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1 I n t r o d u c t i o n  

The at-most-once message delivery problem involves delivering a sequence of mes- 
sages submitted by a user at one location to another user at another location. If 
no failures occur, all messages should be delivered in the order in which they are 
submitted, each exactly once. If failures (in particular, node crashes or timing anoma- 
lies) occur, some messages might be lost, but the remaining messages should not be 
reordered or duplicated. 

This talk examines two of the best-known algorithms for solving this problem: 
the clock-based protocol of [3] and the five-packet interchange protocol of [2]. It 
is shown that both of these protocols can be understood as implementations of a 
common (untimed) protocol that we call the generic protocol. It is also shown that 
the generic protocol meets the problem specification. 

The development is carried out in the context of (timed and untimed) automata 
[7, 8] and [6], using simulation techniques [7]. It exercises many aspects of the relevant 
theory, including timed and untimed automata, refinement mappings, forward and 
backward simulations, history and prophecy variables. The theory provides insight 
into the algorithms, and vice versa. 

In this short paper, we simply give formal descriptions of the problem specifica- 
tion and of the two algorithms, leaving detailed discussion of the proof for the talk 
and for a later paper. 

2 T h e  S p e c i f i c a t i o n  S 

The transitions of the specification we use for the at-most-once message delivery 
problem are given below. Formally, the object denoted by the specification is an 
I/O automaton [5, 6]. The notation used is somewhat standard for describing I /O 
automata (see, for example, [4]). The user interface is a set of external (input and 
output) actions. Even though we in S have a central, i.e., not distributed, view of 
the system, the external actions can be logically partitioned into actions on the 
"sender" side (send_msg, ack, crashs, and recovers) and actions on the "receiver" 
side (receive_msg, crash~, and recoverr). Furthermore, there is an internal action 
lose. All these actions then manipulate shared data structures like, e.g., queue. 
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send_msg(m) 
Effect: 

if rec~ = false then 
append m to queue 
status := ? 

receive_msg(m) 
Precondition: 

rec~ = false 
m is first on queue 

Effect: 
remove first element of queue 
if queue is empty and 

status = ? then 
status := true 

c r a s h r  

Effect: 
r e e f  : ~  t r u e  

l o se  

Precondition: 
recs = t r u e  o r  recr  = t r u e  

Effect: 
delete arbitrary elements 

of queue 
if last element of queue 

is deleted then 
status := false 

else optionally 
status := false 

ack(b) recover, 
Precondition: Precondition: 

recs = false r ecs=  true 
status = b E { true, fa lse}  Effect: 

Effect: rec, := false 
n o n e  

r e e o v e r r  

crashs Precondition: 
Effect: rec~ = true 

recs := true Effect: 
recr : =  false 

We specify fairness by parti t ioning the actions that  the protocol controls (output  
and internal action) in f a i rnes s  classes. In the execution of the protocol it must  
not be the case that  actions from a fairness class are continuously enabled without 
actions from that  class being executed infinitely often. 

For the specification S we use the following five classes: 

1. ack actions 
2. receive_msg actions 
3. recovers 

4. recoverr 

5. lose 

3 T h e  C l o c k - B a s e d  P r o t o c o l  C 

Code for the clock-based protocol of [3] is given below. Since at this level of abstrac- 
tion we have a distributed view of the system, the code is part i t ioned into code for 
the sender and code for the receiver part  of the protocol. Formally, the sender and 
receiver protocols are t imed  au toma ta  in the style of [8]. 

In C, the sender protocol associates a t ime  value with each message it wishes to 
deliver. The t ime  values are obtained from a local clock. The receiver protocol uses 
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the associated time value to decide whether or not to accept a received message - 
as a rough strategy, it will accept a message provided the associated time is greater 
than the time of the last message that was accepted. However, the receiver protocol 
cannot always remember the time of the last accepted message: it might forget this 
information because of a crash, or simply because a long time has elapsed since the 
last message was accepted and it is no longer efficient to remember it. Thus, the 
receiver protocol uses safe time estimates determined from its own local clock to 
decide when to accept a message. 

Correctness of this protocol requires that the two local clocks be synchronized 
to real time, to within a tolerance e, when crashes do not occur. It also requires 
reliability bounds and upper time bounds on the low-level channels connecting the 
sender and receiver protocols. 

