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1. INTRODUCTION 

In this paper we improve previous algorithms in Pease et al. (1980), 
Lamport et al. (1983), Dolev (1981, 1982), and Dolev and Strong (1982), 
for achieving agreement among multiple processes. The context for this 
agreement is a network of unreliable processes that have a means for 
conducting several synchronized rounds of information exchange, after which 
they must all agree on some set of information. We will assume for 
simplicity that this set of information consists of a single bit. The 
generalization to arbitrary messages is straightforward. 

The type of agreement we will study is called Byzantine Agreement 
(Lamport et al., 1983) unanimity (Dolev, 1981), or interactive consistency 
(Pease et al., 1980). Byzantine Agreement is a kind of guaranteed multicast 
of a value in which one process sends its value (bit) to other participants and 
they exchange various messages in order to agree on exactly what value was 
sent. It results when all correctly operating processes are able to agree either 
on a value or on the conclusion that the originator of the value is faulty. It is 
called Byzantine because we make no assumption about the behavior of any 
undetected faulty processes. More explicitly, Byzantine Agreement is 
achieved when 

(I) all correctly operating processes agree on the same value, and 

(II) if the transmitter operates correctly, then all correctly operating 
processes agree on its value. 

Implicit in (I) and (II) is the idea that the agreement is synchronous in the 
sense that all processes reach this agreement at the same time. In other 
words, there must be some real time at which each of the processes has 
completed the execution of its algorithm for reaching agreement, and this 
time must be known in advance. 

Our algorithm will handle the worst case assumption that faulty processes 
are not predictable and possibly even malicious. Even if the correctly 
operating processes cannot identify the faulty processes, they must still reach 
Byzantine Agreement. The algorithm does not depend in any way on 
anticipated behavior of faulty processes. 

Previous best algorithms for reaching Byzantine Agreement were 
presented in Dolev (1981, 1982). These algorithms are polynomial and reach 
agreement with and without using authentication, respectively. (Authen- 
tication here refers to any protocol that prevents processes from changing the 
messages they relay or introducing new messages and claiming to have 
received them from others. See Dolev (1982) and Lamport et al. (1982) for 
further discussion.) In this paper we will improve the algorithm without 
authentication, which requires 4t + 4 rounds of information exchange and 
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O(n 4 log n) bits. The basic algorithm we present requires 2t + 3 rounds and / 
O(nt + t 3 log t) bits. 

Lynch and Fischer (1983) were the first to show that a lower bound on 
the number of rounds needed is t + 1; their result was generalized by Dolev 
and Strong (1982) and independently by Demillo et al. (1982). Exponential 
algorithms for reaching agreement in t + 1 rounds were given in Pease et al. 
(1983), Lamport et al. (1982), and Dolev (1981, 1982). The existence of a 
polynomial algorithm without authentication using fewer than 2t + 3 rounds 
remains open. 

The algorithms discussed provide a method for a single process to send a 
single value to all other processes. Generalizations to the cases in which the 
transmitter is not known in advance or is not a member of the system (one 
of the participating processes) will be discussed and the appropriate changes 
in the algorithm will be indicated. 

We assume some reliable means of communication by which any correct 
process can send a message to any other correct process. For example, this 
reliablity might be achieved by sending duplicate messages along many paths 
in a network. In any case, for this paper we assume a completely connected, 
totally reliable communication network, and in counting the total number of 
messages sent, we ignore any duplication or repetition inherent in this 
communication medium. Note that we only count messages sent in accor- 
dance with the algorithm. 

All results obtained in this paper can be extended to networks which are 
not complete using similar methods to those described in Dolev (1981, 
1982). The number of rounds and likewise the number of messages will 
increase, but the algorithms will remain polynomial. 

Algorithms for reaching Byzantine Agreement using authentication are 
relatively simple (Dolev and Strong, 1983) and require O(nt) messages. For 
Byzantine Agreement without authentication, a much more sophisticated 
algorithm is needed. Byzantine Agreement is more difficult without authen- 
tication because  faulty processes can change intermediate values, and 
because no process can identify with certainty all those that relayed a given 
message. Without authentication, it was shown in Pease et al. (1980) that n 
must be greater than 3t for Byzantine Agreement to be possible. 

2. BASIC NOTIONS AND ASSUMPTIONS 

To clarify the relationships among the processes, we use notions suggested 
in Dolev (1981). The transmitter sends its value to its receivers either 
directly or via others called relays. A process can be a transmitter, a receiver 
of a relay according to its function in the network with respect to a given 
message. A process is correct if it follows the specified algorithms; a correct 
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transmitter is a correct process that sends the same value to all its receivers. 
A faulty process is a relay or a transmitter that is not correct. 

