
INFORMATION AND CONTROL 52, 257--274 (1982)

An Efficient Algorithm for
Byzantine Agreement without Authentication

DANNY DOLEV

IBM Research Laboratory, San Jose, California 95193

M I C H A E L J. F I S C H E R *

Yale University, New Haven, Connecticut 06520

R OB F OW L E R t

University of Washington, Seattle, Washington 98105

NANC Y A . L Y N C H * *

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

AND

H . RAYMOND STRONG

IBM Research Laboratory, San Jose, California 95193

Byzantine Agreement involves a system of n processes, of which some t may be
faulty. The problem is for the correct processes to agree on a binary value sent by a
transmitter that may itself be one of the n processes. If the transmitter sends the
same value to each process, then all correct processes must agree on that value, but
in any case, they must agree on some value. An exlSlicit solution not using authen-
tication for n = 3 t + 1 processes is given, using 2 t + 3 rounds and O(t 31ogt)
message bits. This solution is easily extended to the general case of n >/3t + 1 to
give a solution using 2t + 3 rounds and O(nt + t 3 log t) message bits.

* This work was supported in part by the Office of Naval Research under Contract
N00014-80-C-0221 through a subcontract from the University of Washington and by the
National Science Foundation under Grant MCS81-16678.

t This work was supported in part by the National Science Foundation under Grant
MCS80-04111.

** On leave from Georgia Institute of Technology, Atlanta, Georgia 30332.

2 5 7
0019-9958/82 $2.00

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

258 DOLEV ET AL.

1. INTRODUCTION

In this paper we improve previous algorithms in Pease et al. (1980),
Lamport et al. (1983), Dolev (1981, 1982), and Dolev and Strong (1982),
for achieving agreement among multiple processes. The context for this
agreement is a network of unreliable processes that have a means for
conducting several synchronized rounds of information exchange, after which
they must all agree on some set of information. We will assume for
simplicity that this set of information consists of a single bit. The
generalization to arbitrary messages is straightforward.

The type of agreement we will study is called Byzantine Agreement
(Lamport et al., 1983) unanimity (Dolev, 1981), or interactive consistency
(Pease et al., 1980). Byzantine Agreement is a kind of guaranteed multicast
of a value in which one process sends its value (bit) to other participants and
they exchange various messages in order to agree on exactly what value was
sent. It results when all correctly operating processes are able to agree either
on a value or on the conclusion that the originator of the value is faulty. It is
called Byzantine because we make no assumption about the behavior of any
undetected faulty processes. More explicitly, Byzantine Agreement is
achieved when

(I) all correctly operating processes agree on the same value, and

(II) if the transmitter operates correctly, then all correctly operating
processes agree on its value.

Implicit in (I) and (II) is the idea that the agreement is synchronous in the
sense that all processes reach this agreement at the same time. In other
words, there must be some real time at which each of the processes has
completed the execution of its algorithm for reaching agreement, and this
time must be known in advance.

Our algorithm will handle the worst case assumption that faulty processes
are not predictable and possibly even malicious. Even if the correctly
operating processes cannot identify the faulty processes, they must still reach
Byzantine Agreement. The algorithm does not depend in any way on
anticipated behavior of faulty processes.

Previous best algorithms for reaching Byzantine Agreement were
presented in Dolev (1981, 1982). These algorithms are polynomial and reach
agreement with and without using authentication, respectively. (Authen-
tication here refers to any protocol that prevents processes from changing the
messages they relay or introducing new messages and claiming to have
received them from others. See Dolev (1982) and Lamport et al. (1982) for
further discussion.) In this paper we will improve the algorithm without
authentication, which requires 4t + 4 rounds of information exchange and

BYZANTINE AGREEMENT 259

O(n 4 log n) bits. The basic algorithm we present requires 2t + 3 rounds and /
O(nt + t 3 log t) bits.

Lynch and Fischer (1983) were the first to show that a lower bound on
the number of rounds needed is t + 1; their result was generalized by Dolev
and Strong (1982) and independently by Demillo et al. (1982). Exponential
algorithms for reaching agreement in t + 1 rounds were given in Pease et al.
(1983), Lamport et al. (1982), and Dolev (1981, 1982). The existence of a
polynomial algorithm without authentication using fewer than 2t + 3 rounds
remains open.

The algorithms discussed provide a method for a single process to send a
single value to all other processes. Generalizations to the cases in which the
transmitter is not known in advance or is not a member of the system (one
of the participating processes) will be discussed and the appropriate changes
in the algorithm will be indicated.

We assume some reliable means of communication by which any correct
process can send a message to any other correct process. For example, this
reliablity might be achieved by sending duplicate messages along many paths
in a network. In any case, for this paper we assume a completely connected,
totally reliable communication network, and in counting the total number of
messages sent, we ignore any duplication or repetition inherent in this
communication medium. Note that we only count messages sent in accor-
dance with the algorithm.

