
Switched Probabilistic I/O Automata

Ling Cheung, Nancy Lynch, Roberto Segala, Frits Vaandrager

Nijmegen Institute for Computing and Information Sciences/

NIII-R0437 September 2004

Nijmegen Institute for Computing and Information Sciences

Faculty of Science

Catholic University of Nijmegen

Toernooiveld 1

6525 ED Nijmegen

The Netherlands

Switched Probabilistic I/O Automata⋆

Ling Cheung1, Nancy Lynch2, Roberto Segala3, and Frits Vaandrager1

1 Nijmegen Institute for Computing and Information Sciences
University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{lcheung,fvaan}@cs.kun.nl⋆⋆

2 MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

lynch@theory.csail.mit.edu
⋆ ⋆ ⋆

3 Dipartimento di Informatica, Università di Verona
Strada Le Grazie 15, 37134 Verona , Italy

roberto.segala@univr.it
†

Abstract. A switched probabilistic I/O automaton is a special kind of
probabilistic I/O automaton (PIOA), enriched with an explicit mech-
anism to exchange control with its environment. Every closed system
of switched automata satisfies the key property that, in any reachable
state, at most one component automaton is active. We define a trace-
based semantics for switched PIOAs and prove it is compositional. We
also propose switch extensions of an arbitrary PIOA and use these ex-
tensions to define a new trace-based semantics for PIOAs.

1 Introduction

Probabilistic automata [Seg95,SL95,Sto02] constitute a mathematical framework
for modeling and analyzing probabilistic systems, specifically, systems of asyn-
chronously interacting components capable of nondeterministic and probabilistic
choices. This framework has been successfully adopted in the studies of dis-
tributed algorithms [LSS94,PSL00,Agg94] and practical communication proto-
cols [SV99]. It also appears to be useful for modeling and analyzing security
protocols.

An important part of a system modeling framework is a notion of visible
behavior of system components. Such a notion is used to derive implementation
and equivalence relations among components. For example, one can define the

⋆ An extended abstract of this paper will appear as [CLSV04].
⋆⋆ Supported by DFG/NWO bilateral cooperation project 600.050.011.01 Validation of

Stochastic Systems (VOSS).
⋆ ⋆ ⋆ Supported by DARPA/AFOSR MURI Award #F49620-02-1-0325, MURI AFOSR

Award #F49620-00-1-0327, NSF Award #CCR-0326277, and USAF, AFRL Award
#FA9550-04-1-0121.

† Supported by MURST project Constraint-based Verification of reactive systems
(CoVer).

2

visible behavior of a nondeterministic automaton to be its set of traces— se-
quences of visible actions that arise during executions of the automaton [LT89].
This induces an implementation (resp. equivalence) relation on nondeterministic
automata, namely inclusion (resp. equality) of sets of traces.

Perhaps the most important property of an implementation relation is com-
positionality: if P implements Q, then for every context R, one should be able
to infer that P‖R implements Q‖R. This greatly facilitates correctness proofs of
complex systems by reducing properties of a large system to properties of smaller
subsystems. In the setting of security analysis, for instance, compositionality en-
sures that plugging secure components into a security preserving context results
again in a secure component [SM03].

Generalizing the notion of traces, Segala [Seg95] defines the visible behavior
of a probabilistic automaton as its set of trace distributions , where each trace
distribution is induced by a probabilistic scheduler which resolves all nondeter-
ministic choices. This gives rise to implementation and equivalence relations as
inclusion and equality of sets of trace distributions, respectively. It turns out
that this notion of implementation relation is not compositional. A simple coun-
terexample is illustrated in Figure 1.

/.-,()*+��������
a

����
��

��
��

a

��?
??

??
??

?
/.-,()*+��������

a

��

/.-,()*+��������
��1

2

����
��

��
�

==
1
2

��=
==

==
=

·

b

��

·

c

��

·
b

~~||
||

||
||

|
c

 B
BB

BB
BB

BB ·

d

��

·

e

��· · · · · ·

a

Fig. 1. Probabilistic automata Early, Late and Toss

As their names suggest, automaton Early forces its scheduler to choose be-
tween b and c as it chooses one of the two available a-transitions, whereas au-
tomaton Late allows its schedulers to make this decision after the a-transition.
Clearly, these two automata have the same set of trace distributions, but they
can be distinguished by the context Toss. The automaton Toss has a probabilis-
tic a-transition leading to a uniform distribution on two states, one of which
enables a d-transition while the other enables an e-transition. The composed
system Late ‖Toss has a trace distribution D0 that assigns probability 1

2 to each
of these traces: adb and aec (see Figure 2). Such total correlations between ac-
tions d and b, and between actions e and c, cannot be achieved by the composite
Early ‖Toss.

Inspired by this example, we establish in [LSV03] that the coarsest pre-
congruence refining trace distribution preorder coincides with the probabilistic
simulation preorder. In other words, probabilistic contexts are capable of ex-
posing internal branching structures of other components. This suggests to us
a serious limitation in the composition mechanism of probabilistic automata.

3

·
d //·

b //·
pp

1
2

77ppppp
NN

1
2

''NN
NNN

·
e

//·
c

//·

a

Fig. 2. Non-substitutivity of trace distribution inclusion

Namely, nondeterministic choices are resolved after the two automata are com-
posed, allowing the global scheduler to make decisions in one component using
state information of the other. This phenomenon can be viewed as a form of
“information leakage”: the global scheduler channels private information from
one component to the other (from Toss to Late in the previous example).

In this paper, we present a composition mechanism where local scheduling
decisions are based on strictly local information. That is, (i) local nondetermin-
istic choices of each component are resolved by that component alone; (ii) global
nondeterministic choices (i.e., inter-component choices) are resolved by some in-
dependent means. To address the first issue, we introduce an input/output dis-
tinction to our model and pair each automaton with an input/output scheduler.
For the second, we introduce a control-passage1 mechanism, which eliminates
global scheduling conflicts.

Before describing our model in greater detail, we take a quick look at re-
lated proposals in the existing literature2. For purely synchronous, variable-
based models, global nondeterministic choices are resolved by “avoidance”: in
each transition of the global system, all components may take a step. This in-
trinsic feature of synchronous models allows De Alfaro, Henzinger and Jhala
[dAHJ01] to successfully define a compositional, trace-based semantics for their
model of probabilistic reactive modules. For asynchronous models such as prob-
abilistic automata, global nondeterministic choices must be resolved explicitly in
order to assign a probability mass to each possible interleaving of actions. Wu,
Smolka and Stark [WSS94] propose a compositional model based on probabilistic
input/output automata. In that model, global nondeterminism is resolved by a
“race” among components: each component draws a delay from an exponential
distribution (thus leaving the realm of discrete distributions). Assuming inde-
pendence of these random draws, the probability of two components drawing the
same delay is zero, therefore there is almost always a unique winner. These races
are history-independent, in the sense that outcomes depend on current states of
components, but not on computation history of the overall environment.

1 Throughout this paper, the term control is used in the spirit of “control flow” in
sequential programming: a component is said to possess the control of a system if it
is scheduled to actively perform the next action. This should not be confused with
the notion of controllers for plants, as in control theory.

2 We refer to [SV04] for a comparative study of various probabilistic models.

4

Our treatment of global nondeterminism finds its root in the very meaning
of the term “interleaving semantics”. In the non-probabilistic case, concurrent
behaviors are captured by considering all possible interleavings of actions per-
formed by the various components. However, with the introduction of proba-
bilistic choices, it is no longer obvious what one means by the term “a possible
interleaving”. Thus, we provide a framework in which “a possible interleaving”
has a concrete meaning and therefore compositional reasoning is sound on the
level of trace distributions. We will also argue that, despite the appearance of
single-threading, this framework is sufficiently expressive to model concurrently
executing, communicating components.

We introduce the model of switched probabilistic I/O automata (or switched
automata for short). This augments the probabilistic I/O automata model with
some additional structures and axioms. In particular, we add a predicate active

on the set of states, indicating whether the automaton is active or inactive3.
We require that locally controlled actions are enabled only if the automaton is
active. In other words, an inactive automaton must be quiescent and can only
accept inputs from the environment.

A switched automaton changes its activity status by performing special con-
trol input and control output actions. Control inputs switch the machine from
inactive to active and vice versa for control outputs. All other actions must leave
the activity status unchanged. It is important that all control communications
are “handshakes”: at most two components may participate in a synchronization
labeled by a control action. Together with an appropriate initialization condition,
this ensures that at most one component is active at any point of an execution.
Intuitively, we model a network of processes passing a single token among them,
with the property that a process enables a locally controlled transition if and
only if it possesses the token.

The main technical result of this paper is compositionality of a trace-based
semantics for switched probabilistic I/O automata (Section 6, Theorem 1). Sec-
tions 2 and 3 are devoted to the basic theory. There we introduce new technical
notions such as I/O schedulers, scheduled automata and parallel composition of
scheduled automata. In Section 4, we define pseudo probabilistic executions and
pseudo trace distributions for automata with open inputs, and prove important
projection and pasting results. Section 5 treats two standard operators: renam-
ing and hiding. In Section 7, we propose the notion of switch extensions for
PIOAs, which can be used to derive a new form of composition for the original
PIOA model. Concluding discussions follow in Section 8.

2 Preliminaries

In this section, we define probabilistic I/O automata and some related notions.
This is a straightforward combination of the Input/Output Automata model

3 A similar distinction appears in [dAH01]: running states vs. waiting states. It arises
as part of an on-the-fly state space reduction technique for checking compatibility
of interface automata.