We assume that each process knows the topology of the network and of 
each subnetwork on which we will run the algorithm. Weaker assumptions 
will require a more complex and less efficient algorithm along the lines 
discussed in Dolev (1982). 

Although it is enough to assume that there exists an upper bound on the 
delay of relaying a message through a correct process, we also assume that 
the algorithm is synchronous in the sense that each process knows the 
beginning and ending times of each round and these times are synchronous 
throughout the system. For further discussion of this issue, see Lamport 
(1983) and Dolev (1982). 

An important and apparently necessary assumption (Lamport, 1983) 
without authentication is that the immediate sender of any message can be 
identified. 

There is no solution if the upper bound on the number of faults exceeds 
one third of the processes. To make the algorithm more efficient, we want it 
to run with respect to a given upper bound and not the maximal upper 
bound. Thus we assume that the upper bound t for the number of possible 
faults is a parameter of the algorithm that each process is given. 

Observe that if the actual number of faulty processes is larger than the 
upper bound, then the algorithm may fail to reach Byzantine Agreement 
without alerting any correct process to that fact. This is not a problem with 
the specific algorithm we are going to present, but inherent in the Byzantine 
assumptions. There is no way, in general, to know if the transmitter had sent 
conflicting values, or whether all the evidence is coming out of faulty 
processes. The proofs of necessary conditions for the existence of a solution 
in Pease (1980), Lamport (1983), and Dolev (1981, 1982), are based on this 
fact. 

In Section 3 we present the basic algorithm for the case n = 3t + 1 with 
the transmitter known. In Sections 4 and 5 we present a formal model and 
prove that the algorithm reaches Byzantine Agreement. In Section 6 we will 
generalize the algorithm to any n > 3t and to the cases where the transmitter 
is not known in advance or not one  of the processes. We also indicate the 
changes required when the number of possible values sent is a function of the 
number of processes. 

3, THE ALGORITHM 

In this section we will present the basic algorithm for achieving Byzantine 
Agreement. In the next sections we will present the precise model and the 
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complete proof of correctness of the algorithm. The algorithm presented here 
will handle the case n =  3 t +  1, and will use the assumption that the 
transmitter is known and the set of possible values is {0, 1 }. The value 0 will 
also be the default in case the agreement algorithm concludes that the 
transmitter is faulty. 

At the beginning the transmitter sends a "*"  message to all processes 
including itself to indicate that its value is 1. If its value is 0, it sends nothing 
during the first round. If the processes agree that " * "  was sent, then 1 will be 
the final decision; otherwise, the final decision will be 0. Thus the algorithm 
is not symmetric in the two possible values. 

In the algorithm we use two thresholds, LOW and HIGH,  where 
L O W = t +  1 and H I G H = 2 t + I .  If  LOW processes support some 
assertion, then at least one correct process supports it. If  H I G H  processes 
support something, then at least LOW correct ones support it. These 
thresholds are used to govern the support offered by a correct process to 
assertions made by another process. 

The basic idea in the algorithm is to prevent the faulty processes from 
introducing faulty values by asking for at least LOW (=t + 1) confirmations 
of a fact before adding additional support and by asking for H I G H  confir- 
mations of a fact before assuming that there will be agreement on that fact. 
The LOW threshold will prevent a collusion of faulty processes from 
introducing spurious information without initial support from at least one 
correct process. To prevent faulty processes from introducing additional 
support to critical assertions too close to the end of the algorithm to be 
communicated to all correct processes, each correct process will require a 
proof of progress before it supports otherwise supportable assertions. Thus 
information released too late to correct processes will be ignored. 

During the algorithm two types of messages wil be sent: a "* ' '  message 
and messages consisting of the name of some process. The "*"  represents the 
asertion that the transmitter has value 1, and a name represents the assertion 
that the named process has sent "*  " 

At the beginning of each round each process sends its messages to every 
process. Then it receives messages from the others and decides what to send 
at the next round. The notion of round as well as all the other notions we are 
using will be defined more precisely in the next section. 

Each process keeps a record of all messages it has received. Consider this 
collection as held by one process p. Denote by W x the set of processes that 
have sent to process p the message "x." We call W x the set of witnesses to 
message x. Process j is a direct supporter for process r if j receives "*"  
directly from r. In this case, i f j  is correct, it will send the message " r"  and p 
will include j in W r. Process j is an indirect supporter for r if it has a set of 
witnesses to r of cardinality LOW, i.e., if I Wrl ~ LOW for j. 

Process p confirms r if the cardinality of the set of witnesses to "r"  is at 
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least HIGH.  Each process p has a set (possibly empty) of  confirmed 
processes which we denote by C. 

The last notion we need is initiation, which means sending "* . "  A process 
p initiates at round k if either at round 1 it receives " * "  from the transmitter, 
or by the end of  round k the cardinality of  the set of  confirmed processes C, 
not including the transmitter, is at least L O W  + max(0, [k/2] - 2). 