All results obtained in this paper can be extended to networks which are
not complete using similar methods to those described in Dolev (1981,
1982). The number of rounds and likewise the number of messages will
increase, but the algorithms will remain polynomial.

Algorithms for reaching Byzantine Agreement using authentication are
relatively simple (Dolev and Strong, 1983) and require O(nt) messages. For
Byzantine Agreement without authentication, a much more sophisticated
algorithm is needed. Byzantine Agreement is more difficult without authen-
tication because faulty processes can change intermediate values, and
because no process can identify with certainty all those that relayed a given
message. Without authentication, it was shown in Pease et al. (1980) that n
must be greater than 3t for Byzantine Agreement to be possible.

2. BASIC NOTIONS AND ASSUMPTIONS

To clarify the relationships among the processes, we use notions suggested
in Dolev (1981). The transmitter sends its value to its receivers either
directly or via others called relays. A process can be a transmitter, a receiver
of a relay according to its function in the network with respect to a given
message. A process is correct if it follows the specified algorithms; a correct

260 DOLEV ET AL.

transmitter is a correct process that sends the same value to all its receivers.
A faulty process is a relay or a transmitter that is not correct.

We assume that each process knows the topology of the network and of
each subnetwork on which we will run the algorithm. Weaker assumptions
will require a more complex and less efficient algorithm along the lines
discussed in Dolev (1982).

Although it is enough to assume that there exists an upper bound on the
delay of relaying a message through a correct process, we also assume that
the algorithm is synchronous in the sense that each process knows the
beginning and ending times of each round and these times are synchronous
throughout the system. For further discussion of this issue, see Lamport
(1983) and Dolev (1982).

An important and apparently necessary assumption (Lamport, 1983)
without authentication is that the immediate sender of any message can be
identified.

There is no solution if the upper bound on the number of faults exceeds
one third of the processes. To make the algorithm more efficient, we want it
to run with respect to a given upper bound and not the maximal upper
bound. Thus we assume that the upper bound t for the number of possible
faults is a parameter of the algorithm that each process is given.

Observe that if the actual number of faulty processes is larger than the
upper bound, then the algorithm may fail to reach Byzantine Agreement
without alerting any correct process to that fact. This is not a problem with
the specific algorithm we are going to present, but inherent in the Byzantine
assumptions. There is no way, in general, to know if the transmitter had sent
conflicting values, or whether all the evidence is coming out of faulty
processes. The proofs of necessary conditions for the existence of a solution
in Pease (1980), Lamport (1983), and Dolev (1981, 1982), are based on this
fact.

In Section 3 we present the basic algorithm for the case n = 3t + 1 with
the transmitter known. In Sections 4 and 5 we present a formal model and
prove that the algorithm reaches Byzantine Agreement. In Section 6 we will
generalize the algorithm to any n > 3t and to the cases where the transmitter
is not known in advance or not one of the processes. We also indicate the
changes required when the number of possible values sent is a function of the
number of processes.

3, THE ALGORITHM

In this section we will present the basic algorithm for achieving Byzantine
Agreement. In the next sections we will present the precise model and the

BYZANTINE AGREEMENT 261

complete proof of correctness of the algorithm. The algorithm presented here
will handle the case n = 3 t + 1, and will use the assumption that the
transmitter is known and the set of possible values is {0, 1 }. The value 0 will
also be the default in case the agreement algorithm concludes that the
transmitter is faulty.

At the beginning the transmitter sends a "*" message to all processes
including itself to indicate that its value is 1. If its value is 0, it sends nothing
during the first round. If the processes agree that " * " was sent, then 1 will be
the final decision; otherwise, the final decision will be 0. Thus the algorithm
is not symmetric in the two possible values.

In the algorithm we use two thresholds, LOW and HIGH, where
L O W = t + 1 and H I G H = 2 t + I . If LOW processes support some
assertion, then at least one correct process supports it. If H I G H processes
support something, then at least LOW correct ones support it. These
thresholds are used to govern the support offered by a correct process to
assertions made by another process.

The basic idea in the algorithm is to prevent the faulty processes from
introducing faulty values by asking for at least LOW (=t + 1) confirmations
of a fact before adding additional support and by asking for H I G H confir-
mations of a fact before assuming that there will be agreement on that fact.
The LOW threshold will prevent a collusion of faulty processes from
introducing spurious information without initial support from at least one
correct process. To prevent faulty processes from introducing additional
support to critical assertions too close to the end of the algorithm to be
communicated to all correct processes, each correct process will require a
proof of progress before it supports otherwise supportable assertions. Thus
information released too late to correct processes will be ignored.

During the algorithm two types of messages wil be sent: a "* ' ' message
and messages consisting of the name of some process. The "*" represents the
asertion that the transmitter has value 1, and a name represents the assertion
that the named process has sent "* "

At the beginning of each round each process sends its messages to every
process. Then it receives messages from the others and decides what to send
at the next round. The notion of round as well as all the other notions we are
using will be defined more precisely in the next section.

