
At-Most-Once Message Delivery
A C a s e S t u d y in A l g o r i t h m V e r i f i c a t i o n

Butler Lampson
Digital Equipment Corp.

Nancy Lynch
MIT

3r Scgaard-Andersen,
MIT and

Department of Computer Science
Technical University of Denmark

1 I n t r o d u c t i o n

The at-most-once message delivery problem involves delivering a sequence of mes-
sages submitted by a user at one location to another user at another location. If
no failures occur, all messages should be delivered in the order in which they are
submitted, each exactly once. If failures (in particular, node crashes or timing anoma-
lies) occur, some messages might be lost, but the remaining messages should not be
reordered or duplicated.

This talk examines two of the best-known algorithms for solving this problem:
the clock-based protocol of [3] and the five-packet interchange protocol of [2]. It
is shown that both of these protocols can be understood as implementations of a
common (untimed) protocol that we call the generic protocol. It is also shown that
the generic protocol meets the problem specification.

The development is carried out in the context of (timed and untimed) automata
[7, 8] and [6], using simulation techniques [7]. It exercises many aspects of the relevant
theory, including timed and untimed automata, refinement mappings, forward and
backward simulations, history and prophecy variables. The theory provides insight
into the algorithms, and vice versa.

In this short paper, we simply give formal descriptions of the problem specifica-
tion and of the two algorithms, leaving detailed discussion of the proof for the talk
and for a later paper.

2 T h e S p e c i f i c a t i o n S

The transitions of the specification we use for the at-most-once message delivery
problem are given below. Formally, the object denoted by the specification is an
I/O automaton [5, 6]. The notation used is somewhat standard for describing I /O
automata (see, for example, [4]). The user interface is a set of external (input and
output) actions. Even though we in S have a central, i.e., not distributed, view of
the system, the external actions can be logically partitioned into actions on the
"sender" side (send_msg, ack, crashs, and recovers) and actions on the "receiver"
side (receive_msg, crash~, and recoverr). Furthermore, there is an internal action
lose. All these actions then manipulate shared data structures like, e.g., queue.

318

send_msg(m)
Effect:

if rec~ = false then
append m to queue
status := ?

receive_msg(m)
Precondition:

rec~ = false
m is first on queue

Effect:
remove first element of queue
if queue is empty and

status = ? then
status := true

c r a s h r

Effect:
r e e f : ~ t r u e

l o se

Precondition:
recs = t r u e o r recr = t r u e

Effect:
delete arbitrary elements

of queue
if last element of queue

is deleted then
status := false

else optionally
status := false

ack(b) recover,
Precondition: Precondition:

recs = false r ecs= true
status = b E { true, fa lse} Effect:

Effect: rec, := false
n o n e

r e e o v e r r

crashs Precondition:
Effect: rec~ = true

recs := true Effect:
recr : = false

We specify fairness by parti t ioning the actions that the protocol controls (output
and internal action) in f a i rnes s classes. In the execution of the protocol it must
not be the case that actions from a fairness class are continuously enabled without
actions from that class being executed infinitely often.

For the specification S we use the following five classes:

1. ack actions
2. receive_msg actions
3. recovers

4. recoverr

5. lose

3 T h e C l o c k - B a s e d P r o t o c o l C

Code for the clock-based protocol of [3] is given below. Since at this level of abstrac-
tion we have a distributed view of the system, the code is part i t ioned into code for
the sender and code for the receiver part of the protocol. Formally, the sender and
receiver protocols are t imed au toma ta in the style of [8].

In C, the sender protocol associates a t ime value with each message it wishes to
deliver. The t ime values are obtained from a local clock. The receiver protocol uses

319

the associated time value to decide whether or not to accept a received message -
as a rough strategy, it will accept a message provided the associated time is greater
than the time of the last message that was accepted. However, the receiver protocol
cannot always remember the time of the last accepted message: it might forget this
information because of a crash, or simply because a long time has elapsed since the
last message was accepted and it is no longer efficient to remember it. Thus, the
receiver protocol uses safe time estimates determined from its own local clock to
decide when to accept a message.

Correctness of this protocol requires that the two local clocks be synchronized
to real time, to within a tolerance e, when crashes do not occur. It also requires
reliability bounds and upper time bounds on the low-level channels connecting the
sender and receiver protocols.

