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Abstrat

We establish that on the domain of probabilisti automata, the trae distribution preon-

gruene oinides with the simulation preorder.

1 Introdution

Probabilisti automata [13, 15, 18℄ onstitute a mathematial framework for modeling and analyzing

probabilisti systems, spei�ally, systems of asynhronously interating omponents that may make

nondeterministi and probabilisti hoies. They have been applied suessfully to distributed

algorithms [7, 11, 1℄ and pratial ommuniation protools [19℄.

An important part of a system modeling framework is a notion of external behavior of system

omponents. Suh a notion an be used to de�ne implementation and equivalene relationships

between omponents. For example, the external behavior of a nondeterministi automaton an

be de�ned as its set of traes|the sequenes of external ations that arise during its exeutions

[9℄. Implementation and equivalene of nondeterministi automata an be de�ned in terms of

inlusion and equality of sets of traes. By analogy, Segala [13℄ has proposed de�ning the external

behavior of a probabilisti automaton as its set of trae distributions, and de�ning implementation

�

A preliminary version of this paper appeared as [8℄.
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and equivalene in terms of inlusion and equality of sets of trae distributions. Stoelinga and

Vaandrager have proposed a simple testing senario for probabilisti automata, and have proved

that the equivalene notion indued by their senario oinides with Segala's trae distribution

equivalene [20℄. Another equivalent testing senario was proposed by Segala [14℄.

However, a problem with these notions is that trae distribution inlusion and equivalene are

not ompositional. To address this problem, Segala [13℄ de�ned more re�ned notions of implemen-

tation and equivalene. In partiular, he de�ned the trae distribution preongruene, �

DC

, as the

oarsest preongruene inluded in the trae distribution inlusion relation. This yields omposi-

tionality by onstrution, but does not provide insight into the nature of the �

DC

relation. Segala

also provided a haraterization of �

DC

in terms of the set of trae distributions observable in a

ertain prinipal ontext|a rudimentary probabilisti automaton that makes very limited nonde-

terministi and probabilisti hoies. However, this indiret haraterization still does not provide

muh insight into the struture of �

DC

, for example, it does not explain its branhing struture.

In this paper, we provide an expliit haraterization of the trae distribution preongruene,

�

DC

, for probabilisti automata, whih ompletely explains its branhing struture. Namely, we

show that P

1

�

DC

P

2

if and only if there exists a weak probabilisti (forward) simulation relation

from P

1

to P

2

. Moreover, we provide a similar haraterization of �

DC

for nondeterministi au-

tomata in terms of the existene of a weak (non-probabilisti) simulation relation. It was previously

known that simulation relations are sound for �

DC

[13℄, for both nondeterministi and probabilisti

automata; we show the surprising fat that they are also omplete. That is, we show that, for both

nondeterministi and probabilisti automata, probabilisti ontexts an observe all the distintions

that an be expressed using simulation relations.

Another approah to ahieving ompositionality for behaviors of probabilisti automata is to

de�ne implementation as trae distribution inlusion, but to restrit parallel omposition so that

the nondeterminism of eah omponent is resolved based only on externally-visible behavior of the

other omponents. This approah was investigated by De Alfaro, Henzinger, and Jhala [4℄ in a

synhronous model; however, it is still an open problem to �nd appropriate restritions for parallel

omposition in a model with asynhronous omputation. Some initial steps toward this goal appear

in [3℄.

Setions 2 and 3 ontain basi de�nitions and results for nondeterministi and probabilisti

automata, respetively, and for the preorders we onsider. These setions ontain no new material,

but reall de�nitions and theorems from the literature. For a more leisurely introdution see

[9, 10, 18, 16℄. The last two referenes also ontain an extensive disussion of the relationships of our

probabilisti automata with other modelling frameworks for probabilisti systems. The proofs of our

ompleteness results rely on a speial ontext for a probabilisti automaton, the dual probabilisti

automaton, whih is introdued in Setion 4. Setions 5 and 6 ontain our haraterization results

for nondeterministi and probabilisti automata. Sine the proof of the haraterization result for

the general ase of probabilisti automata with internal ations is highly omplex, we �rst present

a proof for the speial ase of nondeterministi automata without internal ations (Setion 5.1).

Then we suessively show how we an also handle internal ations (Setion 5.2) and probabilisti

hoie (Setion 6.1) before dealing with the general ase of probabilisti automata with internal

ations (Setion 6.2). Setion 7 ontains our onlusions.
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2 De�nitions and Basi Results for Nondeterministi Automata

2.1 Nondeterministi Automata, Exeutions, and Traes

A (nondeterministi) automaton is a tuple A = (Q; �q;E;H;D), where

� Q is a set of states,

� �q 2 Q is a start state,

� E is a set of external ations,

� H is a set of internal (hidden) ations with E \H = ;, and

� D � Q� (E [H)�Q is a transition relation.

We denote E [H by A and we refer to it as the set of ations. We denote a transition (q; a; q

0

) of

D by q

a

! q

0

. We write q ! q

0

if q

a

! q

0

for some a, and we write q ! if q ! q

0

for some q

0

.

We assume �nite branhing

1

: for eah state q the number of pairs (a; q

0

) suh that q

a

! q

0

is

�nite. We denote the elements of an automaton A by Q

A

; �q

A

; E

A

;H

A

;D

A

; A

A

;

a

!

A

. Often we use

the name A for a generi automaton; in this ase, we usually omit the subsripts, writing simply

Q, �q, E, H, D, A, and

a

!. We extend this onvention to allow indies and primes as well; thus,

the set of states of automaton A

0

i

is denoted by Q

0

i

.

An exeution fragment of an automaton A is a �nite or in�nite sequene � = q

0

a

1

q

1

a

2

q

2

� � � of

alternating states and ations, starting with a state and, if the sequene is �nite, ending in a state,

where eah (q

i

; a

i+1

; q

i+1

) 2 D. State q

0

, the �rst state of �, is denoted by fstate(�). If � is a

�nite sequene, then the last state of � is denoted by lstate(�). An exeution of A is an exeution

fragment whose �rst state is the start state �q. We let frags(A) denote the set of exeution fragments

of A and frags

�

(A) the set of �nite exeution fragments. Similarly, we let exes(A) denote the set

of exeutions of A and exes

�

(A) the set of �nite exeutions.

Exeution fragment � is a pre�x of exeution fragment �

0

, denoted by � � �

0

, if sequene � is

a pre�x of sequene �

0

. Finite exeution fragment �

1

= q

0

a

1

q

1

� � � a

k

q

k

and exeution fragment �

2

an be onatenated if fstate(�

2

) = q

k

. In this ase the onatenation of �

1

and �

2

, �

1

_

�

2

, is

the exeution fragment q

0

a

1

q

1

� � � a

k

�

2

. Given an exeution fragment � and a �nite pre�x �

0

, �.�

0

(read as \� after �

0

") is de�ned to be the unique exeution fragment �

00

suh that � = �

0 _

�

00

.

The trae of an exeution fragment � of an automaton A, written trae

A

(�), or just trae(�)

when A is lear from ontext, is the sequene obtained by restriting � to the set of external ations

of A. For a set S of exeutions of an automaton A, traes

A

(S), or just traes(S) when A is lear

from ontext, is the set of traes of the exeutions in S. We say that � is a trae of an automaton

A if there is an exeution � of A with trae(�) = �. Let traes(A) denote the set of traes of

A. We de�ne the trae preorder relation on automata as follows: A

1

�

T

A

2

i� E

1

= E

2

and

traes(A

1

) � traes(A

2

). We use �

T

to denote the kernel of �

T

.

If a 2 A, then q

a

=) q

0

i� there exists an exeution fragment � suh that fstate(�) = q,

lstate(�) = q

0

, and trae(�) = trae(a). (Here and elsewhere, we abuse notation slightly by

extending the trae funtion to arbitrary sequenes.) We all q

a

=) q

0

a weak transition.

We let tr range over either transitions or weak transitions. For a transition tr = (q; a; q

0

), we

denote q by soure(tr ) and q

0

by target(tr ).

1

This restrition is given for tehnial reasons. The results generalize to ountable branhing at the ost of adding

omplexity to the proofs.
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2.2 Composition

Automata A

1

and A

2

are ompatible if H

1

\ A

2

= A

1

\ H

2

= ;. The omposition of ompatible

automata A

1

and A

2

, denoted by A

1

kA

2

, is the automaton A

�

= (Q

1

�Q

2

; (�q

1

; �q

2

); E

1

[ E

2

;H

1

[

H

2

;D) where D is the set of triples (q; a; q

0

) suh that, for i 2 f1; 2g:

a 2 A

i

) (�

i

(q); a; �

i

(q

0

)) 2 D

i

and a =2 A

i

) �

i

(q) = �

i

(q

0

):

Let � be an exeution fragment of A

1

kA

2

, i 2 f1; 2g. Then �

i

(�), the i

th

projetion of �, is

the sequene obtained from � by projeting eah state onto its i

th

omponent, and removing eah

ation not in A

i

together with its following state. Sometimes we denote this projetion by �dA

i

.

Proposition 2.1 Let A

1

and A

2

be automata, with A

1

�

T

A

2

. Then, for eah automaton C

ompatible with both A

1

and A

2

, A

1

kC �

T

A

2

kC.

2.3 Simulation Relations

We de�ne two kinds of simulation relations: forward simulations, whih provide a step-by-step

orrespondene, and weak forward simulations, whih are insensitive to the ourrene of internal

steps. Namely, relation R � Q

1

�Q

2

is a forward simulation (resp., weak forward simulation) from

A

1

to A

2

i� E

1

= E

2

and both of the following hold:

1. �q

1

R �q

2

.

2. If q

1

R q

2

and q

1

a

! q

0

1

, then there exists q

0

2

suh that q

2

a

! q

0

2

(resp., q

2

a

=) q

0

2

) and q

0

1

R q

0

2

.

We write A

1

�

F

A

2

(resp., A

1

�

wF

A

2

) when there is a forward simulation (resp., a weak forward

simulation) from A

1

to A

2

. It is easy to prove that both �

F

and �

wF

are preorders, that is,

reexive and transitive. Sine all simulation relations in this paper are forward simulations, we

often omit the word \forward".

Proposition 2.2 Let A

1

and A

2

be automata. Then:

1. If A

1

�

F

A

2

then A

1

�

wF

A

2

.

2. If H

1

= H

2

= ;, then A

1

�

F

A

2

i� A

1

�

wF

A

2

.

3. If A

1

�

wF

A

2

then A

1

�

T

A

2

.

Proof. Standard; for instane, see [10℄. 2

2.4 Tree-Strutured Nondeterministi Automata

An automaton is tree-strutured if eah state is reahed via a unique exeution.