S e n d e r  

send_msg(m) 
Effect: 

if mode, ~ rec then 
append m to bur, 

choose_id(m, t) 
Precondition: 

mode, = acked, 
m is first on bur,, 
time, = t, 
t > lasts 

Effect: 
modes := send 
remove first element of bur, 
current-msg s := m 
last, := t 

send_pkto,(m, t) 
Precondition: 

modes = send, 
current-msg, = m, 
lasts = t 

Effect: 
n o n e  

receive_pkt,o ( t, b) 
Effect: 

if mode, = send and 
last, = t then 
modes := acked 
current-ack, := b 
current-msg, := n i l  

ack(b) 
Precondition: 

mode, = acked 
buy s is empty 
current-ack~ = b 

Effect: 
n O l l e  

crashs 
Effect: 

mode, := rec 

reco~3ers 

Precondition: 
modes = rec 

Effect: 

mode, := acked 
last, := times 
empty bur, 
current.msg, := n i l  
current.acks := false 

tick,(t) 
Effect: 

time, := t 

We only need one class of locally controlled actions for the sender protocol: 
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1. choose_id, send_pkts~, ack, a n d  recovers ac t i ons  

W e  p u t  an  u p p e r  t i m e  b o u n d  o f  I on  al l  t h e  classes,  m e a n i n g  t h a t  i f  a c t i o n s  f r o m  

a class ge t  e n a b l e d ,  t h e n  an  a c t i o n  f r o m  t h a t  class m u s t  be  e x e c u t e d  w i t h i n  t i m e  l 

un less  t h e  ac t i ons  are  d i s ab l ed  in t h e  m e a n t i m e .  

R e c e i v e r  

receive_pkt., ( m, t) crashr 
Effect: Effect: 

if  moder ~ r e c  then moder :=  r e c  
if lowerr < t < upper r then 

moder :=  r c v d  recoverr 
add m to buffer r Precondit ion:  
lastr := t moder --- r e c ,  
lowerr :=  t upperr -F 2e < timer 

else if lastr < t < lowerr then Effect: 
add t to hack-buffer r moder :=  i d l e  

else if moder = i d l e  and lastr :=  0 
t = last~ then empty  burr 

moder = ack lowerr :=  upper r 
upper r :=  timer + fl 

receive_msg( m ) empty  nack-buf r 
Precondit ion:  

moder = rcvd ,  increase-lower(t) 
m is first on burr Precondit ion:  

Effect: moder ~ r e c ,  
remove first e lement  of burr lowerr <_ t < timer - p 
if buff is empty  then Effect: 

moder :=  ack lower~ :=  t 

send_pkt,s ( t, true) increase- upper(t) 
Precondit ion:  Precondit ion:  

mode~ = ack, moder ~ r ec ,  
lastr = t upper r < t = timer q- ]3 

Effect: Effect: 

moder :=  i d l e  upper r :=  t 

send_pkt,s (t, false) 
Precondit ion:  

moder ~ r e c  
t is first on nack-bufr 

Effect: 
remove first e lement  of nack-buf r 

tickr(t) 
Effect: 

timer :=  t 

For  t h e  rece iver  p r o t o c o l  we use t h e  fo l l owing  classes o f  l oca l l y  c o n t r o l l e d  ac t ions :  

1. receive_msg, send_pklrs(, true), and  recoverr ac t ions  

2. send_pktrs( , false)  ac t ions  
3. increase-lower ac t i ons  

4. increase-upper ac t i ons  
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4 The Five-Packet  Protocol  5P 

Code for the five-packet handshake protocol of [2] is given below. As for C, the code 
is parti t ioned into code for the sender protocol and code for the receiver protocol. For 
the 5P protocol we assume that  the sender and receiver protocols communicate via 
channels that  may lose or dublicate packets, the latter only a finite number of times 
for each packet instance. In order to prove liveness properties of the 5P protocol, 
we furthermore assume that  if the same packet is sent an infinite number of times, 
then it will also be received an infinite number of times. 

In this protocol, for each message that  the sender protocol wishes to deliver, 
there is an initial exchange of packets between the sender and receiver protocols 
to establish a commonly-agreed-upon message identifier. The  sender protocol then 
associates this identifier with the message. The receiver protocol uses the associated 
identifier to decide whether or not to accept a received message - it will accept a 
message provided the associated identifier is current. Additional packets are required 
in order to tell the receiver protocol when it can throw away a current identifier. 
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send_msg(m) 
Effect: 

if mode, ~ r e c  t h e n  

a p p e n d  m to burs 

choose_jd(jd) 
Precondi t ion :  

modes = acked~ 
m first on bur,, 
jd ~ jd.used s 

Effect: 

mode, : =  n e e d i d  
jd,  : =  jd 
add  jd to  jd-used s 
remove first e lement  of burs 
C u r f e n ~ - m s g  s : ~  m 

send_pkt,r ( n e e d i d ,  n i l ,  jd) 
Precondi t ion :  

mode, = n e e d i d ,  jd = jd s 
Effect: 

none  

receive_pkt.( accept, jd, id) 
Effect: 

if  modes # r e c  t hen  
if mode, = n e e d i d  and  

jd = jd s t h e n  
mode, : =  s e n d  
ids :=  id 
add id to  the  end  of used, 