We assume that whenever a process broadcasts a message to all others, it 
also sends one to itself, for purposes of  recording its own messages. We also 
assume that correct processes follow the algorithm and send each message 
exactly once. 

We now give the following rules for correct operation for each process: 

(R1) At round 1 the transmitter s broadcasts its value v to all 
processes. 

(R2) At any round k > 1, each process broadcasts the names of  all 
processes for which it is either a direct or indirect supporter, and which it 
has not previously broadcast. I f  it initiates at the end of  the previous round, 
it also sends the " * "  message unless it has previously done so. 

(R3) If  a process confirms H I G H  processes it commits to 1. 

(R4) If, after round 2t + 3, the value l is committed then agree on 1; 
otherwise, agree on 0. 

The correctness of  this algorithm is somewhat subtle and is proved in the 
following sections. For  the proof  we present a formal model in which we will 
define all the notions we use. Using the formal model we will prove the 
correctness of  the algorithm. However, the following discussion should help 
to motivate the proof. 

During the course of  execution, processes from time to time initiate. This 
means that they know that the transmitter has sent " * "  to some correct 
process and that they are proposing to commit (i.e., to accept). A process 
announces initiation by sending " * "  to the other processes. 

A process receiving " * "  becomes a witness to the initiation of  the sending 
process. A process can become an "indirect" witness to an initiation by 
hearing about it from at least L O W  other processes, since then at least one 
of  them must be correct. In either case, it broadcasts that fact to all 
processes, including itself. (The sending process will thus record itself as a 
witness at the same time that all other processes record it as a witness.) 

On receiving message " r "  from process j ,  process p records the fact that j 
claims to be a witness to the initiation of  r. When at least H I G H  processes 
have claimed to be witnesses to r, then r is confirmed. The confirming 
process then knows one of  two things must be true: either r is correct and 
has indeed initiated, or r is faulty, but nevertheless has told at least L O W  
correct processes that it has initiated. 
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A process initiates at the beginning of the second round if it receives "*"  
from the transmitter during the first round. Thereafter, it can only initiate if 
it has confirmed sufficiently many initiations by other processes. This 
threshold number for initiation is LOW through round 4 and then increases 
by one every two rounds until it reaches HIGH-1.  By that time, either LOW 
correct processes will have initiated or it is no longer possible for a correct 
process to initiate. In the former case, after three more rounds, every correct 
process will commit. In the latter case, no correct process can commit. The 
delicate part of the argument concerns these last two facts: initiating and 
committing are easy enough so that as soon as LOW correct processes 
initiate, then an avalanche begins which results in all correct processes 
initiating and committing a small number of rounds later. However, 
committing is hard enough so that no process commits in the last three 
rounds except as a result of an avalanche started earlier. 

4. THE MODEL 

We model the method for reaching Byzantine Agreement on a 
synchronous system of automata. Such a system S is described by the 
following: 

N the set of n processes; 

Qi the set of states for process i; 

ti initial state for process i; 

vO s, vl  s initial states for the transmitter s, indicating the transmitter 
initial state with values 0 or 1 respectively; 

q(r) C Q1 × "'" × Q, state vector of the n processes in round r; 

M i j  the set of possible messages that process i might send to 
process j ;  

#~,~ : Q~-~ M~j, i , j  E N 2 the message generation functions; 

6j: Qj × M~.j X ... X Mn, j~  Qj, j c  N the state transition functions. 

Let T be a subset of N, where I TI >~ n - t, and let v ~ {0, 1 } (T is the set 
of correct processes and v is the value of the transmitter). 

A round of the computation takes place in two steps. First, each process i 
sends messages from M i j  to each process j. Second, each process changes 
state based on its old state and the messages it receives. Faulty processes can 
send arbitrary messages, so there are in general many possible computations 
that must satisfy the agreement and validity conditions below. A sequence of 
state vectors q(l),  q(2) ..... q(d+ 1) is a d-round(T, v)-computation if there 
exists messages rni,i(r ) ~ Mi,j, for i , j  C N and 1 ~ r ~< d, such that 
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(1) I N I T I A L I Z A T I O N :  If  v = 0 ,  then q~(1)=  v0 S. I f  v =  1, then 
qs(1) = vl s. Each q i ( 1 ) =  li, for i4:s. 

(2) C O R R E C T  MESSAGES:  For  each r, 1 ~ r ~ d ,  and each i C  T, 
j E N, mij(r ) =/.ti,j(qi(r)). 

(3) C O R R E C T  T R A N S I T I O N S :  For  each r, l ~ < r ~ d ,  and each 
j E T, qj(r + 1) = 6j(qj(r), mlj(r) , . . . ,  mNj(r)). 