Each process keeps a record of all messages it has received. Consider this
collection as held by one process p. Denote by W x the set of processes that
have sent to process p the message "x." We call W x the set of witnesses to
message x. Process j is a direct supporter for process r if j receives "*"
directly from r. In this case, i f j is correct, it will send the message " r" and p
will include j in W r. Process j is an indirect supporter for r if it has a set of
witnesses to r of cardinality LOW, i.e., if I Wrl ~ LOW for j.

Process p confirms r if the cardinality of the set of witnesses to "r" is at

262 D O L E V ET AL.

least HIGH. Each process p has a set (possibly empty) of confirmed
processes which we denote by C.

The last notion we need is initiation, which means sending "* . " A process
p initiates at round k if either at round 1 it receives " * " from the transmitter,
or by the end of round k the cardinality of the set of confirmed processes C,
not including the transmitter, is at least L O W + max(0, [k/2] - 2).

We assume that whenever a process broadcasts a message to all others, it
also sends one to itself, for purposes of recording its own messages. We also
assume that correct processes follow the algorithm and send each message
exactly once.

We now give the following rules for correct operation for each process:

(R1) At round 1 the transmitter s broadcasts its value v to all
processes.

(R2) At any round k > 1, each process broadcasts the names of all
processes for which it is either a direct or indirect supporter, and which it
has not previously broadcast. I f it initiates at the end of the previous round,
it also sends the " * " message unless it has previously done so.

(R3) If a process confirms H I G H processes it commits to 1.

(R4) If, after round 2t + 3, the value l is committed then agree on 1;
otherwise, agree on 0.

The correctness of this algorithm is somewhat subtle and is proved in the
following sections. For the proof we present a formal model in which we will
define all the notions we use. Using the formal model we will prove the
correctness of the algorithm. However, the following discussion should help
to motivate the proof.

During the course of execution, processes from time to time initiate. This
means that they know that the transmitter has sent " * " to some correct
process and that they are proposing to commit (i.e., to accept). A process
announces initiation by sending " * " to the other processes.

A process receiving " * " becomes a witness to the initiation of the sending
process. A process can become an "indirect" witness to an initiation by
hearing about it from at least L O W other processes, since then at least one
of them must be correct. In either case, it broadcasts that fact to all
processes, including itself. (The sending process will thus record itself as a
witness at the same time that all other processes record it as a witness.)

On receiving message " r " from process j , process p records the fact that j
claims to be a witness to the initiation of r. When at least H I G H processes
have claimed to be witnesses to r, then r is confirmed. The confirming
process then knows one of two things must be true: either r is correct and
has indeed initiated, or r is faulty, but nevertheless has told at least L O W
correct processes that it has initiated.

BYZANTINE AGREEMENT 263

A process initiates at the beginning of the second round if it receives "*"
from the transmitter during the first round. Thereafter, it can only initiate if
it has confirmed sufficiently many initiations by other processes. This
threshold number for initiation is LOW through round 4 and then increases
by one every two rounds until it reaches HIGH-1. By that time, either LOW
correct processes will have initiated or it is no longer possible for a correct
process to initiate. In the former case, after three more rounds, every correct
process will commit. In the latter case, no correct process can commit. The
delicate part of the argument concerns these last two facts: initiating and
committing are easy enough so that as soon as LOW correct processes
initiate, then an avalanche begins which results in all correct processes
initiating and committing a small number of rounds later. However,
committing is hard enough so that no process commits in the last three
rounds except as a result of an avalanche started earlier.

4. THE MODEL

We model the method for reaching Byzantine Agreement on a
synchronous system of automata. Such a system S is described by the
following:

N the set of n processes;

Qi the set of states for process i;

ti initial state for process i;

vO s, vl s initial states for the transmitter s, indicating the transmitter
initial state with values 0 or 1 respectively;

q(r) C Q1 × "'" × Q, state vector of the n processes in round r;

M i j the set of possible messages that process i might send to
process j ;

#~,~ : Q~-~ M~j, i , j E N 2 the message generation functions;

6j: Qj × M~.j X ... X Mn, j~ Qj, j c N the state transition functions.

Let T be a subset of N, where I TI >~ n - t, and let v ~ {0, 1 } (T is the set
of correct processes and v is the value of the transmitter).

A round of the computation takes place in two steps. First, each process i
sends messages from M i j to each process j. Second, each process changes
state based on its old state and the messages it receives. Faulty processes can
send arbitrary messages, so there are in general many possible computations
that must satisfy the agreement and validity conditions below. A sequence of
state vectors q(l), q(2) q(d+ 1) is a d-round(T, v)-computation if there
exists messages rni,i(r) ~ Mi,j, for i , j C N and 1 ~ r ~< d, such that

264 DOLEV ET AL.

(1) I N I T I A L I Z A T I O N : If v = 0 , then q~(1)= v0 S. I f v = 1, then
qs(1) = vl s. Each q i (1) = li, for i4:s.

