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Abstra
t

We establish that on the domain of probabilisti
 automata, the tra
e distribution pre
on-

gruen
e 
oin
ides with the simulation preorder.

1 Introdu
tion

Probabilisti
 automata [13, 15, 18℄ 
onstitute a mathemati
al framework for modeling and analyzing

probabilisti
 systems, spe
i�
ally, systems of asyn
hronously intera
ting 
omponents that may make

nondeterministi
 and probabilisti
 
hoi
es. They have been applied su

essfully to distributed

algorithms [7, 11, 1℄ and pra
ti
al 
ommuni
ation proto
ols [19℄.

An important part of a system modeling framework is a notion of external behavior of system


omponents. Su
h a notion 
an be used to de�ne implementation and equivalen
e relationships

between 
omponents. For example, the external behavior of a nondeterministi
 automaton 
an

be de�ned as its set of tra
es|the sequen
es of external a
tions that arise during its exe
utions

[9℄. Implementation and equivalen
e of nondeterministi
 automata 
an be de�ned in terms of

in
lusion and equality of sets of tra
es. By analogy, Segala [13℄ has proposed de�ning the external

behavior of a probabilisti
 automaton as its set of tra
e distributions, and de�ning implementation

�

A preliminary version of this paper appeared as [8℄.
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and equivalen
e in terms of in
lusion and equality of sets of tra
e distributions. Stoelinga and

Vaandrager have proposed a simple testing s
enario for probabilisti
 automata, and have proved

that the equivalen
e notion indu
ed by their s
enario 
oin
ides with Segala's tra
e distribution

equivalen
e [20℄. Another equivalent testing s
enario was proposed by Segala [14℄.

However, a problem with these notions is that tra
e distribution in
lusion and equivalen
e are

not 
ompositional. To address this problem, Segala [13℄ de�ned more re�ned notions of implemen-

tation and equivalen
e. In parti
ular, he de�ned the tra
e distribution pre
ongruen
e, �

DC

, as the


oarsest pre
ongruen
e in
luded in the tra
e distribution in
lusion relation. This yields 
omposi-

tionality by 
onstru
tion, but does not provide insight into the nature of the �

DC

relation. Segala

also provided a 
hara
terization of �

DC

in terms of the set of tra
e distributions observable in a


ertain prin
ipal 
ontext|a rudimentary probabilisti
 automaton that makes very limited nonde-

terministi
 and probabilisti
 
hoi
es. However, this indire
t 
hara
terization still does not provide

mu
h insight into the stru
ture of �

DC

, for example, it does not explain its bran
hing stru
ture.

In this paper, we provide an expli
it 
hara
terization of the tra
e distribution pre
ongruen
e,

�

DC

, for probabilisti
 automata, whi
h 
ompletely explains its bran
hing stru
ture. Namely, we

show that P

1

�

DC

P

2

if and only if there exists a weak probabilisti
 (forward) simulation relation

from P

1

to P

2

. Moreover, we provide a similar 
hara
terization of �

DC

for nondeterministi
 au-

tomata in terms of the existen
e of a weak (non-probabilisti
) simulation relation. It was previously

known that simulation relations are sound for �

DC

[13℄, for both nondeterministi
 and probabilisti


automata; we show the surprising fa
t that they are also 
omplete. That is, we show that, for both

nondeterministi
 and probabilisti
 automata, probabilisti
 
ontexts 
an observe all the distin
tions

that 
an be expressed using simulation relations.

Another approa
h to a
hieving 
ompositionality for behaviors of probabilisti
 automata is to

de�ne implementation as tra
e distribution in
lusion, but to restri
t parallel 
omposition so that

the nondeterminism of ea
h 
omponent is resolved based only on externally-visible behavior of the

other 
omponents. This approa
h was investigated by De Alfaro, Henzinger, and Jhala [4℄ in a

syn
hronous model; however, it is still an open problem to �nd appropriate restri
tions for parallel


omposition in a model with asyn
hronous 
omputation. Some initial steps toward this goal appear

in [3℄.

Se
tions 2 and 3 
ontain basi
 de�nitions and results for nondeterministi
 and probabilisti


automata, respe
tively, and for the preorders we 
onsider. These se
tions 
ontain no new material,

but re
all de�nitions and theorems from the literature. For a more leisurely introdu
tion see

[9, 10, 18, 16℄. The last two referen
es also 
ontain an extensive dis
ussion of the relationships of our

probabilisti
 automata with other modelling frameworks for probabilisti
 systems. The proofs of our


ompleteness results rely on a spe
ial 
ontext for a probabilisti
 automaton, the dual probabilisti


automaton, whi
h is introdu
ed in Se
tion 4. Se
tions 5 and 6 
ontain our 
hara
terization results

for nondeterministi
 and probabilisti
 automata. Sin
e the proof of the 
hara
terization result for

the general 
ase of probabilisti
 automata with internal a
tions is highly 
omplex, we �rst present

a proof for the spe
ial 
ase of nondeterministi
 automata without internal a
tions (Se
tion 5.1).

Then we su

essively show how we 
an also handle internal a
tions (Se
tion 5.2) and probabilisti



hoi
e (Se
tion 6.1) before dealing with the general 
ase of probabilisti
 automata with internal

a
tions (Se
tion 6.2). Se
tion 7 
ontains our 
on
lusions.
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2 De�nitions and Basi
 Results for Nondeterministi
 Automata

2.1 Nondeterministi
 Automata, Exe
utions, and Tra
es

A (nondeterministi
) automaton is a tuple A = (Q; �q;E;H;D), where

� Q is a set of states,

� �q 2 Q is a start state,

� E is a set of external a
tions,

� H is a set of internal (hidden) a
tions with E \H = ;, and

� D � Q� (E [H)�Q is a transition relation.

We denote E [H by A and we refer to it as the set of a
tions. We denote a transition (q; a; q

0

) of

D by q

a

! q

0

. We write q ! q

0

if q

a

! q

0

for some a, and we write q ! if q ! q

0

for some q

0

.

We assume �nite bran
hing

1

: for ea
h state q the number of pairs (a; q

0

) su
h that q

a

! q

0

is

�nite. We denote the elements of an automaton A by Q

A

; �q

A

; E

A

;H

A

;D

A

; A

A

;

a

!

A

. Often we use

the name A for a generi
 automaton; in this 
ase, we usually omit the subs
ripts, writing simply

Q, �q, E, H, D, A, and

a

!. We extend this 
onvention to allow indi
es and primes as well; thus,

the set of states of automaton A

0

i

is denoted by Q

0

i

.

An exe
ution fragment of an automaton A is a �nite or in�nite sequen
e � = q

0

a

1

q

1

a

2

q

2

� � � of

alternating states and a
tions, starting with a state and, if the sequen
e is �nite, ending in a state,

where ea
h (q

i

; a

i+1

; q

i+1

) 2 D. State q

0

, the �rst state of �, is denoted by fstate(�). If � is a

�nite sequen
e, then the last state of � is denoted by lstate(�). An exe
ution of A is an exe
ution

fragment whose �rst state is the start state �q. We let frags(A) denote the set of exe
ution fragments

of A and frags

�

(A) the set of �nite exe
ution fragments. Similarly, we let exe
s(A) denote the set

of exe
utions of A and exe
s

�

(A) the set of �nite exe
utions.

Exe
ution fragment � is a pre�x of exe
ution fragment �

0

, denoted by � � �

0

, if sequen
e � is

a pre�x of sequen
e �

0

. Finite exe
ution fragment �

1

= q

0

a

1

q

1

� � � a

k

q

k

and exe
ution fragment �

2


an be 
on
atenated if fstate(�

2

) = q

k

. In this 
ase the 
on
atenation of �

1

and �

2

, �

1

_

�

2

, is

the exe
ution fragment q

0

a

1

q

1

� � � a

k

�

2

. Given an exe
ution fragment � and a �nite pre�x �

0

, �.�

0

(read as \� after �

0

") is de�ned to be the unique exe
ution fragment �

00

su
h that � = �

0 _

�

00

.

The tra
e of an exe
ution fragment � of an automaton A, written tra
e

A

(�), or just tra
e(�)

when A is 
lear from 
ontext, is the sequen
e obtained by restri
ting � to the set of external a
tions

of A. For a set S of exe
utions of an automaton A, tra
es

A

(S), or just tra
es(S) when A is 
lear

from 
ontext, is the set of tra
es of the exe
utions in S. We say that � is a tra
e of an automaton

A if there is an exe
ution � of A with tra
e(�) = �. Let tra
es(A) denote the set of tra
es of

A. We de�ne the tra
e preorder relation on automata as follows: A

1

�

T

A

2

i� E

1

= E

2

and

tra
es(A

1

) � tra
es(A

2

). We use �

T

to denote the kernel of �

T

.

If a 2 A, then q

a

=) q

0

i� there exists an exe
ution fragment � su
h that fstate(�) = q,

lstate(�) = q

0

, and tra
e(�) = tra
e(a). (Here and elsewhere, we abuse notation slightly by

extending the tra
e fun
tion to arbitrary sequen
es.) We 
all q

a

=) q

0

a weak transition.

We let tr range over either transitions or weak transitions. For a transition tr = (q; a; q

0

), we

denote q by sour
e(tr ) and q

0

by target(tr ).

1

This restri
tion is given for te
hni
al reasons. The results generalize to 
ountable bran
hing at the 
ost of adding


omplexity to the proofs.
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2.2 Composition

Automata A

1

and A

2

are 
ompatible if H

1

\ A

2

= A

1

\ H

2

= ;. The 
omposition of 
ompatible

automata A

1

and A

2

, denoted by A

1

kA

2

, is the automaton A

�

= (Q

1

�Q

2

; (�q

1

; �q

2

); E

1

[ E

2

;H

1

[

H

2

;D) where D is the set of triples (q; a; q

0

) su
h that, for i 2 f1; 2g:

a 2 A

i

) (�

i

(q); a; �

i

(q

0

)) 2 D

i

and a =2 A

i

) �

i

(q) = �

i

(q

0

):

Let � be an exe
ution fragment of A

1

kA

2

, i 2 f1; 2g. Then �

i

(�), the i

th

proje
tion of �, is

the sequen
e obtained from � by proje
ting ea
h state onto its i

th


omponent, and removing ea
h

a
tion not in A

i

together with its following state. Sometimes we denote this proje
tion by �dA

i

.

Proposition 2.1 Let A

1

and A

2

be automata, with A

1

�

T

A

2

. Then, for ea
h automaton C


ompatible with both A

1

and A

2

, A

1

kC �

T

A

2

kC.

2.3 Simulation Relations

We de�ne two kinds of simulation relations: forward simulations, whi
h provide a step-by-step


orresponden
e, and weak forward simulations, whi
h are insensitive to the o

urren
e of internal

steps. Namely, relation R � Q

1

�Q

2

is a forward simulation (resp., weak forward simulation) from

A

1

to A

2

i� E

1

= E

2

and both of the following hold:

1. �q

1

R �q

2

.

2. If q

1

R q

2

and q

1

a

! q

0

1

, then there exists q

0

2

su
h that q

2

a

! q

0

2

(resp., q

2

a

=) q

0

2

) and q

0

1

R q

0

2

.

We write A

1

�

F

A

2

(resp., A

1

�

wF

A

2

) when there is a forward simulation (resp., a weak forward

simulation) from A

1

to A

2

. It is easy to prove that both �

F

and �

wF

are preorders, that is,

re
exive and transitive. Sin
e all simulation relations in this paper are forward simulations, we

often omit the word \forward".