else if id # ids t h e n  
add  id to  the  end  

of acked-buf s 

send_pkt.(send, id, m) 
Precondi t ion :  

modes = send,  
id = ids, 
m = current-msg, 

Effect: 
n o n e  

receive_pkt. (ack,  id, b) 
Effect: 

if modes • r e c  t h e n  
if modes = s e n d  and  

id = id, t h e n  

modes : =  a c k e d  
current.ack, : =  b 

jd s : =  nil 
ids := nil 
current-msg, := nil 

if b = true t hen  
add  id to  acked-bufs 

send_pkt, r( acked, id, n i l )  
P recondi t ion :  

id is first on acked-buf~ 
Effect: 

remove first  e lement  of acked-buf 

ack(b) 
Precondi t ion :  

mode, = acked,  bu]s is empty,  
b = current-ack, 

Effect: 
none 

crash. 
Effect: 

modes :=  r e c  

Feeovers 

Precondition: 
modes = r e c  

Effect: 
mode. :=  a c k e d  
jd, := nil 
ids := nil 
e m p t y  bur. 
current-msg s :=  n i l  
current-ack. : =  false 
e m p t y  acked-buf s 

grow-jd-used s 
Precondi t ion :  

n o n e  

Effect: 
add  some JDs to  jd-used. 

W e  def ine  t h e  f o l l o w i n g  f a i r n e s s  c lasses  o f  t h e  l o c a l l y  c o n t r o l l e d  a c t i o n s  o f  t h e  s e n d e r  
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p r o t o c o l :  

1. ack, choose_jd(jd),  send_pktsr(aeedid,  , ), send_pktsr(aend, , ), a n d  recovers ac-  

t i o n s  

2. send_pktsr(acked,  , ) a c t i o n s  

3. grow-jd-used, 

4 . 2  R e c e i v e r  

receive_pkt,~ ( n e e d i d ,  n i l ,  jd) 
Effect: 

if  modes = i d l e  t hen  
raoder :=  a c c e p t  
choose an  id not  in issued~ 
jd~ := jd 
id~ : =  id 
add id to  issued~ 

send_pkt~, ( a c c e p t ,  jd, id) 
Precond i t ion :  

moder ---- a c c e p t ,  
jd = jdr, 
id = id. 

Effect: 
none  

receive_pkt,, ( send ,  id, m) 
Effect: 

if  rnoder ~ r e c  t hen  
if  mode~ = a c c e p t  and  

id = id~ t h e n  
moder :=  r c v d  

a p p e n d  m to burr 
last~ : =  id 

else if id ~ lastr t hen  
a p p e n d  id to  nack-buf~ 

receive_rasg( m ) 
Precond i t ion :  

moder = reval,  rn first on bur r 
Effect: 

remove t he  first e lement  of buf~ 
if buf~ is e m p t y  t hen  

moder :=  ack  

send_pkt~,(ack, id, true) 
Precondi t ion :  

rnoder = ack,  id = lastr 
Effect: 

n o n e  

send_pkt~,( ack, id, false) 
Precondi t ion :  

mode~ ~ r e c ,  
id is first on hack-burr 

Effect: 
remove first e lement  of nack-buf~ 

receive_pkts~ (acked,  id, n i l )  
Effect: 

if (moder = a c c e p t  and  
id = ida) or 

(mode~ = ack  and  
id = lasts) t hen  

raoder :=  i d l e  

jd r :=  n i l  
id~ :=  n i l  
lastr : =  n i l  

crashr 
Effect: 

moder :=  r e c  

reeoverr 
Precondi t ion :  

moder ~- r e c  
Effect: 

moder : =  i d l e  

jd r := n i l  
idr  :=  nil 
last~ := nil 
e m p t y  burr 
e m p t y  nack-buf ~ 

grow-issued~ 
Precondi t ion :  

n o n e  

Effect: 
add  some IDs to  issuedr 
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We define the following three fairness classes of the locally controlled actions of the 
receiver protocol: 

1. receive_msg, recoverr, send_pktrs(aeeept, , ), and send_pktrs(aek, , true) actions 
2. send_pktrs(aek,,false) actions 
3. grow-issued r 

5 Discuss ion 

Both protocols share a common high-level description: both involve association of 
identifiers with messages, and acceptance of messages by the receiver based on recog- 
nition of "good" identifiers. Both also involve very similar strategies for acknowledge- 
ment of messages. It is thus desirable to base correctness proofs on this common 
structure. 

We define a high-level (untimed) generic protocol G, which represents the com- 
mon structure, and show that  both C and 5P implement G. We also show that  the 
generic protocol meets the problem specification S. The proof that  G satisfies S 
uses a backward simulation [7] (or prophecy variables [1]). The proof that  5P imple- 
ments G uses a forward simulation [7] (or history variables [9]). The  proof that  C 
implements G uses a limed forward simulation [7]. 
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