
Forward and Backward SimulationsPart II: Timing-Based SystemsNancy LynchMIT Laboratory for Computer ScienceCambridge, MA 02139, USAlynch@theory.lcs.mit.eduFrits VaandragerCWIP.O. Box 4079, 1009 AB Amsterdam, The Netherlandsfritsv@cwi.nlUniversity of Amsterdam, Programming Research GroupKruislaan 403, 1098 SJ Amsterdam, The NetherlandsSeptember 9, 1993(Revision of March 1, 1993 version)AbstractA general automaton model for timing-based systems is presented and is used as thecontext for developing a variety of simulation proof techniques for such systems. Thesetechniques include (1) re�nements, (2) forward and backward simulations, (3) forward-backward and backward-forward simulations, and (4) history and prophecy relations.Soundness and completeness results are given for these simulations. These results arelargely analogous to the results in Part I of this paper for untimed systems. In fact,many of the results for the timed case are obtained as consequences of the analogousresults for the untimed case.1991 Mathematics Subject Classi�cation: 68Q60, 68Q68.1991 CR Categories: C.3, F.1.1, F.3.1.Keywords and Phrases: Timing-based systems, real-time, timed automata, sim-ulations, re�nement mappings, forward simulations, backward simulations, forward-backward simulations, backward-forward simulations, history relations, prophecy rela-tions.Notes: This work was supported by ONR contracts N00014-85-K-0168 and N00014-91-J-1988, by NSF grant CCR-8915206, and by DARPA contracts N00014-89-J-1988 andN00014-92-J-4033. Part of this work took place while the second author was employedby the Ecole des Mines, CMA, Sophia Antipolis, France. The second author alsoreceived partial support from the ESPRIT Basic Research Action 7166, CONCUR2.An earlier verion of this paper (Part I+II) appeared as [14].

1 IntroductionIn this paper, we describe a basic timed automaton model for real-time and other timing-based systems. We intend that the model should provide a suitable basis for formal reasoningabout timing-based systems, in particular, for veri�cation of their correctness and for analysisof their complexity. It should support many di�erent kinds of correctness proof techniques,including process algebraic and assertional methods. So far, process algebraic and assertionalmethods have been used primarily to prove properties of untimed (asynchronous) systems; wewould also like to use them for timing-based systems. Also, the kinds of properties generallyproved using these methods have been \ordinary" safety properties; we would like also touse similar methods to prove timing properties (e.g., upper and lower bounds on time).We use our model to express some powerful simulation techniques for proving correct-ness of timing-based systems. Since simulation techniques are a special case of assertionalmethods, the automata-theoretic style of our model is the natural style for presenting them.However, we expect that the model can also serve as a semantic model for interesting alge-braic languages, and thus that process algebraic methods can also be employed in the sameframework.The kinds of simulation techniques we describe are timed versions of the techniques stud-ied in Part I of this paper, [15]. That is, we consider timed versions of re�nements, forwardsimulations, backward simulations, forward-backward, backward-forward simulations, historyrelations and prophecy relations. Again, we prove soundness and completeness theorems,and theorems relating the di�erent kinds of simulations to each other.The goal of extending simulation techniques to timing-based systems is also the motiva-tion for the work of Lynch and Attiya in [12]. That work, however, only explores forwardsimulations. Also, the model used in [12] has considerably more structure than the verygeneral model proposed here; it is based closely on the timed automaton model of Merritt,Modugno and Tuttle [16], which assumes that the system being modeled is describable interms of a collection of separate tasks, each with associated upper and lower bounds on itsspeed. This extra structure supports the development of a useful progress measure proofmethod, which we do not develop here. On the other hand, the basic theorems about for-ward simulations that appear in [12] are stated in a setting that has more structure than isreally necessary for those theorems. In this paper, we make only those assumptions that areneeded for the basic results about simulation proof techniques.We propose a notion of timed automaton, which is just an automaton (or labeled transi-tion system) equipped with some additional structure. Speci�cally, each state of the automa-ton has an associated current time value. (Thus we use absolute time in the sense of [2].)The actions of the automaton are of three kinds: visible actions, a special internal action� , and a special time-passage action �. As in many other formalisms for real-time (See, forinstance, [2, 5, 8, 16, 18, 19, 23].), all actions except for the time-passage action are modeledas occurring instantaneously, i.e., they do not change the time component of the state.To specify times, we use a dense time domain, speci�cally, the nonnegative reals (startingwith time 0 in the initial state), and we impose no lower bound on the time between events.This choice distinguishes our work from many others', e.g., [7, 8, 18, 19, 21, 24], in whichdiscrete time values or universal positive lower bounds on step time are used. Use of real-2