Proposition 2.2 Let A

1

and A

2

be automata. Then:

1. If A

1

�

F

A

2

then A

1

�

wF

A

2

.

2. If H

1

= H

2

= ;, then A

1

�

F

A

2

i� A

1

�

wF

A

2

.

3. If A

1

�

wF

A

2

then A

1

�

T

A

2

.

Proof. Standard; for instan
e, see [10℄. 2

2.4 Tree-Stru
tured Nondeterministi
 Automata

An automaton is tree-stru
tured if ea
h state is rea
hed via a unique exe
ution.

The unfolding of automaton A, denoted by Unfold(A), is the tree-stru
tured automaton B

obtained from A by unfolding its transition graph into a tree. Formally,

� Q

B

= exe
s

�

(A),

� �q

B

= �q

A

,

4



� E

B

= E

A

,

� H

B

= H

A

, and

� D

B

= f(�; a; �aq) j (lstate(�); a; q) 2 D

A

g.

Proposition 2.3 A �

F

Unfold(A).

Proof. See [10℄. It is easy to 
he
k that the relation R, where � R q i� lstate(�) = q, is a forward

simulation from Unfold(A) to A and that the inverse relation of R is a forward simulation from A

to Unfold(A). 2

Proposition 2.4 A �

T

Unfold(A).

Proof. By Proposition 2.3 and Proposition 2.2, Parts 1 and 3. 2

3 De�nitions and Basi
 Results for Probabilisti
 Automata

3.1 Preliminaries and Notation on Measure Theory

We re
all a few basi
 de�nitions and results from measure theory that 
an be retrieved from any

standard book on the subje
t [5℄.

A �-�eld over a set X is a set F � 2

X

that 
ontains the empty set and is 
losed under


omplement and 
ountable union. A pair (X;F) where F is a �-�eld over X, is 
alled a measurable

spa
e. A measure on a measurable spa
e (X;F ) is a fun
tion � : F ! [0;1℄ that is 
ountably

additive: for ea
h 
ountable family fX

i

g

i

of pairwise disjoint elements of F , �([

i

X

i

) =

P

i

�(X

i

).

A probability measure on (X;F) is a measure � on (X;F) su
h that �(X) = 1. A sub-probability

measure on (X;F) is a measure � on (X;F) su
h that �(X) � 1. A dis
rete probability measure on

a set X is a probability measure � on (X; 2

X

). A dis
rete sub-probability measure on X is a sub-

probability measure � on (X; 2

X

). We denote the set of dis
rete probability measures and dis
rete

sub-probability measures on X by Dis
(X) and SubDis
(X), respe
tively. We denote the support

of a dis
rete measure �, that is, the set of elements that have non-zero measure, by supp(�). We

let Æ(q) denote the Dira
 measure for q, the dis
rete probability measure that assigns probability 1

to fqg. Finally, if X is nonempty and �nite, then U(X) denotes the uniform distribution over X,

the measure that assigns probability 1=jXj to ea
h element of X. Given two dis
rete probability

measures �

1

; �

2

on (X; 2

X

) and (Y; 2

Y

), respe
tively, we denote by �

1

��

2

the produ
t measure, that

is, the measure on (X � Y; 2

(X�Y )

) su
h that �

1

� �

2

((x; y)) = �

1

(x)�

2

(y) for ea
h x 2 X; y 2 Y .

A fun
tion f : X ! Y is said to be measurable from (X;F

X

) to (Y;F

Y

) if the inverse image of

ea
h element of F

Y

is an element of F

X

, that is, for ea
h C 2 F

Y

, f

�1

(C) 2 F

X

. In su
h a 
ase,

given a measure � on (X;F

X

), the fun
tion f(�) de�ned on F

Y

by f(�)(C) = �(f

�1

(C)) for ea
h

C 2 F

Y

is a measure on (Y;F

Y

) and is 
alled the image measure of � under f .

Given a 
ountable 
olle
tion of measures f�

i

g

i

on (X;F

X

) and a 
ountable 
olle
tion fp

i

g

i

of

real numbers in [0;1), denote by

P

i

p

i

�

i

a new fun
tion � su
h that, for ea
h element C 2 F

X

,

�(C) =

P

i

p

i

�

i

(C). We state a few standard properties.

Proposition 3.1 The following hold.

1.

P

i

�

i

is a measure on (X;F

X

).

5



2. If ea
h �

i

is a (sub)-probability measure and

P

i

p

i

= 1, then

P

i

p

i

�

i

is a (sub)-probability

measure.

3. If f is a measurable fun
tion from (X;F

X

) to (Y;F

Y

), then f(

P

i

p

i

�

i

) =

P

i

p

i

f(�

i

).

3.2 Probabilisti
 Automata, Exe
utions, and Tra
es

A probabilisti
 automaton (PA) is a tuple P = (Q; �q;E;H;D), where all 
omponents are exa
tly as

for nondeterministi
 automata, ex
ept that:

� D, the transition relation, is a subset of Q� (E [H)�Dis
(Q).

We de�ne A as before. We denote transition (q; a; �) by q

a

! �. We assume �nite bran
hing: for

ea
h state q the number of pairs (a; �) su
h that q

a

! � is �nite. Given a transition tr = (q; a; �)

we denote q by sour
e(tr ) and � either by target(tr ) or by �

tr

.

Thus, a probabilisti
 automaton di�ers from a nondeterministi
 automaton in that a transition

leads to a probability measure over states rather than to a single state. A nondeterministi
 automa-

ton is a spe
ial 
ase of a probabilisti
 automaton, where the last 
omponent of ea
h transition is a

Dira
 measure. Conversely, we 
an asso
iate a nondeterministi
 automaton with ea
h probabilisti


automaton by repla
ing transition relation D by the relation D

0

given by

(q; a; q

0

) 2 D

0

, (9�)[(q; a; �) 2 D ^ �(q

0

) > 0℄:

Using this 
orresponden
e, notions su
h as exe
ution fragments and tra
es 
arry over from nonde-

terministi
 automata to probabilisti
 automata.

2

A s
heduler for a PA P is a fun
tion � : frags

�

(P) ! SubDis
(D) su
h that tr 2 supp(�(�))

implies sour
e(tr) = lstate(�). A s
heduler � is said to be deterministi
 if for ea
h �nite exe
ution

fragment �, either �(�)(D) = 0 or else �(�) = Æ(tr ) (the Dira
 measure for tr) for some tr 2 D.

A s
heduler � and a state q indu
e a measure � on the �-�eld generated by 
ones of exe
ution

fragments as follows. If � is a �nite exe
ution fragment, then the 
one of � is de�ned by C

�

=

f�

0

2 frags(P) j � � �

0

g. The measure � of a 
one C

�

is de�ned to be 1 if � = q, 0 if � = q

0

6= q,

and, if � is of the form �

0

a

0

q

0

, it is de�ned by the re
ursive equation

�(C

�

) = �(C

�

0

)

X

tr2D(a

0

)

�(�

0

)(tr )�

tr

(q

0

); (1)

where D(a

0

) denotes the set of transitions of D that are labeled by a

0

. Standard measure theoreti
al

arguments ensure that � is well de�ned. We 
all the measure � a probabilisti
 exe
ution fragment

of P and we say that � is generated by � and q. We 
all state q the �rst state of � and denote it by

fstate(�). If fstate(�) is the start state �q, then � is 
alled a probabilisti
 exe
ution.

The tra
e fun
tion is a measurable fun
tion from the �-�eld generated by 
ones of exe
ution

fragments to the �-�eld generated by 
ones of tra
es, where the 
one of a �nite tra
e � is de�ned

by C

�

= f�

0

2 E

�

[ E

!

j � � �

0

g. Here � denotes the pre�x ordering on sequen
es. Given a

probabilisti
 exe
ution fragment �, we de�ne the tra
e distribution of �, tdist(�), to be the image

measure of � under tra
e . We denote the set of tra
e distributions of probabilisti
 exe
utions of a

2

The 
orresponden
e between nondeterministi
 automata and probabilisti
 automata is worked out in great detail

in [2℄.
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PA P by tdists(P). We de�ne the tra
e distribution preorder relation on probabilisti
 automata

by: P

1

�

D

P

2

i� E

1

= E

2

and tdists(P

1

) � tdists(P

2

).

An example of a measurable set of tra
es that is used extensively throughout the paper is the

set of tra
es in whi
h a spe
i�
 a
tion a o

urs. We denote this set by �a. The inverse image under

tra
e of �a 
an be expressed as a disjoint union of 
ones of exe
utions. Thus, we have the following

proposition.

Proposition 3.2 Let � be the tra
e distribution of a probabilisti
 exe
ution � of a probabilisti


automaton P, and let �

a

be the set of �nite exe
utions of P with a single o

urren
e of a
tion a

whose last transition is labeled by a. Then,

�(�a) =

X

�2�

a

�(C

�

): (2)

3.3 Combined Transitions and Weak Transitions

Let fq

a

! �

i

g

i2I

be a 
olle
tion of transitions of a PA P, and let fp

i

g

i2I

be a 
olle
tion of proba-

bilities su
h that

P

i2I

p

i

= 1. Then the triple (q; a;

P

i2I

p

i

�

i

) is 
alled a 
ombined transition of

P.

Consider a probabilisti
 exe
ution fragment � that assigns probability 1 to the set of all �nite

exe
ution fragments with tra
e tra
e(a). Let � be the measure de�ned by �(q) = �(f� j lstate(�) =

qg). Then fstate(�)

a

=) � is a weak 
ombined transition of P. If � 
an be indu
ed by a deterministi


s
heduler, then fstate(�)

a

=) � is a weak transition. We refer to � as a representation of fstate(�)

a

=)

�. Observe that the measure � 
an be seen alternatively as the image measure of � under lstate .

This is an abuse of notation be
ause lstate is not de�ned for in�nite exe
utions; however, sin
e �

assigns measure 1 to the set of �nite exe
utions, we 
an extend arbitrarily and safely the de�nition

of lstate to in�nite exe
utions for this purpose.

Proposition 3.3 Let ftr

i

g

i2I

be a 
olle
tion of weak 
ombined transitions of a PA P, all starting

in the same state q, and all labeled by the same a
tion a, and let fp

i

g

i2I

be probabilities su
h that

P

i2I

p

i

= 1. Then

P

i2I

p

i

tr

i

is a weak 
ombined transition of P labeled by a.

Proof. For ea
h i 2 I, let �

i

be a representation of tr

i

, and �

i

be a s
heduler that, together with

state q, indu
es �

i

. We omit the index set I in the rest of the proof. De�ne a new s
heduler � as

follows.

�(�) =

8

<

:

X

i

p

i

�

i

(C

�

)

P

i

p

i

�

i

(C

�

)

�

i

(�) if 9

i

p

i

�

i

(C

�

) > 0

arbitrarily otherwise.

Let � be the probabilisti
 exe
ution fragment indu
ed by � and q. Let � be a �nite exe
ution

fragment of P. We prove by indu
tion on the length of � that �(C

�

) =

P

i

p

i

�

i

(C

�

). The base


ase is trivial sin
e �(C

q

) = 1 and for ea
h i, �

i

(C

q

) = 1, whi
h implies

P

i

�

i

(C

q

) = 1; similarly,

for ea
h state q

0

6= q, �(C

q

0

) = 0 and for ea
h i, �

i

(C

q

0

) = 0. For the indu
tive step, let � = �

0

a

0

q

0

.

If �(C

�

0

) = 0, then, by indu
tion,

P

i

p

i

�

i

(C

�

0

) = 0, whi
h implies that for ea
h i, p

i

�

i

(C

�

0

) = 0.