The unfolding of automaton A, denoted by Unfold(A), is the tree-strutured automaton B

obtained from A by unfolding its transition graph into a tree. Formally,

� Q

B

= exes

�

(A),

� �q

B

= �q

A

,

4



� E

B

= E

A

,

� H

B

= H

A

, and

� D

B

= f(�; a; �aq) j (lstate(�); a; q) 2 D

A

g.

Proposition 2.3 A �

F

Unfold(A).

Proof. See [10℄. It is easy to hek that the relation R, where � R q i� lstate(�) = q, is a forward

simulation from Unfold(A) to A and that the inverse relation of R is a forward simulation from A

to Unfold(A). 2

Proposition 2.4 A �

T

Unfold(A).

Proof. By Proposition 2.3 and Proposition 2.2, Parts 1 and 3. 2

3 De�nitions and Basi Results for Probabilisti Automata

3.1 Preliminaries and Notation on Measure Theory

We reall a few basi de�nitions and results from measure theory that an be retrieved from any

standard book on the subjet [5℄.

A �-�eld over a set X is a set F � 2

X

that ontains the empty set and is losed under

omplement and ountable union. A pair (X;F) where F is a �-�eld over X, is alled a measurable

spae. A measure on a measurable spae (X;F ) is a funtion � : F ! [0;1℄ that is ountably

additive: for eah ountable family fX

i

g

i

of pairwise disjoint elements of F , �([

i

X

i

) =

P

i

�(X

i

).

A probability measure on (X;F) is a measure � on (X;F) suh that �(X) = 1. A sub-probability

measure on (X;F) is a measure � on (X;F) suh that �(X) � 1. A disrete probability measure on

a set X is a probability measure � on (X; 2

X

). A disrete sub-probability measure on X is a sub-

probability measure � on (X; 2

X

). We denote the set of disrete probability measures and disrete

sub-probability measures on X by Dis(X) and SubDis(X), respetively. We denote the support

of a disrete measure �, that is, the set of elements that have non-zero measure, by supp(�). We

let Æ(q) denote the Dira measure for q, the disrete probability measure that assigns probability 1

to fqg. Finally, if X is nonempty and �nite, then U(X) denotes the uniform distribution over X,

the measure that assigns probability 1=jXj to eah element of X. Given two disrete probability

measures �

1

; �

2

on (X; 2

X

) and (Y; 2

Y

), respetively, we denote by �

1

��

2

the produt measure, that

is, the measure on (X � Y; 2

(X�Y )

) suh that �

1

� �

2

((x; y)) = �

1

(x)�

2

(y) for eah x 2 X; y 2 Y .

A funtion f : X ! Y is said to be measurable from (X;F

X

) to (Y;F

Y

) if the inverse image of

eah element of F

Y

is an element of F

X

, that is, for eah C 2 F

Y

, f

�1

(C) 2 F

X

. In suh a ase,

given a measure � on (X;F

X

), the funtion f(�) de�ned on F

Y

by f(�)(C) = �(f

�1

(C)) for eah

C 2 F

Y

is a measure on (Y;F

Y

) and is alled the image measure of � under f .

Given a ountable olletion of measures f�

i

g

i

on (X;F

X

) and a ountable olletion fp

i

g

i

of

real numbers in [0;1), denote by

P

i

p

i

�

i

a new funtion � suh that, for eah element C 2 F

X

,

�(C) =

P

i

p

i

�

i

(C). We state a few standard properties.

Proposition 3.1 The following hold.

1.

P

i

�

i

is a measure on (X;F

X

).
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2. If eah �

i

is a (sub)-probability measure and

P

i

p

i

= 1, then

P

i

p

i

�

i

is a (sub)-probability

measure.

3. If f is a measurable funtion from (X;F

X

) to (Y;F

Y

), then f(

P

i

p

i

�

i

) =

P

i

p

i

f(�

i

).

3.2 Probabilisti Automata, Exeutions, and Traes

A probabilisti automaton (PA) is a tuple P = (Q; �q;E;H;D), where all omponents are exatly as

for nondeterministi automata, exept that:

� D, the transition relation, is a subset of Q� (E [H)�Dis(Q).

We de�ne A as before. We denote transition (q; a; �) by q

a

! �. We assume �nite branhing: for

eah state q the number of pairs (a; �) suh that q

a

! � is �nite. Given a transition tr = (q; a; �)

we denote q by soure(tr ) and � either by target(tr ) or by �

tr

.

Thus, a probabilisti automaton di�ers from a nondeterministi automaton in that a transition

leads to a probability measure over states rather than to a single state. A nondeterministi automa-

ton is a speial ase of a probabilisti automaton, where the last omponent of eah transition is a

Dira measure. Conversely, we an assoiate a nondeterministi automaton with eah probabilisti

automaton by replaing transition relation D by the relation D

0

given by

(q; a; q

0

) 2 D

0

, (9�)[(q; a; �) 2 D ^ �(q

0

) > 0℄:

Using this orrespondene, notions suh as exeution fragments and traes arry over from nonde-

terministi automata to probabilisti automata.

2

A sheduler for a PA P is a funtion � : frags

�

(P) ! SubDis(D) suh that tr 2 supp(�(�))

implies soure(tr) = lstate(�). A sheduler � is said to be deterministi if for eah �nite exeution

fragment �, either �(�)(D) = 0 or else �(�) = Æ(tr ) (the Dira measure for tr) for some tr 2 D.

A sheduler � and a state q indue a measure � on the �-�eld generated by ones of exeution

fragments as follows. If � is a �nite exeution fragment, then the one of � is de�ned by C

�

=

f�

0

2 frags(P) j � � �

0

g. The measure � of a one C

�

is de�ned to be 1 if � = q, 0 if � = q

0

6= q,

and, if � is of the form �

0

a

0

q

0

, it is de�ned by the reursive equation

�(C

�

) = �(C

�

0

)

X

tr2D(a

0

)

�(�

0

)(tr )�

tr

(q

0

); (1)

where D(a

0

) denotes the set of transitions of D that are labeled by a

0

. Standard measure theoretial

arguments ensure that � is well de�ned. We all the measure � a probabilisti exeution fragment

of P and we say that � is generated by � and q. We all state q the �rst state of � and denote it by

fstate(�). If fstate(�) is the start state �q, then � is alled a probabilisti exeution.

The trae funtion is a measurable funtion from the �-�eld generated by ones of exeution

fragments to the �-�eld generated by ones of traes, where the one of a �nite trae � is de�ned

by C

�

= f�

0

2 E

�

[ E

!

j � � �

0

g. Here � denotes the pre�x ordering on sequenes. Given a

probabilisti exeution fragment �, we de�ne the trae distribution of �, tdist(�), to be the image

measure of � under trae . We denote the set of trae distributions of probabilisti exeutions of a

2

The orrespondene between nondeterministi automata and probabilisti automata is worked out in great detail

in [2℄.
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PA P by tdists(P). We de�ne the trae distribution preorder relation on probabilisti automata

by: P

1

�

D

P

2

i� E

1

= E

2

and tdists(P

1

) � tdists(P

2

).

An example of a measurable set of traes that is used extensively throughout the paper is the

set of traes in whih a spei� ation a ours. We denote this set by �a. The inverse image under

trae of �a an be expressed as a disjoint union of ones of exeutions. Thus, we have the following

proposition.

Proposition 3.2 Let � be the trae distribution of a probabilisti exeution � of a probabilisti

automaton P, and let �

a

be the set of �nite exeutions of P with a single ourrene of ation a

whose last transition is labeled by a. Then,

�(�a) =

X

�2�

a

�(C

�

): (2)

3.3 Combined Transitions and Weak Transitions

Let fq

a

! �

i

g

i2I

be a olletion of transitions of a PA P, and let fp

i

g

i2I

be a olletion of proba-

bilities suh that

P

i2I

p

i

= 1. Then the triple (q; a;

P

i2I

p

i

�

i

) is alled a ombined transition of

P.

Consider a probabilisti exeution fragment � that assigns probability 1 to the set of all �nite

exeution fragments with trae trae(a). Let � be the measure de�ned by �(q) = �(f� j lstate(�) =

qg). Then fstate(�)

a

=) � is a weak ombined transition of P. If � an be indued by a deterministi

sheduler, then fstate(�)

a

=) � is a weak transition. We refer to � as a representation of fstate(�)

a

=)

�. Observe that the measure � an be seen alternatively as the image measure of � under lstate .

This is an abuse of notation beause lstate is not de�ned for in�nite exeutions; however, sine �

assigns measure 1 to the set of �nite exeutions, we an extend arbitrarily and safely the de�nition

of lstate to in�nite exeutions for this purpose.

Proposition 3.3 Let ftr

i

g

i2I

be a olletion of weak ombined transitions of a PA P, all starting

in the same state q, and all labeled by the same ation a, and let fp

i

g

i2I

be probabilities suh that

P

i2I

p

i

= 1. Then

P

i2I

p

i

tr

i

is a weak ombined transition of P labeled by a.

Proof. For eah i 2 I, let �

i

be a representation of tr

i

, and �

i

be a sheduler that, together with

state q, indues �

i

. We omit the index set I in the rest of the proof. De�ne a new sheduler � as

follows.

�(�) =

8

<

:

X

i

p

i

�

i

(C

�

)

P

i

p

i

�

i

(C

�

)

�

i

(�) if 9

i

p

i

�

i

(C

�

) > 0

arbitrarily otherwise.

Let � be the probabilisti exeution fragment indued by � and q. Let � be a �nite exeution

fragment of P. We prove by indution on the length of � that �(C

�

) =

P

i

p

i

�

i

(C

�

). The base

ase is trivial sine �(C

q

) = 1 and for eah i, �

i

(C

q

) = 1, whih implies

P

i

�

i

(C

q

) = 1; similarly,

for eah state q

0

6= q, �(C

q

0

) = 0 and for eah i, �

i

(C

q

0

) = 0. For the indutive step, let � = �

0

a

0

q

0

.

If �(C

�

0

) = 0, then, by indution,

P

i

p

i

�

i

(C

�

0

) = 0, whih implies that for eah i, p

i

�

i

(C

�

0

) = 0.