valued time is less restrictive, and we believe that the extra
exibility will be useful in thedesign and analysis of timing-based distributed algorithms. The penalty we pay for this
exibility is that our automata may admit some \Zeno executions", i.e., in�nite executionsin which the time component is bounded.Timed automata are required to satisfy a small set of basic axioms that express naturalproperties of time. For instance, there is an axiom saying that time-passage actions mustincrease the time, and another saying that all the other actions are instantaneous. Also,if time can advance by a particular amount in two steps, it can also advance by the sameamount in a single step. Finally, if time can advance by a particular amount in one time-passage step, then it is possible to assign states to all the times that occur during the step.We attempt to use as few axioms as possible to obtain the results about simulations. Later,as we try to express di�erent proof methods in terms of this model, we expect to have toadd additional requirements to obtain the desired properties.In order to de�ne correctness for timed automata, we require notions of external behav-ior. We emphasize two such notions. First, as the �nite behaviors of a timed automaton,we take the �nite timed traces, each of which consists of a �nite sequence of timed externalactions together with a �nal time. Second, as the in�nite behaviors, we take the admissibletimed traces, each of which consists of a sequence of timed external actions that can occurin an execution in which the time grows unboundedly (i.e., a \non-Zeno" in�nite execution).In [22] it is argued that inclusion of �nite and admissible timed traces is a good notion ofimplementation, provided that the implementation automaton satis�es the technical condi-tion of I/O feasibility. In this paper we will not be concerned with I/O feasibility. Insteadour objective will be to develop simulation-style proof techniques to show inclusion of timedtraces.Even though our notion of timed automata has less structure than those of [16] and[12], it is closely related to those models. Ours can be regarded as a generalization of themodel in [12], in which the notion of separate tasks is removed. (There are some minordistinctions; for instance, we do not include names for internal actions, but label them all bythe special symbol � . This distinction is unimportant in a setting without separate tasks.)Also, the model of [16] includes treatment of fairness and liveness, whereas our model doesnot. (The model in [16] was originally designed as an extension of the untimed input/outputautomaton model of [13], which emphasizes the notion of fair execution.) The reason wehave not equipped our model with facilities for handling fairness and liveness is that webelieve that in the setting of timing-based systems, most properties of practical importancecan be expressed as safety properties, given the admissibility assumption that time increaseswithout bound. The absence of fairness and liveness considerations in our model seemsto remove various technical and philosophical complications, and to lead to simpler andmore systematic proof techniques. In cases where liveness properties are required, it will benecessary to augment the model of this paper with special liveness conditions; we anticipatethat all the results of this paper should extend to this augmented model.Our model can also be considered to be a generalization of the �nite-state model of Alurand Dill [1], since we are not restricted to the special structure of [1] for specifying timebounds. Also, we do not impose any �niteness restrictions on our automata. On the otherhand, the model of [1] does have some facility for modeling liveness.3

We refer the reader to Part I for a general discussion of the various simulation techniques,for the case of untimed systems. The simulations we consider here are de�ned similarly tothose in Part I but using our new notions of external behavior, and with the addition of therequirement that corresponding states must have the same current time component. Again,we give soundness and completeness results, as well as results relation the various kinds ofsimulations to each other.In order to prove our results for timed automata, we �nd it convenient to use the cor-responding results already proved in Part I, for the simpler untimed setting. The resultsfor the timed setting are analogous to those for the untimed setting. In fact, in most cases,our results for the timed setting are derived from those for the untimed setting, while inthe remaining cases, new proofs analogous to those in Part I are presented. An advantageof this two-phase approach is that it highlights the adaptability of the various veri�cationtechniques from the untimed to the timed setting.Because of the logical dependence of this paper on Part I, we have not tried to write thispaper in a self-contained manner. Thus, we employ freely the notation and de�nitions ofPart I, and refer in many places to the results from Part I.We consider the main contributions of this paper to be the following. First, we introducethe notions of a timed automaton and its behavior, and extend existing simulation notionsto this new setting. Second, we give an organized presentation, in terms of this general timedautomaton model, of a wide range of important simulation techniques, together with theirbasic soundness and completeness properties. Third, our presentation style, which bases thetimed case on the untimed case, explains the connections between these two settings.The rest of the paper is organized as follows. Section 2 contains the de�nitions for timedautomata and their executions and traces. Section 3 contains some de�nitions and results forrestricted types of timed automata. Section 4 discusses the structures that can be obtainedas the behaviors of timed automata. Section 5 contains the major results of the paper { thede�nitions of all the timed simulations and the results that follow from the analogous resultsin Part I. Section 6 contains the results about the new simulations that require new proofs.Finally, Section 7 contains our conclusions.2 Timed Automata and Their BehaviorsThis section presents the basic de�nitions and results for timed automata. The developmentis generally parallel to that in Section 3 of Part I of this paper [15]. A2.1 Timed AutomataA timed automaton A is an automaton whose set of actions contains a special time-passageaction �. The set of visible actions is de�ned by vis(A) �= ext(A) � f�g. As an additionalcomponent, a timed automaton contains a mapping :nowA : states(A) ! R�0; this indicatesthe current time in the given state. As in Part I, we will suppress the subscript A where noconfusion is likely. We assume that a timed automaton satis�es the following axioms.S1 If s 2 start(A) then s:now = 0. 4