S e n d e r

send_msg(m)
Effect:

if mode, ~ rec then
append m to bur,

choose_id(m, t)
Precondition:

mode, = acked,
m is first on bur,,
time, = t,
t > lasts

Effect:
modes := send
remove first element of bur,
current-msg s := m
last, := t

send_pkto,(m, t)
Precondition:

modes = send,
current-msg, = m,
lasts = t

Effect:
n o n e

receive_pkt,o (t, b)
Effect:

if mode, = send and
last, = t then
modes := acked
current-ack, := b
current-msg, := n i l

ack(b)
Precondition:

mode, = acked
buy s is empty
current-ack~ = b

Effect:
n O l l e

crashs
Effect:

mode, := rec

reco~3ers

Precondition:
modes = rec

Effect:

mode, := acked
last, := times
empty bur,
current.msg, := n i l
current.acks := false

tick,(t)
Effect:

time, := t

We only need one class of locally controlled actions for the sender protocol:

320

1. choose_id, send_pkts~, ack, a n d recovers ac t i ons

W e p u t an u p p e r t i m e b o u n d o f I on al l t h e classes, m e a n i n g t h a t i f a c t i o n s f r o m

a class ge t e n a b l e d , t h e n an a c t i o n f r o m t h a t class m u s t be e x e c u t e d w i t h i n t i m e l

un less t h e ac t i ons are d i s ab l ed in t h e m e a n t i m e .

R e c e i v e r

receive_pkt., (m, t) crashr
Effect: Effect:

if moder ~ r e c then moder := r e c
if lowerr < t < upper r then

moder := r c v d recoverr
add m to buffer r Precondit ion:
lastr := t moder --- r e c ,
lowerr := t upperr -F 2e < timer

else if lastr < t < lowerr then Effect:
add t to hack-buffer r moder := i d l e

else if moder = i d l e and lastr := 0
t = last~ then empty burr

moder = ack lowerr := upper r
upper r := timer + fl

receive_msg(m) empty nack-buf r
Precondit ion:

moder = rcvd , increase-lower(t)
m is first on burr Precondit ion:

Effect: moder ~ r e c ,
remove first e lement of burr lowerr <_ t < timer - p
if buff is empty then Effect:

moder := ack lower~ := t

send_pkt,s (t, true) increase- upper(t)
Precondit ion: Precondit ion:

mode~ = ack, moder ~ r ec ,
lastr = t upper r < t = timer q-]3

Effect: Effect:

moder := i d l e upper r := t

send_pkt,s (t, false)
Precondit ion:

moder ~ r e c
t is first on nack-bufr

Effect:
remove first e lement of nack-buf r

tickr(t)
Effect:

timer := t

For t h e rece iver p r o t o c o l we use t h e fo l l owing classes o f l oca l l y c o n t r o l l e d ac t ions :

1. receive_msg, send_pklrs(, true), and recoverr ac t ions

2. send_pktrs(, false) ac t ions
3. increase-lower ac t i ons

4. increase-upper ac t i ons

321

4 The Five-Packet Protocol 5P

Code for the five-packet handshake protocol of [2] is given below. As for C, the code
is parti t ioned into code for the sender protocol and code for the receiver protocol. For
the 5P protocol we assume that the sender and receiver protocols communicate via
channels that may lose or dublicate packets, the latter only a finite number of times
for each packet instance. In order to prove liveness properties of the 5P protocol,
we furthermore assume that if the same packet is sent an infinite number of times,
then it will also be received an infinite number of times.

In this protocol, for each message that the sender protocol wishes to deliver,
there is an initial exchange of packets between the sender and receiver protocols
to establish a commonly-agreed-upon message identifier. The sender protocol then
associates this identifier with the message. The receiver protocol uses the associated
identifier to decide whether or not to accept a received message - it will accept a
message provided the associated identifier is current. Additional packets are required
in order to tell the receiver protocol when it can throw away a current identifier.

4 . 1 S e n d e r

322

send_msg(m)
Effect:

if mode, ~ r e c t h e n

a p p e n d m to burs

choose_jd(jd)
Precondi t ion :

modes = acked~
m first on bur,,
jd ~ jd.used s

Effect:

mode, : = n e e d i d
jd, : = jd
add jd to jd-used s
remove first e lement of burs
C u r f e n ~ - m s g s : ~ m

send_pkt,r (n e e d i d , n i l , jd)
Precondi t ion :

mode, = n e e d i d , jd = jd s
Effect:

none

receive_pkt.(accept, jd, id)
Effect:

if modes # r e c t hen
if mode, = n e e d i d and

jd = jd s t h e n
mode, : = s e n d
ids := id
add id to the end of used,

else if id # ids t h e n
add id to the end

of acked-buf s

send_pkt.(send, id, m)
Precondi t ion :

modes = send,
id = ids,
m = current-msg,

Effect:
n o n e

receive_pkt. (ack, id, b)
Effect:

if modes • r e c t h e n
if modes = s e n d and

id = id, t h e n

modes : = a c k e d
current.ack, : = b

jd s : = nil
ids := nil
current-msg, := nil

if b = true t hen
add id to acked-bufs

send_pkt, r(acked, id, n i l)
P recondi t ion :

id is first on acked-buf~
Effect:

remove first e lement of acked-buf

ack(b)
Precondi t ion :

mode, = acked, bu]s is empty,
b = current-ack,

Effect:
none

crash.
Effect:

modes := r e c

Feeovers

Precondition:
modes = r e c

Effect:
mode. := a c k e d
jd, := nil
ids := nil
e m p t y bur.
current-msg s := n i l
current-ack. : = false
e m p t y acked-buf s

grow-jd-used s
Precondi t ion :

n o n e

Effect:
add some JDs to jd-used.