By de�nition of measure of a one, Equation (1), �(C

�

) = 0. Furthermore, for eah i, if p

i

= 0

then p

i

�

i

(C

�

) = 0 trivially, and if p

i

> 0, then �

i

(C

�

0

) = 0 and by de�nition of measure of a

7



one, Equation (1), �

i

(C

�

) = 0, whih implies p

i

�

i

(C

�

) = 0. Thus,

P

i

p

i

�

i

(C

�

) = 0 as needed. If

�(C

�

0

) > 0, then, by de�nition of measure of a one, Equation (1),

�(C

�

) = �(C

�

0

)

X

tr2D(a

0

)

�(�

0

)(tr )�

tr

(q

0

):

By expanding �(�

0

)(tr ) with the de�nition of � we obtain

�(C

�

) = �(C

�

0

)

X

tr2D(a

0

)

 

X

i

p

i

�

i

(C

�

0

)

P

i

p

i

�

i

(C

�

0

)

�

i

(�

0

)(tr )

!

�

tr

(q

0

);

where we know that the denominator is stritly positive by hypothesis. By standard algebrai

manipulations (exhanges of sums and rearrangements of onstants) we obtain

�(C

�

) =

�(C

�

0

)

P

i

p

i

�

i

(C

�

0

)

X

i

X

tr2D(a

0

)

p

i

�

i

(C

�

0

)�

i

(�

0

)(tr )�

tr

(q

0

):

By indution, �(C

�

0

) =

P

i

p

i

�

i

(C

�

0

). Thus, by simplifying (removing) the leftmost term and

rearranging onstants we obtain

�(C

�

) =

X

i

0

�

p

i

�

i

(C

�

0

)

X

tr2D(a

0

)

�

i

(�

0

)(tr )�

tr

(q

0

)

1

A

:

Finally, by de�nition of measure of a one, Equation (1), we get the desired equation

�(C

�

) =

X

i

p

i

�

i

(C

�

):

Thus, � =

P

i

p

i

�

i

, whih implies that the probability of termination in � is 1. Furthermore, by

Proposition 3.1, Item 3, lstate(�) =

P

i

p

i

lstate(�

i

). That is, � is a representation of

P

i

p

i

tr

i

. 2

3.4 Composition

Two PAs, P

1

and P

2

, are ompatible if H

1

\A

2

= A

1

\H

2

= ;. The omposition of two ompatible

PAs P

1

and P

2

, denoted by P

1

kP

2

, is the PA P = (Q

1

�Q

2

; (�q

1

; �q

2

); E

1

[E

2

;H

1

[H

2

;D) where D

is the set of triples (q; a; �

1

� �

2

) suh that, for i 2 f1; 2g:

a 2 A

i

) (�

i

(q); a; �

i

) 2 D

i

and a =2 A

i

) �

i

= Æ(�

i

(q)):

Let � be a probabilisti exeution (fragment) of P

1

kP

2

and let i 2 f1; 2g. De�ne �

i

(�), the i

th

projetion of �, to be the image measure under �

i

of �. It is easy to verify that the projetion

funtion is measurable. When onvenient, we denote a projetion by �dP

i

, where P

i

is the PA that

appears in the i

th

position.

Proposition 3.4 Let P

1

and P

2

be ompatible PAs and let � be a probabilisti exeution (fragment)

of P

1

kP

2

. Then for eah i 2 f1; 2g, �

i

(�) is a probabilisti exeution (fragment) of P

i

.

Proof. By Propositions 4.3.4 and 4.3.5 of [13℄. 2
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P

2

P

1

C

Figure 1: Trae distribution inlusion is not preserved by omposition (without ommuniation).
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The trae distribution preorder is not preserved by omposition [15, 17℄ as is shown by the

following example.

Example 3.1 Failure of ompositionality

Consider the two automata P

1

and P

2

of Figure 1. The two automata are trae equiva-

lent, and it is easy to see that they are also trae distribution equivalent. Now onsider

the ompositions P

1

kC and P

2

kC, where C is the probabilisti automaton of Figure 1

and we assume that the ations of C are not shared with P

1

and P

2

. It is possible to

build a probabilisti exeution of P

1

kC as follows: �rst a is sheduled followed by d;

then e or f is sheduled depending on the outome state of the transition labeled by

d; �nally, b or  is sheduled depending on whether e or f was sheduled. Thus, in the

resulting trae distribution there is a total orrelation between e; b and f; , respetively.

The same trae distribution annot be obtained from P

2

kC beause after sheduling the

transition labeled by a we are already bound to b or , and thus the ourrene of b or

 annot be orrelated to e or f in this ase.

Example 3.1 may appear pathologial sine, in the probabilisti exeution of P

1

kC that orrelates

the hoies between e and f and between b and , a nondeterministi hoie of P

1

is resolved based

on information that is not available to P

1

. This may lead us to propose a naive solution to the

non-preservation of trae distribution inlusion by parallel omposition where we require that eah

probabilisti automaton in a parallel omposition an resolve its nondeterministi hoies based on

loal knowledge only. However, a more elaborate example shows that this naive idea also does not

work.

Example 3.2 Failure of ompositionality

Consider the two automata P

1

and P

2

of Figure 2, whih are essentially the automata

of Example 3.1 where self-loop transitions labeled by e and f are added to eah state.

In this ase the ontext C synhronizes with P

1

and P

2

on ations e and f , and P

1

is

able to learn whih of e or f ours, thus determining the orrelation with b and  based

on loal knowledge only.

The solution of resolving nondeterminism based on loal knowledge is adopted in [4℄ for a

probabilisti extension of reative modules; however the idea of [4℄ annot be extended easily to

probabilisti automata beause of key strutural di�erenes in the models: in probabilisti automata

there is a total interleaving of the transitions taken by di�erent automata in a parallel omposition,

while in probabilisti reative modules there are several independent atoms that are not fored to

interleave. A diret adaptation of the idea of [4℄ to probabilisti automata would require drasti

modi�ations of the model that go beyond the sope of this paper: transitions should be labeled

by sets of ations and should be strutured in suh a way that eah ation a�ets di�erent parts of

the state.

An alternative approah, followed in [13℄ and adopted in this paper, onsists of de�ning a

new trae distribution preongruene relation, denoted by �

DC

, as the oarsest preongruene

that is inluded in the trae distribution preorder �

D

, and �nding alternative haraterizations of

�

DC

. It is known from [13℄ that there exists a simple ontext, alled the prinipal ontext, that is

suÆiently powerful to distinguish all probabilisti automata that are not in the trae distribution

preongruene relation; alternatively, a testing senarios is proposed in [14℄.

10



P

2

P

1

C

Figure 2: Trae distribution inlusion is not preserved by omposition (with ommuniation).
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In this paper we haraterize �

DC

in terms of probabilisti simulation relations. Another simple

alternative haraterization of �

DC

that is useful for our study is given by the following proposition.

Proposition 3.5 Let P

1

and P

2

be PAs. Then P

1

�

DC

P

2

i� for every PA C that is ompatible

with both P

1

and P

2

, P

1

kC �

D

P

2

kC.

Proof. De�ne relation v suh that P

1

v P

2

i� P

1

and P

2

have the same external ations and

for every PA C that is ompatible with both P

1

and P

2

, P

1

kC �

D

P

2

kC.

Let P

1

�

DC

P

2

and let C be a PA ompatible with both P

1

and P

2

. Sine �

DC

is a preongru-

ene by de�nition, then P

1

kC �

DC

P

2

kC. Sine, again by de�nition, �

DC

is inluded in �

D

, then

P

1

kC �

D

P

2

kC. Thus, P

1

v P

2

, whih implies that �

DC

is inluded in v.

Conversely, observe that v is reexive and transitive, and thus a preorder relation. Observe

also that, by using a trivial ontext C with no external ations and no transitions, v is inluded in

�

D

. Finally, using the assoiativity of parallel omposition, observe that v is preserved by parallel

omposition, and thus is a preongruene. This means that v is a preongruene inluded in �

D

.

Sine �

DC

is the oarsest preongruene inluded in �

D

, we get that v is inluded in �

DC

. 2

3.5 Simulation Relations

The de�nitions of forward simulation and weak forward simulation in Setion 2 an be extended

naturally to PAs [15℄. However, Segala has shown [12℄ that the resulting simulations are not

omplete for �

DC

, and has de�ned new andidate simulations. These new simulations relate states

to probability measures on states.

In order to de�ne the new simulations formally, we need three new onepts. First we show

how to lift a relation between sets to a relation between measures over sets [6℄. Let R � X � Y .

The lifting of R is a relation R

0

� Dis(X) � Dis(Y ) suh that �

X

R

0

�

Y

i� there is a funtion

w : X � Y ! [0; 1℄ that satis�es:

1. If w(x; y) > 0 then x R y.

2. For eah x 2 X,

P

y2Y

w(x; y) = �

X

(x).

3. For eah y 2 Y ,

P

x2X

w(x; y) = �

Y

(y).

We abuse notation slightly and denote the lifting of a relation R by R as well.

Seond, we de�ne a attening operation that onverts a measure � in Dis(Dis(X)) into a

measure atten(�) in Dis(X). Namely, we de�ne atten(�) =

P

�2supp(�)

�(�)�.

Third and �nally, we lift the notion of a transition to a hyper-transition [17℄ that begins and

ends with a probability measure over states. Thus, let P be a PA and let � 2 Dis(Q). For eah

q 2 supp(�), let q

a

! �

q

be a ombined transition of P. Let �

0

be

P

q2supp(�)

�(q)�

q

. Then �

a

! �

0

is alled a hyper-transition of P. Also, for eah q 2 supp(�), let q

a

=) �

q

be a weak ombined

transition of P. Let �

0

be

P

q2supp(�)

�(q)�

q

. Then �

a

=) �

0

is alled a weak hyper-transition of P.

We now de�ne simulations for probabilisti automata. A relation R � Q

1

� Dis(Q

2

) is a

probabilisti forward simulation (resp., weak probabilisti forward simulation) from PA P

1

to PA

P

2

i� E

1

= E

2

and both of the following hold:

1. �q

1

R Æ(�q

2

).

12



2. For eah pair q

1

; �

2

suh that q

1

R �

2

and eah transition q

1

a

! �

0

1

, there exists a measure �

0

2

2

Dis(Dis(Q

2

)) suh that �

0

1

R �

0

2

and suh that �

2

a

! atten(�

0

2

) (resp., �

2

a

=) atten(�

0

2

))

is a hyper-transition (resp., a weak hyper-transition) of P

2

.

We write P

1

�

PF

P

2

(resp., P

1

�

wPF

P

2

) whenever there is a probabilisti forward simulation

(resp., a weak probabilisti forward simulation) from P

1

to P

2

. Note that a forward simulation

between nondeterministi automata is a probabilisti forward simulation between the two automata

viewed as PAs:

Proposition 3.6 Let A

1

and A

2

be nondeterministi automata. Then:

1. A

1

�

F

A

2

i� A

1

�

PF

A

2

, and

2. A

1

�

wF

A

2

i� A

1

�

wPF

A

2

.