(2) C O R R E C T MESSAGES: For each r, 1 ~ r ~ d , and each i C T,
j E N, mij(r) =/.ti,j(qi(r)).

(3) C O R R E C T T R A N S I T I O N S : For each r, l ~ < r ~ d , and each
j E T, qj(r + 1) = 6j(qj(r), mlj(r) , . . . , mNj(r)).

We say that system S reaches Byzantine Agreement in d rounds if for every
subset T of N, with [TI ~> n - t, every v ~ {0, 1 }, and every d-round (T, v)-
computat ion q(1),...,q(d+ 1), the final state vector q(d+ 1) satisfies the
following:

(1) A G R E E M E N T : Ifi , j E T, then qi(d+ I) ~ F ~ iff q i (d + 1)CFj.

(2) V A L I D I T Y : I f s E T , then for all l E T , q i (d + l) E F i iff
qs(1)=vl , .

Accepting states F i mean that process i will agree on 1. Any other state
means agreement on 0. The validity requirement means that, if the
transmitter is correct, then each correct process will agree on its value.

5. BASIC SOLUTION

Now assume n = 3t + 1. We describe a system S. Let I = {* } U N be a set
of message items. Messages are subsets of message items; thus we take
Mij = M = 2 I.

Each process remembers all the message items it has ever received from
any of the processes. Formally , a data entity is a pair in D = I X N with first
component a message item and second component the name of the process
from which it was received. A process state q is a pair (data(q), round(q)),
where data(q) is contained in D and round (q) is a positive integer. Thus, we
take Qi = Q = 2 D x IN. Thus, the process state is determined by the data
recieved from the other processes, and the current round number. The initial
states are z t= (0, 1), v 0 s = (0, 1), and v l s = ({*,s)}, 1). The transmitter 's
initial state with value 0 is not different from the initial state of the other
processes. The initial state with value 1 will be used below to generate " * "
messages from the transmitter to every process. The transition function is

c~i(q, m 1 m ,) = (data(q) L) {(x,j) @ D Ix @ mj}, round(q) + 1).

Thus the state change adds the new information received at the current round
and increments the round number by one. Our assumption that the system is

BYZANTINE AGREEMENT 265

synchronous is used here to require that each process updates its state even
when no information is received at some round,

The heart of the algorithm is the message generation function. First, define
thresholds L O W = t + 1 and H I G H = 2t + I. Let q C Q, and let x C I. We
define

Wx(q) = tJ E N[(x, j) ~ data(q)},

the witnesses to x, and we let wx(q)]. We define

C(q) = {k C N] wk(q) >>. H I G H , and k 4: s },

the confirmed processes, and we let c(q)--]C(q)]. Thus a process x, other
than the transmitter, is confirmed if there are H I G H processes that have sent
x. Notice that if x is confirmed for p, then every other process has at least
LOW witnesses to x because at most t are faulty.

A process initiates if it supports the fact that the transmitter started with
value 1. Let f (x) = max(0, Ix/2] - 2). Process i initiates in q if

(I1) i C W,(q),

(I2) c(q) >/LOW +f(round(q)) , or

(I3) s C W,(q) and round (q) = 2.

Thus a process initiates in state q if it initiated previously, it has enough
support for the fact that the transmitter started with value 1 (without
counting the transmitter itself), or it received " * " from the transmitter at the
first round. (It may help to think of initiation as taking place at the end of
the round that led to state q.)

Process i commits in q if

[{k C N I wk(q) >/HIGH/I/> H I G H .

This means that i has H I G H support for the fact that H I G H processes have
sent "* "

Now we can define the message generation function and the accepting
states. We define g~,j(q) to be the smalles set satisfying the following rules:

(M 1) Initiation. If i initiates in q, then * C ,ui,j(q).
(M2) Direct support. W.(q) is contained in gila(q)'

(M3) Indirect support. I f wk(q) >~ LOW, then k C triG(q), k C N.

So, the message generation function produces " * " if the process initiates. It
produces the names of all the processes to which proces i is a witness.
Processor i is either a direct supporter for j, meaning that it has directly
received " * " from j ; or it has reason to believe that j sent " * " (indirect
support) in the form of L O W witnesses to the fact.

266 DOLEV ET AL.

Note that since all messages are remembered, process i need not send
process j the same message item twice. Thus the actual set of message items
sent can be that generated by the message generation function minus those
message items sent before.

Finally, F t = F = {q E Q [i commits in q}. So, the accepting states are all
the states in which a process confirms.

THEOREM 1. System S reaches Byzantine Agreement in 2t ÷ 3 rounds.

The next section contains the proof of Theorem i.

6. PROOF OF CORRECTNESS

L e m m a s l - l l prove Theorem 1 and establish the correctness of the
algorithm. All refer to a fixed (T,v)-computation q(1) q (d + l) ,
d = 2t + 3, with associated messages mt,j(r), i , j C N, 1 <~ r ~ d. Lemma 1 is
immediate from the definitions and is stated to focus attention on the
monotonicity of sets W and C.

