
The Need for Headers: An Impossibility Result for Communication
over Unreliable Channels

Alan Fekete
Software Systems Research Group
Depa r tmen t of Compu te r Science

Universi ty of Sydney
NSW 2006

A U S T R A L I A

Nancy Lynch
M I T Lab for Compute r Science

545 Technology Square
Cambridge, MA 02139

U.S.A.

A b s t r a c t

It is proved that any protocol that constructs a reliable data link service using an unreliable
physical channel service necessarily includes in the packets some header information that enables
the protocol to treat different packets differently. The physical channel considered is permitted
to lose, but not reorder or duplicate packets. The formal framework used for the proof is the
I/O automaton model.

1 I n t r o d u c t i o n

Probably the most common use for formal models of concurrent programming is to verify that
protocols meet their specifications. A less common, but nonetheless important use for such models
is to prove impossibility results, showing that no protocol can possibly solve a particular problem.
We believe that it is important to the coherence of our research field that the same formal models
be used as the foundation for both kinds of activities.

Some of the features of a formal model that axe needed to support impossibility results axe
the same as those needed for verification; for instance, both kinds of models must allow separate
description of the problem to be solved and the allowable implementations. However, some other
features may be different. A useful model for proving impossibility results should include a notion
of "fair" or "admissible" execution, which describes exactly when system components are required
to continue taking steps; otherwise, it will be impossible to guarantee that the system satisfies
any liveness properties. Also, a model for proving impossibility results needs to designate which
activities are under the control of the protocol and which are under the control of the environment;
otherwise, a protocol might "solve" a problem in a trivial way, simply by preventing some of the
inputs from occurring. A more extensive discussion of these features can be found in [12].

We believe that the I /O automaton model [10, 11] can serve as a reasonable basis for both
verifying concurrent algorithms and for proving impossibility results. The model has already been
used in verifying a wide range of algorithms (see, for example, [10, 3, 4, 5, 7, 14, 16, 17]). In
this paper, we use it to prove an impossibility result, namely, that any protocol that implements
a reliable data link service by using an unreliable physical channel service necessaxily includes in

The authors were supported in part by the National Science Foundation under gra~t CCR-86-11442, by the Office
of Naval Research under contract N00014-85-K-0168 and by the Defense Advanced Research Projects Agency un-
der contracts N00014-83-K-0125 and N00014-89-J-1988. The first author was supported in part by the Research
Foundation for Information Technology of the University of Sydney.

200

the packets some header information that enables the protocol to treat different packets differently.
We believe that the main interest of this work is not so much in the result itself (no one has ever
suggested using a protocol without header information) but rather in the way the model is used to
show nonexistence of a protocol with certain properties.

There has recently been a lot of research in the distributed computing theory research com-
munity on the problem of constructing a reliable message transmission service using an underlying
unreliable packet transmission service (see [9, 1, 18, 13], for example). Most of this work has ad-
dressed the case where the physical channel is especially unreliable, in that it can lose packets and
also deliver packets out of order. In these cases the natural protocol, due to Stenning ([15]) places
each message in a packet with a sequence number as header, and repeatedly sends the packet until
its receipt has been acknowledged. The difficulty with this protocol is that the sequence numbers
increase without bound, and the papers mentioned above explore the possibility of using a fixed
size header. By contrast, in this paper we consider using a FIFO (but possibly lossy) physical
channel. There are many protocols known for this situation, most being variants on the Alternat-
ing Bit protocol [2], in which packets and acknowledgments contain a single bit header. We show
that this header is needed, in that there is no protocol that solves the same problem without using
some header to distinguish between packets. A key modeling issue is how to define "headers" in an
arbitrary protocol, without assuming a particular structure (such as [sequence-number,message])
for the packets. The definitions we use are adapted (and simplified) from those in [9, 6].

The rest of the paper is organized as follows. In Section 2, we show how we model physical
channels, and also show the existence of a "universal" physical channel, which exhibits all the
behaviors that can arise in any physical channel. In Section 3, we give the specification for correct
data link behavior. In Section 4, we define data link protocols and show what it means for them to
implement correct data link behavior using two unidirectional physical channels. In Section 5 we
prove a preliminary impossibility result, namely, we show the impossibility of implementing a data
link service using identical packets in each direction. This result contains most of the complexity
of our main result, but avoids the issue of how to model the headers. In Section 6~ we discuss how
to define the headers used by an arbitrary protocol, and invoke our preliminary result to obtain
the main theorem. A summary of the results we need about the I/O automaton model is given in
Appendix A, and the construction of a universal physical channel is given in Appendix B.

2 The Physical Layer

The physical layer is the lowest layer in the OSI Reference Model hierarchy~ and is implemented
directly in terms of the physical transmission media. A standard interface to the physical layer
permits implementation of the higher layers independently of the transmission media. In a typical
setting, a,physical layer interacts with higher layers at two endpoints, a "transmitting station" and
a "receiving station". The physical layer receives messages called "packets" from the higher layer
at the transmitting station, and delivers some of the packets to the higher layer at the receiving
station. The physical layer can lose packets. While it is also possible for packets to be corrupted by
the transmission medium, we assume that the physical layer masks such corrupted packets using
error-detecting codes. Thus, the only faulty behavior we consider is loss of packets.

In this section, we give a specification for physical layer behavior; in particular, we specify a
channel that ensures FIFO delivery of packets. It is convenient to parameterize the specification by a
channel name n and by an alphabet P of legal packets. The specification will be given (as usual in the
I /O automaton model) by a pair, PL n,P, consisting of an action signature, sig(PL'*'P), describing
the interface the layer provides, and a set of sequences of actions, seheds(PL'~,P), describing the
allowed interactions. PL '~,P has the action signature given formally as follows.

Input actions:
send-pkt~(p), p E P

Output actions:
rec-pktn(p), p E P

201

The send_pkt~(p) action represents the sending of packet p on the physical channel by the
transmitting station, and the rec_pktn(p) represents the receipt of packet p by the receiving station.
We will refer to these actions as physical layer actions (for n and P). In order to define the set
of sequences, scheds(PLn,P), we define first a collection of properties, reflecting the operation
of a "good" physical channel. The properties are defined with respect to fl = ?rlTr2... a (finite or
infinite) sequence of physical layer actions, and a correspondence relation, a binary relation between
the send_pkt n events and the rec_pkt '~ events in ft. The correspondence relation is intended to model
the association that can be set up between the event modeling the sending of a packet and the
event modeling the receipt of the same packet. Complications are caused by the fact that the same
data might be sent repeatedly, and so the sending of two such identical packets is modeled by two
occurrences of the same action send_pkt~(p). The first property gives basic requirements on the
correspondence.