5

of Lynch and Tuttle [LT89] and the Simple Probabilistic Automata model of
Segala [Seg95].

2.1 PIOAs

A discrete probability (resp. sub-probability) measure over a set X is a measure µ

on (X, 2X) such that µ(X) = 1 (resp. µ(X) ≤ 1). With slight abuse of notation,
we write µ(x) for µ({x}). The set of all discrete probability measures over X is
denoted Disc(X); similarly for SubDisc(X). Moreover, we use Supp(µ) to denote
the support of a discrete measure µ: the set of elements in X to which µ assigns
nonzero measure. Given x ∈ X , the Dirac distribution on x is the unique measure
assigning probability 1 to x, denoted (x 7→ 1).

A probabilistic I/O automaton (PIOA) P consists of:

– a set States(P) of states and a start state s0 ∈ States(P);
– a set Act(P) of action symbols, partitioned into: I (input actions), O (output

actions) and H (hidden actions);
– a transition relation →⊆ States(P) × Act(P) × Disc(States(P)).

An action is visible if it is not hidden. It is locally controlled if it is non-input
(i.e., either output or hidden); we define L := O ∪ H . We write s

a
→ µ for

〈s, a, µ〉 ∈→, and s
a
→ s′ if there exists µ with s

a
→ µ and s′ ∈ Supp(µ). A

state is quiescent if it enables only input actions. A PIOA is closed if its set of
input actions is empty. It is deterministic if, for each state s and action symbol
a, there is at most one a-transition leaving s. As with I/O automata, we always

assume input enabling: ∀s ∈ States(P) ∀a ∈ I ∃µ : s
a
→ µ.

An execution of P is a (possibly finite) sequence p = s0a1µ1s1a2µ2s2 . . . ,4

such that:

– each si (resp., ai, µi) denotes a state (resp., action, distribution over states);
– s0 = s0 and, if p is finite, then p ends with a state;

– for each non-final i, si
ai+1

→ µi+1 and si+1 ∈ Supp(µi+1).

Given a finite execution p, we use last(p) to denote the last state of p. A state
s is reachable if there exists a finite execution p such that last(p) = s. We write
Exec(P) for the set of all executions of P and Exec<ω(P) for the set of finite
executions. Given an execution p, the sequence of visible action symbols in p is
called the (visible) trace of p, denoted tr(p).

A finite set of PIOAs {P1, . . . , Pn} is said to be compatible if for all i 6= j,
Oi ∩ Oj = Act(Pi) ∩ Hj = ∅. Such a set is closed if

⋃
1≤i≤n Ii ⊆

⋃
1≤i≤n Oi. We

define P = ‖1≤i≤nPi as usual with synchronization of shared actions:

– States(P) :=
∏

1≤i≤n States(Pi) and the start state of P is 〈s0
1, . . . , s0

n〉;
– I :=

⋃
1≤i≤n Ii \

⋃
1≤i≤n Oi, O :=

⋃
1≤i≤n Oi, and H :=

⋃
1≤i≤n Hi;

4 Some authors define executions to be sequences of states and actions in alternating
fashion, thus omitting the target distributions. The current style allows for a more
straightforward definition of probabilistic executions.

6

– given a state 〈s1, . . . , sn〉, an action a and a target distribution µ, there is a

transition 〈s1, . . . , sn〉
a
→ µ if and only if µ is of the form µ1 × . . .× µn and

for all 1 ≤ i ≤ n,
• either a ∈ Act(Pi) and si

a
→ µi,

• or a 6∈ Act(Pi) and µi = (si 7→ 1).

Notice ‖ is commutative and associative for PIOAs. Moreover, given a finite
execution p of a composite ‖1≤i≤nPi, we define its i-th projection recursively as
follows:

– πi(〈s0
1, . . . , s0

n〉) := s0
i ;

– πi(pa(µ1 × . . . × µn)〈s′1, . . . , s′n〉) equals
• πi(p)aµis

′
i, if a ∈ Act(Pi);

• πi(p), otherwise.

2.2 I/O Schedulers

The notion of (probabilistic) schedulers for a PIOA P is introduced as a means
to resolve all nondeterministic choices in P . Each scheduler consists of an input
component and an output component. Given a finite history of the automaton,
the output scheduler chooses probabilistically the next locally controlled transi-
tion, whereas the input scheduler responds to inputs from the environment and
chooses probabilistically a transition carrying the correct input symbol.

Definition 1. An input scheduler σ for P is a function

σ : Exec<ω(P) × I −→ Disc(→)

such that for all 〈p, a〉 ∈ Exec<ω(P)× I and transition (s
b
→ µ) ∈ Supp(σ(p, a)),

we have s = last(p) and b = a. An output scheduler ρ for P is a function

ρ : Exec<ω(P) −→ SubDisc(→)

such that for all p ∈ Exec<ω(P) and transition (s
a
→ µ) ∈ Supp(ρ(p)), we have

s = last(p) and a ∈ L. An I/O scheduler for P is then a pair 〈σ, ρ〉 where σ is
an input scheduler for P and ρ is an output scheduler for P .

Notice input schedulers must return a discrete probability distribution, re-
flecting the requirement that each input issued by the environment is received
with probability 1. (This is always possible because of the input enabling as-
sumption.) In particular, if P is deterministic, then input schedulers for P al-
ways return Dirac distributions. In contrast, output schedulers may choose to
halt with an arbitrary probability θ by returning a proper sub-distribution whose
total probability mass is 1 − θ.

An I/O scheduler 〈σ, ρ〉 is said to be deterministic if both σ and ρ always
return Dirac distributions. Moreover, we write σ(p, a)(µ) as a shorthand for

σ(p, a)(last(p)
a
→ µ) and ρ(p)(a, µ) for ρ(p)(last(p)

a
→ µ).

7

Consider a closed PIOA P . Obviously, any I/O scheduler for P has a trivial
input component (i.e., the empty function). Every output scheduler ρ thus in-
duces a purely probabilistic behavior, which is captured by the following notion
of probabilistic executions.

Definition 2. Let P be a closed PIOA and let ρ be an output scheduler for P .
The probabilistic execution induced by ρ is the function Qρ : Exec<ω(P) −→
[0, 1] defined recursively by:

– Qρ(s
0) := 1, where s0 is the initial state of P ;

– Qρ(p
′) := Qρ(p) · ρ(p)(a, µ) · µ(s′), where p′ is of the form paµs′.

A probabilistic execution Qρ induces a probability space over the sample
space ΩP := Exec(P) as follows. Let ⊑ denote the prefix ordering on sequences.
Each p ∈ Exec<ω(P) generates a cone of executions: Cp := {p′ ∈ Exec(P) | p ⊑
p′}. Let FP denote the smallest σ-field generated by the collection {Cp | p ∈
Exec<ω(P)}. There exists a unique measure mρ on FP with mρ[Cp] = Qρ(p) for
all p in Exec<ω(P); therefore Qρ gives rise to a probability space (ΩP ,FP ,mρ).

2.3 Trace Distributions

Trace distributions are obtained from probabilistic executions by removing non-
visible elements. In our case, these are states, hidden actions and distributions
of states. To state this precisely, we need the notion of minimal executions: a
finite execution p of P is said to be minimal if every proper prefix of p has a
strictly shorter trace. Notice, the empty execution (i.e., the sequence containing
just the initial state) is minimal. Moreover, if p is nonempty and finite, then p

is minimal if and only if the last transition in p has a visible action label. For
each α ∈ Act(P)<ω , let tr-1min(α) denote the set of minimal executions of P with
trace α.

Now we define a lifting of the trace operator tr : Exec<ω(P) −→ Act(P)<ω.
Given a function Q : Exec<ω(P) −→ [0, 1], define tr(Q) : Act(P)<ω −→ [0, 1] by

tr(Q)(α) :=
∑

p∈tr-1
min

(α)

Q(p).

Given an output scheduler ρ of a closed PIOA P , the trace distribution induced
by ρ (denoted Dρ) is simply the result of applying tr to the probabilistic exe-
cution Qρ. That is, Dρ := tr(Qρ). We often use variables D, D′, etc. for trace
distributions, thus leaving the scheduler ρ implicit.

Similar to the case of probabilistic executions, each Dρ induces a probability
measure on the sample space Ω := Act(P)≤ω. There the σ-field F is generated
by the collection {Cα | α ∈ Act(P)<ω}, where Cα := {α′ ∈ Ω | α ⊑ α′}. The
measure mρ on F is uniquely determined by the equations mρ[Cα] = Dρ(α) for
all α ∈ Act(P)<ω .

In the literature, most authors define probabilistic executions (resp. trace
distributions) to be the probability spaces 〈ΩP , FP , mρ〉 (resp. 〈Ω, F , mρ〉).

8

Here we find it more natural to reason with the functions Qρ and Dρ, rather
than the induced measures. We refer to [Seg95] for these alternative definitions
and proofs that they are equivalent to our versions.

3 Switched Probabilistic I/O Automata

As we argued in Section 1, one must distinguish between global and local non-
deterministic choices and must resolve them separately. Our solution lies in an
explicit mechanism of control exchange among parallel components.

The notion of control exchange in fact arises naturally in asynchronous mod-
els of currency with input/output distinction, although it is often left implicit.
For example, in the I/O automata model of [LT89], control exchange takes place
between an automaton and its environment whenever an input transition fol-
lows a locally controlled transition, or vice versa. In this view, each trace of a
composite nondeterministic automaton represents a single-threaded activity in
a system of components. Therefore, in order to properly generalize the notion of
traces, we should incorporate the notion of single-threaded activity into our def-
inition of trace distributions. This is precisely the idea that leads to our explicit
treatment of control exchange.