LEMMA 1. Let 1 ~< r ' ~< r ~< d + 1, i E T. Then Wx(qi(r')) is contained in
Wx(qi(r)) for all x ~ L and C(qi(r')) is contained in C(qi(r)). Thus if i C T
initiates (commits) in qi(r'), then i initiates (commits) in qi(r).

In Lemma 2 we prove that within two rounds after a correct process
initiates, it is confirmed by all correct processes.

LEMMA 2. I f i ~ T - - {s } initiates in qi(r), 1 ~ r <~ d - 1, then
iC C(qj(r + 2)) for a l l j G T.

Proof. Let k be arbitrary process in T, then i C W.(q~(r + 1)) by rule
M1). Similarly, k E W i (q j (r + 2)) by rule (M2), for all j E T . Hence,
Wi(qj(r + 2)) contains T. The lemma follows since I TI > /HIGH. I

Lemma 3 proves that within two rounds after all the processes in T
initiate, all T commit.

LEMMA 3. Let 0 <<. r <~ d - 2. I f all i E T initiate in qi(r), then all i E T
eomm# in qi(r + 2).

Proof. Assume all i ~ T initiate in qi(r). By L e m m a 2 , T - - I s } is
contained in C(qi (r+2)) for all j E T. If s is not in T, then
e(qj (r+2))>~lT I>~HIGH and we are done. If s is in T, then
ws(qj(r + 2)) > / H I G H and e(qi(r + 2))/> H I G H - 1. Thus even though only
H I G H - 1 processes are confirmed, there is H I G H support for the fact that
H I G H processes have sent "*" and each j C T commits. I

BYZANTINE AGREEMENT 267

LEMMA 4. Let i,j, k ~ T, x ~ L and 1 <~ r <<. d + 1. Then k C Wx(qi(r))
iff k C Wx(qj(r)).

The proof of Lemma 4 follows from an easy induction on r using the fact
that correct processes always broadcast their messages to every process.
Notice that at round 1 only the transmitter can possibly find itself as a
witness.

Lemma 5 says that if one correct process has i confirmed at round r, then
all correct processes wil have i confirmed by round r + 1.

LEMMA 5. Let 1 <~ r <. d. I f i ~ C(q~(r)) for some k ~ T, then
i E C(qj(r + 1)) for all j ~ T.

Proof For every k C T, C(qk(1)) = 0. Assume r >~ 2. Since i E C(qk(r)),
there must be a set A contained in the intersection of T with Wi(qk(r)) with
I A I = LOW. By Lemma 4, for eve ry j C T,A is contained in Wi(qj(r)). Thus,
i C mj,h(r) for all j, h ~ T by rule (M3). Hence, j ~ Wi(qh(r + 1)) for each
j, h E T , s o i C C (q h (r + l)) for e a c h h C T . II

Next we prove that if the transmitter s is correct and initiates at round 1,
then all correct processes commit at round 4.

LEMMA 6. l f s C T and q~(1) = vl~, then each i C T commits in qi(4).

Proof By (M2), s C W,(qj(2)) for every j E 7". Therefore, by (13), each
j C T initiates in qj(2). By Lemma 3, each j C T commits in qj(4). II

Lemma 7 states that within 4 rounds after LOW correct processes initiate,
all T commit.

LEMMA 7. Let 0 < r <~ d - 3. I f there is a set A contained in T - - {s }
with IAI = LOW, such that i ~ A initiates in qi(r), then each j C T commits
in qi(r + 4).

Proof Let r' be the least
Lemma 2, A is contained in
every j E T initiates in qj(r'
commits in qj(r '+ 4), and

number such that all i C A initiate in qi(r'). By
C(qj(r' + 2)) for all j C T. We now argue that
+ 2)). It will then follow by Lemma 3 that j
hence also in qj(r+ 4) by Lemma 1. If the

transmitter is correct, then the desired conclusion holds for every r by
Lemma 6, so assume the transmitter is faulty. At r ' = 1 no correct process
initiates. If r ' = 2, then e(qj(r' + 2))/> IAI = LOW = LOW + f (r ' + 2). If
r ' > 2, then there is some k C A such that k initiates in qk(r') using rule (I2),
so c(qg(r'))>~ LOW +f (r ') . Since r ' is minimal, k is not in C(qk(r')). By
Lemma 1 and 5, C(qj(r' + 2)) contains C(q~(r')) for a l l j E T. By Lemma 2,
k C C(qj(r' + 2)). Hence; c(qj(r' + 2)) t> LOW + f (r ') + 1 = LOW +
f (r ' + 2). Thus j initiates in qj(r' + 2) by rule (12) as desired. II

2 6 8 DOLEV ET AL.

We next note that no correct process can have LOW support for the fact
that correct process i has initiated unless i has in fact initiated. The proof of
Lemma 8 is straightforward induction on r.