Proof. The left-to-right inlusions are easy sine, given a (weak) forward simulation R from A

1

to A

2

, it is immediate to observe that the relation R

0

�

= f(q

1

; Æ(q

2

) j q

1

R q

2

g is a (weak) probabilisti

forward simulation from A

1

to A

2

.

For the onverse impliation, let R be a (weak) forward simulation from A

1

to A

2

. De�ne a

relation R

0

�

= f(q

1

; q

2

) j 9

�

q

1

R �; q

2

2 supp(�)g. We show that R

0

is a (weak) forward simulation

from A

1

to A

2

.

The start ondition is trivial sine �q

1

R Æ(�q

2

), and thus q

1

R

0

q

2

. For the step ondition,

let q

1

R

0

q

2

, and let q

1

a

! q

0

1

. By de�nition of R

0

, there exists a measure � suh that q

1

R � and

q

2

2 supp(�). Sine R is a (weak) forward simulation, there exists a hyper-transition �

a

! �

0

(a weak

hyper-transition �

a

=) �

0

) where �

0

is the attening of some measure �

00

suh that Æ(q

0

1

) R �

00

.

Observe that, sine �

0

= atten(�

00

), eah element q

0

2

2 supp(�

0

) is also in the support of some

measure � 2 supp(�

00

). Thus, q

0

1

R �, and, by de�nition of R

0

, q

0

1

R

0

q

0

2

. Observe also that, by

de�nition of hyper-transition, there is a ombined transition q

2

a

! �

2

(a weak ombined transition

q

2

a

=) �

2

) suh that supp(�

2

) � supp(�

0

). Thus, by hoosing any of the transitions that are

ombined in q

2

a

! �

2

, we obtain a transition q

2

a

! q

0

2

suh that q

0

1

R

0

q

0

2

as needed. Similarly, for

the weak ase, it is enough to onsider a sheduler � that generates q

2

a

=) �

2

and replae it by a

new sheduler �

0

(�) that stops (does not return any transition) if �(�) stops with some non-zero

probability, and hooses any transition in supp(�) that redues the distane from a stopping point

otherwise. This leads to a weak transition q

2

a

=) q

0

2

suh that q

0

1

R

0

q

0

2

as needed. 2

Proposition 3.7 Let P

1

and P

2

be PAs. Then:

1. If P

1

�

PF

P

2

then P

1

�

wPF

P

2

.

2. If H

1

= H

2

= ; then P

1

�

PF

P

2

i� P

1

�

wPF

P

2

.

3. If P

1

�

wPF

P

2

then P

1

�

DC

P

2

.

Proof. The �rst item follows from the fat that a ombined transition is a speial ase of a weak

ombined transition; the seond item follows from the fat that in the absene of internal ations

a weak ombined transition is a ombined transition. For the third item see Proposition 8.7.1 of

[13℄. 2
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Figure 3: A PA that not tree-strutured even though its underlying automaton is.

3.6 Tree-Strutured Probabilisti Automata

A path of a PA P is a �nite sequene  = q

0

a

1

�

1

q

1

a

2

�

2

q

2

: : : q

n

of alternating states, ations and

distribution over states, starting with the start state of P suh that for eah non-�nal i, q

i

a

i+1

! �

i+1

and q

i+1

2 supp(�

i+1

). We write lstate() to denote q

n

and paths(P) for the set of all path of

P. We say that P is tree-strutured if eah state is reahed via a unique path. Tree-strutured

probabilisti automata are haraterized uniquely by the property that all states are reahable, the

start state does not our in the target of any transition, and eah of the other states ours in the

target of exatly one transition. Also tree-strutured nondeterministi automata are haraterized

uniquely by this property, albeit for a di�erent notion of transition.

If a probabilisti automaton is tree-strutured then its underlying automaton is also tree-

strutured. The following example shows that the onverse does not hold.

Example 3.3 Non-tree-strutured probabilisti automata

Figure 3 shows a probabilisti automaton that is not tree-strutured, as state q

0

an be

reahed via two di�erent paths. The underlying automaton is tree-strutured, however,

sine the only way to reah state q

0

is via the exeution qaq

0

.

The unfolding of a probabilisti automaton P, denoted by Unfold(P), is the tree-strutured

probabilisti automaton Q obtained from P by unfolding its transition graph into a tree. Formally,

� Q

Q

= paths(P),

� �q

Q

= �q

P

,

� E

Q

= E

P

,

� H

Q

= H

P

, and

14



� D

Q

= f(; a; �) j (9�

0

)[(lstate(); a; �

0

) 2 D

P

^ (8q 2 supp(�

0

))[�

0

(q) = �(a�

0

q)℄℄g.

Proposition 3.8 P �

PF

Unfold(P).

Proof. It is easy to hek that the relation R where � R Æ(q) i� lstate(�) = q is a probabilisti

forward simulation from Unfold(P) to P and that the \inverse" of R, i.e., the relation R

0

suh that

q R

0

Æ(�) i� � R Æ(q), is a probabilisti forward simulation from P to Unfold (P). 2

Proposition 3.9 P �

DC

Unfold(P).

Proof. By Proposition 3.8, and Proposition 3.7, Parts 1 and 3. 2

3.7 Trunations and Continuations

We now de�ne two simple onstrutions on probabilisti exeution fragments that will be useful

for our proofs. Spei�ally, we de�ne the trunation of a probabilisti exeution fragment, whih

is the result of stopping the omputation at some designated points, and the ontinuation of a

probabilisti exeution fragment, whih represents the rest of a probabilisti exeution fragment

after some �nite exeution fragment has ourred.

Let � be a probabilisti exeution fragment of a PA P, generated by some sheduler �, and let

� be a set of �nite exeution fragments of P. De�ne the trunation of � at � to be the same as

� exept that no transition is sheduled from all the � plaes, that is, the probabilisti exeution

fragment �

0

, with the same start state as �, generated by a new sheduler �

0

suh that �

0

(�) = �(�)

if � 62 � and �

0

(�)(D) = 0 if � 2 �.

Proposition 3.10 The de�nition of trunation of a probabilisti exeution fragment � is indepen-

dent of the hoie of the induing sheduler.

Proof. Let q be the �rst state of � and let �

1

; �

2

be two shedulers that, together with q, indue

�. Let � be a set of �nite exeution fragments of P, and let �

0

1

; �

0

2

be the shedulers built from

�

1

; �

2

, respetively, aording to the de�nition of trunation. Let �

1

; �

2

be the indued probabilisti

exeution fragments, and suppose by ontradition that �

1

6= �

2

. Then there exists a �nite exeution

� suh that �

1

(C

�

) 6= �

2

(C

�

). Consider suh a �nite exeution � of minimum length. Observe that

j�j > 0 sine �(C

q

) = �

1

(C

q

) = �

2

(C

q

) = 1 and, for eah state q

0

6= q, �(C

q

0

) = �

1

(C

q

0

) = �

2

(C

q

0

) = 0.

Thus, � = �

0

a

0

q

0

for some �

0

; a

0

; q

0

, where �

1

(C

�

0

) = �

2

(C

�

0

). We distinguish two ases.

If �

0

2 �, then, by de�nition of �

0

1

and �

0

2

, �

0

1

(�

0

)(D) = �

0

2

(�

0

)(D) = 0. Thus, �

1

(C

�

) =

�

2

(C

�

) = 0, a ontradition.

If �

0

62 �, then, by de�nition of �

0

1

and �

0

2

, �

0

1

(�

0

) = �

1

(�

0

) and �

0

2

(�

0

) = �

2

(�

0

). Sine �

1

and �

2

indue the same probabilisti exeution fragment �, by de�nition of measure of a one,

Equation (1),

P

tr2D(a

0

)

�

1

(�

0

)(tr )�

tr

(q

0

) =

P

tr2D(a

0

)

�

2

(�

0

)(tr )�

tr

(q

0

). Thus, it is also the ase

that

P

tr2D(a

0

)

�

0

1

(�

0

)(tr )�

tr

(q

0

) =

P

tr2D(a

0

)

�

0

2

(�

0

)(tr )�

tr

(q

0

). By de�nition of measure of a one,

Equation (1), �

1

(C

�

) = �

2

(C

�

), again a ontradition. 2

Proposition 3.11 The trunation of � at � is a probabilisti exeution fragment of P.

Proof. Trivial sine the de�nition of trunation provides the generating sheduler. 2
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Let � be a probabilisti exeution fragment of a PA P, generated by a sheduler �, and let � be

a �nite exeution fragment with the same start state as �. De�ne � . �, the rest of � after pre�x �,

to be the probabilisti exeution fragment generated by the following sheduler �

0

from lstate(�):

�

0

(�

0

) =

�

�(�

_

�

0

) if fstate(�

0

) = lstate(�)

�(�

0

) otherwise

Observe that the seond line in the de�nition of �

0

is irrelevant, and thus an be replaed by any

arbitrary expression, sine the exeution fragment generated by �

0

from lstate(�) depends only on

�

0

applied to exeution fragments that start from lstate(�).

Proposition 3.12 The de�nition of � . � is independent of the hoie of the induing sheduler.

Proof. Let q be the �rst state of � and let �

1

; �

2

be two shedulers that, together with q, indue

�. Let q

0

be lstate(�). Let �

0

1

; �

0

2

be the shedulers built from �

1

; �

2

, respetively, aording

to the de�nition of � . �. Let �

1

; �

2

be the indued probabilisti exeution fragments from q

0

,

and suppose by ontradition that �

1

6= �

2

. Then there exists a �nite exeution �

0

suh that

�

1

(C

�

0

) 6= �

2

(C

�

0

). Consider suh a �nite exeution �

0

of minimum length. Observe that j�

0

j > 0

sine �(C

q

0

) = �

1

(C

q

0

) = �

2

(C

q

0

) = 1 and, for eah state q

00

6= q

0

, �(C

q

00

) = �

1

(C

q

00

) = �

2

(C

q

00

) = 0.

Thus, �

0

= �

00

a

00

q

00

for some �

00

; a

00

; q

00

, where �

1

(C

�

00

) = �

2

(C

�

00

). We distinguish two ases.

If fstate(�

00

) 6= q

0

, then, by de�nition of �

1

and �

2

, �

1

(C

�

0

) = �

2

(C

�

0

) = 0, a ontradition.

If fstate(�

00

) = q

0

, then, by de�nition of �

0

1

and �

0

2

, �

0

1

(�

00

) = �

1

(�

_

�

00

) and �

0

2

(�

00

) = �

2

(�

_

�

00

).