(PL1) 1. If an event ~ri = rec_pkt~(p) corresponds to an event 7rj = send_pkt~(q), then p = q,
and also j < i, that is, the event ~rj precedes ~r~ in ft.
2. Each ree_pkt ~ event corresponds to exactly one send_pkt '~ event.
3. Each send_pkt '~ event corresponds to at most one rec_pkt '~ event.

We next define the FIFO property. It says that those packets that are delivered have their
receive_pkt events occurring in the same order a~ their send_pkt events. Note that (PL2) may be
true even if a packet is delivered and some packet sent earlier is not delivered: there can be gaps
in the sequence of delivered packets representing lost packets.

(PL2) (FIFO) Suppose that the event ~r~ = send_pkt~(p) in fl corresponds to the event ~rj =
rec_pkt~(p), and rk = send-pktn(p ~) corresponds to ~t = rec-pkt~(P'). Then i < k if and only
if j < l.

So far, the properties listed have been safety properties, that is, when they hold for a sequence
they also hold for any prefix of that sequence. The final property is a liveness property. It says
that if repeated send events occur, then eventually some packet is delivered.

(P L 3) If infinitely many send_pkt ~ actions occur in fl, then infinitely many rec_pkt ~ actions occur

in ft.

Now we define scheds(PL '~'P) to be the set of those sequences fl of physical layer actions for
which there exists a correspondence such that (PL1), (PL2), and (PL3) are all satisfied for fl and
that correspondence. A FIFO physical channel for n and P is any I /O automaton whose external
signature is sig(PL n,P) and whose fair behaviors are all in the set scheds(PL'~,P).

We close this section by defining "universal FIFO physical channels", that is, automata whose
fair behaviors are exactly the set of sequences permitted by the specification above. Namely, we
say that an I /O automaton is a universal physical channel for n and P if it is a FIFO physical
channel for n and P and the set of its fair behaviors is exactly the set scheds(PLn,P). We give the
construction of a universal FIFO physical channel in Appendix B, but for most of this paper all
that we will need is the fact that one exists:

202

L e m m a 2.1 For any n and P, there exists a universal FIFO physical channel for n and P.

The following lemma will allow us to argue in Section 5 that certain sequences of actions which
we will construct by extending behaviors of a universal FIFO physical channel are themselves fair
behaviors of the channel. The intuition behind this result is that after any history, every packet not
yet delivered might be lost, and then subsequent activity of the channel would be as if it restarted
in an initial state.

L e m m a 2.2 Let C be a universal physical channel for n and P. Let ~ be a finite behavior of C
and 7 any fair behavior of C. Then fi7 is a fair behavior of C.

3 The Data Link Layer

The data link layer is the second lowest layer in the hierarchy, and is implemented using the services
of the physical layer. Generally, it is implemented in terms of two physical channels, one in each
direction. It provides a reliable one-hop message delivery service, which can in turn be used by the
next higher layer.

In this section, we specify a weak form of data link behavior. We again assume that there are
two endpoints, a "transmitting station" and a "receiving station". The data link layer receives
messages from the higher layer at the transmitting station, and delivers them at the receiving
station. The data link layer guarantees that every message that is sent is eventually received. The
order of the messages need not be preserved, however. We give a parameterized specification for
data link layer behavior I denoted DL M, where M is an alphabet of legal messages. The interface
is described by sig(DLM), which is given formally as follows.

Input actions:
send_msg(m), m E M

Output actions:
tee_rosy(m), m e M

The send_msg(m) action represents the sending of message m on the data link by the transmit-
ting station, and the rec_msg(m) represents the receipt of message m by the receiving station. We
will refer to these actions as data link layer actions. In order to define the set of allowed interactions
scheds(DLM), we again define a collection of auxiliary properties. They are defined for a sequence
/~ = ~rlTr2... of data link layer actions and a correspondence relationship, a binary relation between
the send_msg events and the rec_msg events in/~. The first property is analogous to (PL1) and
gives elementary requirements on the correspondence.

(DL1) 1. If an event r~ = rec_msg(m) corresponds to an event 7rj = send_msg(n), then m = n,
and also j < i, that is, the event r j precedes ~ri in ft.
2. Each rec_msg(m) event corresponds to exactly one send_msg(m) event.
3. Each send_msg(m) event corresponds to at most one rec_msg(m) event.

The remaining property is the data link layer liveness property. It says that all messages that
are sent are eventually delivered. This property expresses the reliability of the message delivery
guaranteed by the data link layer.

1A stronger form of data link behavior, including a FIFO message dehvery property, is described in [9]. While
the specification in this paper is less interesting for describing properties of a useful data hnk layer, it is adequate
for proving our impossibility result. A similar impossibility result for the stronger data link specification following
immediately from ours.

203

(DL2) If ~r is a send_msg(m) event occurring in ~, then there is a rec_msg(m) event in fl
corresponding to ~r.

Note that (DL1) and (DL2) together imply that there is exactly one rec_msg(m) event corre-
sponding to each scnd_msg(m) event. Now we define scheds(DL M) to be the set of sequences fl of
data link layer actions for which there exists a correspondence relation such that (DL1) and (DL2)
axe satisfied for fl and the correspondence relation.

We have the following immediate consequence of the definition:

L e m m a 3.1 If fl is in scheds(DL M) then the number of send_msg events in/3 is equal to the
number of rec_msg events in 8.

4 Data Link Implementation

In this section, we define a "data link protocol", which is intended to be used to implement the
data link layer using the services provided by the physical layer. A data link protocol consists
of two automata, one at the transmitting station and one at the receiving station. These au-
tomata communicate with each other using two physical channels, one in each direction. They also
communicate with the outside world, through the data link layer actions we defined in Section 3.

Let t and r again be names (for the transmitting and receiving station respectively). Let M, ptr
and prt be alphabets (of messages, forward packets and backwards packets, respectively). Then
a transmitting automaton for (t, r) and (M, ptr, p~t) is any I/O automaton having the following
external action signature.

Input actions:
send_msg(m), m E M
rec_pktrt(p), p E prt

Output actions:
send-pkttr(p), p E ptr

In addition, there can be any number of internal actions. That is, a transmitting automaton receives
requests from the environment of theda ta link layer to send messages to the receiving station r. It
sends packets to r over the physical channel to r. It also receives packets over the physical channel
from r. Similarly, a receiving automaton for (t, r) and (M, p~r, prt) is any I /O automaton having
the following external signature.