W e def ine t h e f o l l o w i n g f a i r n e s s c lasses o f t h e l o c a l l y c o n t r o l l e d a c t i o n s o f t h e s e n d e r

323

p r o t o c o l :

1. ack, choose_jd(jd), send_pktsr(aeedid, ,), send_pktsr(aend, ,), a n d recovers ac-

t i o n s

2. send_pktsr(acked, ,) a c t i o n s

3. grow-jd-used,

4 . 2 R e c e i v e r

receive_pkt,~ (n e e d i d , n i l , jd)
Effect:

if modes = i d l e t hen
raoder := a c c e p t
choose an id not in issued~
jd~ := jd
id~ : = id
add id to issued~

send_pkt~, (a c c e p t , jd, id)
Precond i t ion :

moder ---- a c c e p t ,
jd = jdr,
id = id.

Effect:
none

receive_pkt,, (send , id, m)
Effect:

if rnoder ~ r e c t hen
if mode~ = a c c e p t and

id = id~ t h e n
moder := r c v d

a p p e n d m to burr
last~ : = id

else if id ~ lastr t hen
a p p e n d id to nack-buf~

receive_rasg(m)
Precond i t ion :

moder = reval, rn first on bur r
Effect:

remove t he first e lement of buf~
if buf~ is e m p t y t hen

moder := ack

send_pkt~,(ack, id, true)
Precondi t ion :

rnoder = ack, id = lastr
Effect:

n o n e

send_pkt~,(ack, id, false)
Precondi t ion :

mode~ ~ r e c ,
id is first on hack-burr

Effect:
remove first e lement of nack-buf~

receive_pkts~ (acked, id, n i l)
Effect:

if (moder = a c c e p t and
id = ida) or

(mode~ = ack and
id = lasts) t hen

raoder := i d l e

jd r := n i l
id~ := n i l
lastr : = n i l

crashr
Effect:

moder := r e c

reeoverr
Precondi t ion :

moder ~- r e c
Effect:

moder : = i d l e

jd r := n i l
idr := nil
last~ := nil
e m p t y burr
e m p t y nack-buf ~

grow-issued~
Precondi t ion :

n o n e

Effect:
add some IDs to issuedr

324

We define the following three fairness classes of the locally controlled actions of the
receiver protocol:

1. receive_msg, recoverr, send_pktrs(aeeept, ,), and send_pktrs(aek, , true) actions
2. send_pktrs(aek,,false) actions
3. grow-issued r

5 Discuss ion

Both protocols share a common high-level description: both involve association of
identifiers with messages, and acceptance of messages by the receiver based on recog-
nition of "good" identifiers. Both also involve very similar strategies for acknowledge-
ment of messages. It is thus desirable to base correctness proofs on this common
structure.

We define a high-level (untimed) generic protocol G, which represents the com-
mon structure, and show that both C and 5P implement G. We also show that the
generic protocol meets the problem specification S. The proof that G satisfies S
uses a backward simulation [7] (or prophecy variables [1]). The proof that 5P imple-
ments G uses a forward simulation [7] (or history variables [9]). The proof that C
implements G uses a limed forward simulation [7].

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. In Proceedings of
the 3rd Annual Symposium on Logic in Computer, pages 165-175, Edinburgh, Scotland,
July 1988.

2. D. Belsnes. Single message communication. 1EEE Transactions on Communications,
Com-24(2), February 1976.

3. B. Liskov, L. Shrira, and J. Wroclawski. Efficient at-most-once messages based on syn-
chronized clocks. Technical Report MIT/LCS/TR-476, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology, April 1990.

4. N. Lynch and I. Saias. Distributed Algorithms. Fall 1990 Lecture Notes for 6.852.
MIT/LCS/RSS 16, Massachusetts Institute of Technology, February 1992.

5. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
Techical Report MIT/LCS/TR-387, Laboratory for Computer Science, Massachusetts
Institute Technology, Cambridge, MA, 02139, April 1987.

6. N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly,
2(3):219-246, September 1989.

7. N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based sys-
tems. In Proceedings of REX Workshop "Real-Time: Theory in Practice", Mook, The
Netherland, 1992. Springer-Verlag, LNCS 600.

8. F. Modugno, M. Merritt, and M. Tuttle. Time constrained automata. In CONCUR'91
Proceedings Workshop on Theories o/ Concurrency: Unification and Extension, Amster-
dam, August 1991.

9. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i. Acta
Informatica, 6(4):319-340, 1976.

This article was processed using the I2,TEX macro package with LLNCS style