In our framework, each active component is allowed to run to completion,
in the sense that control exchange takes place only when the active component
schedules a control output transition, which uniquely determines the next active
component. In other words, the local scheduler for an active component decides
not only when to give up the token, but also to whom the token is transfered.
Therefore, as soon as a local scheduler is chosen for every component, we have
fully specified a “possible interleaving” of the composed system. Concurrent be-
haviors of the system are then captured by varying the choice of local schedulers
for individual components.

The rest of this section is organized as follows: (i) first we define pre-switched
automata, where we describe control action signatures and the Boolean-valued
state variable active; (ii) then we introduce the notion of input well-behaved ex-
ecutions of a pre-switched automaton and state four axioms defining switched
automata; (iii) finally, we introduce the notion of a scheduled automaton, essen-
tially a switched automaton paired with an I/O scheduler.

3.1 Pre-Switched Automata

For technical simplicity, we assume a universal set Act of action symbols such
that Act(P) ⊆ Act for every PIOA P . Moreover, Act is partitioned into two
sets: BAct (basic actions) and CAct (control actions). Both sets are assumed
to be countably infinite, so we can rename hidden actions using fresh symbols
whenever necessary (see Section 5).

Definition 3. A pre-switched automaton P is a PIOA endowed with a function
active : States(P) −→ {0, 1} and a set Sync ⊆ O∩CAct of synchronized control
actions.

9

We use variables P , Q, etc. to denote pre-switched automata. Given a pre-
switched automaton P , we further classify its action symbols:

– BI := I ∩ BAct (basic inputs);
– BO := O ∩ BAct (basic outputs);
– CI := I ∩ CAct (control inputs);
– CO := (O ∩ CAct) \ Sync (control outputs).

Essentially, we have a partition {BI ,BO , H,CI ,CO ,Sync} of Act(P). We say
that P is initially active if active(s0) = 1. Otherwise, it is initially inactive.

As described in Section 1, the Boolean-valued function active on the states
of P indicates whether P is active or inactive, while control actions allow P to
exchange control with its environment. The designation of synchronized control
actions helps to achieve the “handshake” condition on control synchronizations:
whenever we compose two automata, we classify the shared control actions as
“synchronized”, so that they are no longer available for further synchronization
with a third component. This is made precise in the definitions of compatibility
and composition for pre-switched automata.

A finite set of pre-switched automata {P1, . . . , Pn} is said to be compatible if
(i) {P1, . . . , Pn} is a compatible set of PIOAs; (ii) for all i 6= j, Act(Pi)∩Syncj =
CI i ∩CI j = ∅; (iii) at most one Pi is initially active. Notice that such a set is
compatible if and only if for all i 6= j, Pi and Pj are compatible. The paral-
lel composition of {P1, . . . , Pn}, denoted ‖1≤i≤nPi, is the result of composing
P1, . . . , Pn as PIOAs, together with:

– Sync :=
⋃

1≤i≤n Synci ∪
⋃

1≤i,j≤n(CI i ∩CO j);
– active(s1, . . . , sn) = 1 if and only if for some i, activei(si) = 1.

Clearly, the composite ‖1≤i≤nPi is again a pre-switched automaton. We consider
some basic properties of the n-ary operator ‖1≤i≤n.

Lemma 1. The following equalities hold:

– BI =
⋃

1≤i≤n BI i \
⋃

1≤i≤n BO i;
– CI =

⋃
1≤i≤n CI i \

⋃
1≤i≤n CO i;

– BO =
⋃

1≤i≤n BO i;
– CO =

⋃
1≤i≤n CO i \

⋃
1≤i≤n CI i.

Proof. By definition, I =
⋃

1≤i≤n Ii \
⋃

1≤i≤n Oi. Since BAct and CAct are
disjoint, we have the desired properties about BI and CI .

Similarly, O =
⋃

1≤i≤n Oi. Thus BO =
⋃

1≤i≤n BO i and O∩CAct =
⋃

1≤i≤n CO i.
Applying the definitions of CO and Sync, we have CO =

⋃
1≤i≤n CO i \

⋃
1≤i≤n CI i.

⊓⊔

In the binary case, we write P1‖P2 as shorthand for ‖1≤i≤2Pi. Observe that
P1‖P2

∼= P2‖P1; that is, composition of pre-switched automata is commutative
up to isomorphism. Next we check that composition is also associative on the
class of pre-switched automata. Lemma 2 says, if an automaton is compatible
with a composite, then it is compatible with every component in that composite.
Conversely, Lemma 3 says, if an automaton is compatible with each component
in a composite, then it is compatible with the composite.

10

Lemma 2. Let P1, P2 and P3 be pre-switched automata. Assume that P1 is
compatible with P2 and P3 is compatible with P1‖P2. Then P1 is compatible with
P3. (By symmetry, P2 is also compatible with P3.)

Proof. By definition of active in a composite, we know that at most one Pi is
initially active. It remains to check the signatures are compatible:

– Act1 ∩H3 ⊆ Act12 ∩H3 = ∅;

– Act3 ∩H1 ⊆ Act3 ∩H12 = ∅;

– O1 ∩ O3 ⊆ O12 ∩ O3 = ∅;

– Act1 ∩Sync3 ⊆ Act12 ∩Sync3 = ∅;

– Act3 ∩Sync1 ⊆ Act3 ∩Sync12 = ∅;

– CI 1 ∩CI 3 ⊆ (CI 12 ∪Sync12) ∩ CI 3 = ∅. ⊓⊔

Corollary 1. Let P1, P2 and P3 be pre-switched automata. Assume that P1 is
compatible with P2 and P3 is compatible with P1‖P2. Then {P1, P2, P3} is also
a compatible set.

Lemma 3. Let P1, P2 and P3 be pre-switched automata. Assume that {P1, P2, P3}
is a compatible set. Then P1 is compatible with P2 and P3 is compatible with
P1‖P2.

Proof. The first claim is trivial. Since there is at most one initially active Pi,
either P1‖P2 or P3 is initially active, but not both. For the signatures, we have:

– Act12 ∩H3 = (Act1 ∩H3) ∪ (Act2 ∩H3) = ∅;

– Act3 ∩H12 = (Act3 ∩H1) ∪ (Act3 ∩H2) = ∅;

– O12 ∩ O3 = (O1 ∩ O3) ∪ (O2 ∩ O3) = ∅;

– Act12 ∩Sync3 = (Act1 ∩Sync3) ∪ (Act2 ∩Sync3) = ∅;

– CI 12 ∩CI 3 ⊆ (CI 1 ∪CI 2) ∩ CI 3 = ∅.

It remains to check Act3 ∩Sync12 = ∅. Clearly Act3 is disjoint from Sync1 ∪Sync2.
Suppose a ∈ CI 1 ∩CO2. Then a ∈ CAct . By compatibility, a 6∈ Sync3 ∪CI 3 ∪CO3,
therefore a 6∈ Act3. By symmetry, Act3 ∩(CI 2 ∩CO1) is also empty. ⊓⊔

This allows us to conclude that composition is associative.

Lemma 4. Let P1, P2 and P3 be pre-switched automata. Assume P1 is compat-
ible with P2, and P3 is compatible with P1‖P2. Then P2 is compatible with P3,
and P1 is compatible with P2‖P3. Moreover, (P1‖P2)‖P3

∼= P1‖(P2‖P3).

Proof. The compatibility claim follows from Corollary 1 and Lemma 3. The sec-
ond claim follows from the definitions of Sync and active in a parallel composition
and the fact that ‖ is associative for PIOAs. ⊓⊔

11

3.2 Input Well-behaved Executions

Recall that switched automata are intended to be composed in such a way that
at most one component is active at any point of an execution. Consider a system
consisting of two pre-switched automata P and Q placed in parallel with an en-
vironment E. Suppose E activates P and Q via two consecutive control outputs
(which are control inputs for P and Q, respectively). In this case, the environ-
ment E exhibits improper behavior: after performing the first control output it
should become inactive and thus should not enable the second control output.
As a consequence, the composite P‖Q reaches a point where both P and Q are
active, violating the intended property of composition. This example suggests
that, in some cases, correctness claims about an automaton must be conditional
upon correctness of its environment. In other words, we should restrict our at-
tention to those executions in which the environment also follows the rules of
control exchange.

This leads to the definition of input well-behavedness. Let P be a pre-switched
automaton. An input transition s

a
→ µ is well-behaved if active(s) = 0. An

execution p of P is input well-behaved if all input transitions occurring in p

are well-behaved. Let Exec<ω
iwb (P) denote the set of finite, input well-behaved

executions of P . Moreover, we say that a state s is input well-behaved reachable,
notation iwbr(s), if there exists an input well-behaved execution p such that
s = last(p). Clearly, the empty execution is input well-behaved and thus the
initial state is always input well-behaved reachable. If P is closed (i.e., I = ∅),
then every execution of P is trivially input well-behaved and every reachable
state is input well-behaved reachable.

Returning to the previous example, P‖Q becomes active after the first control
input from E, thus the second control input is not well-behaved. Later on (in
Lemma 6), we will prove that the last state of this execution, where both P and
Q are active, is not input well-behaved reachable.

3.3 Switched Automata

We are now prepared to define the notion of switched probabilistic I/O automata.
This is done by specifying a set of axioms that relate the defining features of pre-
switched automata, namely, the Boolean-valued state variable active and control
signatures.