Input actions:
rec-pkttr(p), p E ptr

Output actions:
send-pktrt(p), p e prt
rec_msg(m), m e M

Again, there can also be any number of internal actions. That is, a receiving automaton receives
packets over the physical channel from t. It sends packets to t over the physical channel to t, and
it delivers messages to the environment of the data link layer. A data link protocol for (t, r) and
(M, ptr , pr t) is a pair (A t, At), where A t is a transmitting automaton for (t, r) and (M, ptr , prt) ,
and A r is a receiving automaton for (t, r) and (M, ptr, prt). (Often we will omit mention of the
station names and the alphabets, if these are clear from context.)

204

Now we axe ready to define correctness of data link protocols. Informally, we say that a data
link protocol is "correct" provided that when it is composed with any "correct physical layer"
(i.e. a pair of FIFO physical channels from t to r and from r to t, respectively), the resulting
system yields correct data link layer behavior. This reflects the fundamental idea of layering, that
the implementation of one layer should not depend on the details of the implementation of other
layers, so that each layer can be implemented and maintained independently. Formally, suppose
(A t, A t) is a data link protocol for (t, r) and (M, ptt, pit). We say that (A t, A t) is correct provided
that the following is true. For all C tt and C tt such that C tt is a FIFO physical channel for t r
and p~t, and C tt is a FIFO physical channel for rt and pit, and for every sequence fl that is the
projection on the actions of data link layer actions of a fair behavior of the composition of A t, A t ,
C tr and C rt, it is the case that fl is in scheds(DLM).

The definition of correctness for a data link protocol requires us to examine its behavior when
combined with any possible FIFO physical channels. However, examining the definition shows
that we are able to prove the impossibility of a correct protocol satisfying certain requirements by
merely demonstrating that no such protocol works when combined with a specific pair of physical
channels. In fact we will do our impossibility proofs by considering a system constructed with any
arbitrarily chosen universal FIFO physical channels. 2

If A = (At ,A ~) is a data link protocol for (t , r) and (M, Pt~,PTt), C tt is a universal FIFO
physical channel for tr and ptt, and C rt is a universal FIFO physical channel for rt and pit , then
we denote by D(A) an automaton that is the composition of At ,A t, C tt and C tt. Then by virtue
of Theorem A.4, we have the following result:

L e m m a 4.1 A data link protocol A is correct if and only if for every fair behavior fl of D(A), the
projection of fl on the data link layer actions is an element of scheds(DLM).

Corollary 4.2 Suppose that A is a correct data link protocol. Then in every fair behavior olD(A),
the number of send_msg events is equal to the number of rec_msg events.

Proof: This is immediate from Lemma 4.1 and Lemma 3.1.

5 Impossibility of Having All Packets Ident ical

We show here the impossibility of constructing a correct data link protocol that uses only a single
type of packet (and so needs no header) to transmit a sequence of identical messages. This result
seems weaker than the result we want (that it is impossible to construct a correct data link protocol
where all packets contain the same header) but in Section 6 we will show that in fact the desired
result follows from this. By making this simplification we postpone some of the difficult modeling
issues, and allow the reader to see the style of impossibility proof in a simpler setting. The technique,
of measuring the number of headers by the size of the packet alphabet when the message alphabet
has size one, was used earlier without formal proof of a reduction result in [13].

The proof takes the following form: we assume for the purpose of obtaining a contradiction
that A is a correct data link protocol in which, in each direction, all packets axe identical. Then
Corollary 4.2 implies that, in every fair behavior of D(A), the number of send_msg events is equal
to the number of rec_msg events. Then in Lemmas 5.1 - 5.3, we deduce a series of three preliminary
facts about the states of the end stations during executions of D(A), by showing that the failure
of one of these facts, coupled with the previously derived facts, would enable us to construct a fair

2We do not use the fact in this paper, but we note that since the universal FIFO physical channels have all
possible behaviors of any FIFO physical channels, we can prove that a particular protocol is correct by analyzing it
in a system with just universal FIFO physical channels.

205

behavior in which the number of send_msg events is unequal to the number of rec_msg events.
Finally, we use these facts in Lemma 5.4 to construct two fair behaviors of D(A) with identical
project ions at the receiving automaton, but in one of which two messages are sent while in the other
only one message is sent. Since the projections at the receiver are equal, the two executions contain
the same number of ree_msg events. Thus one of them will have the number of send_msg events
unequal to the number of rec_msg events. This yields a contradiction to the original assumption
tha t the protocol was correct.

5.1 Preliminary Lemmas

In this subsection, we assume that A is a correct da ta link protocol for (t, r) and (M, p t r , pr~) with
IPtrl = IPrtl -- 1. We also assume that each of A t and A r is deterministic, that is, it has only one
initial s tate , at most one locally controlled action is enabled in each state, and at most one new
s ta te can be reached by applying an action in a state. As we will see later, this involves no loss of
generality. Given a s ta te of an end station (i.e., A t or A r) in such a protocol A, there is a unique
fair execution fragment of that automaton that commences with the given state and includes no
input actions. (This execution corresponds to running the automaton from the given s tate in such
a way tha t it receives no inputs, for as long as it can keep taking steps.) We will say tha t the given
s tate is quiescing if this fragment contains only finitely many send_pkt events.

Our first lemma says that from any state in any execution, if the t ransmit t ing automaton is
run without receiving any inputs (that is, with no send_msg or rec_pkt ~t events) then it must send
only finitely many packets to the receiver.

L e m m a 5.1 Ira is a finite execution olD(A), then A t is quiescing in the final state of a.

P r o o f : The idea of the proof is as follows. If A t sends infinitely many packets with no response
then A ~ has no hope of determining how many send_msg events have happened. In part icular, we
show tha t A r cannot tell the difference between the situation in which one addit ional send_msg
event occurs after the given finite execution and the situation in which no such events occur.

More precisely, suppose tha t A t is not qniescing in the final s tate of a . Let ~ = beh(a). Then
consider the behavior flsend_msg(m) where m is some arbi t rary message in the message alphabet
of A. This behavior has an extension that is fair and contains no extra send_msg events (by
Theorem A.1). By Corollary 4.2, there is a finite prefix of this extension, say flsend_msg(m)~ ~
which contains as many rec_msg events as there are send_msg events in flsend_msg(m), namely,
one more than the number of send_msg events in a .

Let k be the number of rec_pkt tr events in fir. Since A t is not quiescing in the final s ta te of a ,
there is a finite behavior of A t tha t is an extension of/31A t, say (fllAt)7, where 7 consists of exactly
k send_pkt tr events (but no send_msg or ree_pkt rt events).

