MUTUAL EXCLUSION USING INDIVISIBLE READS AND WRITES*

JAMES E. BURNS NANCY A. LY¥YNCH

Computer Science Department Information & Computer Science
Indiana University Georgia Inst. of Technology
Bloomington, Indiana 47405 Atlanta, Georgia 30332

ABSTRACT

The shared space (the number of distinct values taken on by
the set of shared variables) requirements of Dijkstra's or&ginal
mutual exclusion problem are examined. It is shown that 2 shared
states are necessary and sufficient to solve the problem of
deadlock-free mutual exclusion for N processes using only
individual reads and writes of shared variables for communication.

INTRODUCTION

The first solution to the mutual exclusion problem was given
in 1965 by Dijkstra [1]. The original definition of the problem
requires that N processes be synchronized so that no two processes
are simultaneously executing portions of their code which are
called "critical sections". Processes execute asynchronously;
that is, they execute at independent, finite, non-zero rates,
possibly varying over time. A process may halt if it is not
executing its critcal section or the part of its code which is
devoted to synchronization. To prohibit trivial solutions, the
system of processes is required to be deadlock-free.

In Dijkstra's paper, and subsequent papers by Knuth [2], de
Bruijn [3] and Eisenberg and McGuire [4], all communication between
processes was required to be through shared variables. The only
actions allowed on shared variables were reads and writes, which
were assumed to be indivisible.

More recent work has examined the mutual exclusion problem
using more powerful primitive actions for accessing shared
variables. One of the primary concerns in the papers of Cremers
and Hibbard [5], Burns, Fischer, Lynch, Jackson and Peterson [el,
Burns [7], Peterson [8], and others has been the number of shared
states required to solve certain variations of the mutual exclusion
problem. (The number of shared states is the number of distinct '
values taken on jointly by the set of shared variables.) In this

*This research was supported In part by Army Research Office Contract
DAAG29-79-C-0155 and NSF Grants MCS77-15628 and MCS78-01689.

833

paper we examine the number of shared states required for
Dijkstra's original problem.

It is interesting to note that although the algorithms in
papers [l—4]»solve slightly different problems, they all use
exactly the same number of shared states, N3N (one N-valued
variable and N three-valued variables). (Note: Dijkstra [l1] uses
N pairs of binary variables, but each pair takes on only three
possible values.) We will show that N binary variables are
necessary and sufficient to solve the problem of deadlock-free

mutual exclusion.

READ /WRITE-SYSTEMS

In order to define precisely what we mean by asynchronous
systems communicating by shared variables, we will briefly
introduce a formal model based on the models presented in [6] and
[9]. We have omitted definitions which are not important for thek
present paper. In the sequel, let [n} = {1,2,...,n}, for any
positive integer n. .

A system is a 4-tuple, 5=(P,V,dy,8) , where P is a finite
set of processes, V is a finite set of variables, qq is the
initial instantaneous description of S and § is the transition
function of 8. We will always let N=|P| and M=[V| and index the
processes of § by [N] and the variables by [M]. The possibly
infinite set, X;, of states of P; is partitioned into mutually
disjoint sets Ry, Ty, C; and By. Ry, Ty, C; and E; are
called the remainder region, trying region, critical region and
exit region, respectively. The set of values of the jth variable
of V is Vj' An instantaneous description (id) of 8 is an

(N+M) -tuple, q = (xl,xz,...,xN, vl,vz,...,vM), where X; €
Xy for each i € [N] and vj e Vj for each j € [M]; we use
Xis Vj, and V (ambiguously) as projection operators defined by

xi(q) = X1 Vj(q) = vy and V(Q) = (Vir...,vy).

Let Q be the set of all ids of S. Then g is a total
function, g:|P|xQ->Q, satisfying the following conditions. Let i
and j be integers such that i#j and i,j € [N], and let gq be an
»id of 5. If q' = g(i,q) then we write g->q' and require that
(1) X5(q") = x4(q)

834

(2) If X;(q) ©R; UTy, then X;(q') € T3 UCy

(3) 1f X;(Q) € Cy UE;, then X;(q') € E; UR;.
Condition (1) requires that processes communicate only by the
shared variables. Conditions (2) and (3) allow processes to loop
only within the trying and exit regions, which are used to execute
synchronization protocols for the critical region. The internal
structure of the remainder and critical reglons are not important
here and are suppressed.