Definition 4. A switched (probabilistic I/O) automaton is a pre-switched au-
tomaton P that satisfies the following axioms.

s
a
→ µ ∧ active(s) = 0 ⇒ a ∈ I (1)

s
a
→ s′ ∧ a ∈ CI ⇒ active(s′) = 1 (2)

s
a
→ s′ ∧ a 6∈ CI ∪CO ⇒ active(s) = active(s′) (3)

iwbr(s) ∧ s
a
→ s′ ∧ a ∈ CO ⇒ active(s′) = 0 (4)

12

These four axioms formalize our intuitions about control passage. Axiom (1)
requires all inactive states to be quiescent. Axioms (2) and (4) say that control
inputs lead to active states and control outputs to inactive states. Axiom (3)
says that non-control transitions and synchronized control transitions do not
change the activity status. Together, they describe an “activity cycle” for the
automaton P : (i) while in inactive mode, P does not enable locally controlled
transitions, although it may still receive inputs from its environment; (ii) when P

receives a control input it moves into active mode, where it may perform hidden
or output transitions, possibly followed by a control output; (iii) via this control
output P returns to inactive mode.

Notice that Axiom (4) is required for input well-behaved reachable states
only. Without this relaxation, the composition of two switched automata may
not satisfy Axiom (4). A simple example is the automaton P‖Q described in
Section 3.2, where both P and Q have been activated by their environment E.
At that point, if either P or Q performs a control output, the composite remains
active.

We proceed to confirm that the class of switched automata is closed under the
parallel composition operator for pre-switched automata. A set {P1, . . . , Pn} of
switched automata is compatible if the set of underlying pre-switched automata
is compatible. Define the composite, ‖1≤i≤nPi, to be the result of composing the
switched automata as pre-switched automata. Lemma 5 below verifies the first
three axioms.

Lemma 5. Let {P1, . . . , Pn} be a compatible set of switched automata. The com-
posite ‖1≤i≤nPi satisfies Axioms (1), (2) and (3).

Proof. Let s = 〈s1, . . . , sn〉 be a state of the composite. Recall that active(s)
is defined to be the disjunction

∨
1≤i≤n activei(si). Furthermore, every control

input (resp. locally controlled action) of the composite is a control input (resp.
locally controlled action) of some component, thus Axioms (1) and (2) follow
easily.

Consider Axiom (3). It is trivial if a ∈ BAct and if a ∈ Synci for some i. Oth-
erwise, by compatibility, there exist a unique i and j such that a ∈ CI i ∩CO j .
Since Pj satisfies Axiom (1) and a is locally controlled by Pj , we know that
activej(sj) = 1, thus active(s) = 1. By Axiom (2) for Pi, we have activei(s

′
i) = 1,

therefore active(s′) = 1 = active(s). ⊓⊔

Axiom (4) follows from Lemma 6 below.

Lemma 6. Let {P1, . . . , Pn} be a compatible set of switched automata. For each
finite, input well-behaved execution p of ‖1≤i≤nPi, we have:

(i) for all i, πi(p) is also input well-behaved;
(ii) there is at most one i such that activei(πi(last(p))) = 1.

Proof. Induction on the length p. Let s denote last(p). By definition of compat-
ibility, the empty execution satisfies Property (ii). Property (i) is trivial.

Take an input well-behaved execution p′ of the form paµs′. Assume the in-
duction hypothesis and consider the following cases.

13

– a ∈ Hi ∪ Synci for some i. Notice that the input well-behavedness condition
cannot be violated by appending a hidden or synchronized transition, thus
Property (i) is satisfied. Property (ii) holds because, by Axiom (3), hidden
and synchronized transitions don’t change the status of an automaton.

– a ∈ CI i ∩CO j for some i, j. By definition of compatibility, a is not in the
signature of Pk for k distinct from i, j. Thus components other than Pi and
Pj do not participate in this a-transition. By Axiom (1), activej(πj(s)) = 1.
By I.H, πk(p) is input well-behaved for all k and activek(πk(s)) = 0 for k dis-
tinct from j. This implies both πi(p

′) and πj(p
′) are input well-behaved and

thus Property (i) holds for p′. Moreover, since Pi and Pj satisfy Axioms (2)
and (4), they exchange status after the a-transition. Therefore Property (ii)
also holds.

– a ∈ BI . By input well-behavedness of p′ and Axiom (3), we conclude that
active(s) = active(s′) = 0, which implies that activei(πi(s)) = activei(πi(s

′)) =
0 for all i. Therefore both Properties (i) and (ii) are satisfied.

– a ∈ BO . By compatibility and Lemma 1, we may choose a unique i such
that a is locally controlled by Pi. Then the induction hypothesis guarantees
that πi(p

′) is input well-behaved and that for all j 6= i, activej(πj(s)) = 0.
Therefore πj(p

′) is input well-behaved for all j 6= i. Property (ii) holds due
to Axiom (3).

– a ∈ CI . By input well-behavedness of p′, active(s) = 0. This implies Prop-
erty (i). By definition of compatibility, we may choose a unique i such that
a ∈ CI i. By Axiom (2), activei(πi(s

′)) = 1. Since no other component par-
ticipates in this a-step, Property (ii) is also satisfied.

– a ∈ CO . By compatibility and Lemma 1, we may choose a unique i such
that a is in the signature of Pi. Property (i) is then immediate. Since a is
locally controlled by Pi, we know that activei(πi(s)) = 1. By the induction
hypothesis, activej(πj(s)) = 0 for all j 6= i. Since πj(s) = πj(s

′) for all such
j, Property (ii) also holds. ⊓⊔

Corollary 2. Let {P1, . . . , Pn} be a compatible set of switched automata. The
composite ‖1≤i≤nPi satisfies Axiom (4) and is therefore also a switched automa-
ton.

Proof. Let s
a
→ s′ be a transition such that s is input well-behaved reachable and

a ∈ CO . Choose input well-behaved p with s = last(p) and choose µ such that

s
a
→ µ and s′ ∈ Supp(µ). Then p′ = paµs′ is an input well-behaved execution.

By compatibility and Lemma 1, we may choose a unique i such that a is in the
signature of Pi. Applying Lemma 6, we have that πi(p) is input well-behaved;
thus we may apply Axiom (4) to Pi and conclude that activei(πi(s

′)) = 0. On the
other hand, since a is locally controlled by Pi, we know that activei(πi(s)) = 1.
By Lemma 6, activej(πj(s)) = 0 for all j 6= i. For every such j, Pj does not
participate in this a-transition, therefore its activity status remains 0. This gives
active(s′) = 0.

Since the first three axioms follow from Lemma 5, we may conclude that
‖1≤i≤nPi is a switched automaton. ⊓⊔

14

To summarize, ‖1≤i≤n is a well-defined n-ary operator for switched automata
and, in the binary case, associativity follows from Lemma 4.

The following corollary of Lemma 6 verifies our claim that, once a switched
automaton P is placed in a closing environment (i.e., an environment capable
of providing all inputs to P), it will never follow an execution that is not input
well-behaved.

Corollary 3. Let {P1, . . . , Pn} be a closed and compatible set of switched au-
tomata. For every execution p of ‖1≤i≤nPi and 1 ≤ i ≤ n, πi(p) is input well-
behaved.

Intuitively, a closed and compatible set of switched automata represents a
network of processes passing a single token among them. The basic assumption is
that a component enables a locally controlled transition only if it is in possession
of the token. Therefore, in any reachable state, there is a unique component in
possession of the token and this active component never receives any inputs. As
we shall see in Section 6, the behavior of an automaton is always parameterized
by a closing environment; thus we are well justified in restricting our attention
to input well-behaved executions.

3.4 Scheduled Automata

Next we turn to scheduling decisions. The notion of I/O schedulers for switched
automata is inherited from that of its underlying PIOA.

Definition 5. A scheduled automaton is a triple 〈P, σ, ρ〉 such that P is a
switched automaton and 〈σ, ρ〉 is an I/O scheduler for P .

We use letters S, T , etc. to denote scheduled automata. For each 1 ≤ i ≤ n,
let Si denote a scheduled automaton 〈Pi, σi, ρi〉. The set {Si | 1 ≤ i ≤ n} is said
to be compatible if {Pi | 1 ≤ i ≤ n} is compatible as a set of switched automata.
Given such a compatible set of scheduled automata, we obtain its composite by
combining the I/O schedulers {〈σi, ρi〉 | 1 ≤ i ≤ n} into an I/O scheduler 〈σ, ρ〉
for the switched automaton ‖1≤i≤nPi.

Definition 6. Suppose {Si | 1 ≤ i ≤ n} is a compatible set of scheduled au-
tomata, where Si = 〈Pi, σi, ρi〉 for each i. We construct from this set a com-
posite scheduled automaton ‖1≤i≤nSi := 〈P, σ, ρ〉 as follows.

– P := ‖1≤i≤nPi.
– For every finite execution p of P with last(p) = s and for every a ∈ I,

• σ(p, a)(t
b
→ µ) := 0 if t 6= s or b 6= a;

• otherwise, σ(p, a)(s
a
→ µ0 × . . . × µn) := Πici, where ci equals

∗ σi(πi(p), a)(µi), if a ∈ Ii;
∗ 1, otherwise.

– For every finite execution p of P with last(p) = s,

• ρ(p)(t
a
→ µ) := 0 if p is not input well-behaved, t 6= s, or a 6∈ L;

15

• otherwise, ρ(p)(s
a
→ µ0 × . . . × µn) := Πici, where ci equals

∗ ρi(πi(p))(a, µi), if a ∈ Li;
∗ σi(πi(p), a)(µi) if a ∈ Ii;
∗ 1, otherwise.