Now we consider the sequence flT(fl 'lA r) of actions of D(A). We show that this sequence
is a (not necessarily fair) behavior of D(A), by showing that its projection on each of the four
components of the system is a behavior of that component.

1. The projection on A t is (fllAt)7, which is a behavior of A t by construction.

2. The projection on A r is (flfl')lA r (since 7 involves only actions of At). This is a behavior of
A * since it is equal to (flsend_msg(m)fl')[AL

3. The projection on C tr is (~[C~r)(TlC~r)((/~t[Ar)[Ctr). Since 7[C ~r is a sequence of k
send_pktt~(p) events and (fl'[A*)[C tr is a sequence of k rec_pkttr(p) events, where p is the
unique element of the packet alphabet p t r , it follows from the universality of C tr tha t
(7[Ctr)((fl'[n~)[C t*) is a fair behavior of Ctr. Then Lemma 2.2 implies tha t

(fl]Ct~)(7[C~r)((fl'[d~)]C *~) is a behavior of C t~.

206

4. The projection on C rt is (~lCrt)((~'lAr)lC't) (since 7 involves no actions of C ~t) and this is
a behavior of C ~t since (fl']Ar)]C ~t consists only of send_pkt ~t events, which are inputs to C ~t
(and I /O au tomata are input-enabled).

Since its projection on each component is a behavior of that component, the sequence flT(fl~lA r)
is a behavior of D(A), by Theorem A.4.

Now consider the two behaviors flT(fl']A ~) and (fl)send_msg(m)/3'. They both have the same
projection on A ~ and hence contain the same number of rec_msg events. By the argument at the
beginning of this proof, this number is exactly one more than the number of send_msg events in
j3. On the other hand, the number of send_msg events in flT(fl~[A ~) is the same as the number of
send_msg events in/~7 (the two sequences having the same projection on At), and this is the same
as the number of send_msg events in ft. Thus, the number of send_msg events in the behavior
~7(fl'lA ~) is one fewer than the number of rec_msg events in the same behavior flT(fl'}A~).

Now when we consider a fair extension of flT(fll]A r) that contains no further send_msg events,
as given by Theorem A.1, we find that it contains more ree_msg events than send_msg events.
This contradicts Corollary 4.2. []

Our second lemma says tha t from any state in any execution, if the receiving automaton is run
without receiving any inputs, then it must send infinitely many packets to the t ransmit ter .

L e m m a 5.2 Ira is a finite execution olD(A), then A r is not quiescing in the final state of a.

P r o o f : Suppose the contrary: that A * is quiescing in the final state. Once again, we reach a
cont ra~ct ion by constructing two fair behaviors of D(A) with the same number of rec_msg events,
but different numbers of send_msg events.

Let a l be the fair execution fragment of A t containing no inputs and star t ing from the s tate
of A t at the end of a . Similarly let a2 be the fair execution fragment of A * containing no inputs
and start ing from the state of A r at the end of a . By definition, the projection of an1 on A t is a
fair execution of A t, and likewise the projection of an2 on A ~ is a fair execution of A ~. By Lemma
5.1, a l contains only finitely many send_pkt tr events, and by assumption a2 contains only finitely
many send_pkt ~t events. Let 7 be any sequence of actions formed by interleaving the sequences
beh(~l) and beh(~2).

We claim that beh(a)7 is a fair behavior of D(A). We show this by showing that its project ion
on each of the four components of the system is a fair behavior of that component.

1. The projection on A t is just beh((a[At)al), which is a fair behavior of A t by the definition of
Ot 1 .

2. The projection on A ~ is (beh(alAr)a2) which is a fair behavior of A * by the definition of a2.

3. The projection on C tr is just the projection of beh(a) on that channel followed by a finite
number of send_pkt t~ events. This is a fair behavior of C t* by the universality of C t* and
Lemma 2.2.

4. Similarly the projection on C *t is a fair behavior of C ft.

Since its projection on each component is a fair behavior of that component, Theorem A.4
implies that beh(a)7 is a fair behavior of D(A). By Corollary 4.2 the number of rec_msg events in
beh(a)7 equals the number of send_msg events in the same sequence.

Now let m be an arbi t rary element of the message alphabet. We construct another fair behavior,
beh(ce)send_msg(m)7' , which contains the same number of rec_msg events as in beh(a)7, but
contains one more send_msg event, which yields a contradiction.

207

Let a3 be the fair execution fragment of A t containing no inputs and star t ing from the s ta te
of A t at the end of asend_msg(m). By Lemma 5.1, (~3 contains only finitely many send_pkt t~
events. Now we consider the sequence of actions 7 t formed by interleaving (in any fashion) the
sequences beh(a3) and beh(c~2). Just as above, beh(a)send_msg(m)7' is a fair behavior of D(A),
and so by Corollary 4.2, the number of rec_msg events in beh(a)send_msg(m)7' is equal to the
number of send_msg, events. However, since beh(a)send_msg(m)7'lA r and beh(a)vIA r are both
equal to beh(alA~)beh(a2), we see that the number of rec_msg events in beh(cOsend_msg(m)7' is
the same as the number of rec_msg events in beh(c~)~/. By the equalities proved above, beh(a)3"
and beh(a)send_msg(m)7' contain the same number of send_msg events, which is false. This is a
contradiction. •

The third lemma further characterizes the behavior of a correct da ta link protocol by showing
tha t the t ransmi t te r must both send and receive infinitely many packets.

L e m m a 5.3 I f a is a fair execution of D(A) that contains a finite nonzero number of send_msg
actions, then a[A t contains infinitely many send_pkt tr actions and infinitely many rec_pkt ~t actions.

P r o o f : We show that every other possibility leads to a contradiction.

1. a[A t contains infinitely many send_pkt tr actions and finitely many rec_pkt rt actions. Then
there is a suffix of alA t that contains no input actions (neither send_msg nor rec_pkt ~t actions)
but contains infinitely many send_pkt tr actions. The state of A t at the s tar t of this suffix
must be not quiescing, which contradicts Lemma 5.1.

2. a[A t contains finitely many send_pkt t~ actions and finitely many rec_pkt rt actions. Then
alA ~ contains finitely many rec_pkt t~ actions (since the channel C t~ delivers at most as many
packets as were sent) and contains finitely many send_pkt ~t actions (since a fair execution of
C ~t would contain an infinite number of rec_pkt ~t events if it contained an infinite number
of send_pkt ~t events). Thus there is a suffix of alA ~ that contains no input events and only
a finite number of send_pkt rt events. The s tate of A ~ at the s tar t of this suffix is quiescing~
which contradicts Lemma 5.2.