Sine �

1

and �

2

indue the same probabilisti exeution fragment �, by de�nition of measure of a

one, Equation (1),

P

tr2D(a

00

)

�

1

(�

_

�

00

)(tr )�

tr

(q

00

) =

P

tr2D(a

00

)

�

2

(�

_

�

00

)(tr )�

tr

(q

00

). Thus, we

derive

P

tr2D(a

00

)

�

0

1

(�

00

)(tr )�

tr

(q

00

) =

P

tr2D(a

00

)

�

0

2

(�

00

)(tr )�

tr

(q

00

). By de�nition of measure of a

one, Equation (1), �

1

(C

�

0

) = �

2

(C

�

0

), again a ontradition. 2

Proposition 3.13 The following properties are valid.

1. � . � is a probabilisti exeution fragment of P.

2. For eah �nite exeution �

0

with lstate(�) = fstate(�

0

), �(C

�

_

�

0

) = �(C

�

) � (� . �)(C

�

0

).

Proof. The �rst item is trivial sine the de�nition of . provides the generating sheduler. The

seond item follows diretly from the de�nition of the probability of a one. 2

4 Dual Probabilisti Automata

The proofs of our ompleteness results rely on a speial ontext for a probabilisti automaton, whih

we all its dual probabilisti automaton. The dual automaton, dual(P), of a PA P an observe the

states P goes through and the transitions that are sheduled during a probabilisti exeution. This

information is revealed by means of externally visible transitions of dual(P) with the help of a

spei� sheduler that synhronizes P with its dual.

In this setion we introdue the onstrution of a dual probabilisti automaton, we introdue

the sheduler that synhronizes a probabilisti automaton with its dual, and we prove some results

about the resulting trae distributions.

Informally, the dual of a probabilisti automaton P is a probabilisti automaton C whose states

inlude a distinguished start state, all the states of P, and all the transitions of P. Automaton
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C has a speial transition from its own start state, �q

C

, to the start state of P, �q

P

, labeled by �q

P

.

Also, from every state q of P, C has a uniform transition labeled by h to the set of transitions of

P that begin in state q. Finally, for every transition tr of P, and every state q in the support of

�

tr

, C has a transition labeled by q from tr to q.

De�nition 4.1 The dual probabilisti automaton of a PA P is a PA C suh that

� Q

C

= f�q

C

g [Q

P

[D

P

,

� E

C

= Q

P

[ fhg,

� H

C

= ;, and

� D

C

= f(�q

C

; �q

P

; �q

P

)g[

f(q; h ;U(ftr 2 D

P

j soure(tr ) = qg)) j q 2 Q

P

^ q !g[

f(tr ; q; q) j tr 2 D

P

; q 2 supp(�

tr

)g.

Observe that the dual of an ordinary nondeterministi automaton enables at most one transition

from eah state. Indeed, the only states that may enable more than one transition are the states

of the form tr 2 D

P

, whih enable one transition for eah state in supp(�

tr

). However, the size of

supp(�

tr

) is 1 in an ordinary automaton.

We assume without loss of generality that a probabilisti automaton P and its dual do not have

any ations in ommon (otherwise we an simply rename states of P to ahieve our goal), and thus

P and its dual are ompatible.

Sine C and P share no ations, merely omposing C with P does not ensure that C faithfully

emulates the behavior of P. However, an appropriate sheduler an synhronize the two automata

and ensure suh an emulation, whih will be suÆient for our purposes. Given a probabilisti

automaton P and its dual C, we de�ne a sheduler � for PkC, alled the observer of P, that

synhronizes the two automata so that the internal struture of P is visible in the trae. Spei�ally,

the sheduler � starts by sheduling the transition of C from the start state of C to the start state

of P, leading to state (�q; �q), whih is of the form (q; q). Then � repeats the following as long as

q !:

1. Shedule the h transition of C, thus hoosing a transition tr of P.

2. Shedule transition tr of P, leading P to a new state q

0

.

3. Shedule the transition of C labeled by the state q

0

, resulting in the state (q

0

; q

0

), whih is

again of the form (q; q).

Sheduler � indues a trae distribution � for PkC where all states and external ations of P appear

expliitly.

We state and prove some properties of �. The �rst property, Equation (3), says that the one

of traes beginning with the start state of P has probability 1. The seond property, Equation (4),

says that for any state q of P from whih some transition is enabled and for eah �nite trae �

of PkC, the probability of the one of traes beginning with �q is the same as the probability of

the one beginning with �q h , that is, one �q ours, the probability that h follows is 1. The

third property, Equation (5), says that for any state q of P and for eah �nite trae � of PkC, the

probability of the one of traes beginning with �q h is the same as the sum of the probabilities
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of the ones beginning with �q h �

0

where �

0

represents one single step of P from q, that is, one

h ours, one of the transitions of A that are enabled from q is exposed. The right-hand side of

Equation (5) onsists of two parts dealing with external and internal transitions, respetively.

Proposition 4.2 The trae distribution � indued by the observer of a probabilisti automaton P

satis�es the following three properties, for all �nite traes � of PkC and for all states q of P:

�(C

�q

) = 1 (3)

q ! =) �(C

�q

) = �(C

�q h

) (4)

�(C

�q h

) =

X

(a;q

0

)ja2E;(9�)[(q;a;�)2D;q

0

2supp(�)℄

�(C

�q h aq

0

) +

X

q

0

j(9(a;�))[a2H;(q;a;�)2D;q

0

2supp(�)℄

�(C

�q h q

0

) (5)

Proof. Equation (3) follows from the fat that � shedules ation �q immediately. Equation (4)

follows from the fat that, after sheduling ation q, thus leading to a state of the form (q; q), �

immediately shedules ation h if q enables at least one transition. Equation (5) follows from the

fat that, after sheduling h , � shedules one of the transitions of P that are enabled from q, say

q

a

! �, followed by a transition of C labeled by a state in supp(�). 2

Observe that Equation (5) has a simpler formulation in ase P is an ordinary nondeterministi

automaton.

Proposition 4.3 The trae distribution � indued by the observer of an automaton A satis�es the

following property, for all �nite traes � of AkC and for all states q of A:

�(C

�q h

) =

X

(a;q

0

)ja2E;q

a

!q

0

�(C

�q h aq

0

) +

X

q

0

j(9a)a2H;q

a

!q

0

�(C

�q h q

0

) (6)

The following properties are not needed for the proof of ompleteness for nondeterministi

automata, so the reader may skip them for the moment and return here when reading the proofs

of Setion 6.

Proposition 4.4 Let � be the trae distribution indued by the observer of a tree-strutured proba-

bilisti automaton P, and let tr = (q; a; �) be a transition of P. Let k be the number of transitions

that are enabled from q in P, and let q

0

be a state in supp(�). Then the following properties hold:

�(�q

0

) =

�(�q)

k

�(q

0

) (7)

�(�q

0

) =

0

�

X

q

00

2supp(�)

�(�q

00

)

1

A

�(q

0

) (8)
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Proof. Let � be the observer of P, and let �

�

be the probabilisti exeution indued by �. Sine P

is tree-strutured, the set �

q

ontains a single exeution �. Indeed, by de�nition of tree-strutured,

there is only one exeution in P ending with state q, and � simply interleaves this exeution with

transitions labeled by h, by the names of the transitions of P that are needed to reah q, and by

the names of the states that are reahed. Similarly, �

q

0

ontains a single exeution �

0

.

One state q is reahed, � shedules ation h , reahing state tr of C with probability 1=k. Then,

� shedules transition tr , reahing state q

0

in P with probability �(q

0

), and �nally � shedules the

transition of C labeled by q

0

. Thus, �

�

(C

�

0

) = �

�

(C

�

)(1=k)�(q

0

). Then Equation (7) follows by

Equation (2).

By summing over supp(�) in Equation (7), we get

X

q

00

2supp(�)

�(�q

00

) =

�(�q)

k

X

q

00

2supp(�)

�(q

00

) (9)

Observe that

P

q

00

2supp(�)

�(q

00

) = 1. Thus, deriving �(�q) from Equation (9), replaing it in

Equation (7), and anelling k from numerator and denominator, we get Equation (8) as needed.

2

5 Charaterizations of the Trae Distribution Preongruene Re-

lation for Nondeterministi Automata

In this setion, we present our haraterization theorems for �

DC

for nondeterministi automata:

Theorem 5.2 haraterizes �

DC

in terms of �

F

, for automata without internal ations, and Theo-

rem 5.4 haraterizes �

DC

in terms of �

wF

, for arbitrary nondeterministi automata. In eah ase,

we prove the result �rst for tree-strutured automata and then extend it to the non-tree-strutured

ase via unfolding. The interesting diretion for eah of these results is the ompleteness diretion,

showing that A

1

�

DC

A

2

implies the existene of a simulation relation from A

1

to A

2

.

Our proofs of ompleteness for nondeterministi automata use the simple haraterization in

Proposition 3.5, applied with C equal to the dual probabilisti automaton of A

1

.

5.1 Nondeterministi Automata Without Internal Ations

We begin by onsidering nondeterministi automata without internal ations. We �rst onsider

tree-strutured automata.

Proposition 5.1 Let A

1

, A

2

be nondeterministi automata without internal ations suh that A

1

tree-strutured. Then A

1

�

DC

A

2

implies A

1

�

F

A

2

.

Proof. Assume that A

1

�

DC

A

2

. Let C be the dual probabilisti automaton of A

1

and onsider

the observer �

1

of A

1

as de�ned in Setion 4. Let � be the trae distribution indued by �

1

.

Sine A

1

�

DC

A

2

, Proposition 3.5 implies that � is also a trae distribution of A

2

kC. That is,

there exists a probabilisti exeution � ofA

2

kC, indued by some sheduler �

2

, suh that tdist(�) = �.

For eah state q

1

in Q

1

, let �

q

1

be the set of �nite exeutions of A

2

kC whose last transition is

labeled by q

1

. For eah state q

2

of A

2

, let �

q

1

;q

2

be the set of exeutions in �

q

1

whose last state is

the pair (q

2

; q

1

).
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De�ne a relation R as follows: q

1

R q

2

if and only if there exists a �nite exeution � in �

q

1

;q

2

suh that �(C

�

) > 0. We laim that R is a forward simulation from A

1

to A

2

.

For the start ondition, we must show that �q

1

R �q

2

. Consider the start state (�q

2

; �q

C

) of A

2

kC.

Sine there are no internal ations in A

2

or C, and sine, by Equation (3) from Proposition 4.2,

�(C

�q

1

) = 1, the only ation that is sheduled initially by �

2

is �q

1

, leading to state (�q

2

; �q

1

). Thus,

the �nite exeution � = (�q

2

; �q

C

)�q

1

(�q

2

; �q

1

) is an element of �

�q

1

;�q

2

suh that �(C

�

) > 0, as needed.

For the step ondition, assume q

1

R q

2

and let q

1

a

!