S2 If s0 a�! s and a 6= �, then s0:now = s:now .S3 If s0 ��! s then s0:now < s:now .S4 If s0 ��! s00 and s00 ��! s, then s0 ��! s.In order to state the last axiom, we need an auxiliary de�nition. Suppose s0; s are states ofA with t0 = s0:now < s:now = t. A trajectory from s0 to s is a function w : [t0; t]! states(A)satisfying the following conditions:1. w(t0) = s0,2. w(t) = s, and3. w(t1) ��!w(t2) for all t1; t2 2 [t0; t] with t1 < t2.4. w(t00):now = t00 for all t00 2 [t0; t].Now our �nal axiom can be formulated as follows:S5 If s0 ��! s then there exists a trajectory from s0 to s.Axiom S1 says that the time is always 0 in a start state. Axiom S2 says that non-time-passage actions do not change the time; that is, they occur \instantaneously", at a singlepoint in time. Axiom S3 says that time-passage actions must cause the time to increase.Axiom S4 allows repeated time-passage steps to be combined into one step. Axiom S5 saysthat if time can pass from time t0 to time t then it is possible to associate states with alltimes in the interval in a \consistent" way.1Suppose S is a nonempty set of states of A. Then S:ftime and S:ltime denote the in�mumand supremum of the :now values of the states in S, respectively. If S contains a uniquestate with minimal :now -value, then S:fstate is de�ned to be this state. Otherwise S:fstateis unde�ned. Similarly, S:lstate denotes the unique state in S with maximal :now -value, ifit exists, and is unde�ned otherwise.In this paper A;B; : : : will range over timed automata.2.2 Timed ExecutionsSince a timed automaton is a special case of an automaton (as de�ned in Part I), we alreadyhave a notion of execution for timed automata. However, this type of execution only describesthe system state at a countable number of points in time. Since our trajectory axiom givesus the ability to associate states with all real times, we de�ne a notion of timed execution,which includes such information. The usual kind of execution can be regarded as \sampling"our kind of timed execution at countably many points in time, as we show in Subsection2.4.1 below.1This axiom is a strengthening of a similar axiom used in [14, 20, 23], which, rephrased in our terminology,reads:S50 If s0 ��! s and s0:now < t < s:now , then there is an s00 with s00:now = t such that s0 ��! s00 and s00 ��! s.We strengthen S50 in this paper because the new de�nition seems natural to us and because we need it forsome of our later results (Lemma 3.2, for instance). In Appendix A, we discuss the relationship betweenaxioms S5 and S50 in more detail and show in particular that S50 does not in general imply S5.5