A system S=(P,V,qq,%) is a read/write-system if for every i

€ [N1, X; can be partitioned into two disjoint sets Read; and
Write; such that the following conditions hold for every id g of
s. If Xi(q) e Readi, then there exists a k € [M] such that
4) Vv(g(i, Q) =V(q),
(5) for every id q' of 5 with X;(q')=X;(qQ) and Vi (q")=Vy (Q),
X; (B(1,9")) = X3 (£(1,9));
we say that the transition q -> g(i,q) is a read of the kth
variable by P;. If Xj(q) € Write;, then there exists k €
fM] such that
(6) for every j € [M], if j#k then Vj(¢(i,q)) = V().
(7) for every id q' of S with X;(q')=X;(q),
Vi (8(1,4"))=Vy (8(1,Q))
(8) for every id g' of 8 with Xj(q")=X;(q},
Xy (#(i,q")) = X;(#(1,Q));
we say that the transition from g to ${i,q9) is a write of the kth
variable by process i and that P; is about to write the kth
variable at q.

In order to reason about the behavior of a system, we wish to
specify individual computatibns, removing the nondeterminism of the
transition function of S. This is done with schedules. A schedule
of S is a finite or infinite sequence of process indices (elements
of [N]). 1If q; is an id of S and h=ijiq... (h=ijigw..iy) is
an infinite (finite) schedule of 8, then q;g,... (ql...qk+l)
is the computation sequence from ¢y by h, where 94+1 =
¢(ij,qj) for 3 = 1,2,... (3=l,..0,k). If D ig finite, then

r(q,h) is the final id in the computation sequence from q by h. We
say that id q' is reachable from id q if there exists a finite
schedule h such that g' = r{(q,h). A schedule, h, of 8 is

835

admissible from id g if for every finite prefix, hy, of h (h =
hjhy), and for every i € [N], Xj(r(g,h;)) € R; implies
that i occurs in hy. Admissibility requires that no process halts

outside its remainder region.

DEADLOCK-FREE MUTUAL EXCLUSION

A system S satisfies mutual exclusion if for every id q of §

reachable from qgp and every pair i,j € [N], X;(r(q,h)) € Cy
and Xj(r(q,h)) e Cj implies that i=j.

Proceds i is said to change regions from q by h if there
exists finite prefixes hy and hy of h such that Xj(r(qg,hqy)) is
in a different region than X; (r(qshy)). A system 8 is
deadlock-free if for every id, q, reachable from qp and every
non-null schedule, h, admissible from q, some process changes

regions from g by h.

THE UPPER BOUND

The algorithm below is in a Pascal-like notation. The
algorithm begins execution with all shared variables set to "down"
and with process i executing the following program for each i e
[N].

program Process i;
type flag = (down,up);
shared var F : array [1..N] of flag;
var j : 1..N;
begin
while true do begin
1: F[i] := down;
2: remainder; (* remainder region *)
3:
4:

F[i] := down;
for 3 :=1 to i-1 do
1f F[j] = up then goto 3;
5: F[i] := up;
6: for j :=1 to i-1 do

TTif P[j] = up then goto 3;

7: for j := i+l to N do
if F[j] = up then goto 7;
8: critical; (¥ critical region ¥)
end
end.

Theorem 1: For every integer N>0 there exists a read/write-system
of N processes and N binary shared variables which solves the

problem of deadlock-free mutual exclusion.

836

Proof: For any integer N>0, it is clear that the above algerithm
defines a read/write-system with N processes and N binary shared
variables., We must show that the system is deadlock-free and
satsifies mutual exclusion.

Suppose deadlock can occur. Then we can reach an id, q, at
which at least one process is not in remainder and a schedule h,
admissible from g, such that no process changes region from q by h.
Since the only backward branches in each process's program occur in
the trying region, we observe that for each i € [N], either
Xi(q) € Ry and 1 does not occur in h or X;{(q) € Ty and i
occurs infinitely often in h. We call the set of processes which
are not in remainder at g "active".

For each i € [N], define the following subsets of T]-_. A;
= the sets of states of P; corresponding to the statements labeled
3 and 4. B; = the sets of states of Py corresponding to the
statement labeled 7. We note that if P; reaches B;, then it will
remain there for the rest of the computation and F[i] will be
continuously equal to "up"., Let m = min {i & [N] : Py is
active at gq}. Since m will eventually detect that no F[i] = up for
i e [m-1], P, will reach By after a finite prefix, h;, of h (h
= hihy). (That is, Xj(q') € By, where q' = r(q,h1)). After
some finite prefix, hy, of hy (hy, = h3h,), every active Py
will either be in B; or will begin cycling forever in A; with
F[i] = down, since all higher indexed processes which do not reach
By will detect F[m]=up. Let n = max {i € [N] : Xi(q") e
Bi}, where q“=r(q',h3). Now P, will find all F[i]=down for i ‘
€ {n+l,...,N}, so P, will change regions from q" by h,, ‘,
contradicting our supposition. Therefore, deadlock cannot occur.