3. a[A t contains finitely many send_pkt tr actions and infinitely many rec_pkt ~t actions. First
consider the maximal execution of A ~ star t ing from the initial s ta te of A ~ and containing no
input actions. This execution is a fair execution of A ~. Let/3 be the behavior of this execution.
By Lemma 5.2,/3 contains infinitely many send_pkt rt actions. Let 7 be the sequence of actions
obtained by interleaving/3 and beh(a[A t) in such a way that for each i the i - th rec_pkt ~t action
is immediately preceded by the i-th send_pkt rt action. We claim that 7 is a fair behavior
of D(A). Its projections on A t and A r are fair behaviors by construction. Its projection
on C ~t is jus t send_pkt~t(p)rec_pkt~t(p)send_pktrt(p)rec_pktrt(p)... (where p~t = {p}) which
is a fair behavior since (PL1)-(PL3) are satisfied using the obvious correspondence between
each rec_pkt ~t event and the immediately preceding send_pkt ~t event. Finally, its projection
on C t~ is a fair behavior since it consists of the sending of a finite number of packets and the
delivery of none (as/3 contains no inputs to A r, in particular no rec_pkt t~ actions) and this
clearly satisfies (PL1)-(PL3).

We observe tha t /3 (and hence 7) cannot contain any rec_msg action. (Otherwise, take the
prefix of t3 up to and including the first rec_msg event, regard it as a behavior of D(A) where
all the actions take place at A r, and extend it to a fair behavior of D(A) which contains no
inputs to D(A), that is, no send_msg actions. This contradicts Corollary 4.2.) However, 3'
contains a nonzero number of send_msg events (the same ones as in a) . Thus 7 is a fair
behavior of D(A) which does not contain the same number of rec_msg events as of send_msg
events, contradicting Corollary 4.2.

208 •

5.2 T h e T h e o r e m

We now use the facts proved in the previous subsection to construct two executions tha t look
identical to the receiver, but have different numbers of messages sent at the t ransmit t ing end.

L e m m a 5.4 Suppose that A is a correct data link protocol for (t, r) and (M, ptr , p r t) with IPtrl =
IPrt l = 1, and suppose that each of A t and A r is deterministic.

Let m be an arbitrary element of the message alphabet. Let fll and [32 be two fair behaviors
of D (A) such that [31 begins with s e n d _ m s g (m) and contains no other send_msg event, and/32
begins with s e n d _ m s g (m) s e n d _ m s g (m) and contains no other send_msg event. Then there exist
fa ir behaviors ~1 and ~2 of D (A) such that ~ j l a t = [3j Ia t for j = 1, 2, and such that ~ , IA ~ = ~ 1 A ~ .

P r o o f : Applying Lemma 5.3 to the behavior i l l , we see that we may express • [A t as an infinite
sequence

where e a c h / ~ consists only of send_pkt tr actions, each 7i consists only of rec_pkt rt actions, and
where each fl~ (except poss ib ly /~) and each 7{ contains a finite, nonzero number of send_pkt tr or
rec_pkt ~t events. 3 Similarly, we may express [321A t as an infinite sequence

send_msg(m) send-msg(m) [3~ 7~[3~ 72133 . . .

where each/~, consists only of send_pkt t~ actions, each 7~ consists only of rec_pkt ~t actions, and
where each fl~ (except possibly [3~) and each 7~ contains a finite, nonzero number of send_pkt t~ or
rec_pkt rt events. Let a i denote the number of rec_pkt rt events in 7j, for j = 1, 2.

We next claim that there exists an infinite fair behavior of A r of the following form:

r /rec_pkt tr (p)rl~rec_pkt tr (p)r] 3rec_pkt tr (p) . . .

(where p is the unique element of pt~), such that each ~i is a finite sequence containing exactly
max(a~, a~) send_pkt ~ events and no input events of A r. In order to prove this claim, we first show,
inductively on i, that ~rec_pkt t~(p)r]2rec_pkt t~(p)~%ec-pkt t~(p) . . .y irec-pkt t~(p) is a behavior of
A~; this follows because any state of A r after ylrec_pkttr(p)rl2rec_pkttr(p)r]3rec-pktt~(p). . .
~irec_pktt~(p) is not quiescent according to Lemma 5.2, and rec_pkttr(p) is an input fiction of A ~.
We then observe that since A r is deterministic and the given infinite sequence contains infinitely
many locally controlled events of A ~, any execution with this behavior is a fair execution, so the
behavior is a fair behavior.

Now we define/~1 to be the infinite sequence

send_msg(m)[31~lx71~2rec_pkttr (p) . . . yi-aT~-~ f3il rec_pktt~ (p) . . .

and similarly define)9~ to be the infinite sequence

send_msg(m)send_msg(m) ~ ,) 7 ~ / ~ rec_pktt~ (p) . . . ~?i-17i2- x [312r ec_pkttr (p) . . .

We claim that these sequences have all the required properties.
First we see that fill A ' = s e n d - m s g (m) [3 1 7 1 ~ . • .71i-lOipl.. ", since r/i and rec_pktt~(^p) con-

sist entirely of actions of A ~. Thus ~IA t = #~IA t. Similarly, #21A t = ~21A t. Also, z~}a r =
r / rec_pk t t~ (p) . . . Oi - l rec_pk t t r (p) . . . since send_msg(m) , [3~^and 7i consist entirely of events of A t,
Also, = Thus, ZxlA = 3 iA

We show that/~x is a fair behavior of D (A) by examining its projection on each component.

aThe exception is due to the fact that we do not know whether the first packet sent by A t precedes or follows the
first packet received by A t .

209

1. The projection on A t is equal to fll[A t as we observed above, which is a fair behavior of A t
by Theorem A.3 since fll is a fair behavior of D(A).

2. The projection on A r is equal to ~lrec_pkt~r(p)...~li-lrec_pktt*(p)... as observed above,
which was shown in the earlier claim to be a fair behavior of A r.

3. The projection on C tr is equal to filfl~rec_pkttr(p)...flirec_pkttr(p)..., i.e., a finite (possibly
zero length) sequence of send_pkttr(p) events followed by an infinite sequence of segments,
each consisting of a finite nonzero number of send_pkt.tr(p) events, followed by one rec_pktt~(p)
event; this is because none of send_msg(m), ~1 i or 7i contains any send_pkt t~ or rec_pkt tr
events. It is clear that a correspondence can be found for which this satisfies (PL1)-(PL3).
Since C t~ is a universal FIFO physical channel, this is a fair behavior of C t~.