LEMMA 8. Let 1 <~ r <~ d, i , j ~ T. I f i does not initiate in qi(r), then i is
not in W,(qj(r + 1)) and wi(qj(r + 2)) < LOW.

Lemma 9 states that a correct process commits only after at least LOW
correct processes initiate.

LEMMA 9. Let r >/2, i E T, and suppose i commits in qi(r). Then there is
a set B contained in T with IBI = LOW such that every j C B initiates in
qj(r - 1).

Proof c(qi(r)) >/HIGH, so there is a set B contained in the intersection
of T with C(qi(r)) with IBI = L O W . Each j E B has wj(qi(r)) >/ HIGH;
hence, by Lemmas 8 and 1, j initiates in q j (r - 1). |

Lemmas 10 and 11 use the previous lemmas to complete the proof of
Theorem 1. First we prove that by the end of the computation, if one correct
process commits, then all commit. Later we prove that the system reaches
Byzantine Agreement.

LEMMA 10. I f any i E T commits in qt(d + 1), then all do.

Proof Assume i E T commits in qi(d + 1). By Lemma 9, there is a set A
contained in T with [A I = LOW such that e v e r y j E A initiates in qj(d). The
cases where t = 0 and the transmitter is correct are covered by Lemma 4. So
assume that the transmitter is faulty and that t > 0, which implies that d > 4.
Now consider the least r for which such a set A exists. If r ~< d - 3, we are
done by Lemmas 7 and 1. Hence, suppose r >/d - 2 = 2t + 1. We derive a
contradiction, There must be k E A which initiates in qk(r) using rule (I2).
Then e(qk(r)) >~ LOW +f (r) >~ LOW + t - 1 = H I G H -- 1; but the trans-
mitter s is faulty and is not in C(qk(r)). Therefore, as in the proof of
Lemma 9, there is a set A ' contained in the intersection of T with C(qk(r))
with [A ' I = L O W such that every process j E A ' initiates in q j (r - -1) ,
contradicting the choice of r. II

Lemma 10 proves the AGREEMENT part of the Byzantine Agreement. It
remains to show that if the transmitter is correct, then all will reach an
accepting state iff its value is 1.

LEMMA 11. Assume that s C T and let i C T . (a) I f qs(1)=vO s, then
qi(s + 1) is not in F i. (b) I f q s (1) = vl s, then qi(d + 1)C F~.

Proof (a) qs(1)=VOs. Suppose i commits in qi(d+ 1). Then by

BYZANTINE AGREEMENT 269

Lemma 9, there is an element j C T that initiates in qj(d). Consider the least r
for which s o m e j C T initiates in qj(r). Clearly r > 1 by the initial conditions.
Moreover, j cannot be initiated by (13). Hence, j initiates by rule (I2), so
c(qj(r))) LOW. Thus, there is a k C T, a subset of C(qj(r)), so
wk(qj) > HIGH. But then it follows from Lemma 8 that k initiates in
q~(r - 1), contradicting the choice of r. We conclude that qi(d + 1) is not in
F i •

(b) G(1) = vl s. This case is covered by Lemma 6. II

We have shown that the appropriate state for agreement is reached at
q(d + 1) after d = 2t + 3 rounds of information exchange. This completes the
proof of Theorem 1. II

7. COMPLEXITY ANALYSIS

Since 111 = n + 1, each message item can be encoded by O(log n) bits, and
a message M consisting of k message items can be encoded in length
O(k log n). Since processes need not repeat messages, each process sends a
maximum of n + 1 message items to each other process during the course of
the algorithm. Thus an upper bound on the total number of bits required by
the algorithm is O(n2(n+ 1) log n))= O(t31og t). We summarize this
discussion in

THEOREM 2. Byzantine Agreement can be reached for 3t + 1 processors
in the presence of up to t faults within 2t + 3 rounds of information exchange
using O(t 3 log t) message bits for a one bit agreement.

8. GENERALIZATIONS

More Than 3t + 1 Processes

The first generalization will be to the case where the number of processes
n is greater than 3 t + 1. We can run the above algorithm with all the
processes, but then the number of messages will be much larger than
necessary. In order to reduce the total number of messages sent during the
exchanges of information, we designate 3t + 1 active processes, including the
transmitter. The other processes are called passive. Passive processes do not
send messages. All processes are to ignore messages from or about passive
processes. Active processes follow the basic algorithm and send "*"
messages to all processes and other messages only to active processes.
Passive processes agree on value 1 only if they receive "*" from H I G H
(=2t + I) active processes; otherwise, they agree on value 0. After 2t + 3

270 DOLEV ET AL.

rounds of information exchange, the active processes will have reached
Byzantine Agreement by Theorem 1. If the transmitter is correct and has
value 1, then all correct active processes initiate after round 1, so the correct
passive processes will also agree on 1. If the transmitter is correct and has
value 0, then no correct active process initiates by the proof of Lemma 11, so
all correct passive processes will agree on 0. If the transmitter is faulty and
some correct passive process receives "*" messages from HIGH distinct
active processes, then at least LOW correct active processes initiated by the
end of round 2t + 2. Following the proof of Lemma 10, it is easy to see that
in this case at least LOW correct active processes initiated by the end of
round 2t, and by the proof of Lemma 7 every correct active process initiated
by the end of round 2t + 2. Thus in this case, all correct processes will agree
on 1. Similarly, if the transmitter is faulty and the correct active processes
agree on 1, then so will the correct passive processes. In any case we have
Byzantine Agreement for all n processes and this agreement is reached
within 2t + 3 rounds of information exchange with tha number of message
bits at most O(nt + t 3 log t).