We say that  system S reaches Byzantine Agreement in d rounds if for every 
subset T of N, with [TI ~> n - t, every v ~ {0, 1 }, and every d-round (T, v)- 
computat ion q(1),...,q(d+ 1), the final state vector q(d+ 1) satisfies the 
following: 

(1) A G R E E M E N T :  Ifi ,  j E  T, then qi(d+ I ) ~ F ~  iff q i ( d +  1)CFj.  

(2) V A L I D I T Y :  I f  s E T ,  then for all l E T ,  q i ( d + l ) E F i  iff 
qs(1)=vl , .  

Accepting states F i mean that process i will agree on 1. Any other state 
means agreement on 0. The validity requirement means that, if the 
transmitter  is correct, then each correct process will agree on its value. 

5. BASIC SOLUTION 

Now assume n = 3t + 1. We describe a system S. Let I = {* } U N be a set 
of  message items. Messages are subsets of  message items; thus we take 
Mij  = M = 2 I. 

Each process remembers  all the message items it has ever received from 
any of the processes. Formally ,  a data entity is a pair in D = I X N with first 
component  a message item and second component  the name of the process 
from which it was received. A process state q is a pair (data(q), round(q)),  
where data(q) is contained in D and round (q) is a positive integer. Thus, we 
take Qi = Q = 2 D x  IN. Thus, the process state is determined by the data 
recieved from the other processes, and the current round number.  The initial 
states are z t=  (0,  1), v 0 s =  (0,  1), and v l s =  ({*,s)},  1). The transmitter 's  
initial state with value 0 is not different from the initial state of  the other 
processes. The initial state with value 1 will be used below to generate " * "  
messages from the transmitter  to every process. The transition function is 

c~i(q, m 1 ..... m , )  = (data(q) L) {(x,j)  @ D Ix @ mj}, round(q) + 1). 

Thus the state change adds the new information received at the current round 
and increments the round number  by one. Our assumption that  the system is 
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synchronous is used here to require that each process updates its state even 
when no information is received at some round, 

The heart of the algorithm is the message generation function. First, define 
thresholds L O W  = t + 1 and H I G H  = 2t + I. Let q C Q, and let x C  I. We 
define 

Wx(q) = tJ E N[ (x, j) ~ data(q)}, 

the witnesses to x, and we let wx(q)]. We define 

C(q) = {k C N] wk(q) >>. H I G H ,  and k 4: s }, 

the confirmed processes, and we let c(q)--]C(q)]. Thus a process x, other 
than the transmitter, is confirmed if there are H I G H  processes that have sent 
x. Notice that if x is confirmed for p, then every other process has at least 
LOW witnesses to x because at most  t are faulty. 

A process initiates if it supports the fact that the transmitter started with 
value 1. Let f ( x )  = max(0, Ix/2] - 2). Process i initiates in q if 

(I1) i C W,(q),  

(I2) c(q) >/LOW +f(round(q)) ,  or 

(I3) s C W,(q)  and round (q) = 2. 

Thus a process initiates in state q if it initiated previously, it has enough 
support for the fact that the transmitter started with value 1 (without 
counting the transmitter itself), or it received " * "  from the transmitter at the 
first round. (It may help to think of initiation as taking place at the end of  
the round that led to state q.) 

Process i commits in q if 

[{k C N I wk(q) >/HIGH/I/> H I G H .  

This means that i has H I G H  support for the fact that H I G H  processes have 
sent "*  " 

Now we can define the message generation function and the accepting 
states. We define g~,j(q) to be the smalles set satisfying the following rules: 

(M 1) Initiation. If  i initiates in q, then * C ,ui,j(q). 
(M2) Direct support. W.(q)  is contained in gila(q)' 

(M3) Indirect support. I f  wk(q) >~ LOW, then k C triG(q), k C N. 

So, the message generation function produces " * "  if the process initiates. It 
produces the names of  all the processes to which proces i is a witness. 
Processor i is either a direct supporter for j,  meaning that it has directly 
received " * "  from j ;  or it has reason to believe that j sent " * "  (indirect 
support) in the form of L O W  witnesses to the fact. 
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Note that since all messages are remembered, process i need not send 
process j the same message item twice. Thus the actual set of message items 
sent can be that generated by the message generation function minus those 
message items sent before. 

Finally, F t = F = {q E Q [ i commits in q}. So, the accepting states are all 
the states in which a process confirms. 

THEOREM 1. System S reaches Byzantine Agreement in 2t ÷ 3 rounds. 

The next section contains the proof of Theorem i. 

6. PROOF OF CORRECTNESS 

L e m m a s l - l l  prove Theorem 1 and establish the correctness of the 
algorithm. All refer to a fixed (T,v)-computation q(1) ..... q ( d + l ) ,  
d = 2t + 3, with associated messages mt,j(r ), i , j  C N, 1 <~ r ~ d. Lemma 1 is 
immediate from the definitions and is stated to focus attention on the 
monotonicity of sets W and C. 