4. The projection on C ~t is equal to ~/17~...7/i-17~-1..., i.e., a sequence of max(al ,a~)
send_pktrt(p ') events followed by a~ rec_pktrt(p ~) events, then max(a2,a~) send_pktrt(1])
events followed by a~ rec_pkt~(p ~) events, and so on, where p~ is the unique element of
p~t. Since each a~ is nonzero but finite, it is clear that a correspondence can be found for
which this sequence satisfies (PL1)-(PL3), and so this is a fair behavior of C ft.

Now by Theorem A.4 this shows that]31 is a fair behavior of D(A). By exactly similar argu-
ments,/39, is a fair behavior of D(A), which completes the proof. •

We can now put the pieces together to prove our impossibility result for packet alphabets of
size 1.

T h e o r e m 5.5 There is no correct data link protocol for (t, r) and (M, pt, , prt) with [Pt~ I = IPrtl =
1.

Proof i Suppose for the purpose of reaching a contradiction that A is a correct data link protocol
with [ptr[= [prt[= 1.

First, we deal with the potential nondeterminism of the end-stations. By Theorem A.2, there
is a deterministic automaton B t (respectively, B r) with fair behaviors that are a subset of the
fair behaviors of A t (respectively, At). Let B = (B t, Br), which is also a data link protocol with
[pt~[= [pr~[_ 1. Now by Theorems A.3 and A.4, fairbehs(D(B)) C_ fairbehs(D(A)), and so B
is correct (using Lemma 4.1 and the fact that A is correct).

Now, let m be an arbitrary element of the message alphabet. By Theorem A.1, there are
fair behaviors fll and /32 of D(B) such that fll begins with send_msg(m) and contains no other
send_msg event, and flz begins with send_msg(m)send_msg(m) and contains no other send_msg
event. Consider the fair behaviors ~1 and/32 whose existence is shown in Lemma 5.4. Since the
protocol B is correct, each flj satisfies Corollary 4.2 (that is, the number of rec_msg events in flj
equals the number of send_msg events in/~j). Now the number of send_msg events in flj is just the
number of send_msg events in flj[B t which equals the number of send_msg events in fljIB t by the
properties of/3j. Since fljIB t contains j send_msg events, we deduce that flj contains j rec_msg
events, contradicting the fact that/31 [B ~ and/32[B ~ axe equal, and so contain the same number of
rec_msg events. •

6 Impossibil ity of Having No H e a d e r s

Most data link protocols in the literature use a finite packet alphabet in each direction, since packets
are required to be of limited size. However, it is normally the case that the packets are treated as
having two separate parts: a header (which determines what is to be done with the packet) and an

210

encapsulated message (t reated as an uninterpreted bit string). Indeed, one can envisage protocols
tha t allow packets of unbounded size because the included messages may have unbounded size, and
yet use only a fixed size of header (and thus a finite number of headers). Here we sketch one way in
which one can model the existence of headers in a protocol, without assuming that the packets axe
necessarily structured explicitly with two parts , one a control field and the other an uninterpreted
message. We then show, using a reduction, how our impossibility result for identical packets implies
a corresponding impossibility result for the case of infinite packet alphabets without headers.

We model the "headers" used by a protocol as follows. Let A = (A t, A r) be a da ta link protocol
for (t ,r) and (M, ptr ,Prt) . Let -= be an equivalence relation on the domain M 0 pt~ U p~t U
states(A t) U states(A r) 0 acts(A t) U acts(A~). Then -= is said to be a header relation for A provided
tha t the following conditions hold.

1. - only relates elements of the same kind, i.e., elements of M, or p t r , or states(At), etc. Also,
a s tar t s ta te cannot be related to a non-staxt state. Moreover, if a ~. a ~ for two actions a
and a r, then a and a r are identical except possibly for a difference in their message or packet
parameter. Further, every pair a and a ~ of locally controlled events of A t (respectively, of A ~)
such that a = a ' , a and a ~ are in the same class of part(A t) (respectively, of part(At)) .

2. For each pair m, m' of messages in M, send_msg(m) = send_msg(m') if and only if m =- m',
and rec_msg(m) =- rec_msg(m ~) if and only if m -= m'.

3. For each pair p,p' of packets in pt~, send_pktt,(p) = send_pkttr(pt) if and only if p - td, and
rec_pkttr(p) =-- rec_pkttr(p t) if and only if p -~ p~.

4. For each pair p,p~ of packets in prt, send_pkt~t(p) =_ send_pktrt(pt) if and only if p - p', and
rec_pktrt(p) =- rec_pkt~t(p p) if and only if p ~ p'.

5. For every two states q and q~ of A t (respectively, of A t) with q = q~, if action a is enabled in
q then there is an action a ~ with a = a ~, such that a ~ is enabled in q~.

6. For every two states q and qt of A t (respectively, of A *) and every two actions a and a t of A t
(respectively, of A ~) such that q = q' and a = a', if r is a s tate such that (q, a, r) is a step of
A t (respectively, of A r) and action a ~ is enabled in state ql, then there exists a s ta te r I such
tha t r =- r ' and (q', a ' , r ') is a step of A t (respectively, of At) .

For a da ta link protocol A for (t, r) and (M, p t r , p r t) with a header relation = , we define the set
headers(A, t, r, =) to be the set of equivalence classes of packets in p t r . Similarly headers(A, r,$, =)
is the set of equivalence classes of packets in p~t. We think of each equivalence class of packets as
being those (in one direction) with the same pat tern of bits in the header. Informally, the way a
packet is processed must depend only on the header - for example, if receiving a packet takes the
protocol to a s ta te where release of a message to the higher layer is possible, then receiving any
other packet containing the same header will also take the protocol to a s ta te where release of a
message to the higher layer is possible (however, it may be a different message tha t is released!)
We note that for a da t a link protocol A, the diagonal relation, where each message, action etc. is
equivalent only to itself, is a header relation for A. We say that A has no header under -- if each of
headers(A, t, r, =_) and headers(A, r, t, =-) is a singleton set, that is, all packets in p~r axe related
by = , as are all packets in p~t. We say that A has no header if there exists a header relation =- for
A such that A has no header under -=.

In order to prove that headers axe necessary for a da ta link protocol, we show how to reduce
the question of the existence of a protocol with sets of header equivalence classes of a given size,
to the question of the existence of a protocol using packet alphabets of that size. This will allow
us to show tha t there is no correct da ta link protocol that has no header using our earlier result
tha t there is no correct da ta link protocol with packet alphabets of size one. The intuit ion behind

211

this reduction comes from the case where packets have the simple form (header, message) and the
protocol works uniformly over all message alphabets. In this case, if the protocol is applied to a
message alphabet of size one, the packet alphabet will be identical to the set of possible headers. Of
course, the proof must be more complicated than this, since we do not assume any simple s tructure
for packets.