By de�nition of measure of a 
one, Equation (1), �(C

�

) = 0. Furthermore, for ea
h i, if p

i

= 0

then p

i

�

i

(C

�

) = 0 trivially, and if p

i

> 0, then �

i

(C

�

0

) = 0 and by de�nition of measure of a

7




one, Equation (1), �

i

(C

�

) = 0, whi
h implies p

i

�

i

(C

�

) = 0. Thus,

P

i

p

i

�

i

(C

�

) = 0 as needed. If

�(C

�

0

) > 0, then, by de�nition of measure of a 
one, Equation (1),

�(C

�

) = �(C

�

0

)

X

tr2D(a

0

)

�(�

0

)(tr )�

tr

(q

0

):

By expanding �(�

0

)(tr ) with the de�nition of � we obtain

�(C

�

) = �(C

�

0

)

X

tr2D(a

0

)

 

X

i

p

i

�

i

(C

�

0

)

P

i

p

i

�

i

(C

�

0

)

�

i

(�

0

)(tr )

!

�

tr

(q

0

);

where we know that the denominator is stri
tly positive by hypothesis. By standard algebrai


manipulations (ex
hanges of sums and rearrangements of 
onstants) we obtain

�(C

�

) =

�(C

�

0

)

P

i

p

i

�

i

(C

�

0

)

X

i

X

tr2D(a

0

)

p

i

�

i

(C

�

0

)�

i

(�

0

)(tr )�

tr

(q

0

):

By indu
tion, �(C

�

0

) =

P

i

p

i

�

i

(C

�

0

). Thus, by simplifying (removing) the leftmost term and

rearranging 
onstants we obtain

�(C

�

) =

X

i

0

�

p

i

�

i

(C

�

0

)

X

tr2D(a

0

)

�

i

(�

0

)(tr )�

tr

(q

0

)

1

A

:

Finally, by de�nition of measure of a 
one, Equation (1), we get the desired equation

�(C

�

) =

X

i

p

i

�

i

(C

�

):

Thus, � =

P

i

p

i

�

i

, whi
h implies that the probability of termination in � is 1. Furthermore, by

Proposition 3.1, Item 3, lstate(�) =

P

i

p

i

lstate(�

i

). That is, � is a representation of

P

i

p

i

tr

i

. 2

3.4 Composition

Two PAs, P

1

and P

2

, are 
ompatible if H

1

\A

2

= A

1

\H

2

= ;. The 
omposition of two 
ompatible

PAs P

1

and P

2

, denoted by P

1

kP

2

, is the PA P = (Q

1

�Q

2

; (�q

1

; �q

2

); E

1

[E

2

;H

1

[H

2

;D) where D

is the set of triples (q; a; �

1

� �

2

) su
h that, for i 2 f1; 2g:

a 2 A

i

) (�

i

(q); a; �

i

) 2 D

i

and a =2 A

i

) �

i

= Æ(�

i

(q)):

Let � be a probabilisti
 exe
ution (fragment) of P

1

kP

2

and let i 2 f1; 2g. De�ne �

i

(�), the i

th

proje
tion of �, to be the image measure under �

i

of �. It is easy to verify that the proje
tion

fun
tion is measurable. When 
onvenient, we denote a proje
tion by �dP

i

, where P

i

is the PA that

appears in the i

th

position.

Proposition 3.4 Let P

1

and P

2

be 
ompatible PAs and let � be a probabilisti
 exe
ution (fragment)

of P

1

kP

2

. Then for ea
h i 2 f1; 2g, �

i

(�) is a probabilisti
 exe
ution (fragment) of P

i

.

Proof. By Propositions 4.3.4 and 4.3.5 of [13℄. 2
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Figure 1: Tra
e distribution in
lusion is not preserved by 
omposition (without 
ommuni
ation).
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The tra
e distribution preorder is not preserved by 
omposition [15, 17℄ as is shown by the

following example.

Example 3.1 Failure of 
ompositionality

Consider the two automata P

1

and P

2

of Figure 1. The two automata are tra
e equiva-

lent, and it is easy to see that they are also tra
e distribution equivalent. Now 
onsider

the 
ompositions P

1

kC and P

2

kC, where C is the probabilisti
 automaton of Figure 1

and we assume that the a
tions of C are not shared with P

1

and P

2

. It is possible to

build a probabilisti
 exe
ution of P

1

kC as follows: �rst a is s
heduled followed by d;

then e or f is s
heduled depending on the out
ome state of the transition labeled by

d; �nally, b or 
 is s
heduled depending on whether e or f was s
heduled. Thus, in the

resulting tra
e distribution there is a total 
orrelation between e; b and f; 
, respe
tively.

The same tra
e distribution 
annot be obtained from P

2

kC be
ause after s
heduling the

transition labeled by a we are already bound to b or 
, and thus the o

urren
e of b or


 
annot be 
orrelated to e or f in this 
ase.

Example 3.1 may appear pathologi
al sin
e, in the probabilisti
 exe
ution of P

1

kC that 
orrelates

the 
hoi
es between e and f and between b and 
, a nondeterministi
 
hoi
e of P

1

is resolved based

on information that is not available to P

1

. This may lead us to propose a naive solution to the

non-preservation of tra
e distribution in
lusion by parallel 
omposition where we require that ea
h

probabilisti
 automaton in a parallel 
omposition 
an resolve its nondeterministi
 
hoi
es based on

lo
al knowledge only. However, a more elaborate example shows that this naive idea also does not

work.

Example 3.2 Failure of 
ompositionality

Consider the two automata P

1

and P

2

of Figure 2, whi
h are essentially the automata

of Example 3.1 where self-loop transitions labeled by e and f are added to ea
h state.

In this 
ase the 
ontext C syn
hronizes with P

1

and P

2

on a
tions e and f , and P

1

is

able to learn whi
h of e or f o

urs, thus determining the 
orrelation with b and 
 based

on lo
al knowledge only.

The solution of resolving nondeterminism based on lo
al knowledge is adopted in [4℄ for a

probabilisti
 extension of rea
tive modules; however the idea of [4℄ 
annot be extended easily to

probabilisti
 automata be
ause of key stru
tural di�eren
es in the models: in probabilisti
 automata

there is a total interleaving of the transitions taken by di�erent automata in a parallel 
omposition,

while in probabilisti
 rea
tive modules there are several independent atoms that are not for
ed to

interleave. A dire
t adaptation of the idea of [4℄ to probabilisti
 automata would require drasti


modi�
ations of the model that go beyond the s
ope of this paper: transitions should be labeled

by sets of a
tions and should be stru
tured in su
h a way that ea
h a
tion a�e
ts di�erent parts of

the state.

An alternative approa
h, followed in [13℄ and adopted in this paper, 
onsists of de�ning a

new tra
e distribution pre
ongruen
e relation, denoted by �

DC

, as the 
oarsest pre
ongruen
e

that is in
luded in the tra
e distribution preorder �

D

, and �nding alternative 
hara
terizations of

�

DC

. It is known from [13℄ that there exists a simple 
ontext, 
alled the prin
ipal 
ontext, that is

suÆ
iently powerful to distinguish all probabilisti
 automata that are not in the tra
e distribution

pre
ongruen
e relation; alternatively, a testing s
enarios is proposed in [14℄.

10



P

2
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Figure 2: Tra
e distribution in
lusion is not preserved by 
omposition (with 
ommuni
ation).
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In this paper we 
hara
terize �

DC

in terms of probabilisti
 simulation relations. Another simple

alternative 
hara
terization of �

DC

that is useful for our study is given by the following proposition.

Proposition 3.5 Let P

1

and P

2

be PAs. Then P

1

�

DC

P

2

i� for every PA C that is 
ompatible

with both P

1

and P

2

, P

1

kC �

D

P

2

kC.

Proof. De�ne relation v su
h that P

1

v P

2

i� P

1

and P

2

have the same external a
tions and

for every PA C that is 
ompatible with both P

1

and P

2

, P

1

kC �

D

P

2

kC.

Let P

1

�

DC

P

2

and let C be a PA 
ompatible with both P

1

and P

2

. Sin
e �

DC

is a pre
ongru-

en
e by de�nition, then P

1

kC �

DC

P

2

kC. Sin
e, again by de�nition, �

DC

is in
luded in �

D

, then

P

1

kC �

D

P

2

kC. Thus, P

1

v P

2

, whi
h implies that �

DC

is in
luded in v.

Conversely, observe that v is re
exive and transitive, and thus a preorder relation. Observe

also that, by using a trivial 
ontext C with no external a
tions and no transitions, v is in
luded in

�

D

. Finally, using the asso
iativity of parallel 
omposition, observe that v is preserved by parallel


omposition, and thus is a pre
ongruen
e. This means that v is a pre
ongruen
e in
luded in �

D

.

Sin
e �

DC

is the 
oarsest pre
ongruen
e in
luded in �

D

, we get that v is in
luded in �

DC

. 2

3.5 Simulation Relations

The de�nitions of forward simulation and weak forward simulation in Se
tion 2 
an be extended

naturally to PAs [15℄. However, Segala has shown [12℄ that the resulting simulations are not


omplete for �

DC

, and has de�ned new 
andidate simulations. These new simulations relate states

to probability measures on states.

In order to de�ne the new simulations formally, we need three new 
on
epts. First we show

how to lift a relation between sets to a relation between measures over sets [6℄. Let R � X � Y .

The lifting of R is a relation R

0

� Dis
(X) � Dis
(Y ) su
h that �

X

R

0

�

Y

i� there is a fun
tion

w : X � Y ! [0; 1℄ that satis�es:

1. If w(x; y) > 0 then x R y.

2. For ea
h x 2 X,

P

y2Y

w(x; y) = �

X

(x).

3. For ea
h y 2 Y ,

P

x2X

w(x; y) = �

Y

(y).

We abuse notation slightly and denote the lifting of a relation R by R as well.

Se
ond, we de�ne a 
attening operation that 
onverts a measure � in Dis
(Dis
(X)) into a

measure 
atten(�) in Dis
(X). Namely, we de�ne 
atten(�) =

P

�2supp(�)

�(�)�.

Third and �nally, we lift the notion of a transition to a hyper-transition [17℄ that begins and

ends with a probability measure over states. Thus, let P be a PA and let � 2 Dis
(Q). For ea
h

q 2 supp(�), let q

a

! �

q

be a 
ombined transition of P. Let �

0

be

P

q2supp(�)

�(q)�

q

. Then �

a

! �

0

is 
alled a hyper-transition of P. Also, for ea
h q 2 supp(�), let q

a

=) �

q

be a weak 
ombined

transition of P. Let �

0

be

P

q2supp(�)

�(q)�

q

. Then �

a

=) �

0

is 
alled a weak hyper-transition of P.

We now de�ne simulations for probabilisti
 automata. A relation R � Q

1

� Dis
(Q

2

) is a

probabilisti
 forward simulation (resp., weak probabilisti
 forward simulation) from PA P

1

to PA

P

2

i� E

1

= E

2

and both of the following hold:

1. �q

1

R Æ(�q

2

).
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2. For ea
h pair q

1

; �

2

su
h that q

1

R �

2

and ea
h transition q

1

a

! �

0

1

, there exists a measure �

0

2

2

Dis
(Dis
(Q

2

)) su
h that �

0

1

R �

0

2

and su
h that �

2

a

! 
atten(�

0

2

) (resp., �

2

a

=) 
atten(�

0

2

))

is a hyper-transition (resp., a weak hyper-transition) of P

2

.

