Firefly Synchronization with
Asynchronous Wake-Up

Dan Alistarh, Alejandro Cornejo,
Mohsen Ghaffari, Nancy Lynch

CSAIL

Fireflies synchronize

“The Trials of Life,” © BBC Documentaries

Research on Firefly Synch

x = f(¢)

* Early research
— E.g., [Smith35], [Buck88])
— [Peskin73], [KuramotoN87] 5] ntegrate-andfre model

* Mirollo-Strogatz [MS90]

— Dynamical system model for the phenomenon,
explaining synchronization in a clique

e Sparked considerable research on applications

— Clock synchronization in computer systems
[LucarelliWang05, Gopal06, SimeoneS08, etc.]

Abstract model

* N nodes (fireflies) in a connected topology
— wake up at arbitrary times

 Communicate through beeps (pulses)
— Binary information

— Only neighbors can “see” pulse

Synchronization

* Synch: exists Global Synch Time (GST), period T > 1,

and offset o such that, after GST:

— Nodes beep at global time tif (t—o) mod T=0

— Don’t beep otherwise

00000

Time models

Nodes:

— share a period T

— beep once per period

Node dynamics

— either continuous (integrate-and-fire)

— or discrete (averaging)
Continuous time:

— Characterized by a dynamical system

— Fixed point: all nodes beep synchronously
Discrete

— Characterized by a system of equations
— Sync: all nodes beep in the same time slot

x = £(¢)

R .
[MS] Integrate-and-fire model

Discrete time

* Time divided into discrete, aligned™ slots

* Each node i:
— Wakes up at (global) time w,

— Beeps once in every period

t(k) =w, + kT + t(k)
— Averages over its neighbors: 7,(k)=(1/A) Y (t,(k=1) - 1,(k-1))
— System: t(k) = A t(k—1), where A is a Lapjlacian

All this is well known, and seems to work fine.

However...

The problem

(N SNNENNEN NNEE ENECNENS ENNNE NESEEESS SCCCUNE BSESEE NESESEEE SCC A
1 BL L0 L0 L0 ot | Dot |) ottt | 0 bofof | Dot ol 0l Dbl | 0 ol bt Dod | o) Dol §) [l boibed |
2 QUL 0L 00 L) bt | bt () bttt | 0 Dol | bl Dod bl bl | b b bof | [) bt LA el |
3 QUL 0 L0 Do | bofod)) bmtoed |) bl | oot b) Dod bt 1 U bof ol bt | Dol | [ooboter [0 D) [l |

* The algorithm does not always converge!

t,(k) = w, +(k—l)-T+E1/A)E(tj(k—1)—tl.(k—1))J

The problem:
The round structure is not respected

under asynchronous wakeup!

The problem (2)

Node 2 Q i Q |

(k) =w, +(k—1)-T{E(tj(k—l)—ti(k—l))]

The problem:
The system equation no longer holds!
...and in fact, the system does not converge.

Assuming synchronous wake-up not a solution, since
then nodes are already synchronized.

Our project

There is a problem with “averaging” algorithms

(even if initial offsets are less than T)

 Hint of a solution:

— We give an averaging algorithm, under
assumptions on system parameters

— Simple non-averaging algorithm

* Interesting open questions

The Algorithm Assumptions

1. Each node wakes
up its neighbors by

Wake-up phase beeping

2>
* the adversary wakes up a subset of the nodes o TS

* anode beeps as soon as it wakes up

* setsits next beep T/ 2 slots later
Convergence phase

* nodes then start averaging in each “round”
e average rounded down

<]

* O(D?) rounds

follows easily

* O(D)rounds
the right answer

O(D) Round Analysis

Claim 1: Rounds are communication-closed.

Claim 2: Neighbors are always at most one slot apart.

For node v, round k, diameter D, define
F(v,k)=(1+1/D)-offset(v,root)—dist(v,root)+k —1

Claim 2: For any v, either
offset (v, root) =0, or F(v, k) <D + 1.

For k > 2D + 2, offset (v, root) = 0, so nodes are in sync.

Averaging works in O(DT) time units,

given “gradient property” and T > 4n.

A simpler algorithm

* Under the same assumptions, consider the
trivial move-to-the-left (if you see something

to your left) algorithm
* |t also convergesin O(TD) time

The “gradient property” + T = 4n trivialize the

problem to some extent.

Open questions

 We gave a working averaging algorithm

 Two strong assumptions:
— Nodes wake up on neighbor beep (gradient)
— T 2> 4n (consistent rounds)

How about asynchronous wakeup?

Lower bounds?

How do they do it?