The next two lemmas verify that 〈σ, ρ〉 is in fact an I/O scheduler for P .

Lemma 7. The function σ in Definition 6 is in fact an input scheduler for P .

Proof. Let p be a finite execution of P with last(p) = s and let a ∈ I be given.
By definition, σ(p, a) assigns nonzero probability only to transitions of the form

s
a
→ µ.

Let i1, . . . , iN be an enumeration of the set of indices i such that a ∈ Ii. For
each 1 ≤ k ≤ N , let Xk denote the set {µ | πik

(s)
a
→ µ}. Let X := X1× . . .×XN .

Then we have

∑

µ:s
a
→µ

σ(p, a)(µ)

=
∑

〈µ1, ..., µN 〉∈X

N∏

k=1

σik
(πik

(p), a)(µk) definition of composition

=
∑

µ1∈X1

. . .
∑

µN∈XN

N∏

k=1

σik
(πik

(p), a)(µk) Cartesian product

=

N∏

k=1

∑

µk∈Xk

σik
(πik

(p), a)(µk) factorization k times

= 1. σik
(πik

(p), a) discrete distribution

⊓⊔

Lemma 8. The function ρ in Definition 6 is in fact an output scheduler for P .

Proof. Let p be a finite execution of ‖1≤i≤nPi with last(p) = s. By definition,
ρ(p) has empty support if p is not input well-behaved. Therefore, we may as-
sume p is input well-behaved. By Lemma 6, there is at most one j such that
activej(πj(s)) = 1. Hence, by Axiom (1), there is at most one j such that πj(s)
enables a locally controlled transition. If such j does not exist, then s does not
enable any locally controlled transitions and, by definition, ρ(p) must have an
empty support.

Otherwise, choose a unique j such that s enables locally controlled transitions
of Pj . Fix a ∈ Lj. Let Y := {µ | πj(s)

a
→ µ} and let i1, . . . , iN , X1, . . . , Xk, X

16

be given as in Lemma 7. Then we have

∑

µ:s
a
→µ

ρ(p)(a, µ) =
∑

〈µ,µ1, ..., µN 〉∈Y ×X

ρj(πj(p))(a, µ) ·
N∏

k=1

σik
(πik

(p), a)(µk)

=
∑

µ∈Y

ρj(πj(p))(a, µ) ·
∑

〈µ1, ..., µN 〉∈X

N∏

k=1

σik
(πik

(p), a)(µk)

=
∑

µ∈Y

ρj(πj(p))(a, µ),

where the last equality follows the proof of Lemma 7.
Now we sum over all a ∈ Lj :

∑

a∈Lj

∑

µ:s
a
→µ

ρ(p)(a, µ) =
∑

a∈Lj

∑

µ:πj(s)
a
→µ

ρj(πj(p))(a, µ).

This is always at most 1 because ρj(πj(p)) is a discrete sub-distribution. ⊓⊔

Corollary 4. The parallel composition operator ‖1≤i≤n is well-defined for sched-
uled automata.

Proof. By Corollary 2 and Lemmas 7 and 8.

As usual, we write S1‖S2 for ‖1≤i≤2Si, provided S1 and S2 are compati-
ble. Associativity of ‖ for scheduled automata follows from that for switched
automata and a routine check on the I/O schedulers. Finally, the notions of
probabilistic executions and trace distributions for closed scheduled automata
are inherited from those of PIOAs. In particular, we write QS (respectively, DS)
for the probabilistic execution (respectively, trace distribution) induced by the
output scheduler of a closed scheduled automaton S.

4 Projection and Pasting

In this section, we study projection and pasting of probabilistic behaviors. Such
results are essential elements in constructing a compositional modeling frame-
work. We begin by introducing the notion of regular executions, which will be
used to define pseudo trace distributions for automata with open inputs. In
Lemma 14, we prove that the pseudo distribution of a composite is uniquely de-
termined by those of its components. Finally, we prove the main pasting lemma
for closed automata (Lemma 16), which plays a crucial role in the proof of our
main compositionality theorem (Theorem 1).

4.1 Regular Executions

Given an execution p of a switched automaton P , we say that p is regular if
it is both minimal and input well-behaved. Given a finite sequence α of visible

17

actions in P , let tr-1reg(α) denote the set of regular executions of P with trace α.
Notice that regularity coincides with minimality in case P is closed. Moreover,
regularity is preserved under the operation of appending input transitions.

We make the following observation about regular executions ending with an
input transition.

Lemma 9. Let p′ be a nonempty regular execution and let p be the one-step
prefix of p′. That is, p′ = paµs′ for some a, µ and s′. If a is an input action,
then p is also regular.

Proof. Notice that any prefix of an input well-behaved execution is input well-
behaved. It remains to show p is minimal. Without loss, assume p is nonempty.
For contradiction, suppose that p is of the form qbµs where b is a hidden action.
By Axioms (1) and (3), we have active(last(q)) = active(s) = 1. Since a is an
input action, this contradicts the assumption that p′ is input well-behaved. ⊓⊔

For the next three lemmas, let P1 and P2 be compatible scheduled automata
and let α be a finite sequence of visible action symbols of P1‖P2. Lemma 10
states that regular executions of a parallel composite always project to regular
executions of the components. Lemma 11 states that regular executions of the
two components in a composition can be “zipped” together in a unique way,
provided they have matching traces. Finally, Lemma 12 states that, given a fixed
trace, there is a bijective correspondence between the set of regular executions
of the composite and the Cartesian product of the sets of regular executions of
the two components. It follows directly from Lemma 10 and Lemma 11.

Lemma 10. For every regular execution p of P1‖P2, both π1(p) and π2(p) are
regular executions.

Proof. By Corollary 3, both projections are input well-behaved. We prove min-
imality by induction on the length of p. Note that empty executions are always
minimal.

Consider a nonempty regular execution p and let a be the label of the last
transition on p. Without loss of generality, we consider only π1(p). By minimality
of p, a is a visible action. If a is in the signature of P1, then π1(p) is minimal.
Otherwise, let q be the unique prefix of p such that q is minimal and tr(p) =
tr(q)a. Then p is of the form qa1µ1s1 . . . snaµs, where each ai is in HP1

∪ HP2
.

Since q is a prefix of p, q must also be input well-behaved, thus it follows from
the induction hypothesis that π1(q) is minimal. We claim that π1(p) = π1(q).

There are two cases.

– a is an input of P1‖P2. By Lemma 9, the one-step prefix of p is regular, thus
minimal. Therefore it must coincide with q, so π1(p) = π1(q).

– a is locally controlled by P2. A (backwards) inductive argument using Lemma 6
and Axioms (1) and (3) shows that for all 1 ≤ i ≤ n, ai ∈ HP2

. Again this
implies π1(p) = π1(q). ⊓⊔

18

Lemma 11. Let p be a regular execution of P1 such that tr(p) = π1(α). Similarly
for q in P2. There is a unique regular execution r of P1‖P2 such that π1(r) = p,
π2(r) = q, and tr(r) = α.

Proof. We proceed by induction on the length of α. If α is empty, then, by
minimality, p and q are both empty. Take r to be the empty execution of P1‖P2.

Consider αa. Let p′ be a regular execution of P1 with visible trace π1(αa) and
let p denote the unique minimal prefix of p with visible trace π1(α). Similarly
for q ⊑ q′ in P2. By induction hypothesis, choose a unique regular execution r

such that π1(r) = p, π2(r) = q, and tr(r) = α.

First assume that a is locally controlled by P1. Suppose a is in the signature
of P2. In that case, a ∈ IP2

and q ends with an a-transition. By Lemma 9, we
know that the one-step prefix of q′ is minimal, thus coincides with q. Take r′ to
be the unique extension of r, in which P1 follows p′ and P2 idles after r until the
last step (i.e., the a-step).

If a is not in the signature of P2, then π2(α) = π2(αa). Therefore q = q′ and
we take r′ to be the unique extension of r in which P1 follows p′ and P2 idles
after q.

The case in which a is locally controlled by P2 is symmetric. It remains to
consider the case where a is an input of P1‖P2. Again, if a is not in the signature
of P1, then p = p′; otherwise, we apply Lemma 9 to conclude that p is the
one-step prefix of p′. Similarly for q and q′. Take r′ to be the unique (one-step)
extension of r in which 1. Pi takes an a-step after r, if a is in the signature of
Pi, and 2. Pi idles after r otherwise. ⊓⊔

Lemma 12. Let X denote tr-1reg(α) in P1‖P2. Let Y and Z denote tr-1reg(π1(α)
in P1 and tr-1reg(π2(α)) in P2, respectively. There exists an isomorphism zip :
Y × Z −→ X whose inverse is 〈π1, π2〉.

4.2 Pseudo Probabilistic Executions and Pseudo Trace Distributions

Next we introduce a notion of pseudo probabilistic execution for automata with
open inputs. The definition itself is completely analogous to probabilistic exe-
cutions for closed automata; however, a pseudo probabilistic execution does not
always induce a probability measure, because it does not take into account the
probabilities with which inputs are provided by the environment.

Definition 7. Let S = 〈P, σ, ρ〉 be a scheduled automaton and let p be a finite
execution of S. Define the pseudo probabilistic execution Q of S as follows:

– Q(s0) = 1, where s0 is the initial state of S;

– if p′ is of the form paµs′ with a ∈ I, then Q(p′) := Q(p) · σ(p, a)(µ) · µ(s′);

– if p′ is of the form paµs′ with a ∈ L, then Q(p′) := Q(p) · ρ(p)(a, µ) · µ(s′).

Similarly, we define pseudo trace distributions.