We write P

1

�

PF

P

2

(resp., P

1

�

wPF

P

2

) whenever there is a probabilisti
 forward simulation

(resp., a weak probabilisti
 forward simulation) from P

1

to P

2

. Note that a forward simulation

between nondeterministi
 automata is a probabilisti
 forward simulation between the two automata

viewed as PAs:

Proposition 3.6 Let A

1

and A

2

be nondeterministi
 automata. Then:

1. A

1

�

F

A

2

i� A

1

�

PF

A

2

, and

2. A

1

�

wF

A

2

i� A

1

�

wPF

A

2

.

Proof. The left-to-right in
lusions are easy sin
e, given a (weak) forward simulation R from A

1

to A

2

, it is immediate to observe that the relation R

0

�

= f(q

1

; Æ(q

2

) j q

1

R q

2

g is a (weak) probabilisti


forward simulation from A

1

to A

2

.

For the 
onverse impli
ation, let R be a (weak) forward simulation from A

1

to A

2

. De�ne a

relation R

0

�

= f(q

1

; q

2

) j 9

�

q

1

R �; q

2

2 supp(�)g. We show that R

0

is a (weak) forward simulation

from A

1

to A

2

.

The start 
ondition is trivial sin
e �q

1

R Æ(�q

2

), and thus q

1

R

0

q

2

. For the step 
ondition,

let q

1

R

0

q

2

, and let q

1

a

! q

0

1

. By de�nition of R

0

, there exists a measure � su
h that q

1

R � and

q

2

2 supp(�). Sin
e R is a (weak) forward simulation, there exists a hyper-transition �

a

! �

0

(a weak

hyper-transition �

a

=) �

0

) where �

0

is the 
attening of some measure �

00

su
h that Æ(q

0

1

) R �

00

.

Observe that, sin
e �

0

= 
atten(�

00

), ea
h element q

0

2

2 supp(�

0

) is also in the support of some

measure � 2 supp(�

00

). Thus, q

0

1

R �, and, by de�nition of R

0

, q

0

1

R

0

q

0

2

. Observe also that, by

de�nition of hyper-transition, there is a 
ombined transition q

2

a

! �

2

(a weak 
ombined transition

q

2

a

=) �

2

) su
h that supp(�

2

) � supp(�

0

). Thus, by 
hoosing any of the transitions that are


ombined in q

2

a

! �

2

, we obtain a transition q

2

a

! q

0

2

su
h that q

0

1

R

0

q

0

2

as needed. Similarly, for

the weak 
ase, it is enough to 
onsider a s
heduler � that generates q

2

a

=) �

2

and repla
e it by a

new s
heduler �

0

(�) that stops (does not return any transition) if �(�) stops with some non-zero

probability, and 
hooses any transition in supp(�) that redu
es the distan
e from a stopping point

otherwise. This leads to a weak transition q

2

a

=) q

0

2

su
h that q

0

1

R

0

q

0

2

as needed. 2

Proposition 3.7 Let P

1

and P

2

be PAs. Then:

1. If P

1

�

PF

P

2

then P

1

�

wPF

P

2

.

2. If H

1

= H

2

= ; then P

1

�

PF

P

2

i� P

1

�

wPF

P

2

.

3. If P

1

�

wPF

P

2

then P

1

�

DC

P

2

.

Proof. The �rst item follows from the fa
t that a 
ombined transition is a spe
ial 
ase of a weak


ombined transition; the se
ond item follows from the fa
t that in the absen
e of internal a
tions

a weak 
ombined transition is a 
ombined transition. For the third item see Proposition 8.7.1 of

[13℄. 2
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Figure 3: A PA that not tree-stru
tured even though its underlying automaton is.

3.6 Tree-Stru
tured Probabilisti
 Automata

A path of a PA P is a �nite sequen
e 
 = q

0

a

1

�

1

q

1

a

2

�

2

q

2

: : : q

n

of alternating states, a
tions and

distribution over states, starting with the start state of P su
h that for ea
h non-�nal i, q

i

a

i+1

! �

i+1

and q

i+1

2 supp(�

i+1

). We write lstate(
) to denote q

n

and paths(P) for the set of all path of

P. We say that P is tree-stru
tured if ea
h state is rea
hed via a unique path. Tree-stru
tured

probabilisti
 automata are 
hara
terized uniquely by the property that all states are rea
hable, the

start state does not o

ur in the target of any transition, and ea
h of the other states o

urs in the

target of exa
tly one transition. Also tree-stru
tured nondeterministi
 automata are 
hara
terized

uniquely by this property, albeit for a di�erent notion of transition.

If a probabilisti
 automaton is tree-stru
tured then its underlying automaton is also tree-

stru
tured. The following example shows that the 
onverse does not hold.

Example 3.3 Non-tree-stru
tured probabilisti
 automata

Figure 3 shows a probabilisti
 automaton that is not tree-stru
tured, as state q

0


an be

rea
hed via two di�erent paths. The underlying automaton is tree-stru
tured, however,

sin
e the only way to rea
h state q

0

is via the exe
ution qaq

0

.

The unfolding of a probabilisti
 automaton P, denoted by Unfold(P), is the tree-stru
tured

probabilisti
 automaton Q obtained from P by unfolding its transition graph into a tree. Formally,

� Q

Q

= paths(P),

� �q

Q

= �q

P

,

� E

Q

= E

P

,

� H

Q

= H

P

, and
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� D

Q

= f(
; a; �) j (9�

0

)[(lstate(
); a; �

0

) 2 D

P

^ (8q 2 supp(�

0

))[�

0

(q) = �(
a�

0

q)℄℄g.

Proposition 3.8 P �

PF

Unfold(P).

Proof. It is easy to 
he
k that the relation R where � R Æ(q) i� lstate(�) = q is a probabilisti


forward simulation from Unfold(P) to P and that the \inverse" of R, i.e., the relation R

0

su
h that

q R

0

Æ(�) i� � R Æ(q), is a probabilisti
 forward simulation from P to Unfold (P). 2

Proposition 3.9 P �

DC

Unfold(P).

Proof. By Proposition 3.8, and Proposition 3.7, Parts 1 and 3. 2

3.7 Trun
ations and Continuations

We now de�ne two simple 
onstru
tions on probabilisti
 exe
ution fragments that will be useful

for our proofs. Spe
i�
ally, we de�ne the trun
ation of a probabilisti
 exe
ution fragment, whi
h

is the result of stopping the 
omputation at some designated points, and the 
ontinuation of a

probabilisti
 exe
ution fragment, whi
h represents the rest of a probabilisti
 exe
ution fragment

after some �nite exe
ution fragment has o

urred.

Let � be a probabilisti
 exe
ution fragment of a PA P, generated by some s
heduler �, and let

� be a set of �nite exe
ution fragments of P. De�ne the trun
ation of � at � to be the same as

� ex
ept that no transition is s
heduled from all the � pla
es, that is, the probabilisti
 exe
ution

fragment �

0

, with the same start state as �, generated by a new s
heduler �

0

su
h that �

0

(�) = �(�)

if � 62 � and �

0

(�)(D) = 0 if � 2 �.

Proposition 3.10 The de�nition of trun
ation of a probabilisti
 exe
ution fragment � is indepen-

dent of the 
hoi
e of the indu
ing s
heduler.

Proof. Let q be the �rst state of � and let �

1

; �

2

be two s
hedulers that, together with q, indu
e

�. Let � be a set of �nite exe
ution fragments of P, and let �

0

1

; �

0

2

be the s
hedulers built from

�

1

; �

2

, respe
tively, a

ording to the de�nition of trun
ation. Let �

1

; �

2

be the indu
ed probabilisti


exe
ution fragments, and suppose by 
ontradi
tion that �

1

6= �

2

. Then there exists a �nite exe
ution

� su
h that �

1

(C

�

) 6= �

2

(C

�

). Consider su
h a �nite exe
ution � of minimum length. Observe that

j�j > 0 sin
e �(C

q

) = �

1

(C

q

) = �

2

(C

q

) = 1 and, for ea
h state q

0

6= q, �(C

q

0

) = �

1

(C

q

0

) = �

2

(C

q

0

) = 0.

Thus, � = �

0

a

0

q

0

for some �

0

; a

0

; q

0

, where �

1

(C

�

0

) = �

2

(C

�

0

). We distinguish two 
ases.

If �

0

2 �, then, by de�nition of �

0

1

and �

0

2

, �

0

1

(�

0

)(D) = �

0

2

(�

0

)(D) = 0. Thus, �

1

(C

�

) =

�

2

(C

�

) = 0, a 
ontradi
tion.

If �

0

62 �, then, by de�nition of �

0

1

and �

0

2

, �

0

1

(�

0

) = �

1

(�

0

) and �

0

2

(�

0

) = �

2

(�

0

). Sin
e �

1

and �

2

indu
e the same probabilisti
 exe
ution fragment �, by de�nition of measure of a 
one,

Equation (1),

P

tr2D(a

0

)

�

1

(�

0

)(tr )�

tr

(q

0

) =

P

tr2D(a

0

)

�

2

(�

0

)(tr )�

tr

(q

0

). Thus, it is also the 
ase

that

P

tr2D(a

0

)

�

0

1

(�

0

)(tr )�

tr

(q

0

) =

P

tr2D(a

0

)

�

0

2

(�

0

)(tr )�

tr

(q

0

). By de�nition of measure of a 
one,

Equation (1), �

1

(C

�

) = �

2

(C

�

), again a 
ontradi
tion. 2

Proposition 3.11 The trun
ation of � at � is a probabilisti
 exe
ution fragment of P.

Proof. Trivial sin
e the de�nition of trun
ation provides the generating s
heduler. 2
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Let � be a probabilisti
 exe
ution fragment of a PA P, generated by a s
heduler �, and let � be

a �nite exe
ution fragment with the same start state as �. De�ne � . �, the rest of � after pre�x �,

to be the probabilisti
 exe
ution fragment generated by the following s
heduler �

0

from lstate(�):

�

0

(�

0

) =

�

�(�

_

�

0

) if fstate(�

0

) = lstate(�)

�(�

0

) otherwise

Observe that the se
ond line in the de�nition of �

0

is irrelevant, and thus 
an be repla
ed by any

arbitrary expression, sin
e the exe
ution fragment generated by �

0

from lstate(�) depends only on

�

0

applied to exe
ution fragments that start from lstate(�).

Proposition 3.12 The de�nition of � . � is independent of the 
hoi
e of the indu
ing s
heduler.

Proof. Let q be the �rst state of � and let �

1

; �

2

be two s
hedulers that, together with q, indu
e

�. Let q

0

be lstate(�). Let �

0

1

; �

0

2

be the s
hedulers built from �

1

; �

2

, respe
tively, a

ording

to the de�nition of � . �. Let �

1

; �

2

be the indu
ed probabilisti
 exe
ution fragments from q

0

,

and suppose by 
ontradi
tion that �

1

6= �

2

. Then there exists a �nite exe
ution �

0

su
h that

�

1

(C

�

0

) 6= �

2

(C

�

0

). Consider su
h a �nite exe
ution �

0

of minimum length. Observe that j�

0

j > 0

sin
e �(C

q

0

) = �

1

(C

q

0

) = �

2

(C

q

0

) = 1 and, for ea
h state q

00

6= q

0

, �(C

q

00

) = �

1

(C

q

00

) = �

2

(C

q

00

) = 0.

Thus, �

0

= �

00

a

00

q

00

for some �

00

; a

00

; q

00

, where �

1

(C

�

00

) = �

2

(C

�

00

). We distinguish two 
ases.

If fstate(�

00

) 6= q

0

, then, by de�nition of �

1

and �

2

, �

1

(C

�

0

) = �

2

(C

�

0

) = 0, a 
ontradi
tion.

