Firefly Synchronization with Asynchronous Wake-Up

<u>Dan Alistarh</u>, Alejandro Cornejo, Mohsen Ghaffari, Nancy Lynch

Fireflies synchronize

Research on Firefly Synch

- Early research
 - E.g., [Smith35], [Buck88]
 - [Peskin73], [KuramotoN87]

[MS] Integrate-and-fire model

- Mirollo-Strogatz [MS90]
 - Dynamical system model for the phenomenon, explaining synchronization in a clique
- Sparked considerable research on applications
 - Clock synchronization in computer systems [LucarelliWang05, Gopal06, SimeoneS08, etc.]

- N nodes (fireflies) in a connected topology
 - wake up at arbitrary times
- Communicate through beeps (pulses)
 - Binary information
 - Only neighbors can "see" pulse

Synchronization

- Synch: exists Global Synch Time (GST), period T > 1, and offset o such that, after GST:
 - Nodes beep at global time t if (t o) mod T = 0
 - Don't beep otherwise

Time models

- Nodes:
 - share a period T
 - beep once per period
- Node dynamics
 - either continuous (integrate-and-fire)
 - or discrete (averaging)
- Continuous time:
 - Characterized by a dynamical system
 - Fixed point: all nodes beep synchronously
- Discrete
 - Characterized by a system of equations
 - Sync: all nodes beep in the same time slot

Discrete time

- Time divided into discrete, aligned* slots
- Each node *i*:
 - Wakes up at (global) time w_i
 - Beeps once in every period $t_i(k) = w_i + kT + \tau_i(k)$
 - Averages over its neighbors: $\tau_i(k) = (1/\Delta_i) \sum_i (t_j(k-1) t_i(k-1))$
 - System: t(k) = A t(k-1), where A is a Laplacian

All this is well known, and seems to work fine.

However...

The problem

The algorithm does not always converge!

$$t_i(k) = w_i + (k-1) \cdot T + (1/\Delta) \sum_j (t_j(k-1) - t_i(k-1))$$

The problem:

The round structure is not respected under asynchronous wakeup!

The problem (2)

The problem:

The system equation no longer holds! ...and in fact, the system does not converge.

Assuming *synchronous wake-up* not a solution, since then nodes are *already synchronized*.

Our project

There is a problem with "averaging" algorithms (even if initial offsets are less than *T*)

- Hint of a solution:
 - We give an averaging algorithm, under assumptions on system parameters
 - Simple non-averaging algorithm
- Interesting open questions

The Algorithm

Wake-up phase

- the adversary wakes up a subset of the nodes
- a node beeps as soon as it wakes up
- sets its next beep T / 2 slots later

Convergence phase

- nodes then start averaging in each "round"
- average rounded down
 1

Assumptions:

Each node wakes up its neighbors by beeping
 T ≥ 4n

O(D²) rounds follows easily

• O(D) rounds the right answer

O(D) Round Analysis

- Claim 1: Rounds are communication-closed.
- Claim 2: Neighbors are always at most one slot apart.
- For node \mathbf{v} , round \mathbf{k} , diameter \mathbf{D} , define $F(\mathbf{v}, \mathbf{k}) = (1+1/D) \cdot offset(\mathbf{v}, root) dist(\mathbf{v}, root) + \mathbf{k} 1$
- Claim 2: For any v, either
 offset (v, root) = 0, or F(v, k) ≤ D + 1.
- For k > 2D + 2, *offset (v, root) = 0*, so nodes are in sync.

Averaging works in O(DT) time units, given "gradient property" and $T \ge 4n$.

A simpler algorithm

- Under the same assumptions, consider the trivial move-to-the-left (if you see something to your left) algorithm
- It also converges in O(TD) time

The "gradient property" + T ≥ 4n trivialize the problem to some extent.

Open questions

- We gave a working averaging algorithm
- Two strong assumptions:
 - Nodes wake up on neighbor beep (gradient)
 - $-T \ge 4n$ (consistent rounds)

How about asynchronous wakeup?

Lower bounds?

How do they do it?