19

Definition 8. Let S = 〈P, σ, ρ〉 be a scheduled automaton and let α be a finite
sequence of visible action symbols of S. The pseudo trace distribution D of S is
defined by D(α) :=

∑
p∈tr-1reg(α) Q(p), where Q is the pseudo probabilistic execution

of S.

Notice that, if S is closed, then the pseudo probabilistic execution of S co-
incides with the probabilistic execution of S. Moreover, an execution of a closed
automaton S is regular if and only if it is minimal, thus the pseudo trace distri-
bution of S coincides with the trace distribution of S.

For the rest of this section, let S and T be a pair of compatible scheduled
automata. Let QS‖T , QS and QT denote the pseudo probabilistic executions of
S‖T , S and T , respectively. Similarly for pseudo trace distributions DS‖T , DS

and DT . Lemma 13 below says we can project a pseudo probabilistic execution
of the composite to yield pseudo probabilistic executions of the components.
Lemma 14 then combines Lemma 12 and Lemma 13 to show the analogous
projection result for pseudo trace distributions.

Lemma 13. For all finite executions p of S‖T , we have QS‖T (p) = QS(π1(p)) ·
QT (π2(p)).

Proof. If p is empty, QS‖T (p) = 1 = QS(π1(p)) ·QT (π2(p)). Consider p′ = paµs′,
where µ = µ1 × µ2 and s′ = (s′1, s

′
2). Let c1 denote

– ρS(π1(p))(a, µ1) if a is locally controlled by S;
– σS(π1(p), a)(µ1) if a is an input of S;
– 1 otherwise.

Similarly for c2 in T . Then we have

QS‖T (p′) = QS‖T (p) · c1 · µ1(s
′
1) · c2 · µ2(s

′
2) definition S‖T

= QS(π1(p)) · QT (π2(p)) · c1 · µ1(s
′
1) · c2 · µ2(s

′
2) I.H.

= QS(π1(p
′)) · QT (π2(p

′)). definition QS , QT

⊓⊔

Lemma 14. Let α be a finite sequence of visible action symbols of S‖T . Then
DS‖T (α) = DS(π1(α)) · DT (π2(α)).

Proof. Let X denote tr-1reg(α) in S‖T . Let Y and Z denote tr-1reg(π1(α)) in S and
tr-1reg(π2(α)) in T , respectively. We have

DS‖T (α) =
∑

r∈X

QS‖T (r) definition DS‖T

=
∑

r∈X

QS(π1(r)) · QT (π2(r)) Lemma 13

=
∑

p∈Y,q∈Z

QS(p) · QT (q) Lemma 12

= (
∑

p∈Y

QS(p)) · (
∑

q∈Z

QT (q)) factorization

= DS(π1(α)) · DT (π2(α)). definition DS and DT

20

⊓⊔

To prove the main pasting lemma, we need yet another technical result;
namely, inputs must be received with probability 1. This can be viewed as “input
enabling” in the probabilistic sense and it follows from basic properties of target
distributions and input schedulers.

Lemma 15. Let α be a finite sequence of visible action symbols of S‖T and let
a ∈ Act(S‖T) be given. If a is not locally controlled by T , then DT (π2(α)) =
DT (π2(αa)).

Proof. Let Zα denote tr-1reg(π2(α)) in T . Similarly for Zαa. If a is not in the
signature of T , then Zα = Zαa and the claim is trivial. Otherwise, a ∈ IT . Let
q′ in Zαa be given. Let q be the one-step prefix of q′ (i.e., q′ = qaµs′ for some µ

and s′). By Lemma 9, we know that q is regular, thus in Zα. Therefore,

∑

q′∈Zαa

QT (q′) =
∑

q∈Zα

∑

µ∈Supp(σT (q,a))

∑

s′∈Supp(µ)

QT (q) · σT (q, a)(µ) · µ(s′)

=
∑

q∈Zα

QT (q) ·
∑

µ∈Supp(σT (q,a))

(σT (q, a)(µ) ·
∑

s′∈Supp(µ)

µ(s′))

=
∑

q∈Zα

QT (q) ·
∑

µ∈Supp(σT (q,a))

σT (q, a)(µ)

=
∑

q∈Zα

QT (q).

The last two equalities are true because µ and σT (p, a) are discrete probability
distributions. ⊓⊔

4.3 Pasting Lemma

Two switched/scheduled automata are said to be comparable if they have the
same visible signature and their start states have the same status. We are now
ready for the main pasting lemma.

Lemma 16 (Pasting). Let S1, S2, T1 and T2 be scheduled automata satisfying
(i) S1 and S2 are comparable; (ii) {S1, T1}, {S2, T2} and {S1, T2} are compatible
sets; (iii) the pseudo trace distributions DS1‖T1

and DS2‖T2
coincide (denoted D).

Then D also coincides with the pseudo trace distribution DS1‖T2
.

Proof. Let D′ denote DS1‖T2
and let DS1

, DS2
, DT1

and DT2
denote the pseudo

trace distributions of S1, S2, T1 and T2, respectively. Similarly for their pseudo
probabilistic executions.

Notice that S1‖T2 and S2‖T2 have exactly the same visible signature, which
can be partitioned into three sets: OS1

, OT2
and IS1‖T2

. Let α be a finite sequence
of actions from OS1

∪ OT2
∪ IS1‖T2

. We show by induction on the length of α

that D(α) = D′(α).

21

The base case is trivial, since D(ǫ) = 1 = D′(ǫ). Consider αa. If D(α) = 0,
then by the induction hypothesis D′(α) = 0. Therefore D(αa) = 0 = D′(αa).
Otherwise, D(α) = D′(α) 6= 0.

First consider the case in which a ∈ OS1
. By Lemma 14,

DS1
(π1(α)) · DT1

(π2(α)) = D(α) = D′(α) = DS1
(π1(α)) · DT2

(π2(α)).

By assumption, D(α) is non-zero, hence DT1
(π2(α)) = DT2

(π2(α)). Since both
T1 and T2 are compatible with S1, a is not locally controlled by T1 or T2. It follows
from Lemma 15 that DT1

(π2(αa)) = DT2
(π2(αa)). Again, applying Lemma 14,

we have

D(αa) = DS1
(π1(αa)) · DT1

(π2(αa)) = DS1
(π1(αa)) · DT2

(π2(αa)) = D′(αa).

Now suppose a ∈ OT2
. Then a is not locally controlled by S1 (hence also not

locally controlled by S2). Again by the induction hypothesis and Lemma 14,

DS2
(π1(α)) · DT2

(π2(α)) = D(α) = D′(α) = DS1
(π1(α)) · DT2

(π2(α)).

By assumption, D(α) is non-zero, hence DS1
(π1(α)) = DS2

(π1(α)). Since a is not
locally controlled by S1 or S2, we may apply Lemma 15 to obtain DS1

(π1(αa)) =
DS2

(π1(αa)). Then, by Lemma 14, we have

D(αa) = DS2
(π1(αa)) · DT2

(π2(αa)) = DS1
(π1(αa)) · DT2

(π2(αa)) = D′(αa).

Finally, in case a ∈ IS1‖T2
, a is also not locally controlled by S1 or S2. Thus

the same argument applies. ⊓⊔

5 Renaming and Hiding

In this section, we consider the standard renaming and hiding operators. We
start with an equivalence relation on switched automata: P1 ≡R P2 just in case
there exists a bijection f : H1 −→ H2 such that P2 can be obtained from
P1 by replacing every hidden action symbol a ∈ H1 by f(a) ∈ H2 (notation:
P2 = f(P1)).

It is routine to check this is in fact an equivalence relation. If P1 ≡R P2, we say
that P2 can be obtained from P1 by renaming of hidden actions. This operation
also induces an equivalence relation on scheduled automata: 〈P1, σ1, ρ1〉 ≡R

〈P2, σ2, ρ2〉 just in case there exists a renaming function f such that P1 ≡R P2

via f and 〈σ2, ρ2〉 is obtained from 〈σ1, ρ1〉 via f and f -1 (notation: S2 = f(S1)).
Notice f -1 is used because Exec<ω(P) occurs negatively in the type of schedulers.

The following lemma says, as long as the renaming operation does not intro-
duce incompatibility of signatures, it does not affect the behavior of an automa-
ton in a closing context.

Lemma 17. Let S and C be compatible scheduled automata with S‖C closed.
Suppose S ≡R S′ via the renaming function f : H −→ H ′ with H ′ disjoint from
Act(C). Then {S′, C} is closed and compatible and DS‖C = DS′‖C.

22

Next we consider the issue of hiding output actions. Let Hide denote the stan-
dard hiding operator for PIOA. This is also an operator for switched automata,
provided we hide only basic outputs and synchronized control actions.

Lemma 18. Let P be a switched automaton and let Ω ⊆ BO ∪Sync be given.
Then HideΩ(P) is again a switched automaton.

Notice that every I/O scheduler for P is an I/O scheduler for HideΩ(P).
Therefore Hide can be extended to scheduled automata:

HideΩ〈P, σ, ρ〉 := 〈HideΩ(P), σ, ρ〉.

In the rest of this section we investigate the effect of HideΩ on (pseudo)
trace distributions. Let S = 〈P, σ, ρ〉 be a scheduled automaton with signature
〈I, O, H〉. For convenience, write P ′ for HideΩ(P), O′ for O \Ω, and tr′ for the
trace operator for HideΩ(P). (If we view HideΩ as an operator on traces, then
tr′ is precisely HideΩ ◦ tr.)