1

q

0

1

be a transition of A

1

, whih we denote

by tr for onveniene. We exhibit a mathing transition q

2

a

!

2

q

0

2

.

By de�nition of R, there exists a �nite exeution � in �

q

1

;q

2

, suh that �(C

�

) > 0. Sine

�

q

1

;q

2

is a subset of �

q

1

, by de�nition of �

q

1

, trae(�) = �q

1

for some �nite trae �. Therefore,

�(C

�q

1

) > 0. Sine q

1

enables at least one transition in A

1

, spei�ally transition tr , Equation (4)

from Proposition 4.2 implies that �(C

�q

1

h

) = �(C

�q

1

). Then, sine A

2

and C have no internal

ations, �

2

shedules ation h from � with probability 1.

By de�nition of dual(A

1

), the transition labeled by h that leaves from state q

1

of C leads to state

tr with non-zero probability. Therefore, �(C

� h (q

2

;tr)

) > 0. By Equation (6) from Proposition 4.3,

where only the �rst term of the right-hand side is used due to the absene of internal ations, �

2

must extend � h (q

2

; tr ) with two steps labeled by an ation and a state of A

1

, respetively, where

the ation and the state are ompatible with one of the transitions of A

1

that are enabled from

q

1

. Sine state tr of C enables only ation q

0

1

, and sine, by the tree-struture of A

1

, a is uniquely

determined by q

0

1

, the ation and state sheduled by �

2

are a and q

0

1

. Therefore, there exists a state

q

0

2

of A

2

suh that the exeution �

0

= � h (q

2

; tr )a(q

0

2

; tr )q

0

1

(q

0

2

; q

0

1

) is an exeution in �

q

0

1

;q

0

2

suh

that �(C

�

0

) > 0. Then q

0

1

R q

0

2

and q

2

a

! q

0

2

as needed. 2

Now we present our result for general (non-tree-strutured) nondeterministi automata without

internal ations.

Theorem 5.2 Let A

1

, A

2

be nondeterministi automata without internal ations. Then A

1

�

DC

A

2

if and only if A

1

�

F

A

2

.

Proof. First we prove soundness of forward simulations:

A

1

�

F

A

2

) (Proposition 3.6, Part 1)

A

1

�

PF

A

2

) (Proposition 3.7, Part 1)

A

1

�

wPF

A

2

) (Proposition 3.7, Part 3)

A

1

�

DC

A

2

:

Next we prove ompleteness:

A

1

�

DC

A

2

) (Proposition 2.3)

Unfold(A

1

) �

F

A

1

�

DC

A

2

) (as in soundness proof)

Unfold(A

1

) �

DC

A

1

�

DC

A

2

) (�

DC

is transitive)

Unfold(A

1

) �

DC

A

2

) (Proposition 5.1)

Unfold(A

1

) �

F

A

2

) (Proposition 2.3)

A

1

�

F

Unfold (A

1

) �

F

A

2

) (�

F

is transitive)

A

1

�

F

A

2

:

2
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5.2 Nondeterministi Automata With Internal Ations

Next we extend the results of Setion 5.1 to automata that may inlude internal ations. The

proofs are analogous to those in Setion 5.1. The di�erene is that, in several plaes in the proof of

Proposition 5.3, we need to reason about multi-step extensions of exeutions instead of single-step

extensions. Again, we begin with tree-strutured automata.

Proposition 5.3 Let A

1

, A

2

be nondeterministi automata suh that A

1

is tree-strutured. Then

A

1

�

DC

A

2

implies A

1

�

wF

A

2

.

Proof. Assume that A

1

�

DC

A

2

. De�ne the dual probabilisti automaton C of A

1

, the observer

�

1

, the trae distribution �, the sheduler �

2

, and the probabilisti exeution � as in the proof of

Proposition 5.1. Without loss of generality we assume that �

2

shedules ation �q

1

with probability

1 from the start state of A

2

kC (essentially, sine internal transitions are only transitions of A

2

and

the transition labeled by �q

1

is only a transition of C, we an exhange any internal transitions of A

2

that our before the transition labeled by �q

1

with the transition labeled by �q

1

and reah exatly

the same states with the same probabilities).

De�ne the � sets and the relation R as in the proof of Proposition 5.1. Now we laim that R

is a weak forward simulation from A

1

to A

2

.

For the start ondition, we must show that �q

1

R �q

2

. Consider the start state (�q

2

; �q

C

) of A

2

kC.

Sine, by assumption, �

2

shedules ation �q

1

with probability 1 from the start state of A

1

kC, the

�nite exeution � = (�q

2

; �q

C

)�q

1

(�q

2

; �q

1

) is an element of �

�q

1

;�q

2

suh that �(C

�

) > 0, as needed.

For the step ondition, assume q

1

R q

2

and let q

1

a

!

1

q

0

1

be a transition of A

1

, whih we denote

by tr . We exhibit a mathing weak transition q

2

a

=)

2

q

0

2

.

By de�nition of R, there exists a �nite exeution � in �

q

1

;q

2

suh that �(C

�

) > 0. Sine

�

q

1

;q

2

is a subset of �

q

1

, by de�nition of �

q

1

, trae(�) = �q

1

for some �nite trae �. Therefore,

�(C

�q

1

) > 0. Sine q

1

enables at least one transition in A

1

, spei�ally transition tr , Equation (4)

from Proposition 4.2 implies that �(C

�q

1

h

) = �(C

�q

1

). Thus, there exists an exeution fragment �

0

of A

2

kC with trae h suh that �(C

�

_

�

0

) > 0. Furthermore, sine, by de�nition of dual(A

1

), the

transition of C labeled by h that leaves from state q

1

leads to state tr with non-zero probability,

we an assume that the last state of �

0

is of the form (q

0

; tr) for some state q

0

of A

2

.

Sine �(C

�q

1

h

) > 0, by Equation (6) from Proposition 4.3, �

2

must extend �

_

�

0

in suh a

way that the �rst or the �rst two external ations are ompatible with one of the transitions of

A

1

that are enabled from q

1

. (The number of external ations depends on whether the ompatible

transition of A

1

is labeled by an internal or external ation.) Sine state tr of C enables only ation

q

0

1

, and sine, by the tree-struture of A

1

, a is uniquely determined by q

0

1

, the �rst or �rst two

external ations of A

2

kC sheduled by �

2

are either q

0

1

or aq

0

1

depending on whether a is internal

or external. Thus, there exists an exeution fragment �

00

of A

2

kC, with trae trae(aq

0

1

), suh that

�(C

�

_

�

0_

�

00

) > 0. Furthermore, we an assume that the last transition of �

00

is labeled by q

0

1

(simply trunate �

00

otherwise).

Let (q

0

2

; q

0

1

) be the last state of �

00

. Then, �

_

�

0 _

�

00

2 �

q

0

1

;q

0

2

, thus showing that q

0

1

R q

0

2

.

It remains to show that q

2

a

=) q

0

2

. For this, it suÆes to observe that the exeution fragment

(�

0 _

�

00

)dA

2

has trae a, �rst state q

2

, and last state q

0

2

. 2

Theorem 5.4 Let A

1

, A

2

be nondeterministi automata. Then A

1

�

DC

A

2

if and only if A

1

�

wF

A

2

.
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Proof. Analogous to the proof of Theorem 5.2. First we prove soundness of weak forward simu-

lations:

A

1

�

wF

A

2

) (Proposition 3.6, Part 2)

A

1

�

wPF

A

2

) (Proposition 3.7, Part 3)

A

1

�

DC

A

2

:

Now we prove ompleteness:

A

1

�

DC

A

2

) (Proposition 2.3)

Unfold(A

1

) �

F

A

1

�

DC

A

2

) (as in proof Theorem 5.2)

Unfold(A

1

) �

DC

A

1

�

DC

A

2

) (�

DC

is transitive)

Unfold(A

1

) �

DC

A

2

) (Proposition 5.3)

Unfold(A

1

) �

wF

A

2

) (Proposition 2.3)

A

1

�

F

Unfold(A

1

) �

wF

A

2

) (Proposition 2.2, Part 1)

A

1

�

wF

Unfold(A

1

) �

wF

A

2

) (�

wF

is transitive)

A

1

�

wF

A

2

:

2

6 Charaterizations of the Trae Distribution Preongruene Re-

lation for Probabilisti Automata

Now we present our haraterization theorems for �

DC

for probabilisti automata: Theorem 6.3

haraterizes �

DC

in terms of �

PF

, for PAs without internal ations, and Theorem 6.5 haraterizes

�

DC

in terms of �

wPF

, for arbitrary probabilisti automata. Again, we give the results �rst for

tree-strutured automata and extend them by unfolding. Again, the interesting diretion is the

ompleteness diretion, showing that P

1

�

DC

P

2

implies the existene of a simulation relation

from P

1

to P

2

. Our proofs of ompleteness for PAs are analogous to those for nondeterministi

automata.

6.1 Probabilisti Automata Without Internal Ations

We �rst onsider tree-strutured automata.

Proposition 6.1 Let P

1

, P

2

be probabilisti automata without internal ations suh that P

1

is

tree-strutured. Then P

1

�

DC

P

2

implies P

1

�

PF

P

2

.

Proof. Assume that P

1

�

DC

P

2

. De�ne the dual probabilisti automaton C of A

1

, the observer

�

1

, the trae distribution �, the sheduler �

2

, and the probabilisti exeution � as in the proof of

Proposition 5.1. De�ne the � sets as in the proof of Proposition 5.1.

De�ne a relation R as follows: q

1

R �

2

if and only if

P

�2�

q

1

�(C

�

) > 0 and for eah state

q

2

2 Q

2

,

�

2

(q

2

) =

P

�2�

q

1

;q

2

�(C

�

)

P

�2�

q

1

�(C

�

)

: (10)

That is, the measure �

2

desribes probabilities of the various �

q

1

;q

2

's relative to �

q

1

. Note that the

equation above is well de�ned sine, by the tree-struture of P

1

, all the ones represented by �

q

1
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are disjoint, and thus

P

�2�

q

1

�(C

�

) � 1. We laim that R is a probabilisti forward simulation

from P

1

to P

2

.

Before proving that R is a probabilisti forward simulation we make several observations.

1. Relation R is a funtion from Q

1

to Dis(Q

2

).

Indeed, if

P

�2�

q

1

�(C

�

) > 0, then there exists exatly one measure that satis�es Equa-

tion (10). Furthermore, given the onstrution of �, every state q

1

of Q

1

ours with some

positive probability in �, thus,

P

�2�

q

1

�(C

�

) > 0 for all states q

1

of Q

1

.