If fstate(�

00

) = q

0

, then, by de�nition of �

0

1

and �

0

2

, �

0

1

(�

00

) = �

1

(�

_

�

00

) and �

0

2

(�

00

) = �

2

(�

_

�

00

).

Sin
e �

1

and �

2

indu
e the same probabilisti
 exe
ution fragment �, by de�nition of measure of a


one, Equation (1),

P

tr2D(a

00

)

�

1

(�

_

�

00

)(tr )�

tr

(q

00

) =

P

tr2D(a

00

)

�

2

(�

_

�

00

)(tr )�

tr

(q

00

). Thus, we

derive

P

tr2D(a

00

)

�

0

1

(�

00

)(tr )�

tr

(q

00

) =

P

tr2D(a

00

)

�

0

2

(�

00

)(tr )�

tr

(q

00

). By de�nition of measure of a


one, Equation (1), �

1

(C

�

0

) = �

2

(C

�

0

), again a 
ontradi
tion. 2

Proposition 3.13 The following properties are valid.

1. � . � is a probabilisti
 exe
ution fragment of P.

2. For ea
h �nite exe
ution �

0

with lstate(�) = fstate(�

0

), �(C

�

_

�

0

) = �(C

�

) � (� . �)(C

�

0

).

Proof. The �rst item is trivial sin
e the de�nition of . provides the generating s
heduler. The

se
ond item follows dire
tly from the de�nition of the probability of a 
one. 2

4 Dual Probabilisti
 Automata

The proofs of our 
ompleteness results rely on a spe
ial 
ontext for a probabilisti
 automaton, whi
h

we 
all its dual probabilisti
 automaton. The dual automaton, dual(P), of a PA P 
an observe the

states P goes through and the transitions that are s
heduled during a probabilisti
 exe
ution. This

information is revealed by means of externally visible transitions of dual(P) with the help of a

spe
i�
 s
heduler that syn
hronizes P with its dual.

In this se
tion we introdu
e the 
onstru
tion of a dual probabilisti
 automaton, we introdu
e

the s
heduler that syn
hronizes a probabilisti
 automaton with its dual, and we prove some results

about the resulting tra
e distributions.

Informally, the dual of a probabilisti
 automaton P is a probabilisti
 automaton C whose states

in
lude a distinguished start state, all the states of P, and all the transitions of P. Automaton
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C has a spe
ial transition from its own start state, �q

C

, to the start state of P, �q

P

, labeled by �q

P

.

Also, from every state q of P, C has a uniform transition labeled by 
h to the set of transitions of

P that begin in state q. Finally, for every transition tr of P, and every state q in the support of

�

tr

, C has a transition labeled by q from tr to q.

De�nition 4.1 The dual probabilisti
 automaton of a PA P is a PA C su
h that

� Q

C

= f�q

C

g [Q

P

[D

P

,

� E

C

= Q

P

[ f
hg,

� H

C

= ;, and

� D

C

= f(�q

C

; �q

P

; �q

P

)g[

f(q; 
h ;U(ftr 2 D

P

j sour
e(tr ) = qg)) j q 2 Q

P

^ q !g[

f(tr ; q; q) j tr 2 D

P

; q 2 supp(�

tr

)g.

Observe that the dual of an ordinary nondeterministi
 automaton enables at most one transition

from ea
h state. Indeed, the only states that may enable more than one transition are the states

of the form tr 2 D

P

, whi
h enable one transition for ea
h state in supp(�

tr

). However, the size of

supp(�

tr

) is 1 in an ordinary automaton.

We assume without loss of generality that a probabilisti
 automaton P and its dual do not have

any a
tions in 
ommon (otherwise we 
an simply rename states of P to a
hieve our goal), and thus

P and its dual are 
ompatible.

Sin
e C and P share no a
tions, merely 
omposing C with P does not ensure that C faithfully

emulates the behavior of P. However, an appropriate s
heduler 
an syn
hronize the two automata

and ensure su
h an emulation, whi
h will be suÆ
ient for our purposes. Given a probabilisti


automaton P and its dual C, we de�ne a s
heduler � for PkC, 
alled the observer of P, that

syn
hronizes the two automata so that the internal stru
ture of P is visible in the tra
e. Spe
i�
ally,

the s
heduler � starts by s
heduling the transition of C from the start state of C to the start state

of P, leading to state (�q; �q), whi
h is of the form (q; q). Then � repeats the following as long as

q !:

1. S
hedule the 
h transition of C, thus 
hoosing a transition tr of P.

2. S
hedule transition tr of P, leading P to a new state q

0

.

3. S
hedule the transition of C labeled by the state q

0

, resulting in the state (q

0

; q

0

), whi
h is

again of the form (q; q).

S
heduler � indu
es a tra
e distribution � for PkC where all states and external a
tions of P appear

expli
itly.

We state and prove some properties of �. The �rst property, Equation (3), says that the 
one

of tra
es beginning with the start state of P has probability 1. The se
ond property, Equation (4),

says that for any state q of P from whi
h some transition is enabled and for ea
h �nite tra
e �

of PkC, the probability of the 
one of tra
es beginning with �q is the same as the probability of

the 
one beginning with �q 
h , that is, on
e �q o

urs, the probability that 
h follows is 1. The

third property, Equation (5), says that for any state q of P and for ea
h �nite tra
e � of PkC, the

probability of the 
one of tra
es beginning with �q 
h is the same as the sum of the probabilities
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of the 
ones beginning with �q 
h �

0

where �

0

represents one single step of P from q, that is, on
e


h o

urs, one of the transitions of A that are enabled from q is exposed. The right-hand side of

Equation (5) 
onsists of two parts dealing with external and internal transitions, respe
tively.

Proposition 4.2 The tra
e distribution � indu
ed by the observer of a probabilisti
 automaton P

satis�es the following three properties, for all �nite tra
es � of PkC and for all states q of P:

�(C

�q

) = 1 (3)

q ! =) �(C

�q

) = �(C

�q 
h

) (4)

�(C

�q 
h

) =

X

(a;q

0

)ja2E;(9�)[(q;a;�)2D;q

0

2supp(�)℄

�(C

�q 
h aq

0

) +

X

q

0

j(9(a;�))[a2H;(q;a;�)2D;q

0

2supp(�)℄

�(C

�q 
h q

0

) (5)

Proof. Equation (3) follows from the fa
t that � s
hedules a
tion �q immediately. Equation (4)

follows from the fa
t that, after s
heduling a
tion q, thus leading to a state of the form (q; q), �

immediately s
hedules a
tion 
h if q enables at least one transition. Equation (5) follows from the

fa
t that, after s
heduling 
h , � s
hedules one of the transitions of P that are enabled from q, say

q

a

! �, followed by a transition of C labeled by a state in supp(�). 2

Observe that Equation (5) has a simpler formulation in 
ase P is an ordinary nondeterministi


automaton.

Proposition 4.3 The tra
e distribution � indu
ed by the observer of an automaton A satis�es the

following property, for all �nite tra
es � of AkC and for all states q of A:

�(C

�q 
h

) =

X

(a;q

0

)ja2E;q

a

!q

0

�(C

�q 
h aq

0

) +

X

q

0

j(9a)a2H;q

a

!q

0

�(C

�q 
h q

0

) (6)

The following properties are not needed for the proof of 
ompleteness for nondeterministi


automata, so the reader may skip them for the moment and return here when reading the proofs

of Se
tion 6.

Proposition 4.4 Let � be the tra
e distribution indu
ed by the observer of a tree-stru
tured proba-

bilisti
 automaton P, and let tr = (q; a; �) be a transition of P. Let k be the number of transitions

that are enabled from q in P, and let q

0

be a state in supp(�). Then the following properties hold:

�(�q

0

) =

�(�q)

k

�(q

0

) (7)

�(�q

0

) =

0

�

X

q

00

2supp(�)

�(�q

00

)

1

A

�(q

0

) (8)
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Proof. Let � be the observer of P, and let �

�

be the probabilisti
 exe
ution indu
ed by �. Sin
e P

is tree-stru
tured, the set �

q


ontains a single exe
ution �. Indeed, by de�nition of tree-stru
tured,

there is only one exe
ution in P ending with state q, and � simply interleaves this exe
ution with

transitions labeled by 
h, by the names of the transitions of P that are needed to rea
h q, and by

the names of the states that are rea
hed. Similarly, �

q

0


ontains a single exe
ution �

0

.

On
e state q is rea
hed, � s
hedules a
tion 
h , rea
hing state tr of C with probability 1=k. Then,

� s
hedules transition tr , rea
hing state q

0

in P with probability �(q

0

), and �nally � s
hedules the

transition of C labeled by q

0

. Thus, �

�

(C

�

0

) = �

�

(C

�

)(1=k)�(q

0

). Then Equation (7) follows by

Equation (2).

By summing over supp(�) in Equation (7), we get

X

q

00

2supp(�)

�(�q

00

) =

�(�q)

k

X

q

00

2supp(�)

�(q

00

) (9)

Observe that

P

q

00

2supp(�)

�(q

00

) = 1. Thus, deriving �(�q) from Equation (9), repla
ing it in

Equation (7), and 
an
elling k from numerator and denominator, we get Equation (8) as needed.

2

5 Chara
terizations of the Tra
e Distribution Pre
ongruen
e Re-

lation for Nondeterministi
 Automata

In this se
tion, we present our 
hara
terization theorems for �

DC

for nondeterministi
 automata:

Theorem 5.2 
hara
terizes �

DC

in terms of �

F

, for automata without internal a
tions, and Theo-

rem 5.4 
hara
terizes �

DC

in terms of �

wF

, for arbitrary nondeterministi
 automata. In ea
h 
ase,

we prove the result �rst for tree-stru
tured automata and then extend it to the non-tree-stru
tured


ase via unfolding. The interesting dire
tion for ea
h of these results is the 
ompleteness dire
tion,

showing that A

1

�

DC

A

2

implies the existen
e of a simulation relation from A

1

to A

2

.

Our proofs of 
ompleteness for nondeterministi
 automata use the simple 
hara
terization in

Proposition 3.5, applied with C equal to the dual probabilisti
 automaton of A

1

.

5.1 Nondeterministi
 Automata Without Internal A
tions

We begin by 
onsidering nondeterministi
 automata without internal a
tions. We �rst 
onsider

tree-stru
tured automata.

Proposition 5.1 Let A

1

, A

2

be nondeterministi
 automata without internal a
tions su
h that A

1

tree-stru
tured. Then A

1

�

DC

A

2

implies A

1

�

F

A

2

.

Proof. Assume that A

1

�

DC

A

2

. Let C be the dual probabilisti
 automaton of A

1

and 
onsider

the observer �

1

of A

1

as de�ned in Se
tion 4. Let � be the tra
e distribution indu
ed by �

1

.

Sin
e A

1

�

DC

A

2

, Proposition 3.5 implies that � is also a tra
e distribution of A

2

kC. That is,

there exists a probabilisti
 exe
ution � ofA

2

kC, indu
ed by some s
heduler �

2

, su
h that tdist(�) = �.

For ea
h state q

1

in Q

1

, let �

q

1

be the set of �nite exe
utions of A

2

kC whose last transition is

labeled by q

1

. For ea
h state q

2

of A

2

, let �

q

1

;q

2

be the set of exe
utions in �

q

1

whose last state is

the pair (q

2

; q

1

).
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De�ne a relation R as follows: q

1

R q

2

if and only if there exists a �nite exe
ution � in �

q

1

;q

2

su
h that �(C

�

) > 0. We 
laim that R is a forward simulation from A

1

to A

2

.

For the start 
ondition, we must show that �q

1

R �q

2

. Consider the start state (�q

2

; �q

C

) of A

2

kC.