T h e o r e m 6.1 Suppose A = (A t, A n) is a correct data link protocol/or (t, r) and (M, ptr, prt). I f
= is a header relation for A such that]headers(A, t, r, =)[= hi and [headers(a, r, t, =)1 = h~, then
there are alphabets M', Qtr and Qrt with IM'I = 1, IQtq = ha and [Q~t I = hz and a correct data
link protocol B = (B ~, B ~) for (t, r) and (M', Qt~, QTt).

Proof : Choose m to be an arbi t rary element of M and put M ~ = {m}, QtT = headers(A, t, r, =)
and Qr~ = headers(A, r , t, -) . 4 These alphabets clearly have the correct cardinalities. Now let B ~
be the t ransmi t t ing automaton for (t, r) and (M ~, QtT, Qrt) defined as follows. The input actions
of B ~ are send_msg(m) and ree_pktrt(//) w h e r e / / is an element of Qrt, the output actions are
send_pkt¢T(//) where p~ is an element of Qtr, and the internal actions are the internal actions of
A t. We say tha t an action ~r' of B t represents an action r of A exactly when one of the following

conditions holds:

• 7r ~ is either send_rasg(m) or an internal action of A s and r = r '

• ~r' is send_pktt~(p ~) and ~r = send_pkttT(p) for some p which is an element ofp'

• ~r' is rec_pktTt(//) and ~ -- rec_pkVt(p) for some p which is an element o f / / .

The states and s tar t states of B t are the same as those of A t. The transit ion relation of B t includes
(s ' , ~r', s) exactly when there exists some ~r that is represented by lr' for which (s ' , r , s) E steps(At).
The par t i t ion part(B ~) relates locally controlled actions 7r~ and 7r~ exactly when part(A t) relates
some (and hence all) pairs ~rl and 7r2 such that ¢q is represented by ~r~ and r2 is represented by r~.

Similarly, let B r be the receiving automaton for (t, r) and (M', Qtr, Qr~) defined as follows.
The input actions of B T are rec_pkt~T(//) where p ' is an element of QtT, the output actions are
rec_msg(m) and send_pktTt(//) where / / is an element of QTt, and the internal actions are the
internal actions of A T. We say that an action ~- of A T is represented by an action ~r ~ of B r exactly
when one of the following conditions holds:

• r ' is either rec_msg(m) or an internal action of A r and ~" = ~r I

• r ' is send_pktr~(//) and r = send_pktr~(p) for some p which is an element o f l /

• r ' is rec_pkttT(//) and ~r = rec_pkt~r(p) for some p which is an element o f / / .

The states and s tar t s tates of B T are the same as those of An. The transit ion relation of B T includes
(s ' , 7r', s) exactly when there exists some ~" that is represented by r ' for which (s', r , s) E steps(An).
The par t i t ion part(B T) relates locally controlled actions 7r~ and ~r~ exactly when part(A n) relates
some (and hence all) pairs ~rl and ~r2 such that 7rl is represented by ~r~ and ~r2 is represented by 7r~.

I t is easy to check tha t (B~,B r) is a da ta link protocol for (t , r) and (M',Q~r,Qr~). We claim
tha t it is correct, proving the theorem.

To prove the claim, it suffices to take an arbi t rary fair behavior of D(B) and produce a corre-
spondence for i ts projection on the da ta link layer actions such that (DL1) and (DL2) are satisfied.
For this we use the specific universal F IFO physical channels C ~r'Ptr and C T~,P~t whose construc-
t ion is given in Appendix B, ra ther than arbi t rary ones as we have done previously. The universal

~Thus, each packet name in the alphabet Q~ is a set of packet names from the alphabet pt%

212

channel used clearly does not affect the set of behaviors of D(A), but it will make it easier to relate
executions of different systems, since the construction we give has no internal actions and works
uniformly for different packet alphabets.

Thus we consider an arbitrary fair execution s0,1 ~rl,r Sl ,I ~r2,1 s2,~ . . . of D(B). From this we can
construct an execution so, ~rl, sl, r2, 82, . . . of D(A) such that ~ri is represented by ~ for each i, the
state of A t (respectively, of A ~) in sl is the same as the state of B t (respectively, of B r) in s~, and
the state of C tr,P*r (respectively, of C rt,Pr') in si is related to the state of C tr,Q'* (respectively, of
C rt,Q~t) in s~ in the natural way: the values for the variables S, counter1 and counter2 are the same
in C *r,P'r (respectively, in C rt,P*t) as in C tr,Q'' (respectively, in Crt,Q~'), and for each n the value of
packet(n) in C tr,P'~ (respectively, in C ~t,Prt) is one element of its value in C *r,Q*~ (respectively, in
C r*,Q~t) except when both values are undefined. 5 This execution is in fact a fair execution of D(A),
as is seen by observing that no action rec_msg(m ~) for m ~ ~ m is enabled in any state si (using the
correctness of A and the fact that no action lrj is send_msg(m~)), and that therefore if a locally
controlled action of D(A) is enabled in sl then it is represented by a locally controlled action of D(B)
that is enabled in s~. Since this execution is fair, its behavior has projection on the data link layer
actions that is an element of seheds(DLM). However the two executions have identical projections
on the data link layer actions (the actions differ only for 8end_pkt and receive_pkt events, which
are not included in the projection). Thus for s~, ~1,~ sl,I ~'2,~ s2,~..., its projection on the data link
layer actions has a correspondence between 8end_msg and rec_msg events that satisfies (DL1) and
(DL2). Thus by Theorem 4.1, B is correct. •

T h e o r e m 6.2 There is no correct data link protocol that has no header.

Proof: Immediate from Theorems 5.5 and 6.1.

7 Conclus ions

In this paper, we have proved the impossibility of constructing a reliable data link service using
an unreliable physical channel service, where the packets sent over the physical channels carry no
header information. This result was proved using the I /O automaton formal model for concurrent
systems.

Some remarks are in order about the style of the proof. The proof is carried out entirely at
the "semantic level", i.e., in terms of set-theoretic concepts such as states and sequences of actions.
Many formal models (including I / 0 automata) come equipped with a syntactic component designed
to facilitate protocol description and verification. It appears that such syntactic structure is of little
value (in fact, may get in the way) for carrying out impossibility proofs. We also note that the
proof (as all other impossibility proofs so far discovered) is designed to be understood by people,
not by machines. Became of their complexity, we see little evidence that interesting impossibility
proofs can (or should) be automated. This is in contrast to the situation for proofs of protocol
correctness.