Suppose that mutual exclusion may be violated. Then there
must be values i,j € [N] such that i#j and a finite schedule h
such that g=r(qy,h) and X;(q) € C; and xj(q) e Cj. Let
D. = the set of states of Py corresponding to statements 6, 7 and

1

8 of the algorithm, and Dj be similarly defined for Ps. P; may

enter and leave D; several times before reaching its critical

region, but there must be an id at which P; enters D; for the
last time before going critical. Let g5 be this id for Pj, and
let g, be a similar id for Pj, in the compuation sequence

837

qpd;---9g from dg by h (g=qy). We may assume without loss of
generality that a<b. But then for every c, ag<c<k, F[i]l=up at
P Since Pj must test F[i] after entering Dj (either at
statement 6 of 7), Pj
sequence qudp,4q.--dys contradicting our supposition.

Therefore the algorithm also satisfies mutual exclusion and the

cannot go critical in the compuation

theorem is proved. [J.

THE LOWER BOUND

Some additional definitions will be needed in the lemmas
leading up to the lower bound theorem, As before, we let S be a
read/write-system. Let d; be an id of S, h be a schedule of S, i
€ [N], v €V and d199. . - be the computation sequence Ffrom
q; by h. If there exist positive integers j<k such that
qj—>qj+1 is a write of v by P; and qu->qyy; is a write of
v, and if for all n, j<n<k, dp~>9p+1 18 not a read of v by any
process other than P;, then we say that the write of v by P; at
4 is obliterated from g by h. .

Let g be an id of S, h be a schedule of 8, and i € N. If
Xi(q) € Ry and every write by Pi is obliterated from q by h,
then P; is invisible from q by h. If i € [N], g is an id of S,
hl'hz are schedules of S (hl finite) such that P; is invisible
from r(q,h;) by hy, then P; is hidden from g by hyhs.

Lemma 1: Let S be a read/write-system, h be-a finite schedule of §
and P; be a process of S which is hidden from 9g by h, and let
q=r(q0,h). Then there is an id q' of S reachable from 9 such

that X;(q') € R;, V(q')=V(q) and Xj(q')=Xj(q) for all j#i.

Proof: Let hy 1o the longest prefix of h for which
xi(r(qo,hl)) € Ry (h; exists since P; is hidden from dg by

h) so that h = hjh,. Let hg be the schedule equivalent to hy
with all occurences of i removed, and let h' = hlh3. Now
q'=r(q0,h‘) meets the requirements of the lemma since P; cannot
have left the remainder region since r(qo,hl). Note that
V(q')=V(q) because all writes by P; in the compuation from
r{qg.hy) to q are obliterated. Also, Xj(q')=Xj(q) for j#i

838

NP

because no process can have read anything written by Pj since
r(q() rhl) . D

Let S be a read/write-system, g be an id of S and i € [N].
If P; is about to write v € [M] at g, then we say that v is
covered at q by P;.

Lemma 2: Let S be a read/write-system with at least two processes
which solves deadlock-free mutual exclusion, h be a finite schedule
of S and P; be a process of S hidden from g4 by h. If P; goes
critical on its own from g=r(qg,h) by a schedule hy = ik, then

P; must write some variable in the computation sequence from q by

hy which is not covered by any other process at (.

Proof: Suppose P; goes critical from q by schedule hy without
writing any variable which is not covered by some other process at
q. Let h, a schedule consisting of exactly one step of each
process other than P;. Then every write of P; from q is
obliterated from q by hyh,, so P; is hidden from q by hyh,.

By Lemma 1, there is a reachable id g" which looks like
q'=r{q,h1hy) to all the other processes but has P; in remainder.
By no deadlock, some other process Pjnyi can go critical from

g" by schedule h'. But then r(q',h') has both P; and Pj

critical, contradicting mutual exclusion.

Let S be a read/write-system, q be an id of 5, h be a finite
schedule of S and W be a subset of V. We say that W is nullified
from q by h if for every w € W there is a process which is hidden

from g by h and which covers w at r(g,h).

Lemma 3: Let S be a read/write-system with N>2 processes which
solves deadlock-free mutual exclusion, and let g be any reachable
id of S at which all processes of S are in their remainder regions.
For every K, 1<K<N, there is a finite schedule h of § using

only processes Py,P,,...,Py such that K variables are nullified

from q by h.

Proof: The proof is by induction on K, the number of variables

nullified.

839

BASIS. Let K=l. By no deadlock, there must be a finite
schedule h' consisting only of 1's such that P goes critical at
r{(dq,h'). By Lemma 2, there must be a prefix, h" of h' such that
P; is hidden from g by h" and covers some variable, w, at r(g,h").
But then {w} is nullified from g by h" and the lemma holds for K=l1.

INDUCTIVE STEP, Assume Lemma 3 holds for K = k-1. By the
inductive assumption, there is a finite schedule hy from q using
only processes Pl""'Pk—l such that a set, Wy, of k-1
variables is nullified from dg by hy. Let q = r(qo,ho).

