we had some on other aspects of theory, some on
systems design ideas, some on applications, etc. The “Princi-
ples” represented here included more than just theorems, for
example, I remember one fine paper by Paul Leach and others
at Apollo Computer Co. [2], which contained nothing resem-
bling a theorem. Instead, it contained a thoughtfully worked
out discussion of the role of unique identifiers in distributed
systems; it delineated carefully the situations in which UIDs
should be used, and the reasons for and against their use. The
program committee thought that this was a very good example
of a practical “Principles” paper.

The second PODC conference, in Montreal, was the first
that included a PODC invited address. And of course, the first
person we invited to speak was Leslie Lamport. Leslie spoke
about fundamental research issues in distributed computing,
including understanding algorithms in terms of their underly-
ing physics, connecting high-level specifications and proofs to
real systems, and determining the inherent costs of synchro-
nization and inherent limits of concurrency. He also mentioned
some more specific technical problems, including specifica-
tion of FIFO priority, design of self-stabilizing algorithms, and



Some perspectives on PODC

proving bounds on the number of processes needed to solve
problems in the presence of Byzantine failures.

Since then, I have attended all except one or two of the
PODC conferences, so I’ve seen the conference evolve over
time. I think it has changed quite a bit: it has become narrower
and more theoretical, and within theory, more focused on dis-
tributed algorithms. The particular problems studied have var-
ied over time: mutual exclusion and other resource allocation
problems, consensus problems, clock synchronization, mini-
mum spanning trees, implementing read/write atomic objects,
wait-free computation, atomic snapshots, self-stabilizing al-
gorithms, group communication, and others. But the general
style of papers seems to have stabilized: PODC papers gener-
ally present new algorithms for theoretical problems or give
results about what is or is not computable in distributed set-
tings. Over the years, the conference has seen less and less
participation from systems researchers, as the emphasis of the
papers has become more solidly theoretical. For a while, the re-
sults seemed to drift away from practical relevance, but I think
that in the past few years, connections between the algorith-
mic results and practical distributed computing have become
somewhat stronger.

3 The role of formal models in PODC research

Here, I will change the tone of my “personal perspective”
somewhat, switching from remembered history to opinion.
The opinions I’m expressing here involve the role that I think
formal models play, or should play, in PODC research.

Defining formal (mathematical) models for distributed sys-
tems has been an integral part of distributed computing the-
ory from its very beginning. PODC papers typically devote a
significant amount of space to defining the underlying com-
putation model and the problems to be solved. This is because
it is nearly impossible to demonstrate that a complicated dis-
tributed algorithm solves a problem without having clear def-
initions for the algorithm, for the problem, and for the proper-
ties being assumed about the computing and communication
infrastructure.

Formal models are more critical for distributed algorithms
than they are for sequential algorithms, because distributed
algorithms are generally much harder to understand than se-
quential algorithms. Distributed algorithms execute nondeter-
ministically: a single piece of distributed code is usually exe-
cuted concurrently at many system nodes, possibly with differ-
ent speeds at different nodes. Such nondeterminism makes it
impossible to understand exactly what a distributed algorithm
will do when it executes. Instead, one generally has to settle
for understanding properties of executions, for example, in-
variants or progress properties. Defining these properties and
showing that they hold require formal models.

Furthermore, anyone who has ever tried to prove lower
bounds or other kinds of impossibility results — which I think
includes most people in the PODC community — knows that
formal models are critical for stating and proving such re-
sults. Statements of impossibility results can be very subtle,
for example, they must distinguish carefully between what is
under the control of a proposed algorithm and what is under
the control of its environment. If one is not careful, one can
easily fall into the trap of stating a problem that is unsolvable

73

for trivial reasons (e.g., the algorithm isn’t required to keep
taking steps), or that is solvable by a trivial algorithm (e.g., an
algorithm that refuses to accept some inputs). It is very hard
to get all of this right without a precise model.

The need for good formal models became evident to me
right at the start of my work on distributed algorithms: when
Mike, Jim, Gary, and I wrote our first paper on mutual ex-
clusion, we had to devote a very large amount of time and
attention to getting the definitions right. And then, right after
this first paper, Mike and I felt compelled to write a second
paper focusing exclusively on formal models for distributed
systems [3].

What kinds of formal models are needed for distributed
systems? Well, it should be pretty clear by now that what
is needed is some kind of interacting (reactive) state ma-
chine model, where interactions may be via shared memory
or shared actions. The models should support “structured” de-
scription of algorithms using composition and levels of ab-
straction, and should support the usual mathematical analysis
methods (like invariants and simulation relations). Also, the
models should be simple enough to support nice impossibility
proofs.