LEMMA 1. Let 1 ~< r '  ~< r ~< d + 1, i E T. Then Wx(qi(r')) is contained in 
Wx(qi(r)) for  all x ~ L and C(qi(r')) is contained in C(qi(r)). Thus if  i C T 
initiates (commits) in qi(r'), then i initiates (commits) in qi(r). 

In Lemma 2 we prove that within two rounds after a correct process 
initiates, it is confirmed by all correct processes. 

LEMMA 2. I f  i ~ T - -  {s } initiates in qi(r), 1 ~ r <~ d -  1, then 
iC C(qj(r + 2 ) ) for  a l l j G  T. 

Proof. Let k be arbitrary process in T, then i C W.(q~(r + 1)) by rule 
M1). Similarly, k E W i ( q j ( r + 2 ) )  by rule (M2), for all j E T .  Hence, 
Wi(qj(r + 2)) contains T. The lemma follows since I TI > /HIGH.  I 

Lemma 3 proves that within two rounds after all the processes in T 
initiate, all T commit. 

LEMMA 3. Let 0 <<. r <~ d - 2. I f  all i E T initiate in qi(r), then all i E T 
eomm# in qi(r + 2). 

Proof. Assume all i ~  T initiate in qi(r). By L e m m a 2 ,  T - - I s }  is 
contained in C(qi (r+2))  for all j E T. If s is not in T, then 
e(qj (r+2))>~lT I>~HIGH and we are done. If  s is in T, then 
ws(qj(r + 2)) > / H I G H  and e(qi(r + 2))/> H I G H  - 1. Thus even though only 
H I G H -  1 processes are confirmed, there is H I G H  support for the fact that 
H I G H  processes have sent "*"  and each j C T commits. I 
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LEMMA 4. Let i,j, k ~ T, x ~ L and 1 <~ r <<. d + 1. Then k C Wx(qi(r)) 
iff k C Wx(qj(r)). 

The proof of Lemma 4 follows from an easy induction on r using the fact 
that correct processes always broadcast their messages to every process. 
Notice that at round 1 only the transmitter can possibly find itself as a 
witness. 

Lemma 5 says that if one correct process has i confirmed at round r, then 
all correct processes wil have i confirmed by round r + 1. 

LEMMA 5. Let 1 <~ r <. d. I f  i ~ C(q~(r)) for some k ~ T, then 
i E C(qj(r + 1)) for  all j ~ T. 

Proof For every k C T, C(qk(1)) = 0. Assume r >~ 2. Since i E C(qk(r)), 
there must be a set A contained in the intersection of T with Wi(qk(r)) with 
I A I =  LOW. By Lemma 4, for eve ry j  C T,A  is contained in Wi(qj(r)). Thus, 
i C mj,h(r) for all j, h ~ T by rule (M3). Hence, j ~ Wi(qh(r + 1)) for each 
j, h E T ,  s o i C C ( q h ( r + l ) )  for e a c h h C T .  II 

Next we prove that if the transmitter s is correct and initiates at round 1, 
then all correct processes commit at round 4. 

LEMMA 6. l f s  C T and q~(1) = vl~, then each i C T commits in qi(4). 

Proof By (M2), s C W,(qj(2)) for every j E 7". Therefore, by (13), each 
j C T initiates in qj(2). By Lemma 3, each j C T commits in qj(4). II 

Lemma 7 states that within 4 rounds after LOW correct processes initiate, 
all T commit. 

LEMMA 7. Let 0 < r <~ d - 3. I f  there is a set A contained in T - -  {s } 
with IAI = LOW, such that i ~ A initiates in qi(r), then each j C T commits 
in qi(r + 4). 

Proof Let r' be the least 
Lemma 2, A is contained in 
every j E T initiates in qj(r' 
commits in qj(r '+ 4), and 

number such that all i C A initiate in qi(r'). By 
C(qj(r' + 2)) for all j C T. We now argue that 
+ 2)). It will then follow by Lemma 3 that j 
hence also in qj(r+ 4) by Lemma 1. If the 

transmitter is correct, then the desired conclusion holds for every r by 
Lemma 6, so assume the transmitter is faulty. At r ' =  1 no correct process 
initiates. If r '  = 2, then e(qj(r' + 2))/> IAI = LOW = LOW + f ( r '  + 2). If 
r '  > 2, then there is some k C A such that k initiates in qk(r') using rule (I2), 
so c(qg(r'))>~ LOW +f ( r ' ) .  Since r '  is minimal, k is not in C(qk(r')). By 
Lemma 1 and 5, C(qj(r' + 2)) contains C(q~(r')) for a l l j  E T. By Lemma 2, 
k C C(qj(r' + 2)). Hence; c(qj(r' + 2)) t> LOW + f ( r ' )  + 1 = LOW + 
f ( r '  + 2). Thus j initiates in qj(r' + 2) by rule (12) as desired. II 



2 6 8  DOLEV ET AL. 