Transmit ter M a y Not Be a Process

We can assume about the transmitter only that it is a possibly faulty data
source that communicates a (binary) value to each of the n processes in the
system before the algorithm begins. Thus, the transmitter might be one of the
n processes, or it might be a sensor or I/O device that all processes can read.
In this formalization, the transmitter's value is encoded by the start state of
each process. In the preceding sections the transmitter was identified with
one of the n processes that carries out the algorithm, and each other process
started in the same state regardless of the value of the transmitter. A solution
for the version now under consideration can be modified to solve the
previous version by simply adding an initial round in which the transmitter
sends its value to each other process. The converse, however, is not in
general true, for an algorithm might make use of the fact that, at most, t - 1
faulty processes remain when the transmitter has been determined to be one
of the faulty processes. Thus some solution to the previous version may not
provide a solution to the current version.

However, our basic solution can be modified to handle this current
version. If the transmitter is not one of the active processes, then the
processes will not use its messages during the algorithm. The algorithm is the
same, with the special phase at the beginning in which the data source loads
values into the various processes. The number of active processes should be
3t + 1 not counting the transmitter if it is not one of the processes. At the
crucial point in the proof of Lemma 10, we can no longer get by with
H I G H - - 1 confirmed processes. Instead we need HIGH. Thus we need

BYZANTINE AGREEMENT 27 1

f (d - 3) = t and d = 2t + 6, and the algorithm reaches Byzantine Agreement
among the active processes after 2t + 4 rounds of information exchange (not
counting the preloading round), with m = O(t 3 log t) bits of information
exhanged.

Notice that the above variation also handles the case in which the
transmitter is one of the processes, but is not identified ahead of time to the
individual active processes.

More Than Two Possible Values for Agreement

Our last generalization is handling more than binary values. In this case
each previous message must be relativized to the value v. Active processes
can run the basic algorithm with respect to each value, and they will have
accepting state for each value. At the end of the algorithm, if a process
commits to exactly one value, this value will be its decision; in any other
case it can decide that the transmitter is faulty and produce a previously
agreed on default value. The handling of the previously considered
generalizations remains the same.

Let V be the set of possible values. The number of bits required to reach
Byzantine Agreement among the active processes is at most
O(1V I t3(log t + log] V])). Note that if we use authentication, then the
number of bits exchanged is not affected by the number of possible values
(Dolev and Strong, 1938).

9. DECISION ON TRANSMITTER FAULT

In practice we would like to reach Byzantine Agreement as quickly as
possible, but we would also like to identify faulty processes whenever
possible. In this section we will sketch some methods for discovering
transmitter fault as a byproduct of the algorithms we have presented.

Consider again the basic one bit case with a known transmitter and a set
of 3t + 1 active processes. If one processor knows that the transmitter sent
more than one value, then it knows that the transmitter is faulty. But to
impart this knowledge to the other processors would seem to require
something like another session of Byzantine Agreement. We will show how
to use the information already exchanged to reach agreement among all the
correct processes about faultiness of the transmitter in some cases.

Observe that not every transmitter fault can be detected. For example, if
the transmitter excludes only t processes from receiving its value at the first
round and follows the rest of the algorithm, then there is no way for an
external observer to distinguish the resulting message behavior from what
would happen if the transmitter were correct and the t processes faulty.

A correct transmitter sends the same value to every other process, and as

643/52/3-3

272 DOLEV ET AL.

we proved in Lemma 6, within 3 more rounds all correct processes commit
to the value if it is 1. Committing to 0 can take place only at the end of the
algorithm. A faulty transmitter might send "*" to only a few correct
processes at round one, and by a slow propagation, the correct processes
might commit to 1 only at the last phase. The improvement we suggest
cannot change the number of rounds it will take to end the algorithm,
because sometimes we need all the rounds to verify that no correct process
will commit to something not yet known to the rest. But the propagation is
slow only while fewer than t + 1 correct processes have initiated. In this case
a t least t + 1 correct processes did not receive " * " message. We will show
below how correct processes will in this situation be able to commit to 0. If
later they also commit to 1, then all correct processes will be able to agree
that the transmitter is faulty.

Execute the basic aJgorithm for 1 and 0 at the same time, where the
algorithm for 1 proceeds exactly as described in Section 5. Initiation
messages will be "*1" and "*0." If a process does not initiate for 1 at round
2, then it initiates for 0. The rest of the algorithm remains the same.