Moreover, for all β′ ∈ (I∪O′)<ω, let Mβ′ denote the set of all minimal (w.r.t.
⊑) traces in HideΩ

-1(β′). That is, if β′ is empty, then Mβ′ is the singleton set
containing the empty trace ǫ; otherwise,

Mβ′ := {β ∈ (I ∪O)<ω | HideΩ(β) = β′ and the last symbol on β is not in Ω.}

We make a simple observation about minimal executions of P and those of P ′.

Lemma 19. For all β′ ∈ (I ∪ O′)<ω, the following two sets are equal:

– X :=
⋃

β∈Mβ′
{p ∈ Exec<ω(P) | tr(p) = β and p minimal w.r.t. tr};

– Y := {p ∈ Exec<ω(P ′) | tr′(p) = β′ and p minimal w.r.t. tr′}.

Proof. Note that Exec<ω(P) = Exec<ω(P ′). Clearly, if β′ is empty, then both X

and Y coincide with the singleton set containing the empty execution. Thus we
assume β′ is nonempty.

Let p ∈ Y be given and let β := tr(p). Note that β′ = tr′(p) = HideΩ(tr(p)) =
HideΩ(β). Since p is minimal w.r.t. tr′ the last action on p is not in Ω ∪ H ,
therefore the last action on β is not in Ω and p is minimal w.r.t. tr. Thus p is in
X .

Conversely, let p ∈ X be given. Again, tr′(p) = HideΩ(tr(p)) = HideΩ(β) =
β′. Since p is minimal w.r.t. tr, the last action on p is not in H . By assumption
on β, the last action on p is not in Ω. Thus p is minimal w.r.t. tr′ and p must
be in Y . ⊓⊔

Now consider the pseudo trace distribution DS . Define the effect of HideΩ on
DS to be the following function from O′<ω

to [0, 1]:

HideΩ(DS)(β′) :=
∑

β∈Mβ′

DS(β).

We have the following corollary of Lemma 19.

23

Corollary 5. The pseudo trace distribution of HideΩ(S) is precisely HideΩ(DS).
That is, DHideΩ(S) = HideΩ(DS).

Proof. First note that the I/O scheduler for S is identical to that of S′, thus
QS = QS′ . For each β′ ∈ (I ∪O′)<ω , write Xβ′ for the set of regular executions
p of P with tr(p) ∈ Mβ′ . Similarly, let Yβ′ denote the set of regular executions
p of P ′ with tr′(p) = β′. By Lemma 19, we have Xβ′ = Yβ′ . Then for each
β′ ∈ (I ∪ O′)<ω,

DHideΩ(S)(β
′) =

∑

p∈Yβ′

QS′(p) =
∑

p∈Xβ′

QS(p) =
∑

β∈Mβ′

∑

p∈tr-1reg(β)

QS(p)

=
∑

β∈Mβ′

DS(β) = HideΩ(DS)(β′).

⊓⊔

Finally, we consider the effect of hiding in a parallel composition. We claim
that the act of hiding in one component does not affect the behavior of the other,
as long as the actions being hidden in the first component are not observable
by the second component. This idea is captured in the following lemma, which
follows from Corollary 5 and Lemma 14.

Lemma 20. Let S1, S2, T be scheduled automata satisfying: (i) S1 and S2 are
comparable and (ii) T is compatible with S1 and S2. Let Ω ⊆ OT be given and
let T ′ denote HideΩ(T). If T ′ is compatible with S1 (and thus with S2), then

DS1‖T = DS2‖T ⇔ DS1‖T ′ = DS2‖T ′ .

Proof. Since T ′ is compatible with S1, it must be the case that Ω is disjoint
from the signature of S1 (and that of S2); therefore, by the definition of ‖,
S1‖HideΩ(T) = HideΩ(S1‖T) (and similarly for S2). Thus the “only if” direction
follows from Corollary 5.

For the converse, let DS1
, DS2

, DT and DT ′ denote the pseudo trace distri-
butions induced by S1, S2, T and T ′, respectively. Let β be a sequence of visible
actions of S1‖T and let β′ be HideΩ(β).

By Lemma 14, we have

– DS1‖T (β) = DS1
(π1(β)) · DT (π2(β));

– DS2‖T (β) = DS2
(π1(β)) · DT (π2(β));

– DS1‖T ′(β′) = DS1
(π1(β

′)) · DT ′(π2(β
′));

– DS2‖T ′(β′) = DS2
(π1(β

′)) · DT ′(π2(β
′)).

If DT ′(π2(β
′)) = 0, then we apply Corollary 5 to conclude HideΩ(DT)(π2(β

′)) =
0. Let β′′ be the unique prefix of π2(β) such that β′′ ∈ Mπ2(β′). Then

0 = HideΩ(DT)(π2(β
′)) ≥ DT (β′′) ≥ DT (π2(β)).

Therefore DS1‖T (β) = DS2‖T (β) = 0.

24

Now suppose DT ′(π2(β
′)) 6= 0. Since actions in Ω do not occur in the sig-

natures of S1 and S2, we know that π1(β) = π1(β
′). Using the assumption that

DS1‖T ′ = DS2‖T ′ , we have

DS1
(π1(β)) = DS1

(π1(β
′)) = DS2

(π1(β
′)) = DS2

(π1(β)).

This implies DS1‖T (β) = DS2‖T (β). ⊓⊔

6 Probabilistic Systems

In this section, we give a formal definition of our implementation preorder and
prove compositionality. The basic approach is to model a system as a switched
PIOA together with a set of I/O schedulers. Observable behavior is then defined
in terms of trace distributions induced by the prescribed schedulers.

Formally, a probabilistic system P is a set of scheduled automata that share
a common underlying switched automaton. (Equivalently, a probabilistic system
is a pair 〈P, S〉 where P is a switched automaton and S is a set of I/O schedulers
for P .) Such a system is full if S is the set of all possible I/O schedulers for P .

Two probabilistic systems P1 = 〈P1, S1〉 and P2 = 〈P2, S2〉 are compatible
just in case P1 is compatible with P2. The parallel composite of P1 and P2,
denoted P1‖P2, is the probabilistic system: {S1‖S2 | S1 ∈ P1 and S2 ∈ P2}.
Notice the underlying automaton of the composite is P1‖P2.

Let S be a scheduled automaton. A context for S is a scheduled automaton C

such that (i) C is compatible with S; (ii) S and C have complementary signatures
(i.e., IC = OS and IS = OC). Given probabilistic system P = 〈P, S〉, we say
that D is a trace distribution of P just in case there exist scheduled automata
S ∈ P and context C for S such that D = DS‖C . We write td(P) for the set of
trace distributions of P .

Two probabilistic systems are comparable whenever the underlying switched
automata are comparable. Given comparable systems P1 and P2, we define the
trace distribution preorder by: P1 ≤td P2 whenever td(P1) ⊆ td(P2). We are now
ready to present our main theorem, namely, that the trace distribution preorder
for probabilistic systems is compositional.

Theorem 1. Let P1 and P2 be comparable probabilistic systems with P1 ≤td P2.
Suppose P3 is compatible with both P1 and P2. Then P1‖P3 ≤td P2‖P3.

Proof. Let D be a trace distribution of P1‖P3. Choose S ∈ P1‖P3 and context
C for S such that D = DS‖C . By definition of P1‖P3, S is of the form S1‖S3

for some S1 ∈ P1 and S3 ∈ P3. By Lemma 17, we may assume that the set of
hidden actions of C is disjoint from that of P2.

By associativity of ‖, we have (S1‖S3)‖C ∼= S1‖(S3‖C). Let Ω denote the set
OS3‖C \ IS1

. Then HideΩ(S3‖C) is a context for S1 and, by Corollary 5,

HideΩ(D) = DHideΩ(S1‖(S3‖C)) = DS1‖HideΩ(S3‖C) ∈ td(P1).

Since P1 ≤td P2, we may choose S2 ∈ P and context C′ for S2 such that
HideΩ(D) = DS2‖C′ .

25

We claim that S2 is also compatible with HideΩ(S3‖C). Since S1 and S2 have
the same visible signatures and S1 is compatible with HideΩ(S3‖C), we may focus
on hidden actions of S2. By assumption, P2 is compatible with P3, thus HS2

is
disjoint from the alphabet of S3. Moreover, IC ∪ OC = IS1

∪ OS1
= IS2

∪ OS2
;

therefore HS2
is disjoint from IC ∪ OC . Finally, we have chosen C so that HC

is disjoint from the alphabet of S2. Now we have: (i) S1 and S2 are comparable;
(ii) {S1, HideΩ(S3‖C)}, {S2, HideΩ(S3‖C)} and {S2, C

′} are compatible sets;
(iii) DS1‖HideΩ(S3‖C) = HideΩ(D) = DS2‖C′ . Therefore we can apply Lemma 16
to conclude that

DS1‖HideΩ(S3‖C) = DS2‖HideΩ(S3‖C).

By Lemma 20 and associativity of ‖, this implies

D = DS1‖(S3‖C) = DS2‖(S3‖C) = D(S2‖S3)‖C ∈ td(P2‖P3).

⊓⊔

7 PIOA Revisited

Before concluding, we give an example in which switched automata are used to
obtain a new trace-based semantics for general PIOAs. The idea is to convert
a general PIOA to a switched PIOA by adding control actions and activity
classification. We then hide all control actions in trace distributions generated by
the resulting switched PIOA. In many cases, this yields a set of trace distributions
strictly smaller than that considered by Segala [Seg95].