From g, we can successively reach id's 92:93r+.. by finite
schedules hl'h2"" such that 9341 = r(qj,hj), where hy is
defined in the following way. For each i=1,2,..., let h; begin
with the prefix 123...(k-1). From r(qi,123...(k—l)), find an
extension of hy which returns P1,e¢e/Pp_j to their remainder
regions (by no deadlock this extension exists). Finally, complete
h; by appending a schedule which nullifies a set, Wiy, of k-1
variables at di41- The final portion of h; exists by the
inductive assumption.

For each i=1,2,..., Lemma 1 and Lemma 2 imply that Py can be
moved on its own by a schedule §; from each g; such that Py is
ready to write some variable, Wir which is not in wj. We claim
there are integers i and j, 0<i<j, such that wi g Wy,

Suppose not. Then {wl,...,wi_l} is a subset of Wi, for

i=1,2,... This implies that Wires.,W; are distinct since wi is
not in W;. But then Wy42 would contain a subset of N+l

variables, which is impossible (one process is required to nullify
each variable) so the claim holds.

Consider the computation from d; produced by schedule s =

Sihihi+l"'hj' where i and j are chosen as in the claim. The

first part of hy opliterates all writes of Py in the computation
from q; by Si, S0 P, is hidden from qd; by s. Now variables in
Wy U {w;} are nullified from gi by h; and |h5 U {wy} | =k,

by the claim, Thus we have k variable nullified from g by

hohl"'hi—lsi hihi+1“'hj’ and the lemma is proved. [

Theorem 2: 1If S isa read/write-system with at least two processes
and S solves deadlock-free mutual exclusion, then S must have at

840

least as many variables as processes.

Proof: By no deadlock, there is an id g reachable from g, such
that all processes of S are in their remainder regions at q. We
may then apply Lemma 3 for g to find another reachable id which

covers N distinct variables. [J

FURTHER REMARKS

The techniques used in the proof of Lemma 3 may be applied to
prove similar theorems for other exclusion problems. The following
characteristics appear to be needed. (1) A basis for the
induction. It must be possible to show that some number of
variables can be covered by a set of hidden processes. (2) For the
inductive step, a lemma similar to Lemma 2 must be proved.
Secondly, we must have that a subset of N-1 processes of a system
of N processes forms a system of the type required. This second
condition does not hold for the dining philosophers problem, for
example.

Although the algorithm presented in this paper does use fewer
shared states than previous solutions, it does not meet one
requirement that was imposed by Dijkstra. In [1], Dijkstra states
that "The solution must be symmetrical between the N computers; as
a result we are not allowed to introduce a static priority". The
algorithm given here does not meet this condition because process 1
apparently has the highest priority (it will never be locked out).
A future paper will explore the relationships between symmetry and
solutions to synchronization problems. One difficulty is finding a
useful formal definition of symmetry which coincides with out

intuitive understanding of the concept.

Acknowledgement:
We would like to thank Mike Fischer for helpful comment and

criticism.

841

1]
[2]
(3]

(4]

[5]

[6]

[7]
[81]

(9]

REFERENCES

Dijkstra, E.W. Solution of a problem ‘in concurrent program-
ming control. Comm. ACM 8, 9 (Sep. 1965}, 569.

Knuth, D.E. Additional comments on a problem in concurrent
control, Comm. ACM 9, 5 (May 1966), 321-322.

de Bruijn, N.G. Additional comments on a problem in concur-
rent programming control. Comm. ACM 10, 3 (Mar. 1967), 137.

Eisenberg, M.A., and McGuire, M.R. Further comments on
Dijkstra's concurrent programming control problem. Comm.
ACM 15, 11 (Nov. 1972), 999.

Cremers, A., and Hibbard, T.N. Mutual exclusion of N proces-
sors using an O(N)-valued message variable. (extended ab-
stract) Lecture Notes in Computer Science 62, Springer-
Verlag (Jul. 1978), 165-176.

Burns, J.E., Fischer, M.J., Jackson, P., Lynch, N.A., and
Peterson, G.L. Shared data requirements for implementation
of mutual exclusion using a test—and-set primitive. Proc,
1978 Int'l. Conf. on Parallel Processing, Aug. 1978,

pp. 79-87.

Burns, J.E. Mutual exclusion with linear waiting using binary
shared variables. SIGACT News 10, 2 (Summer 1978), 42-47,

Peterson, G.L, The complexity of parallel algorithms. Ph.D.
thesis, Univ. of Washington, 1979.

Burns, J.E. Complexity of communication among asynchronous
parallel processes. Ph.,D. Thesis, Georgia Inst. of Techno-

logy, (in preparation).

842