Sin
e there are no internal a
tions in A

2

or C, and sin
e, by Equation (3) from Proposition 4.2,

�(C

�q

1

) = 1, the only a
tion that is s
heduled initially by �

2

is �q

1

, leading to state (�q

2

; �q

1

). Thus,

the �nite exe
ution � = (�q

2

; �q

C

)�q

1

(�q

2

; �q

1

) is an element of �

�q

1

;�q

2

su
h that �(C

�

) > 0, as needed.

For the step 
ondition, assume q

1

R q

2

and let q

1

a

!

1

q

0

1

be a transition of A

1

, whi
h we denote

by tr for 
onvenien
e. We exhibit a mat
hing transition q

2

a

!

2

q

0

2

.

By de�nition of R, there exists a �nite exe
ution � in �

q

1

;q

2

, su
h that �(C

�

) > 0. Sin
e

�

q

1

;q

2

is a subset of �

q

1

, by de�nition of �

q

1

, tra
e(�) = �q

1

for some �nite tra
e �. Therefore,

�(C

�q

1

) > 0. Sin
e q

1

enables at least one transition in A

1

, spe
i�
ally transition tr , Equation (4)

from Proposition 4.2 implies that �(C

�q

1


h

) = �(C

�q

1

). Then, sin
e A

2

and C have no internal

a
tions, �

2

s
hedules a
tion 
h from � with probability 1.

By de�nition of dual(A

1

), the transition labeled by 
h that leaves from state q

1

of C leads to state

tr with non-zero probability. Therefore, �(C

� 
h (q

2

;tr)

) > 0. By Equation (6) from Proposition 4.3,

where only the �rst term of the right-hand side is used due to the absen
e of internal a
tions, �

2

must extend � 
h (q

2

; tr ) with two steps labeled by an a
tion and a state of A

1

, respe
tively, where

the a
tion and the state are 
ompatible with one of the transitions of A

1

that are enabled from

q

1

. Sin
e state tr of C enables only a
tion q

0

1

, and sin
e, by the tree-stru
ture of A

1

, a is uniquely

determined by q

0

1

, the a
tion and state s
heduled by �

2

are a and q

0

1

. Therefore, there exists a state

q

0

2

of A

2

su
h that the exe
ution �

0

= � 
h (q

2

; tr )a(q

0

2

; tr )q

0

1

(q

0

2

; q

0

1

) is an exe
ution in �

q

0

1

;q

0

2

su
h

that �(C

�

0

) > 0. Then q

0

1

R q

0

2

and q

2

a

! q

0

2

as needed. 2

Now we present our result for general (non-tree-stru
tured) nondeterministi
 automata without

internal a
tions.

Theorem 5.2 Let A

1

, A

2

be nondeterministi
 automata without internal a
tions. Then A

1

�

DC

A

2

if and only if A

1

�

F

A

2

.

Proof. First we prove soundness of forward simulations:

A

1

�

F

A

2

) (Proposition 3.6, Part 1)

A

1

�

PF

A

2

) (Proposition 3.7, Part 1)

A

1

�

wPF

A

2

) (Proposition 3.7, Part 3)

A

1

�

DC

A

2

:

Next we prove 
ompleteness:

A

1

�

DC

A

2

) (Proposition 2.3)

Unfold(A

1

) �

F

A

1

�

DC

A

2

) (as in soundness proof)

Unfold(A

1

) �

DC

A

1

�

DC

A

2

) (�

DC

is transitive)

Unfold(A

1

) �

DC

A

2

) (Proposition 5.1)

Unfold(A

1

) �

F

A

2

) (Proposition 2.3)

A

1

�

F

Unfold (A

1

) �

F

A

2

) (�

F

is transitive)

A

1

�

F

A

2

:

2
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5.2 Nondeterministi
 Automata With Internal A
tions

Next we extend the results of Se
tion 5.1 to automata that may in
lude internal a
tions. The

proofs are analogous to those in Se
tion 5.1. The di�eren
e is that, in several pla
es in the proof of

Proposition 5.3, we need to reason about multi-step extensions of exe
utions instead of single-step

extensions. Again, we begin with tree-stru
tured automata.

Proposition 5.3 Let A

1

, A

2

be nondeterministi
 automata su
h that A

1

is tree-stru
tured. Then

A

1

�

DC

A

2

implies A

1

�

wF

A

2

.

Proof. Assume that A

1

�

DC

A

2

. De�ne the dual probabilisti
 automaton C of A

1

, the observer

�

1

, the tra
e distribution �, the s
heduler �

2

, and the probabilisti
 exe
ution � as in the proof of

Proposition 5.1. Without loss of generality we assume that �

2

s
hedules a
tion �q

1

with probability

1 from the start state of A

2

kC (essentially, sin
e internal transitions are only transitions of A

2

and

the transition labeled by �q

1

is only a transition of C, we 
an ex
hange any internal transitions of A

2

that o

ur before the transition labeled by �q

1

with the transition labeled by �q

1

and rea
h exa
tly

the same states with the same probabilities).

De�ne the � sets and the relation R as in the proof of Proposition 5.1. Now we 
laim that R

is a weak forward simulation from A

1

to A

2

.

For the start 
ondition, we must show that �q

1

R �q

2

. Consider the start state (�q

2

; �q

C

) of A

2

kC.

Sin
e, by assumption, �

2

s
hedules a
tion �q

1

with probability 1 from the start state of A

1

kC, the

�nite exe
ution � = (�q

2

; �q

C

)�q

1

(�q

2

; �q

1

) is an element of �

�q

1

;�q

2

su
h that �(C

�

) > 0, as needed.

For the step 
ondition, assume q

1

R q

2

and let q

1

a

!

1

q

0

1

be a transition of A

1

, whi
h we denote

by tr . We exhibit a mat
hing weak transition q

2

a

=)

2

q

0

2

.

By de�nition of R, there exists a �nite exe
ution � in �

q

1

;q

2

su
h that �(C

�

) > 0. Sin
e

�

q

1

;q

2

is a subset of �

q

1

, by de�nition of �

q

1

, tra
e(�) = �q

1

for some �nite tra
e �. Therefore,

�(C

�q

1

) > 0. Sin
e q

1

enables at least one transition in A

1

, spe
i�
ally transition tr , Equation (4)

from Proposition 4.2 implies that �(C

�q

1


h

) = �(C

�q

1

). Thus, there exists an exe
ution fragment �

0

of A

2

kC with tra
e 
h su
h that �(C

�

_

�

0

) > 0. Furthermore, sin
e, by de�nition of dual(A

1

), the

transition of C labeled by 
h that leaves from state q

1

leads to state tr with non-zero probability,

we 
an assume that the last state of �

0

is of the form (q

0

; tr) for some state q

0

of A

2

.

Sin
e �(C

�q

1


h

) > 0, by Equation (6) from Proposition 4.3, �

2

must extend �

_

�

0

in su
h a

way that the �rst or the �rst two external a
tions are 
ompatible with one of the transitions of

A

1

that are enabled from q

1

. (The number of external a
tions depends on whether the 
ompatible

transition of A

1

is labeled by an internal or external a
tion.) Sin
e state tr of C enables only a
tion

q

0

1

, and sin
e, by the tree-stru
ture of A

1

, a is uniquely determined by q

0

1

, the �rst or �rst two

external a
tions of A

2

kC s
heduled by �

2

are either q

0

1

or aq

0

1

depending on whether a is internal

or external. Thus, there exists an exe
ution fragment �

00

of A

2

kC, with tra
e tra
e(aq

0

1

), su
h that

�(C

�

_

�

0_

�

00

) > 0. Furthermore, we 
an assume that the last transition of �

00

is labeled by q

0

1

(simply trun
ate �

00

otherwise).

Let (q

0

2

; q

0

1

) be the last state of �

00

. Then, �

_

�

0 _

�

00

2 �

q

0

1

;q

0

2

, thus showing that q

0

1

R q

0

2

.

It remains to show that q

2

a

=) q

0

2

. For this, it suÆ
es to observe that the exe
ution fragment

(�

0 _

�

00

)dA

2

has tra
e a, �rst state q

2

, and last state q

0

2

. 2

Theorem 5.4 Let A

1

, A

2

be nondeterministi
 automata. Then A

1

�

DC

A

2

if and only if A

1

�

wF

A

2

.
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Proof. Analogous to the proof of Theorem 5.2. First we prove soundness of weak forward simu-

lations:

A

1

�

wF

A

2

) (Proposition 3.6, Part 2)

A

1

�

wPF

A

2

) (Proposition 3.7, Part 3)

A

1

�

DC

A

2

:

Now we prove 
ompleteness:

A

1

�

DC

A

2

) (Proposition 2.3)

Unfold(A

1

) �

F

A

1

�

DC

A

2

) (as in proof Theorem 5.2)

Unfold(A

1

) �

DC

A

1

�

DC

A

2

) (�

DC

is transitive)

Unfold(A

1

) �

DC

A

2

) (Proposition 5.3)

Unfold(A

1

) �

wF

A

2

) (Proposition 2.3)

A

1

�

F

Unfold(A

1

) �

wF

A

2

) (Proposition 2.2, Part 1)

A

1

�

wF

Unfold(A

1

) �

wF

A

2

) (�

wF

is transitive)

A

1

�

wF

A

2

:

2

6 Chara
terizations of the Tra
e Distribution Pre
ongruen
e Re-

lation for Probabilisti
 Automata

Now we present our 
hara
terization theorems for �

DC

for probabilisti
 automata: Theorem 6.3


hara
terizes �

DC

in terms of �

PF

, for PAs without internal a
tions, and Theorem 6.5 
hara
terizes

�

DC

in terms of �

wPF

, for arbitrary probabilisti
 automata. Again, we give the results �rst for

tree-stru
tured automata and extend them by unfolding. Again, the interesting dire
tion is the


ompleteness dire
tion, showing that P

1

�

DC

P

2

implies the existen
e of a simulation relation

from P

1

to P

2

. Our proofs of 
ompleteness for PAs are analogous to those for nondeterministi


automata.

6.1 Probabilisti
 Automata Without Internal A
tions

We �rst 
onsider tree-stru
tured automata.

Proposition 6.1 Let P

1

, P

2

be probabilisti
 automata without internal a
tions su
h that P

1

is

tree-stru
tured. Then P

1

�

DC

P

2

implies P

1

�

PF

P

2

.

Proof. Assume that P

1

�

DC

P

2

. De�ne the dual probabilisti
 automaton C of A

1

, the observer

�

1

, the tra
e distribution �, the s
heduler �

2

, and the probabilisti
 exe
ution � as in the proof of

Proposition 5.1. De�ne the � sets as in the proof of Proposition 5.1.

De�ne a relation R as follows: q

1

R �

2

if and only if

P

�2�

q

1

�(C

�

) > 0 and for ea
h state

q

2

2 Q

2

,

�

2

(q

2

) =

P

�2�

q

1

;q

2

�(C

�

)

P

�2�

q

1

�(C

�

)

: (10)

That is, the measure �

2

des
ribes probabilities of the various �

q

1

;q

2

's relative to �

q

1

. Note that the

equation above is well de�ned sin
e, by the tree-stru
ture of P

1

, all the 
ones represented by �

q

1
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are disjoint, and thus

P

�2�

q

1

�(C

�

) � 1. We 
laim that R is a probabilisti
 forward simulation

from P

1

to P

2

.

Before proving that R is a probabilisti
 forward simulation we make several observations.

1. Relation R is a fun
tion from Q

1

to Dis
(Q

2

).