One can either use a general modeling framework (like
my own favorite, I/O automata [4] and its extensions to in-
corporate timing, probabilities, etc.), or can define specially
tailored models for each problem from scratch. The latter ap-
proach is taken in most PODC papers. However, I personally
prefer using a general modeling framework, because it lets me
use general results about the framework over and over again.
In any case — whether one uses a general modeling frame-
work or defines an individual model — it is important that the
models be precisely defined. If they aren’t, ambiguities in the
definitions may make it impossible to understand the results
precisely, in fact, they may make the results meaningless.

One of the referees (Leslie Lamport, who chose not to be
anonymous) asked me to include some historical perspective
about the development of the I/O automaton model. So I'll
oblige:

I/O automata weren’t invented on purpose. Around 1985,
Mark Tuttle and I invented a simple distributed resource allo-
cation algorithm based on tree traversal, and wanted to analyze
its behavior. One of the main points we wanted to make with
this work was that a good way of analyzing such algorithms is
to use levels of abstraction — mapping the detailed algorithm
to a higher-level view of the algorithm as a global state ma-
chine whose state contained a directed graph. (Actually, as I
recall, the initial ideas for this algorithm and the general ap-
proach originated much earlier, in discussions at Georgia Tech
involving Mike Fischer, Nancy Griffeth, and Arnold Schon-
hage, in around 1979.)

Mark and I soon found that quite a lot of work was in-
volved in saying everything we wanted to say really carefully
and clearly. The statements we wanted to make were clearly of
two different kinds: some involved general properties of inter-
acting state machines and levels of abstraction, and some were
specific to the example we were studying. To separate these
different kinds of concerns, we were led to use a general mod-
eling framework. We could not use the model developed earlier
by Mike Fischer and myself [3], because it is based on shared-
variable communication, and we now wanted shared-action
communication (to express message-passing). Since nothing



74

else satisfactory existed at the time, we were led to invent a
new framework, and I/O automata were born. This work first
appeared in PODC, in 1987.

4 The future

The field of practical distributed computing is at an exciting
point right now, because of the current fast pace of technologi-
cal innovation in the Internet, in the Web, in mobile computing
systems, and in hybrid (continuous/discrete) control systems.
This means that old distributed computing problems — for ex-
ample, problems of communication, resource allocation, and
data management — will require new solutions for the new set-
tings. The new algorithms will have to tolerate more types of
failures and more frequent changes to the set of participating
processes, which will probably make the new algorithms more
complicated. Also, completely new problems will arise, and
these will lead to completely new kinds of algorithms.

These practical developments present researchers in the
theory of distributed systems with new and exciting research
opportunities. Again taking a historical perspective, I think that
we are now in a situation very similar to where we were back
in the late seventies. Again, we are faced with new kinds of
distributed computing that are becoming extremely important
in practice, and that do not yet have adequate theoretical foun-
dations. Again, new theoretical work is needed to define the
new settings and problems, and to develop new algorithms and
impossibility results. Again, we need adequate formal models
— this time, models that can handle complexities like contin-
uous behavior and mobility. I think that PODC researchers
are in a great position to play a leading role in developing all
of this theory, and PODC can provide an ideal forum for the
results.

N. Lynch

References

1. A. Cremers, T. Hibbard. An algebraic approach to concurrent
programming control and related complexity problems, 1975.
Manuscript. Computer Science Department, USC, Los Angeles,
CA

2. P.J. Leach, B. L. Stumpf, J. A. Hamilton, P. H. Levine. UIDs
as internal names in a distributed file systems. In Proceeding of
ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Attawa, Canada, August 1982

3. N.A. Lynch, M.J. Fischer. On describing the behavior and im-
plementation of distributed systems. Special issue on Seman-
tics of Concurrent Computation Theoretical Computer Science
13(1):17-43 (1981)

4. N.A. Lynch, M.R. Tuttle. An introduction to Input/Output au-
tomata. CWI-Quarterly, 2(3):219-246, September 1989. Cen-
trum voor Wiskunde en Informatica, Amsterdam, The Nether-
lands. Technical Memo MIT/LCS/TM-373, Laboratory for Com-
puter Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, November 1988. Also, “Hierarchical Cor-
rectness Proofs for Distributed Algorithms,” in Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Com-
puting, pages 137-151, Vancouver, British Columbia, Canada,
August 1987

Nancy Lynch is a Professor in the Department of Electrical Engi-
neering and Computer science at MIT and heads the Theory of Dis-
tributed Systems research group in the MIT’s Laboratory for Com-
puter Science. She is the author of numerous research articles about
distributed algorithms and impossibility results, and about formal
modeling and verification of distributed systems. She has authored
two books, “Atomic Transactions” (with Merritt, Weihl, and Fekete)
and “Distributed Algorithms”. She is an ACM Fellow and a member
of the National Academy of Engineering.