2. If q

1

R �

2

, then, for eah state q

2

2 Q

2

and eah exeution � 2 �

q

1

;q

2

,

�(C

�

) > 0) q

2

2 supp(�

2

): (11)

That is, the exeution � ours with non-zero probability in � only if �

2

assigns non-zero

probability to q

2

. This property is a diret onsequene of Equation (10).

3. For eah transition q

1

a

! �

0

1

of P

1

, the following equation holds:

�

0

1

(q

0

1

) =

P

�2�

q

0

1

�(C

�

)

P

q2supp(�

0

1

) ; �2�

q

�(C

�

)

: (12)

That is, the relative probabilities of the states of supp(�

0

1

) in � are given by �

0

1

. This result

follows by instantiating Equation (8) from Proposition 4.4 with q

1

a

! �

0

1

to derive the proba-

bility of a state q

0

1

in the support of �

0

1

, and by replaing the diamond expressions aording

to Equation (2) from Proposition 3.2.

4. For eah transition q

1

a

! �

0

1

of P

1

, the following equation holds:

X

�2�

q

1

�(C

�

) = k

X

q2supp(�

0

1

) ; �2�

q

�(C

�

); (13)

where k is the number of transitions of P

1

enabled from q

1

. That is, the probability of

reahing q

1

in � is k times the probability of reahing q

1

and sheduling tr , where tr denotes

the transition q

1

a

! �

0

1

. Informally, transition tr is sheduled only if state q

1

is reahed and

the outome of the following transition labeled by h is tr , whih happens with probability

1=k. The reason why

P

q2supp(�

0

1

) ; �2�

q

�(C

�

) is the probability of reahing q

1

and sheduling

tr is that states from supp(�

0

1

) an our only after q

1

has ourred and tr is reahed (see the

de�nition of dual automaton and of observer of a dual automaton) and furthermore states from

supp(�

0

1

) our with probability 1 one tr is reahed (see Equation (5) from Proposition 4.2).

This result follows by instantiating Equation (7) from Proposition 4.4 with q

1

a

! �

0

1

to

derive the probability of a state q

0

1

in the support of �

0

1

, replaing the diamond expressions

aording to Equation (2) from Proposition 3.2, summing over supp(�

0

1

), observing that

P

q

0

1

2supp(�

0

1

)

�

0

1

(q

0

1

) = 1, and deriving

P

�2�

q

1

�(C

�

) from the resulting equation.

We are now ready to show that R is a probabilisti forward simulation. For the start ondition,

we must show that �q

1

R Æ(�q

2

).
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Consider the start state (�q

2

; �q

C

) of A

2

kC. Sine there are no internal ations in A

2

or C, and

sine, by Equation (3) from Proposition 4.2, �(C

�q

1

) = 1, the only ation that is sheduled initially by

�

2

is �q

1

, leading to state (�q

2

; �q

1

) with probability 1. Thus, the �nite exeution � = (�q

2

; �q

C

)�q

1

(�q

2

; �q

1

)

is an element of �

�q

1

;�q

2

suh that �(C

�

) = 1, and, by de�nition of R, �q

1

R Æ(�q

2

) as needed.

For the step ondition, assume that q

1

R �

2

and let q

1

a

!

1

�

0

1

be a transition of P

1

, whih we

denote by tr . We must exhibit a probability measure �

0

2

2 Dis(Dis(Q

2

)) and a hyper-transition

�

2

a

!

2

�

00

2

, mathing the given transition, where �

00

2

= atten(�

0

2

) and �

0

1

R �

0

2

. We do this by

deriving a transition tr

�

for eah exeution � of �

q

1

and by ombining the tr

�

's appropriately into

transitions tr

q

, for eah state q 2 supp(�

2

), that are the basis for the required hyper-transition. The

tr

�

transitions are derived from �; the onstrution onsiders only those �'s for whih �(C

�

) > 0.

The other �'s an be treated arbitrarily.

Consider an exeution � of �

q

1

suh that �(C

�

) > 0. By Property (11), � 2 �

q

1

;q

2

for some

state q

2

in supp(�

2

). Sine �

q

1

;q

2

is a subset of �

q

1

, by de�nition of �

q

1

, trae(�) = �q

1

for some

�nite trae �. Therefore, �(C

�q

1

) > 0. Sine q

1

enables at least one transition in P

1

, spei�ally

transition tr , Equation (4) from Proposition 4.2 implies that �(C

�q

1

h

) = �(C

�q

1

). Then, sine A

2

and C have no internal ations, �

2

shedules ation h from � with probability 1.

By de�nition of dual(A

1

), the transition labeled by h that leaves from state q

1

of C leads to state

tr with non-zero probability. Therefore, �(C

� h (q

2

;tr)

) > 0. By Equation (5) from Proposition 4.2,

where only the �rst term of the right-hand side is used due to the absene of internal ations, �

2

must extend � h (q

2

; tr ) with two steps labeled by an ation and a state of A

1

, respetively, where

the ation and the state are ompatible with one of the transitions of A

1

that are enabled from

q

1

. Sine state tr of C enables only ations in supp(�

0

1

), and sine, by the tree-struture of A

1

, a

is uniquely determined by �

0

1

, the ation that is sheduled is a and the state that is sheduled is a

state in supp(�

0

1

). Thus, �

2

(� h (q

2

; tr )) returns a probability measure over transitions labeled by

a. This measure identi�es a ombined transition of A

2

labeled by a that leaves from q

2

, whih we

denote by tr

�

.

Now, using the tr

�

transitions, we de�ne a ombined transition from eah state in the support

of �

2

. Namely, for eah state q 2 supp(�

2

), let tr

q

be the ombined transition of P

2

de�ned by:

tr

q

�

=

X

�2�

q

1

;q

�(C

�

)

P

�

0

2�

q

1

;q

�(C

�

0

)

tr

�

: (14)

Informally, eah element of �

q

1

;q

is an exeution in are � that ontributes to the emulation of

transition q

1

a

!

1

�

0

1

from q. Equation (14) omputes tr

q

, the overall ontribution to the emulation

from q, by averaging over all elements of �

q

1

;q

. We ould prove that �

q

1

;q

ontains only one element

�

0

suh that �(C

�

0

) > 0 and simplify Equation (14) aordingly. However, this simpli�ation is not

neessary for the proof. Now we de�ne the measure �

00

2

2 Dis(Q

2

):

�

00

2

�

=

X

q2supp(�

2

)

�

2

(q)�

tr

q

: (15)

Then, by onstrution, �

2

a

! �

00

2

is a hyper-transition of P

2

.

It remains to de�ne a probability measure �

0

2

2 Dis(Dis(Q

2

)) suh that �

00

2

= atten(�

0

2

) and

�

0

1

R �

0

2

.

For eah q 2 supp(�

0

1

), let �

q

be the unique measure suh that q R �

q

. We an identify �

q

beause R is a funtion. De�ne �

0

2

2 Dis(Dis(Q

2

)) suh that, for eah q 2 supp(�

0

1

), �

0

2

(�

q

) =

P

q

0

2supp(�

0

1

)j�

q

0

=�

q

�

0

1

(q

0

). Then �

0

1

R �

0

2

by de�nition of �

0

2

.
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It remains to show that �

00

2

= atten(�

0

2

), that is, that �

00

2

=

P

�2supp(�

0

2

)

�

0

2

(�)�. From the

de�nition of �

0

2

and of the atten operator, it suÆes to show that for every q

2

2 Q

2

,

�

00

2

(q

2

) =

X

q2supp(�

0

1

)

�

0

1

(q)�

q

(q

2

): (16)

To prove Equation (16) we �rst laim that the following equation is valid for eah pair of states

q

1

; q

2

of P

1

and P

2

, respetively, if k denotes the number of transitions of P

1

that are enabled from

q

1

:

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

): (17)

Informally, the left-hand side of Equation (17) represents the probability of sheduling q

1

and

then reahing q

2

aording to the transition tr

�

, without onsidering the outome of the transition

labeled by h. The right-hand side, on the other hand, omputes the probability of sheduling q

1

,

sheduling h and reahing �

0

1

, and then sheduling tr

�

and reahing q

2

. State �

0

1

is reahed by h

with probability 1=k, whih justi�es the k fator in the right-hand side.

To prove Equation (17), onsider an exeution � 2 �

q;q

2

where q 2 supp(�

0

1

). Sine q o-

urs always after q

1

, exeution � an be split into �

0 _

�

00

where �

0

2 �

q

1

. Furthermore,

trae(�

00

) = h aq, and sine there are no internal ations in P

2

and C, � is the unique exten-

sion of �

0

that is in �

q;q

2

. In partiular, �

00

= (q

0

; q

1

) h (q

0

; tr )a(q

2

; tr )q(q

2

; q) for some state q

0

of A

2

, and �(C

�

) = �(C

�

0

)(1=k)�

tr

�

0

(q

2

). Thus, eah summand in the right-hand side of Equa-

tion (17) has a orresponding summand in the left-hand side that di�ers by a fator of k, and the

orrespondene relation is an injetion. If the orrespondene is not a bijetion, then the � terms

that are left out on the left-hand side are suh that �

tr

�

(q

2

) = 0 (otherwise an extension in �

q;q

2

for some q exists). This suÆes.

We now onsider the left-hand side of Equation (16). Consider the de�nition of �

00

2

given by

Equation (15). By expanding �

2

(q) aording to the de�nition of �

2

given by Equation (10), and

expanding �

tr

(q

2

) aording to the de�nition of �

tr

given by Equation (14), we obtain

�

00

2

(q

2

) =

X

q2supp(�

2

)

P

�2�

q

1

;q

�(C

�

)

P

�2�

q

1

�(C

�

)

P

�2�

q

1

;q

�(C

�

)�

tr

�

(q

2

)

P

�2�

q

1

;q

�(C

�

)

:

By ross simplifying the top leftmost and bottom rightmost fators, and by fatoring the left

denominator out of the sum, we obtain

�

00

2

(q

2

) =

P

q2supp(�

2

)

P

�2�

q

1

;q

�(C

�

)�

tr

�

(q

2

)

P

�2�

q

1

�(C

�

)

:

By Property (11), we an rewrite the numerator as follows:

�

00

2

(q

2

) =

P

�2�

q

1

�(C

�

)�

tr

�

(q

2

)

P

�2�

q

1

�(C

�

)

:

By multiplying numerator and denominator by k, applying Equation (17) to the numerator, and

applying Equation (13) to the denominator, we obtain

�

00

2

(q

2

) =

P

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

)

P

q2supp(�

0

1

) ; �2�

q

�(C

�

)

: (18)
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We now onsider the right-hand side of Equation (16). By applying Equations (12) and (10)

to the two fators of the right-hand side of Equation (16), and by simplifying ommon fators

algebraially, we obtain

X

q2supp(�

0

1

)

�

0

1

(q)�

q

(q

2

) =

P

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

)

P

q2supp(�

0

1

) ; �2�

q

�(C

�

)

: (19)

Now Equation (16) follows by diret ombination of Equations (18) and (19). 2

Interestingly, the probabilisti forward simulation that we onstruted in the above proof is

funtional. Funtional simulations are usually alled re�nement mappings. Write P

1

�

PR

P

2

if

there exists a funtional probabilisti forward simulations from P

1

to P

2

. Then we an state the

following orollary of Proposition 6.1, whih is a probabilisti version of Proposition 3.12 in [10℄:

Corollary 6.2 Let P

1

, P

2

be probabilisti automata without internal ations suh that P

1

is tree-

strutured. Then P

1

�

PF

P

2

i� P

1

�

PR

P

2

.