We next note that no correct process can have LOW support for the fact 
that correct process i has initiated unless i has in fact initiated. The proof of 
Lemma 8 is straightforward induction on r. 

LEMMA 8. Let 1 <~ r <~ d, i , j  ~ T. I f  i does not initiate in qi(r), then i is 
not in W,(qj(r + 1)) and wi(qj(r + 2)) < LOW. 

Lemma 9 states that a correct process commits only after at least LOW 
correct processes initiate. 

LEMMA 9. Let r >/2, i E T, and suppose i commits in qi(r). Then there is 
a set B contained in T with IBI = LOW such that every j C B initiates in 
qj(r - 1). 

Proof c(qi(r)) >/HIGH, so there is a set B contained in the intersection 
of T with C(qi(r)) with IBI = L O W .  Each j E B  has wj(qi(r)) >/ HIGH; 
hence, by Lemmas 8 and 1, j initiates in q j ( r -  1). | 

Lemmas 10 and 11 use the previous lemmas to complete the proof of 
Theorem 1. First we prove that by the end of the computation, if one correct 
process commits, then all commit. Later we prove that the system reaches 
Byzantine Agreement. 

LEMMA 10. I f  any i E T commits in qt(d + 1), then all do. 

Proof Assume i E T commits in qi(d + 1). By Lemma 9, there is a set A 
contained in T with [A I =  LOW such that e v e r y j E A  initiates in qj(d). The 
cases where t = 0 and the transmitter is correct are covered by Lemma 4. So 
assume that the transmitter is faulty and that t > 0, which implies that d > 4. 
Now consider the least r for which such a set A exists. If  r ~< d - 3, we are 
done by Lemmas 7 and 1. Hence, suppose r >/d - 2 = 2t + 1. We derive a 
contradiction, There must be k E A which initiates in qk(r) using rule (I2). 
Then e(qk(r)) >~ LOW +f ( r )  >~ LOW + t -  1 = H I G H  -- 1; but the trans- 
mitter s is faulty and is not in C(qk(r)). Therefore, as in the proof of 
Lemma 9, there is a set A '  contained in the intersection of T with C(qk(r)) 
with [ A ' I = L O W  such that every process j E A '  initiates in q j ( r - -1) ,  
contradicting the choice of r. II 

Lemma 10 proves the AGREEMENT part of the Byzantine Agreement. It 
remains to show that if the transmitter is correct, then all will reach an 
accepting state iff its value is 1. 

LEMMA 11. Assume that s C T  and let i C T .  (a) I f  qs(1)=vO s, then 
qi(s + 1) is not in F i. ( b ) I f q s ( 1 ) =  vl s, then qi(d + 1)C F~. 

Proof (a) qs(1)=VOs. Suppose i commits in qi(d+ 1). Then by 
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Lemma 9, there is an element j C T that initiates in qj(d). Consider the least r 
for which s o m e j  C T initiates in qj(r). Clearly r > 1 by the initial conditions. 
Moreover, j cannot be initiated by (13). Hence, j initiates by rule (I2), so 
c(qj(r))) LOW. Thus, there is a k C T, a subset of C(qj(r)), so 
wk(qj ) > HIGH.  But then it follows from Lemma 8 that k initiates in 
q~(r - 1), contradicting the choice of r. We conclude that qi(d + 1) is not in 
F i • 

(b) G(1) = vl  s. This case is covered by Lemma 6. II 

We have shown that the appropriate state for agreement is reached at 
q(d + 1) after d = 2t + 3 rounds of information exchange. This completes the 
proof of Theorem 1. II 

7. COMPLEXITY ANALYSIS 

Since 111 = n + 1, each message item can be encoded by O(log n) bits, and 
a message M consisting of k message items can be encoded in length 
O(k log n). Since processes need not repeat messages, each process sends a 
maximum of n + 1 message items to each other process during the course of 
the algorithm. Thus an upper bound on the total number of bits required by 
the algorithm is O(n2(n+ 1) log n))= O(t31og t). We summarize this 
discussion in 

THEOREM 2. Byzantine Agreement can be reached for 3t + 1 processors 
in the presence of up to t faults within 2t + 3 rounds of information exchange 
using O(t 3 log t) message bits for a one bit agreement. 