The proof is not an simple as one might expect from the simple and natural statement of the
result. It would be desirable to polish and simplify the proof further. But in carrying out such a
simplification, one must be careful not to gloss over any of the genuinely subtle issues (e.g., the
treatment of fairness or the control of actions) that arise in the proof.

It remains to consider how the same proof can be carried out, or the same result can be proved
in other ways, using other popular formal models for concurrency. We suggest this as a challenge
for users of those other models. It seems to us that key issues that must be addressed in doing this
are those of fairness and control of actions.

SThe inductive construction of the execution so, ~rl, sl,.., is straightforward.

213

Finally, we wish to reiterate our belief that the theory of concurrency should be developed in
a way that uses the same underlying formal model as a basis for both verification work and for
impossibility proofs (and more broadly, for other combinatorial and complexity-theoretic r~sults).

Acknowledgements
We thank Yishay Mansour for his help in our initial discussions about this work, and also Steve
Ponzio and Isaac Saias for their useful suggestions for improving the presentation.

R e f e r e n c e s

[1] Attiya, H., Fischer, M., Wang, D.-W., and Zuck, L., "Reliable Communication Using Unreli-
able Channels", manuscript.

[2] Bartlett, K., Scantlebury, R., and Wilkinson, P., "A Note on Reliable Full-Duplex Transmission
over Half-Duplex Links" Communications o/the ACM, 12(5):260-261, May 1969.

[3] Bloom, B., "Constructing Two-Writer Atomic Registers" Proceedings of 6th A CM Symposium
on Principles of Distributed Computing, pp. 249-259, August 1987.

[4] Chou, C.-T., and Gafai, E., "Understanding and Verifying Distributed Algorithms Using
Stratified Decomposition" Proceedings of 7th ACM Symposium on Principles of Distributed
Computing, pp. 44-65, August 1988.

[5] Fekete, A., Lynch, N., and Shrira, L., "A Modular Proof of Correctness for a Network Synchro-
nizer" Proceedings of the 2nd International Workshop on Distributed Algorithms, Amsterdam,
Netherlands, July 1987, (J. van Leeuwen, ed), pp. 219-256. Lecture Notes in Computer Science
312, Springer-Verlag.

[6] Fekete, A., Lynch, N. A., Mansour, Y. and Spinelli, J., "The Data Link Layer: The Impos-
sibility of Implementation in Face of Crashes", Technical Memo, TM-355b, Laboratory for
Computer Science, Massachusetts Institute of Technology.

[7] Fekete, A, Lynch, N., Merritt, M., and Weihl, W., "Commutativity-Based Locking for Nested
Transactions" to appear in JCSS.

[8] Lynch, N., and Goldman, K., "Distributed Algorithms" Research Seminar Series
MIT/LCS/RSS-5, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, 1989.

[9] Lynch, N. A., Mansour, Y. and Fekete, A., "Data Link Layer: Two Impossibility Results,"
Proceedings of 7th ACM Symposium on Principles of Distributed Computing, pp. 149-170,
August 1988.

[10] Lynch N. A. and Turtle M. R., "Hierarchical Correctness Proofs for Distributed Algorithms,"
Proceedings of the 6th A CM Symposium on Principles of Distributed Computing, pp. 137-151,
August 1987.

[11] Lynch, N., and Tuttle, M., "An Introduction to Input/Output Automata" CWI Quarterly,
2(3):219-246, September 1989.

[12] Lynch, N., "A Hundred Impossibility Proofs for Distributed Computing", Proceedings of 8th
A CM Symposium on Principles o/ Distributed Computing, pp. 1-28, August 1989.

214

[13] Mansour, Y., and Schieber, B., "The Intractability of Bounded Protocols for non-FIFO Chan-
nels" Proceedings of 8th A CM Symposium on Principles of Distributed Computing, pp. 59-72,
August 1989.

[14] Nipkow, T., "Proof Transformations for Equational Theories" Proceedings of 5th Annual IEEE
Symposium on Logic in Computer Science, pp. 278-288, June 1990.

[15] Stenning, N., "A Data Transfer Protocol" Computer Networks, 1:99-110, 1976.

[16] Troxel, G., "A Hierarchical Proof of an Algorithm for Deadlock Recovery in a System using
Remote Procedure Calls" MS thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science Cambridge, MA. January, 1990.

[17] Welch, J., Lamport, L., and Lynch, N., "A Lattice-Structured Proof of a Minimum Spanning
tree Algorithm" Proceedings of 7th A CM Symposium on Principles of Distributed Computing,
pp. 28-43, August 1988.

[18] Wang, D.-W., and Zuck, L., "Tight Bounds for the Sequence Transmission Problem", Pro-
ceedings of 8th ACM Symposium on Principles of Distributed Computing, pp. 73-84, August
1989.

A The I /O A u t o m a t o n M o d e l

The input/output automaton model was defined in [10] as a tool for modeling concurrent and
distributed systems. We refer the reader to [10] and to the expository paper [11] for a complete
development of the model, plus motivation and examples. Here, we mention two extensions to the
definitions of [10] and [11], and also provide a summary of the theorems about I /O automata that
axe needed for our results.

We extend the definition of fairness to execution fragments, not just executions. Namely, an
execution fragment a of an automaton A is said to be fair if the following condition holds for each
class C of part(A): if a is finite, then no action of C is enabled in the final state of a, while if a
is infinite, then either a contains infinitely many events from C, or else a contains infinitely many
occurrences of states in which no action of C is enabled. Thus, a fair execution fragment gives "fair
turns" to each class of part(A).

An I/O automaton is said to be deterministic if it has only one initial state, at most one locally
controlled action is enabled in each state, and at most one new state can be reached by applying
an action in a state.

The following theorem says that no matter what has happened in any finite execution, and no
matter what inputs continue to arrive from the environment, an automaton can continue to take
steps to give a fair execution.

T h e o r e m A.1 Let A be an I/O automaton and let ~{ be a sequence of input actions of A. Suppose
that fl is a finite schedule of A. Then there exists a fair schedule/Y of A such that fll is an extension
of ~ and fl'lin(A)= (fllin(A))7. Moreover, the same is true for behaviors in place of schedules.

The following theorem shows that there is no loss of generality in restricting attention to de-
terministic solutions to specifications.

T h e o r e m A.2 If A is an I/O automaton, then there is a deterministic I / 0 automaton B such
that fairbehs(B) C_ fairbehs(A).