2.2.1 Basic De�nitionsA timed execution fragment of a timed automaton A is a �nite or in�nite alternating sequence� = S0a1S1a2S2 � � � of nonempty sets of states of A and actions in acts(A)�f�g, beginningwith a set of states, and if it is �nite also ending with a set of states, such that the followingholds for each index i.1. The function :now is injective on Si.2. If Si is not the last state set in � then the set Si:now is a closed interval; if Si is thelast state set in � then Si:now is a left-closed interval (and either closed or open tothe right).3. For all s0; s 2 Si, s0:now < s:now implies s0 ��! s.4. If Si is not the last state set, then Si:lstate ai+1�! Si+1:fstate.Property 1 says that Si contains at most one state for every value of the current timevariable :now . Property 2 says that Si contains states for exactly the times in some intervalof the real numbers. Property 3 describes a consistency condition among the di�erent statesin Si. Property 4 describes a consistency condition between values in consecutive intervals.A timed execution � is a timed execution fragment whose �rst state set contains a startstate.If � is a timed execution fragment, then �:ftime denotes the minimum :now value inthe �rst state set in �, and �:ltime denotes the supremum of the :now values of all statesin �. Note that, if � is a timed execution, then �:ftime = 0. Also, we de�ne �:fstate to bethe state with the minimum :now value in the �rst state set in �.2.2.2 Finite, Admissible and Zeno Timed ExecutionsIn this paper, we will be interested in certain subclasses of the set of timed executions: the�nite, admissible and Zeno timed executions.We de�ne a timed execution fragment � to be �nite if � is a �nite sequence and theinterval associated with the last state set is closed. If � is �nite, then it contains only�nitely many events. Moreover, �:ltime is the largest :now component in the last state setin �, and �:ltime is �nite. If � is �nite then we de�ne �:lstate to be the unique state in thelast state set in � with its :now value equal to �:ltime.We de�ne a timed execution fragment � to be admissible if �:ltime =1.Timed automata do not include any features for describing liveness or fairness (such asthe class structure of I/O automata). We believe that such features are less important inthe timed setting than they are in the untimed setting. Instead, we generally focus on theadmissible timed executions. The notion of an admissible timed execution is more tractablemathematically than the notion of a fair execution in the I/O automaton model; this isbecause the admissible timed executions of a timed automaton can be expressed as thelimits of in�nite sequences of �nite timed executions.More precisely, if � = S0a1S1 : : : and �0 = S00a01S01 : : : are timed execution fragments, thende�ne �0 to be a t-pre�x of �, denoted by �0 � �, if either �0 = �, or else �0 = S00a01S01 : : : a0iS0i6

is �nite, the pre�x S 00a01S01 : : : a0i of �0 is equal to the pre�x S0a1S1 : : : ai of �, and the �nalstate set S0i of �0 is included in the next state set Si of �. Then the admissible timedexecutions are exactly the limits of the in�nite sequences of �nite timed executions, whereeach timed execution in the sequence is a t-pre�x of the next and the maximum :now valuesof the �nal state sets go to1. This characterization permits the reduction of questions aboutin�nite behaviors to questions about �nite behaviors. A similar reduction is not possible inuntimed models that incorporate fairness.A timed execution fragment is said to be Zeno if it is neither �nite nor admissible. Notethat there are two types of Zeno timed executions: those containing in�nitely many actions,but for which there is a �nite upper bound on the :now values that occur in the state sets, andthose containing �nitely many actions, but for which the time interval of the �nal state setis right-open. Zeno timed executions are those in which an in�nite amount of activity occurswithin a bounded period of time. (For the second type of Zeno timed execution describedabove, the \in�nite amount of activity" corresponds to the in�nite number of time-passagesteps needed to span the right-open interval.) Some models of real-time computation, forinstance the earlier version of Timed CSP [21], exclude Zeno executions altogether, but weallow them in order to make our results as general as possible.We note that, according to our de�nitions, there are timed automata in which from some(or even all) states no admissible timed execution fragment is possible. This can be, forinstance, because from these states time can continue advancing, but not beyond a certainpoint (that is, all timed execution fragments starting from these states are Zeno), or becausetime cannot advance at all (that is, a time deadlock occurs). Time deadlocks have also beenstudied in the context of several process algebraic models ([2, 8, 18]). Our model does allowtime deadlocks. However, in several of our theorems we will require that the automata befeasible. A timed automaton A is feasible provided that each �nite timed execution is at-pre�x of some admissible timed execution. Thus, a feasible timed automaton does nothave time deadlocks, although it may have Zeno timed executions.We denote by t-frag�(A), t-frag1(A) and t-frag(A) the sets of �nite, admissible andall timed execution fragments of A. Similarly, we denote by t-execs �(A), t-execs1(A) andt-execs (A) the sets of �nite, admissible and all timed executions of A.2.3 Timed TracesSince a timed automaton is an automaton (as de�ned in Part I), we already have a notionof trace for timed automata. However, the traces of timed automata do not provide asu�ciently abstract view of their behavior, because they do not contain information aboutthe real times at which visible events occur, and because they do not re
ect the invisiblenature of time-passage actions. In this subsection, we de�ne a notion of external behaviorfor timed automata which we call timed traces. These do not include explicit � events, butdo include information about the real time of visible events, and about the �nal time up towhich the observation is made. As an auxiliary de�nition along the way to the de�nition ofa timed trace, we de�ne the notion of a timed sequence pair.7