Indeed, if

P

�2�

q

1

�(C

�

) > 0, then there exists exa
tly one measure that satis�es Equa-

tion (10). Furthermore, given the 
onstru
tion of �, every state q

1

of Q

1

o

urs with some

positive probability in �, thus,

P

�2�

q

1

�(C

�

) > 0 for all states q

1

of Q

1

.

2. If q

1

R �

2

, then, for ea
h state q

2

2 Q

2

and ea
h exe
ution � 2 �

q

1

;q

2

,

�(C

�

) > 0) q

2

2 supp(�

2

): (11)

That is, the exe
ution � o

urs with non-zero probability in � only if �

2

assigns non-zero

probability to q

2

. This property is a dire
t 
onsequen
e of Equation (10).

3. For ea
h transition q

1

a

! �

0

1

of P

1

, the following equation holds:

�

0

1

(q

0

1

) =

P

�2�

q

0

1

�(C

�

)

P

q2supp(�

0

1

) ; �2�

q

�(C

�

)

: (12)

That is, the relative probabilities of the states of supp(�

0

1

) in � are given by �

0

1

. This result

follows by instantiating Equation (8) from Proposition 4.4 with q

1

a

! �

0

1

to derive the proba-

bility of a state q

0

1

in the support of �

0

1

, and by repla
ing the diamond expressions a

ording

to Equation (2) from Proposition 3.2.

4. For ea
h transition q

1

a

! �

0

1

of P

1

, the following equation holds:

X

�2�

q

1

�(C

�

) = k

X

q2supp(�

0

1

) ; �2�

q

�(C

�

); (13)

where k is the number of transitions of P

1

enabled from q

1

. That is, the probability of

rea
hing q

1

in � is k times the probability of rea
hing q

1

and s
heduling tr , where tr denotes

the transition q

1

a

! �

0

1

. Informally, transition tr is s
heduled only if state q

1

is rea
hed and

the out
ome of the following transition labeled by 
h is tr , whi
h happens with probability

1=k. The reason why

P

q2supp(�

0

1

) ; �2�

q

�(C

�

) is the probability of rea
hing q

1

and s
heduling

tr is that states from supp(�

0

1

) 
an o

ur only after q

1

has o

urred and tr is rea
hed (see the

de�nition of dual automaton and of observer of a dual automaton) and furthermore states from

supp(�

0

1

) o

ur with probability 1 on
e tr is rea
hed (see Equation (5) from Proposition 4.2).

This result follows by instantiating Equation (7) from Proposition 4.4 with q

1

a

! �

0

1

to

derive the probability of a state q

0

1

in the support of �

0

1

, repla
ing the diamond expressions

a

ording to Equation (2) from Proposition 3.2, summing over supp(�

0

1

), observing that

P

q

0

1

2supp(�

0

1

)

�

0

1

(q

0

1

) = 1, and deriving

P

�2�

q

1

�(C

�

) from the resulting equation.

We are now ready to show that R is a probabilisti
 forward simulation. For the start 
ondition,

we must show that �q

1

R Æ(�q

2

).
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Consider the start state (�q

2

; �q

C

) of A

2

kC. Sin
e there are no internal a
tions in A

2

or C, and

sin
e, by Equation (3) from Proposition 4.2, �(C

�q

1

) = 1, the only a
tion that is s
heduled initially by

�

2

is �q

1

, leading to state (�q

2

; �q

1

) with probability 1. Thus, the �nite exe
ution � = (�q

2

; �q

C

)�q

1

(�q

2

; �q

1

)

is an element of �

�q

1

;�q

2

su
h that �(C

�

) = 1, and, by de�nition of R, �q

1

R Æ(�q

2

) as needed.

For the step 
ondition, assume that q

1

R �

2

and let q

1

a

!

1

�

0

1

be a transition of P

1

, whi
h we

denote by tr . We must exhibit a probability measure �

0

2

2 Dis
(Dis
(Q

2

)) and a hyper-transition

�

2

a

!

2

�

00

2

, mat
hing the given transition, where �

00

2

= 
atten(�

0

2

) and �

0

1

R �

0

2

. We do this by

deriving a transition tr

�

for ea
h exe
ution � of �

q

1

and by 
ombining the tr

�

's appropriately into

transitions tr

q

, for ea
h state q 2 supp(�

2

), that are the basis for the required hyper-transition. The

tr

�

transitions are derived from �; the 
onstru
tion 
onsiders only those �'s for whi
h �(C

�

) > 0.

The other �'s 
an be treated arbitrarily.

Consider an exe
ution � of �

q

1

su
h that �(C

�

) > 0. By Property (11), � 2 �

q

1

;q

2

for some

state q

2

in supp(�

2

). Sin
e �

q

1

;q

2

is a subset of �

q

1

, by de�nition of �

q

1

, tra
e(�) = �q

1

for some

�nite tra
e �. Therefore, �(C

�q

1

) > 0. Sin
e q

1

enables at least one transition in P

1

, spe
i�
ally

transition tr , Equation (4) from Proposition 4.2 implies that �(C

�q

1


h

) = �(C

�q

1

). Then, sin
e A

2

and C have no internal a
tions, �

2

s
hedules a
tion 
h from � with probability 1.

By de�nition of dual(A

1

), the transition labeled by 
h that leaves from state q

1

of C leads to state

tr with non-zero probability. Therefore, �(C

� 
h (q

2

;tr)

) > 0. By Equation (5) from Proposition 4.2,

where only the �rst term of the right-hand side is used due to the absen
e of internal a
tions, �

2

must extend � 
h (q

2

; tr ) with two steps labeled by an a
tion and a state of A

1

, respe
tively, where

the a
tion and the state are 
ompatible with one of the transitions of A

1

that are enabled from

q

1

. Sin
e state tr of C enables only a
tions in supp(�

0

1

), and sin
e, by the tree-stru
ture of A

1

, a

is uniquely determined by �

0

1

, the a
tion that is s
heduled is a and the state that is s
heduled is a

state in supp(�

0

1

). Thus, �

2

(� 
h (q

2

; tr )) returns a probability measure over transitions labeled by

a. This measure identi�es a 
ombined transition of A

2

labeled by a that leaves from q

2

, whi
h we

denote by tr

�

.

Now, using the tr

�

transitions, we de�ne a 
ombined transition from ea
h state in the support

of �

2

. Namely, for ea
h state q 2 supp(�

2

), let tr

q

be the 
ombined transition of P

2

de�ned by:

tr

q

�

=

X

�2�

q

1

;q

�(C

�

)

P

�

0

2�

q

1

;q

�(C

�

0

)

tr

�

: (14)

Informally, ea
h element of �

q

1

;q

is an exe
ution in are � that 
ontributes to the emulation of

transition q

1

a

!

1

�

0

1

from q. Equation (14) 
omputes tr

q

, the overall 
ontribution to the emulation

from q, by averaging over all elements of �

q

1

;q

. We 
ould prove that �

q

1

;q


ontains only one element

�

0

su
h that �(C

�

0

) > 0 and simplify Equation (14) a

ordingly. However, this simpli�
ation is not

ne
essary for the proof. Now we de�ne the measure �

00

2

2 Dis
(Q

2

):

�

00

2

�

=

X

q2supp(�

2

)

�

2

(q)�

tr

q

: (15)

Then, by 
onstru
tion, �

2

a

! �

00

2

is a hyper-transition of P

2

.

It remains to de�ne a probability measure �

0

2

2 Dis
(Dis
(Q

2

)) su
h that �

00

2

= 
atten(�

0

2

) and

�

0

1

R �

0

2

.

For ea
h q 2 supp(�

0

1

), let �

q

be the unique measure su
h that q R �

q

. We 
an identify �

q

be
ause R is a fun
tion. De�ne �

0

2

2 Dis
(Dis
(Q

2

)) su
h that, for ea
h q 2 supp(�

0

1

), �

0

2

(�

q

) =

P

q

0

2supp(�

0

1

)j�

q

0

=�

q

�

0

1

(q

0

). Then �

0

1

R �

0

2

by de�nition of �

0

2

.
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It remains to show that �

00

2

= 
atten(�

0

2

), that is, that �

00

2

=

P

�2supp(�

0

2

)

�

0

2

(�)�. From the

de�nition of �

0

2

and of the 
atten operator, it suÆ
es to show that for every q

2

2 Q

2

,

�

00

2

(q

2

) =

X

q2supp(�

0

1

)

�

0

1

(q)�

q

(q

2

): (16)

To prove Equation (16) we �rst 
laim that the following equation is valid for ea
h pair of states

q

1

; q

2

of P

1

and P

2

, respe
tively, if k denotes the number of transitions of P

1

that are enabled from

q

1

:

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

): (17)

Informally, the left-hand side of Equation (17) represents the probability of s
heduling q

1

and

then rea
hing q

2

a

ording to the transition tr

�

, without 
onsidering the out
ome of the transition

labeled by 
h. The right-hand side, on the other hand, 
omputes the probability of s
heduling q

1

,

s
heduling 
h and rea
hing �

0

1

, and then s
heduling tr

�

and rea
hing q

2

. State �

0

1

is rea
hed by 
h

with probability 1=k, whi
h justi�es the k fa
tor in the right-hand side.

To prove Equation (17), 
onsider an exe
ution � 2 �

q;q

2

where q 2 supp(�

0

1

). Sin
e q o
-


urs always after q

1

, exe
ution � 
an be split into �

0 _

�

00

where �

0

2 �

q

1

. Furthermore,

tra
e(�

00

) = 
h aq, and sin
e there are no internal a
tions in P

2

and C, � is the unique exten-

sion of �

0

that is in �

q;q

2

. In parti
ular, �

00

= (q

0

; q

1

) 
h (q

0

; tr )a(q

2

; tr )q(q

2

; q) for some state q

0

of A

2

, and �(C

�

) = �(C

�

0

)(1=k)�

tr

�

0

(q

2

). Thus, ea
h summand in the right-hand side of Equa-

tion (17) has a 
orresponding summand in the left-hand side that di�ers by a fa
tor of k, and the


orresponden
e relation is an inje
tion. If the 
orresponden
e is not a bije
tion, then the � terms

that are left out on the left-hand side are su
h that �

tr

�

(q

2

) = 0 (otherwise an extension in �

q;q

2

for some q exists). This suÆ
es.

We now 
onsider the left-hand side of Equation (16). Consider the de�nition of �

00

2

given by

Equation (15). By expanding �

2

(q) a

ording to the de�nition of �

2

given by Equation (10), and

expanding �

tr

(q

2

) a

ording to the de�nition of �

tr

given by Equation (14), we obtain

�

00

2

(q

2

) =

X

q2supp(�

2

)

P

�2�

q

1

;q

�(C

�

)

P

�2�

q

1

�(C

�

)

P

�2�

q

1

;q

�(C

�

)�

tr

�

(q

2

)

P

�2�

q

1

;q

�(C

�

)

:

By 
ross simplifying the top leftmost and bottom rightmost fa
tors, and by fa
toring the left

denominator out of the sum, we obtain

�

00

2

(q

2

) =

P

q2supp(�

2

)

P

�2�

q

1

;q

�(C

�

)�

tr

�

(q

2

)

P

�2�

q

1

�(C

�

)

:

By Property (11), we 
an rewrite the numerator as follows:

�

00

2

(q

2

) =

P

�2�

q

1

�(C

�

)�

tr

�

(q

2

)

P

�2�

q

1

�(C

�

)

:

By multiplying numerator and denominator by k, applying Equation (17) to the numerator, and

applying Equation (13) to the denominator, we obtain

�

00

2

(q

2

) =

P

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

)

P

q2supp(�

0

1

) ; �2�

q

�(C

�

)

: (18)
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We now 
onsider the right-hand side of Equation (16). By applying Equations (12) and (10)

to the two fa
tors of the right-hand side of Equation (16), and by simplifying 
ommon fa
tors

algebrai
ally, we obtain

X

q2supp(�

0

1

)

�

0

1

(q)�

q

(q

2

) =

P

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

)

P

q2supp(�

0

1

) ; �2�

q

�(C

�

)

: (19)

Now Equation (16) follows by dire
t 
ombination of Equations (18) and (19). 2

Interestingly, the probabilisti
 forward simulation that we 
onstru
ted in the above proof is

fun
tional. Fun
tional simulations are usually 
alled re�nement mappings. Write P

1

�

PR

P

2

if

there exists a fun
tional probabilisti
 forward simulations from P

1

to P

2

. Then we 
an state the

following 
orollary of Proposition 6.1, whi
h is a probabilisti
 version of Proposition 3.12 in [10℄:

Corollary 6.2 Let P

1

, P

2

be probabilisti
 automata without internal a
tions su
h that P

1

is tree-

stru
tured. Then P

1

�

PF

P

2

i� P

1

�

PR

P

2

.