8. GENERALIZATIONS 

More Than 3t + 1 Processes 

The first generalization will be to the case where the number of processes 
n is greater than 3 t +  1. We can run the above algorithm with all the 
processes, but then the number of messages will be much larger than 
necessary. In order to reduce the total number of messages sent during the 
exchanges of information, we designate 3t + 1 active processes, including the 
transmitter. The other processes are called passive. Passive processes do not 
send messages. All processes are to ignore messages from or about passive 
processes. Active processes follow the basic algorithm and send "*"  
messages to all processes and other messages only to active processes. 
Passive processes agree on value 1 only if they receive "*"  from H I G H  
(=2t + I) active processes; otherwise, they agree on value 0. After 2t + 3 
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rounds of information exchange, the active processes will have reached 
Byzantine Agreement by Theorem 1. If the transmitter is correct and has 
value 1, then all correct active processes initiate after round 1, so the correct 
passive processes will also agree on 1. If the transmitter is correct and has 
value 0, then no correct active process initiates by the proof of Lemma 11, so 
all correct passive processes will agree on 0. If the transmitter is faulty and 
some correct passive process receives "*"  messages from HIGH distinct 
active processes, then at least LOW correct active processes initiated by the 
end of round 2t + 2. Following the proof of Lemma 10, it is easy to see that 
in this case at least LOW correct active processes initiated by the end of 
round 2t, and by the proof of Lemma 7 every correct active process initiated 
by the end of round 2t + 2. Thus in this case, all correct processes will agree 
on 1. Similarly, if the transmitter is faulty and the correct active processes 
agree on 1, then so will the correct passive processes. In any case we have 
Byzantine Agreement for all n processes and this agreement is reached 
within 2t + 3 rounds of information exchange with tha number of message 
bits at most O(nt + t 3 log t). 

Transmit ter  M a y  Not  Be  a Process 

We can assume about the transmitter only that it is a possibly faulty data 
source that communicates a (binary) value to each of the n processes in the 
system before the algorithm begins. Thus, the transmitter might be one of the 
n processes, or it might be a sensor or I/O device that all processes can read. 
In this formalization, the transmitter's value is encoded by the start state of 
each process. In the preceding sections the transmitter was identified with 
one of the n processes that carries out the algorithm, and each other process 
started in the same state regardless of the value of the transmitter. A solution 
for the version now under consideration can be modified to solve the 
previous version by simply adding an initial round in which the transmitter 
sends its value to each other process. The converse, however, is not in 
general true, for an algorithm might make use of the fact that, at most, t - 1 
faulty processes remain when the transmitter has been determined to be one 
of the faulty processes. Thus some solution to the previous version may not 
provide a solution to the current version. 

However, our basic solution can be modified to handle this current 
version. If the transmitter is not one of the active processes, then the 
processes will not use its messages during the algorithm. The algorithm is the 
same, with the special phase at the beginning in which the data source loads 
values into the various processes. The number of active processes should be 
3t + 1 not counting the transmitter if it is not one of the processes. At the 
crucial point in the proof of Lemma 10, we can no longer get by with 
H I G H - - 1  confirmed processes. Instead we need HIGH. Thus we need 
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f ( d -  3) = t and d = 2t + 6, and the algorithm reaches Byzantine Agreement 
among the active processes after 2t + 4 rounds of information exchange (not 
counting the preloading round), with m = O(t 3 log t) bits of information 
exhanged. 

Notice that the above variation also handles the case in which the 
transmitter is one of the processes, but is not identified ahead of time to the 
individual active processes. 

More Than Two Possible Values for Agreement 

Our last generalization is handling more than binary values. In this case 
each previous message must be relativized to the value v. Active processes 
can run the basic algorithm with respect to each value, and they will have 
accepting state for each value. At the end of the algorithm, if a process 
commits to exactly one value, this value will be its decision; in any other 
case it can decide that the transmitter is faulty and produce a previously 
agreed on default value. The handling of the previously considered 
generalizations remains the same. 

Let V be the set of possible values. The number of bits required to reach 
Byzantine Agreement among the active processes is at most 
O(1V I t3(log t + log ] V])). Note that if we use authentication, then the 
number of bits exchanged is not affected by the number of possible values 
(Dolev and Strong, 1938). 

9. DECISION ON TRANSMITTER FAULT 

In practice we would like to reach Byzantine Agreement as quickly as 
possible, but we would also like to identify faulty processes whenever 
possible. In this section we will sketch some methods for discovering 
transmitter fault as a byproduct of the algorithms we have presented. 

Consider again the basic one bit case with a known transmitter and a set 
of 3t + 1 active processes. If  one processor knows that the transmitter sent 
more than one value, then it knows that the transmitter is faulty. But to 
impart this knowledge to the other processors would seem to require 
something like another session of Byzantine Agreement. We will show how 
to use the information already exchanged to reach agreement among all the 
correct processes about faultiness of the transmitter in some cases. 