In the algorithm for 0, each of the 11 lemmas hold, replacing 1 with 0.
Therefore, all correct processes either agree on 0 or onl, and if a correct
process sends its value all agree on its value. At the end of both algorithms,
if a process commits in both to the same value, then it should agree on that
value; otherwise, it should agree that the transmitter is faulty.

Observe that this variation of the algorithm requires twice the number of
bits and the same number of phases. The interesting property of this
algorithm is that if any process commits to a value in any one of the
subalgorithms after round 5, then the final agreement will be that the
transmitter is faulty.

THEOREM 3. All correct processes commit to at least one of the two
values 0 and 1 after round 5. Therefore, i f any correct process commits to
any value after round 5, all correct processes will decide that the transmitter
is faulty.

Proof There are two cases possible:

(1) t + 1 correct processes receive 1 at round 1, and

(2) t + 1 correct processes do not receive 1 at round 1.

In either case at least t ÷ 1 correct processes will initiate at least one of the
values at round 2. By Lemma 7, all correct processes will commit to that
value after round 5. If any correct process commits to a value after round 5
it will then have committed to two values. By Theorem 1, all correct
processes will commit to both values by the end of the algorithm. Thus the
final decision will be "transmitter faulty." II

BYZANTINE AGREEMENT 273

10. CONCLUSION

We have presented a feasible (polynomial) solution to the problem of
reaching Byzantine Agreement without using authentication. Our basic
solution handles a one bit agreement for n processes when the upper bound
on the number of possible faults is t, with n = 3t ÷ 1. We generalized this
solution to handle many possible values for many more processes as long as
n remains greater than 3t. We also described ways to handle modifications to
the model in which the transmitter is not one of the processes or is not
known to the other processes in advance.

We believe that our solution characterizes the best known method for
reaching Byzantine Agreement without authentication. However, we have not
been able to establish a lower bound on the number of rounds required that
narrows the gap between the known lower bound of t ÷ 1 and the 2t ÷ 3
rounds required by our algorithm. In fact the lower bound of t + 1 is in some
sense tight because algorithms exist for Byzantine Agreement without
authentication that require only t + 1 rounds at the cost of requiring
exponentially many messages. We leave open the question of a tradeoff
between messages and rounds.

We have assumed complete and reliable communication among the
processes. Note that this may be achieved in an unreliable and incompletely
connected network (Dolev, 1982) and that if we are given an algorithm for
reliable communication of a message using a number of messages
polynomial in the number of processes, then we can convert that algorithm
to one that achieves Byzantine Agreement in a polynomial number of
messages.

We have also assumed a complete synchronization of the rounds
throughout the paper. Some variations of our algorithm are more sensitive to
changes in this assumption than others; but all can stand a significant
weakening and the kind of synchronization required can be achieved by
messages along the lines of Lamport (1983) assuming some known upper
bound on the time required by a process to relay a message.

Finally, we offered an enhancement to the basic solution in which late
activity in the algorithm allows all processes to conclude that the transmitter
is faulty. Somewhat paradoxically, we can conclude from certain kinds of
activity after round 6 that the final decision will be "transmitter fault," but
we must continue processing to the end of the algorithm. This apparent
paradox suggests as an area for further research the search for algorithms
that under some conditions stop early.

274 DOLEV ET AL.

ACKNOWLEDGMENTS

We would like to acknowledge the careful reading and helpful suggestions of the referee.

REFERENCES

DEMILLO, LYNCH, N. A., AND MERRITT, M. (1982), Cryptographic Protocols, in "Proc. 14th
ACM SIGACT Symposium on Theory of Computing," May.

DOLEV, D. (1982), The Byzantine Generals strike again, J. Algorithms 3.
DOLEV, D. (1981), Unanimity in an unknown and unreliable environment, in "Proc. 22nd

Annual Symposium on Foundations of Computer Science," pp. 159-168.
DOLEV, D, AND STRONG, H. R. (1982), Polynomial algorithms for multiple processor

agreement, in "Proc., 14th ACM SIGACT Symposium on Theory of Computing," May.
DOLEV, D., AND STRONG, H. R. (1983), Authenticated algorithms for Byzantine agreement,

Sci. Ind. Appl. Math. J. Comput., to appear.
LAMPORT, L. (1983), "Using Time Instead o f Time-Out for Fault-Tolerant Distributed

Systems," A CM Trans. Programming Languages and Systems, to appear.
LAMPORT, L., SHOSTAK, R., AND PEASE, M. (1982), The Byzantine General's problem, ACM

Trans. Programming Languages and Systems 4 (3), 382.
LYNCH, N., AND FISCHER, M. (1983), "A Lower Bound for the Time to Assure Interactive

Consistency," submitted.
PEASE, M., SHOSTAK, R., AND LAMPORT, L. (1980), Reaching agreement in the presence of

faults, J. Assoc. Comput. Mach. 27 (2), 228.