Proof. It is enough to observe that eah state q

1

of P

1

ours with some positive probability in

the trae distribution � of the proof of Proposition 6.1. 2

Theorem 6.3 Let P

1

, P

2

be probabilisti automata without internal ations. Then P

1

�

DC

P

2

if

and only if P

1

�

PF

P

2

.

Proof. First we prove soundness of probabilisti forward simulations:

P

1

�

PF

P

2

) (Proposition 3.7, Part 1)

P

1

�

wPF

P

2

) (Proposition 3.7, Part 3)

P

1

�

DC

P

2

:

Now we prove ompleteness:

P

1

�

DC

P

2

) (Proposition 3.9)

Unfold(P

1

) �

DC

P

1

�

DC

P

2

) (�

DC

is transitive)

Unfold(P

1

) �

DC

P

2

) (Proposition 6.1)

Unfold(P

1

) �

PF

P

2

) (Proposition 2.3)

P

1

�

PF

Unfold(P

1

) �

PF

P

2

) (�

PF

is transitive)

P

1

�

PF

P

2

:

2

6.2 Probabilisti Automata With Internal Ations

Again, we start with tree-strutured PAs.

Proposition 6.4 Let P

1

, P

2

be probabilisti automata with P

1

tree-strutured. Then P

1

�

DC

P

2

implies P

1

�

wPF

P

2

.
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Proof. Assume that P

1

�

DC

P

2

. De�ne the dual probabilisti automaton C of A

1

, the observer

�

1

, the trae distribution �, the sheduler �

2

, and the probabilisti exeution � as in the proof of

Proposition 5.1. Without loss of generality we assume that �

2

shedules ation �q

1

with probability

1 from the start state of A

2

kC (essentially we an exhange the internal transitions of A

2

that our

before the transition labeled by �q

1

with the transition labeled by �q

1

).

De�ne the � sets as in the proof of Proposition 5.1, and de�ne relation R aording to Equa-

tion (10) as in the proof of Proposition 6.1. Observe that Property (11) and Equations (12) and (13)

hold for the same reasons as before.

The proof that R is a weak probabilisti forward simulation is exatly as before exept for the

de�nition of the tr

�

transitions. Thus, in the rest of the proof we onstrut the tr

�

's and prove

that Equation (17) still holds.

Assume that q

1

R �

2

and let q

1

a

!

1

�

0

1

be a transition of P

1

, whih we denote by tr .

We introdue a speial onditional onstrution that is needed for the de�nition of the tr

�

's.

Let C

tr

be the same as C exept that the transition q

1

h

! �, where � is uniquely determined by q

1

,

is replaed by q

1

h

! Æ(tr ). Given a sheduler � for A

2

kC, de�ne the sheduler � j tr for A

2

kC

tr

that is the same as � exept that transition q

1

h

! Æ(tr ) of C

tr

is hosen whenever � hooses q

1

h

! �.

Given a probabilisti exeution fragment �

0

of A

2

kC, generated by some sheduler �, de�ne �

0

j tr

to be the result of � j tr applied to AkC

tr

from the start state of �

0

. The intuition behind �

0

j tr

is that we study �

0

under the ondition that tr is the outoming state of C whenever q

1

h

! � is

sheduled. Then, the following two properties are valid.

1. (�

0

j tr)dA

2

is a probabilisti exeution fragment of A

2

.

2. For eah �nite exeution fragment � of A

2

kC where state tr ours and suh that fstate(�)

is not of the form (�; tr ), (�

0

j tr)(C

�

) = k�(C

�

), where k is the size of supp(�).

The �rst item follows immediately from Proposition 3.4 given that �

0

j tr is a probabilisti exeution

fragment of A

2

kC

tr

. The seond item follows diretly from the de�nition of probability of a one

sine in �

0

the probability assoiated with the edge q h (�; tr ) is 1=k while in �

0

j tr the probability

of the same edge is 1.

We now de�ne the tr

�

's. Consider an exeution � of �

q

1

suh that �(C

�

) > 0. Let �

1

be the

trunation of � at all the points in [

q2supp(�

0

1

)

�

q

, whih is a probabilisti exeution of A

2

kC by

Proposition 3.11. Let �

1

�

be �

1

. �, whih is a probabilisti exeution fragment of A

2

kC by Item 1

of Proposition 3.13. Finally, let �

2

�

be (�

1

�

j tr)dA

2

, whih is a probabilisti exeution fragment of

A

2

by Property 1.

By de�nition of �

q

1

, trae(�) = �q

1

for some �nite trae �. Therefore, �(C

�q

1

) > 0. Sine q

1

enables at least one transition in P

1

, spei�ally transition tr , Equation (4) from Proposition 4.2 im-

plies that �(C

�q

1

h

) = �(C

�q

1

). Thus, ation h ours as the �rst external ation with probability

1 in �

1

�

.

By Equation (6) from Proposition 4.3, if the ourrene of ation h leads C to state tr , then an

ation in supp(�

0

1

) ours eventually in � with probability 1, leading C to a state in supp(�

0

1

), whih

is a trunation point aording to the de�nition of �

1

. Thus, the probability of termination in �

1

�

j tr

is 1, as well as the probability of termination in �

2

�

, i.e., �

2

�

assigns probability 1 to the set of �nite

exeutions. Furthermore, given that ation a is uniquely determined by �

0

1

(A

1

is tree-strutured),

again by Equation (6) from Proposition 4.3 all �nite exeutions �

0

with �

2

�

(�

0

) > 0 have trae a
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(empty trae if a is internal). Thus, �

2

�

denotes a weak ombined transition labeled by a (no ation

if a is internal) from lstate(�)dA

2

. Denote suh transition by tr

�

.

We are left to show that Equation (17) still holds. That is,

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

) ; �2�

q;q

2

�(C

�

):

We onsider �rst the term �

tr

�

(q

2

). From the de�nition of tr

�

and of weak ombined transition

we get

�

tr

�

(q

2

) =

X

�

0

jlstate(�

0

)=q

2

�

2

�

(�

0

):

By applying the de�nition of projetion, and using the fat that �

1

�

j tr assigns probability 1 to the

set of �nite exeutions, we get

�

tr

�

(q

2

) =

X

�

0

jlstate(�

0

dA

2

)=q

2

(�

1

�

j tr)(�

0

):

Given that the trunation points of �

1

are all at the [

q2supp(�

0

1

)

�

q

points, the only �nite exeutions

�

0

that have non-zero probability are suh that �

_

�

0

is in some set �

q

. Furthermore, given that

no exeution in [

q2supp(�

0

1

)

�

q

is a pre�x of another (our PAs are tree-strutured and all ations in

supp(�

0

1

) our in di�erent branhes), the probabilities of the �nite exeutions an be replaed by

the probabilities of their ones, thus getting

�

tr

�

(q

2

) =

X

q2supp(�

0

1

)

X

�

0

j�

_

�

0

2�

q;q

2

(�

1

�

j tr )(C

�

0

):

By Property 2 we an get rid of the onditional on tr by introduing a k fator, thus getting

�

tr

�

(q

2

) =

X

q2supp(�

0

1

)

X

�

0

j�

_

�

0

2�

q;q

2

k�

1

�

(C

�

0

): (20)

By replaing �

tr

�

(q

2

) aording to Equation (20) in the left-hand side of Equation (17), and by

rearranging terms algebraially, we obtain

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

)

X

�2�

q

1

X

�

0

j�

_

�

0

2�

q;q

2

�(C

�

)�

1

�

(C

�

0

):

By using the de�nition of �

1

�

and Item 2 of Proposition 3.13, the two probabilities in the equation

above an be grouped into �(C

�

_

�

0

). By observing that all elements in �

q;q

2

, with q 2 supp(�

0

1

),

have a pre�x in �

q

1

, the intermediate sum an be removed, thus getting

X

�2�

q

1

�(C

�

)�

tr

�

(q

2

) = k

X

q2supp(�

0

1

)

X

�2�

q;q

2

�(C

�

);

whih is Equation (17) as needed. 2

Theorem 6.5 Let P

1

, P

2

be probabilisti automata. Then P

1

�

DC

P

2

if and only if P

1

�

wPF

P

2

.
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Proof. Soundness of weak probabilisti forward simulations follows immediately from Proposi-

tion 3.7. Completeness is established by:

P

1

�

DC

P

2

) (Proposition 3.9)

Unfold(P

1

) �

DC

P

1

�

DC

P

2

) (�

DC

is transitive)

Unfold(P

1

) �

DC

P

2

) (Proposition 6.4)

Unfold(P

1

) �

wPF

P

2

) (Proposition 2.3)

P

1

�

PF

Unfold(P

1

) �

wPF

P

2

) (Proposition 3.7)

P

1

�

wPF

Unfold(P

1

) �

wPF

P

2

) (�

wPF

is transitive)

P

1

�

wPF

P

2

:

2

7 Conluding Remarks

We have haraterized the trae distribution preongruene for nondeterministi and probabilisti

automata, with and without internal ations, in terms of four kinds of simulation relations, �

F

,

�

wF

, �

PF

, and �

wPF

. In partiular, this shows that probabilisti ontexts are apable of observing

all the distintions that an be expressed using these simulation relations.

Some tehnial improvements are possible. For example, our �nite branhing restrition an

be relaxed to ountable branhing, simply by replaing uniform distributions in the dual automata

by other distributions suh as exponential distributions. Calulations beome more ompliated,

however.

For future work, it would be interesting to try another approah to ahieving ompositionality

for PA behaviors: de�ne implementation as trae distribution inlusion, but restrit parallel om-

position so that the nondeterminism of eah omponent is resolved based only on externally-visible

behavior of the other omponents. This approah also requires some ways of resolving the nonde-

terminism of sheduling di�erent omponents. Some initial steps towards this goal appear in our

reent work on swithed automata [3℄.
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