Proof. It is enough to observe that ea
h state q

1

of P

1

o

urs with some positive probability in

the tra
e distribution � of the proof of Proposition 6.1. 2

Theorem 6.3 Let P

1

, P

2

be probabilisti
 automata without internal a
tions. Then P

1

�

DC

P

2

if

and only if P

1

�

PF

P

2

.

Proof. First we prove soundness of probabilisti
 forward simulations:

P

1

�

PF

P

2

) (Proposition 3.7, Part 1)

P

1

�

wPF

P

2

) (Proposition 3.7, Part 3)

P

1

�

DC

P

2

:

Now we prove 
ompleteness:

P

1

�

DC

P

2

) (Proposition 3.9)

Unfold(P

1

) �

DC

P

1

�

DC

P

2

) (�

DC

is transitive)

Unfold(P

1

) �

DC

P

2

) (Proposition 6.1)

Unfold(P

1

) �

PF

P

2

) (Proposition 2.3)

P

1

�

PF

Unfold(P

1

) �

PF

P

2

) (�

PF

is transitive)

P

1

�

PF

P

2

:

2

6.2 Probabilisti
 Automata With Internal A
tions

Again, we start with tree-stru
tured PAs.

Proposition 6.4 Let P

1

, P

2

be probabilisti
 automata with P

1

tree-stru
tured. Then P

1

�

DC

P

2

implies P

1

�

wPF

P

2

.
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Proof. Assume that P

1

�

DC

P

2

. De�ne the dual probabilisti
 automaton C of A

1

, the observer

�

1

, the tra
e distribution �, the s
heduler �

2

, and the probabilisti
 exe
ution � as in the proof of

Proposition 5.1. Without loss of generality we assume that �

2

s
hedules a
tion �q

1

with probability

1 from the start state of A

2

kC (essentially we 
an ex
hange the internal transitions of A

2

that o

ur

before the transition labeled by �q

1

with the transition labeled by �q

1

).

De�ne the � sets as in the proof of Proposition 5.1, and de�ne relation R a

ording to Equa-

tion (10) as in the proof of Proposition 6.1. Observe that Property (11) and Equations (12) and (13)

hold for the same reasons as before.

The proof that R is a weak probabilisti
 forward simulation is exa
tly as before ex
ept for the

de�nition of the tr

�

transitions. Thus, in the rest of the proof we 
onstru
t the tr

�

's and prove

that Equation (17) still holds.

Assume that q

1

R �

2

and let q

1

a

!

1

�

0

1

be a transition of P

1

, whi
h we denote by tr .

We introdu
e a spe
ial 
onditional 
onstru
tion that is needed for the de�nition of the tr

�

's.

Let C

tr

be the same as C ex
ept that the transition q

1


h

! �, where � is uniquely determined by q

1

,

is repla
ed by q

1


h

! Æ(tr ). Given a s
heduler � for A

2

kC, de�ne the s
heduler � j tr for A

2

kC

tr

that is the same as � ex
ept that transition q

1


h

! Æ(tr ) of C

tr

is 
hosen whenever � 
hooses q

1


h

! �.

Given a probabilisti
 exe
ution fragment �

0

of A

2

kC, generated by some s
heduler �, de�ne �

0

j tr

to be the result of � j tr applied to AkC

tr

from the start state of �

0

. The intuition behind �

0

j tr

is that we study �

0

under the 
ondition that tr is the out
oming state of C whenever q

1


h

! � is

s
heduled. Then, the following two properties are valid.

1. (�

0

j tr)dA

2

is a probabilisti
 exe
ution fragment of A

2

.

2. For ea
h �nite exe
ution fragment � of A

2

kC where state tr o

urs and su
h that fstate(�)

is not of the form (�; tr ), (�

0

j tr)(C

�

) = k�(C

�

), where k is the size of supp(�).

The �rst item follows immediately from Proposition 3.4 given that �

0

j tr is a probabilisti
 exe
ution

fragment of A

2

kC

tr

. The se
ond item follows dire
tly from the de�nition of probability of a 
one

sin
e in �

0

the probability asso
iated with the edge q 
h (�; tr ) is 1=k while in �

0

j tr the probability

of the same edge is 1.

We now de�ne the tr

�

's. Consider an exe
ution � of �

q

1

su
h that �(C

�

) > 0. Let �

1

be the

trun
ation of � at all the points in [

q2supp(�

0

1

)

�

q

, whi
h is a probabilisti
 exe
ution of A

2

kC by

Proposition 3.11. Let �

1

�

be �

1

. �, whi
h is a probabilisti
 exe
ution fragment of A

2

kC by Item 1

of Proposition 3.13. Finally, let �

2

�

be (�

1

�

j tr)dA

2

, whi
h is a probabilisti
 exe
ution fragment of

A

2

by Property 1.

By de�nition of �

q

1

, tra
e(�) = �q

1

for some �nite tra
e �. Therefore, �(C

�q

1

) > 0. Sin
e q

1

enables at least one transition in P

1

, spe
i�
ally transition tr , Equation (4) from Proposition 4.2 im-

plies that �(C

�q

1


h

) = �(C

�q

1

). Thus, a
tion 
h o

urs as the �rst external a
tion with probability

1 in �

1

�

.

By Equation (6) from Proposition 4.3, if the o

urren
e of a
tion 
h leads C to state tr , then an

a
tion in supp(�

0

1

) o

urs eventually in � with probability 1, leading C to a state in supp(�

0

1

), whi
h

is a trun
ation point a

ording to the de�nition of �

1

. Thus, the probability of termination in �

1

�

j tr

is 1, as well as the probability of termination in �

2

�

, i.e., �

2

�

assigns probability 1 to the set of �nite

exe
utions. Furthermore, given that a
tion a is uniquely determined by �

0

1

(A

1

is tree-stru
tured),

again by Equation (6) from Proposition 4.3 all �nite exe
utions �

0

with �

2

�

(�

0

) > 0 have tra
e a
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(empty tra
e if a is internal). Thus, �

2

�

denotes a weak 
ombined transition labeled by a (no a
tion

if a is internal) from lstate(�)dA

2

. Denote su
h transition by tr

�

.

We are left to show that Equation (17) still holds. That is,

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

):

We 
onsider �rst the term �

tr

�

(q

2

). From the de�nition of tr

�

and of weak 
ombined transition

we get

�

tr

�

(q

2

) =

X

�

0

jlstate(�

0

)=q

2

�

2

�

(�

0

):

By applying the de�nition of proje
tion, and using the fa
t that �

1

�

j tr assigns probability 1 to the

set of �nite exe
utions, we get

�

tr

�

(q

2

) =

X

�

0

jlstate(�

0

dA

2

)=q

2

(�

1

�

j tr)(�

0

):

Given that the trun
ation points of �

1

are all at the [

q2supp(�

0

1

)

�

q

points, the only �nite exe
utions

�

0

that have non-zero probability are su
h that �

_

�

0

is in some set �

q

. Furthermore, given that

no exe
ution in [

q2supp(�

0

1

)

�

q

is a pre�x of another (our PAs are tree-stru
tured and all a
tions in

supp(�

0

1

) o

ur in di�erent bran
hes), the probabilities of the �nite exe
utions 
an be repla
ed by

the probabilities of their 
ones, thus getting

�

tr

�

(q

2

) =

X

q2supp(�

0

1

)

X

�

0

j�

_

�

0

2�

q;q

2

(�

1

�

j tr )(C

�

0

):

By Property 2 we 
an get rid of the 
onditional on tr by introdu
ing a k fa
tor, thus getting

�

tr

�

(q

2

) =

X

q2supp(�

0

1

)

X

�

0

j�

_

�

0

2�

q;q

2

k�

1

�

(C

�

0

): (20)

By repla
ing �

tr

�

(q

2

) a

ording to Equation (20) in the left-hand side of Equation (17), and by

rearranging terms algebrai
ally, we obtain

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

)

X

�2�

q

1

X

�

0

j�

_

�

0

2�

q;q

2

�(C

�

)�

1

�

(C

�

0

):

By using the de�nition of �

1

�

and Item 2 of Proposition 3.13, the two probabilities in the equation

above 
an be grouped into �(C

�

_

�

0

). By observing that all elements in �

q;q

2

, with q 2 supp(�

0

1

),

have a pre�x in �

q

1

, the intermediate sum 
an be removed, thus getting

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

)

X

�2�

q;q

2

�(C

�

);

whi
h is Equation (17) as needed. 2

Theorem 6.5 Let P

1

, P

2

be probabilisti
 automata. Then P

1

�

DC

P

2

if and only if P

1

�

wPF

P

2

.
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Proof. Soundness of weak probabilisti
 forward simulations follows immediately from Proposi-

tion 3.7. Completeness is established by:

P

1

�

DC

P

2

) (Proposition 3.9)

Unfold(P

1

) �

DC

P

1

�

DC

P

2

) (�

DC

is transitive)

Unfold(P

1

) �

DC

P

2

) (Proposition 6.4)

Unfold(P

1

) �

wPF

P

2

) (Proposition 2.3)

P

1

�

PF

Unfold(P

1

) �

wPF

P

2

) (Proposition 3.7)

P

1

�

wPF

Unfold(P

1

) �

wPF

P

2

) (�

wPF

is transitive)

P

1

�

wPF

P

2

:

2

7 Con
luding Remarks

We have 
hara
terized the tra
e distribution pre
ongruen
e for nondeterministi
 and probabilisti


automata, with and without internal a
tions, in terms of four kinds of simulation relations, �

F

,

�

wF

, �

PF

, and �

wPF

. In parti
ular, this shows that probabilisti
 
ontexts are 
apable of observing

all the distin
tions that 
an be expressed using these simulation relations.

Some te
hni
al improvements are possible. For example, our �nite bran
hing restri
tion 
an

be relaxed to 
ountable bran
hing, simply by repla
ing uniform distributions in the dual automata

by other distributions su
h as exponential distributions. Cal
ulations be
ome more 
ompli
ated,

however.

For future work, it would be interesting to try another approa
h to a
hieving 
ompositionality

for PA behaviors: de�ne implementation as tra
e distribution in
lusion, but restri
t parallel 
om-

position so that the nondeterminism of ea
h 
omponent is resolved based only on externally-visible

behavior of the other 
omponents. This approa
h also requires some ways of resolving the nonde-

terminism of s
heduling di�erent 
omponents. Some initial steps towards this goal appear in our

re
ent work on swit
hed automata [3℄.
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