Observe that not every transmitter fault can be detected. For example, if 
the transmitter excludes only t processes from receiving its value at the first 
round and follows the rest of the algorithm, then there is no way for an 
external observer to distinguish the resulting message behavior from what 
would happen if the transmitter were correct and the t processes faulty. 

A correct transmitter sends the same value to every other process, and as 

643/52/3-3 
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we proved in Lemma 6, within 3 more rounds all correct processes commit 
to the value if it is 1. Committing to 0 can take place only at the end of the 
algorithm. A faulty transmitter might send "*"  to only a few correct 
processes at round one, and by a slow propagation, the correct processes 
might commit to 1 only at the last phase. The improvement we suggest 
cannot change the number of rounds it will take to end the algorithm, 
because sometimes we need all the rounds to verify that no correct process 
will commit to something not yet known to the rest. But the propagation is 
slow only while fewer than t + 1 correct processes have initiated. In this case 
a t  least t + 1 correct processes did not receive " * "  message. We will show 
below how correct processes will in this situation be able to commit to 0. If 
later they also commit to 1, then all correct processes will be able to agree 
that the transmitter is faulty. 

Execute the basic aJgorithm for 1 and 0 at the same time, where the 
algorithm for 1 proceeds exactly as described in Section 5. Initiation 
messages will be "*1"  and "*0."  If a process does not initiate for 1 at round 
2, then it initiates for 0. The rest of the algorithm remains the same. 

In the algorithm for 0, each of the 11 lemmas hold, replacing 1 with 0. 
Therefore, all correct processes either agree on 0 or onl,  and if a correct 
process sends its value all agree on its value. At the end of both algorithms, 
if a process commits in both to the same value, then it should agree on that 
value; otherwise, it should agree that the transmitter is faulty. 

Observe that this variation of the algorithm requires twice the number of 
bits and the same number of phases. The interesting property of this 
algorithm is that if any process commits to a value in any one of the 
subalgorithms after round 5, then the final agreement will be that the 
transmitter is faulty. 

THEOREM 3. All correct processes commit to at least one of  the two 
values 0 and 1 after round 5. Therefore, i f  any correct process commits to 
any value after round 5, all correct processes will decide that the transmitter 
is faulty. 

Proof There are two cases possible: 

(1) t + 1 correct processes receive 1 at round 1, and 

(2) t + 1 correct processes do not receive 1 at round 1. 

In either case at least t ÷ 1 correct processes will initiate at least one of the 
values at round 2. By Lemma 7, all correct processes will commit to that 
value after round 5. If any correct process commits to a value after round 5 
it will then have committed to two values. By Theorem 1, all correct 
processes will commit to both values by the end of the algorithm. Thus the 
final decision will be "transmitter faulty." II 
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10. CONCLUSION 

We have presented a feasible (polynomial) solution to the problem of 
reaching Byzantine Agreement without using authentication. Our basic 
solution handles a one bit agreement for n processes when the upper bound 
on the number of possible faults is t, with n = 3t ÷ 1. We generalized this 
solution to handle many possible values for many more processes as long as 
n remains greater than 3t. We also described ways to handle modifications to 
the model in which the transmitter is not one of the processes or is not 
known to the other processes in advance. 

We believe that our solution characterizes the best known method for 
reaching Byzantine Agreement without authentication. However, we have not 
been able to establish a lower bound on the number of rounds required that 
narrows the gap between the known lower bound of t ÷ 1 and the 2t ÷ 3 
rounds required by our algorithm. In fact the lower bound of t + 1 is in some 
sense tight because algorithms exist for Byzantine Agreement without 
authentication that require only t +  1 rounds at the cost of requiring 
exponentially many messages. We leave open the question of a tradeoff 
between messages and rounds. 

We have assumed complete and reliable communication among the 
processes. Note that this may be achieved in an unreliable and incompletely 
connected network (Dolev, 1982) and that if we are given an algorithm for 
reliable communication of a message using a number of messages 
polynomial in the number of processes, then we can convert that algorithm 
to one that achieves Byzantine Agreement in a polynomial number of 
messages. 

We have also assumed a complete synchronization of the rounds 
throughout the paper. Some variations of our algorithm are more sensitive to 
changes in this assumption than others; but all can stand a significant 
weakening and the kind of synchronization required can be achieved by 
messages along the lines of Lamport (1983) assuming some known upper 
bound on the time required by a process to relay a message. 

Finally, we offered an enhancement to the basic solution in which late 
activity in the algorithm allows all processes to conclude that the transmitter 
is faulty. Somewhat paradoxically, we can conclude from certain kinds of 
activity after round 6 that the final decision will be "transmitter fault," but 
we must continue processing to the end of the algorithm. This apparent 
paradox suggests as an area for further research the search for algorithms 
that under some conditions stop early. 
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