Let P be a PIOA and assume Act(P) ⊆ BAct . Let go, done ∈ CAct be fresh
symbols and let b0 be a Boolean value. The switch extension of P with go, done

and initialization b0 (notation: E(P, go, done, b0)), is the switched automaton P ′

constructed as follows:

– States(P ′) = States(P) × {0, 1} and the start state of P ′ is 〈s0, b0〉;
– I ′ = I ∪ {go}, O′ = O ∪ {done}, and Sync′ = ∅;
– active′(s, b) = b for b ∈ {0, 1};
– the transition relation is the union of the following:

• {〈〈s, 1〉, a, µ1〉 | s
a
→ µ in P},

• {〈〈s, 0〉, a, µ0〉 | s
a
→ µ in P and a ∈ I},

• {〈〈s, b〉, go, (〈s, 1〉 7→ 1)〉 | s ∈ States(P) and b ∈ {0, 1}},
• {〈〈s, 1〉, done, (〈s, 0〉 7→ 1)〉 | s ∈ States(P)},

where µb denotes the distribution that assigns probability µ(t) to 〈t, b〉 and
0 to 〈t, 1 − b〉.

Roughly speaking, P ′ is obtained from P by (i) adding a Boolean flag active′

to each state; (ii) enabling locally controlled transitions only if active′ = 1; and
(iii) adding go and done transitions which update active′ appropriately. It is
not hard to check that P ′ satisfies all axioms of switched automata. Moreover,
the pair 〈go, done〉 can be easily generalized to a pair of disjoint sets of control
actions.

26

Given any two compatible PIOAs, we can always extend them with comple-
mentary control actions and initialization statuses, resulting in a pair of com-
patible switched automata. As an example, we consider the automata Late and
Toss in Figure 1. Actions a, b and c are considered outputs of Late, whereas
action a is an input of Toss and actions e and f are outputs of Toss. The follow-
ing diagrams illustrate E(Late, go, done, 1) and E(Toss, done, go, 0). For a clearer
picture, we have omitted the probabilities on the input a-transition in Toss, as
well as all nonessential input loops. The active region, which is identical to the
original PIOA, is drawn in the foreground. The inactive region, in which all lo-
cally controlled transitions are removed, is in the background. Each two-headed
arrow indicates a control output from active to inactive and a control input from
inactive to active.

/.-,()*+��������

a!

��

��
�

����
��

��
;;

;

��;
;;

;;
;

·
b!

~~||
||

||
||

|
c!

 B
BB

BB
BB

BB ·

d!

��

·

e!

��· · · ·

a?

·22rreeeee /.-,()*+��������22
rreeeeee

��
��

����
�

==

��=
==

==
=

·22
rreeeeee ·22

rreeeeee ·22
rrddddddd

·22
rrddddddd ·22

rreeeeee ·22
rreeeeee ·22

rrddddddd

a?

Now consider the problematic trace distribution D0 of Late ‖Toss, as de-
scribed in Section 1. Let P1 and P2 denote the full probabilistic systems on
E(Late, go, done, 1) and E(Toss, done, go, 0), respectively. As we compose these
two systems, D0 is no longer a trace distribution of P1‖P2 (even after hiding go

and done), because I/O schedulers in P1 have no way of knowing whether action
d or action e was performed by P2, thus they cannot establish the correlations
between actions d and b, and between actions e and c.

Interestingly, if we modify P1 by adding d, e to its input signature and adding
d, e-loops to every state, the trace distribution D0 is again possible. This shows
that our trace distribution semantics for switched automata is very sensitive to
the observational power of each automaton, that is, the ability of an automaton
to observe activities taking place in its environment.

This leads to our proposal of a new notion of visible behaviors for PIOA. Let
P be a PIOA and let P be the full probabilistic system on E(P, go, done, 0). A
PIOA E is a context for P if IE = OP , OE = IP , and E is compatible with P .
For each such E, write PE for the full probabilistic system on E(E, done, go, 1).
We say that D is a trace distribution of P if there exists a context E for P such
that D ∈ td(Hide{go,done}(P‖PE)), where Hide is lifted from scheduled automata
to probabilistic systems.

We claim that this new semantics is at least as expressive as the trace seman-
tics for I/O Automata. More precisely, we view an ordinary I/O automaton P

as a PIOA in which every transition leads to a Dirac distribution and we claim
that every trace α of P can be obtained as a trivial trace distribution. To do so,
we first obtain a trace α′ by inserting the symbol done whenever an input action
follows a locally controlled action and vice versa with go (also prepending go if
α starts with a locally controlled action). Let E be a context for P such that

27

every state of E enables every output action of E. Then it is straightforward
to find deterministic schedulers for E(P, go, done, 0) and E(E, done, go, 1) so that
the composite generates precisely the trace α′. We omit the details.

8 Conclusions and Further Work

Our ultimate goal, of course, is to obtain a compositional semantics for PIOAs.
The notion of switch extensions opens up an array of new options for that end. A
promising approach is to model each system as a finite set of PIOAs, rather than
a single PIOA. In that case, composition is simply set union, representing the act
of placing two sets of processes in the same computing environment. Behavior
is then defined in terms of switch extensions, which instantiate the system with
a particular network topology for control passage. In that case, a behavior of a
finite set F is determined by (i) a context E for F ; (ii) a combination of switch
extensions of F ∪{E}; (iii) a combination of I/O schedulers for these switch ex-
tensions. By ranging over all contexts and all extension-scheduler combinations,
we capture all possible behaviors of the system represented by F .

Another option is an arbitrated composition: we add an arbiter automa-
ton which observes overall activities in the computing environment and resolves
choices among components. Control is always passed between a component-
arbiter pair (i.e., never directly between two components). In other words, each
component is responsible for its local choices and the arbiter chooses (proba-
bilistically) the next component to perform a locally controlled transition. Then
the behavior of a system depends also on the choice of arbiters. It remains to
be seen if such an arbitrated composition is more or less expressive compared to
the arbiter-less version.

In other future work, we plan to apply our theory of composition for PIOAs to
the task of verifying security protocols. For example, we will try to model typical
Oblivious Transfer protocols within the PIOA framework and verify correctness
in the style of Canetti’s Universal Composability [Can01]. We will also explore
the use of PIOAs as a semantic model for the probabilistic polynomial time
process calculus of Lincoln, Mitchell, Mitchell and Scedrov [LMMS98].

References

[Agg94] S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Mas-
ter’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 1994. Available as Technical
Report MIT/LCS/TR-632.

[Can01] R. Canetti. Universally composable security: a new paradigm for crypto-
graphic protocols. In Proceedings of the 42nd IEEE Symposium on Foun-
dations of Computing, pages 136–145, 2001.

[CLSV04] L. Cheung, N.A. Lynch, R. Segala, and F.W. Vaandrager. Switched proba-
bilistic I/O automata. In Proceedings First International Colloquium on
Theoretical Aspects of Computing (ICTAC2004), Guiyang, China, 20-24

28

September 2004, Lecture Notes in Computer Science. Springer-Verlag, 2004.
To appear.

[dAH01] L. de Alfaro and T.A. Henzinger. Interface automata. In V. Gruhn, editor,
Proceedings of the Joint 8th European Software Engineering Conference and
9th ACM SIGSOFT Symposium on the Foundation of Software Engineering
(ESEC/FSE-01), volume 26 of Software Engineering Notes, pages 109–120,
New York, September 2001. ACM Press.

[dAHJ01] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for
probabilistic systems. In K.G. Larsen and M. Nielsen, editors, Proceed-
ings CONCUR 01, Aalborg, Denmark, August 20-25, 2001, volume 2154 of
Lecture Notes in Computer Science, pages 351–365. Springer, 2001.

[LMMS98] P. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In ACM Conference on Computer and
Communications Security, pages 112–121, 1998.

[LSS94] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized
distributed algorithms. In Proceedings of the 13th Annual ACM Symposium
on the Principles of Distributed Computing, pages 314–323, Los Angeles,
CA, August 1994.

[LSV03] N.A. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for prob-
abilistic automata. In R. Amadio and D. Lugiez, editors, Proceedings 14th
International Conference on Concurrency Theory (CONCUR 2003), Mar-
seille, France, volume 2761 of Lecture Notes in Computer Science, pages
208–221. Springer-Verlag, September 2003.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2(3):219–246, September 1989.

[PSL00] A. Pogosyants, R. Segala, and N.A. Lynch. Verification of the random-
ized consensus algorithm of Aspnes and Herlihy: a case study. Distributed
Computing, 13(3):155–186, 2000.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, June 1995. Available as
Technical Report MIT/LCS/TR-676.

[SL95] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic pro-
cesses. Nordic Journal of Computing, 2(2):250–273, 1995.

[SM03] A. Sabelfeld and A.C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January
2003.

[Sto02] M.I.A. Stoelinga. An introduction to probabilistic automata. Bulletin of
the European Association for Theoretical Computer Science, 78:176–198,
October 2002.

[SV99] M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. In
J.-P. Katoen, editor, Proceedings 5th International AMAST Workshop on
Formal Methods for Real-Time and Probabilistic Systems, Bamberg, Ger-
many, volume 1601 of Lecture Notes in Computer Science, pages 53–74.
Springer-Verlag, 1999.

[SV04] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, par-
allel composition and comparison. In C. Baier et al., editor, Validation
of Stochastic Systems, volume 2925 of Lecture Notes in Computer Science,
pages 1–43. Springer-Verlag, 2004.

29

[WSS94] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors
of probabilistic i/o automata. In B. Jonsson and J. Parrow, editors, Pro-
ceedings CONCUR 94, Uppsala, Sweden, volume 836 of Lecture Notes in
Computer Science, pages 513–528. Springer-Verlag, 1994.