2.3.1 Timed Sequence PairsA timed sequence over a given set K is de�ned to be a (�nite or in�nite) sequence � overK �R�0 in which the time components are nondecreasing, i.e., t � t0 if (k; t) and (k0; t0) areconsecutive elements in �. We say that � is Zeno if it is in�nite and the limit of the timecomponents is �nite.A timed sequence pair over K is a pair p = (�; t), where � is a timed sequence over Kand t 2 R�0 [f1g, such that t is greater or equal than all time components in �. We writep:seq , and p:ltime for the two respective components of p. We de�ne p:ftime to be equal tothe time component of the �rst pair in p:seq in case p:seq is nonempty, and equal to p:ltimeotherwise. We denote by tsp(K) the set of timed sequence pairs over K. We say that atimed sequence pair p is �nite if both p:seq and p:ltime are �nite, and admissible if p:seq isnot Zeno and p:ltime =1.Let p and p0 be timed sequence pairs over K such that p is �nite and p:ltime � p0:ftime.Then de�ne p; p0 to be the timed sequence pair (p:seq p0:seq; p0:ltime). If p and q are timedsequence pairs over a set K, then p is a pre�x of q, notation p � q, if either p = q, or p is�nite and there exists a timed sequence pair p0 such that q = p; p0.Lemma 2.1 � is a partial ordering on timed sequence pairs over K.2.3.2 Timed Traces of Timed AutomataSuppose � = S0a1S1a2S2 � � � is a timed execution fragment of a timed automaton A. Foreach ai, de�ne the time of occurrence ti to be Si�1:ltime, or equivalently, Si:ftime. Let
 bethe sequence consisting of the actions in � paired with their times of occurrence:
 = (a1; t1)(a2; t2) � � � :Then t-trace(�), the timed trace of �, is de�ned to be the pairt-trace(�) �= (
d(vis(A) � R�0);�:ltime):Thus, t-trace(�) records the occurrences of visible actions together with their times of oc-currence, and the limit time of the timed execution fragment. Note that in a timed traceboth � and � actions are supressed. It is easily checked that t-trace(�) is a timed sequencepair over vis(A).A timed trace of A is the timed trace of some �nite or admissible timed execution of A.Thus, we explicitly exclude the traces of Zeno executions. We write t-traces(A) for the set ofall timed traces of A, t-traces�(A) for the set of �nite timed traces, i.e., those that originatefrom a �nite timed execution of A, and t-traces1(A) for the admissible timed traces, i.e.,those that originate from an admissible timed execution of A. The following proposition isa direct consequence of the de�nitions.Proposition 2.2 The sets t-traces�(A) and t-traces1(A) consist of �nite timed sequencepairs and admissible timed sequence pairs over vis(A), respectively.These notions induce three preorders on timed automata in an obvious way: A �tTB �= t-traces(A) � t-traces(B), A �t�T B �= t-traces�(A) � t-traces�(B), and A �t1T B �=t-traces1(A) � t-traces1(B). The kernels of these preorders are denoted by �tT, �t�T and�t1T, respectively. 8

2.3.3 MovesSuppose A is a timed automaton, s0 and s are states of A, and p is a timed sequence pair overvis(A). Then we say that (s0; p; s) is a t-move of A, and write s0 p;A s, or just s0 p; s whenA is clear, if A has a �nite timed execution fragment � with �:fstate = s0, t-trace(�) = pand �:lstate = s.Lemma 2.3 Suppose s0 p;A s and p = q; r. Then there exists s00 such that s0 q;A s00 ands00 r;A s.2.4 Relationships Between Timed and Untimed Execution Frag-mentsIn this section, we observe some close connections between the timed execution fragmentsand the ordinary execution fragments of a timed automaton. Note that the rest of the paperdoes not depend on this subsection, the reader who is comfortable with our de�nition of atimed execution can skip to Section 3.2.4.1 SamplingRoughly speaking, an ordinary execution fragment can be regarded as \sampling" the stateinformation in a timed execution fragment at a countable number of points in time. Formally,we say that an execution fragment � = s0a1s1 : : : of A samples a timed execution fragment� = S0b1S1 : : : of A if there is a monotone increasing function f : N ! N such that thefollowing conditions are satis�ed.1. f(0) = 0,2. bi = af(i) for all i � 1,3. aj = � for all j not in the range of f ,4. For all i � 0 such that Si is not the last set in �,(a) sj 2 Si for all j, f(i) � j < f(i+ 1),(b) sf(i):now = Si:ftime, and(c) sf(i+1)�1:now = Si:ltime.5. If Si is the last set in �, then(a) sj 2 Si for all j, f(i) � j,(b) sf(i):now = Si:ftime, and(c) the :now values of states in fsj : f(i) � jg are co�nal with the :now values ofstates in Si.22This simply means that for every state in fsj : f(i) � jg, there is a state in Si with a :now value thatis at least as great, and vice versa. 9

In other words, the function f in this de�nition maps the (indices of) events in � tocorresponding events in �, in such a way that exactly the non-time-passage events of � areincluded in the image. Condition 4 is a consistency condition relating the �rst and last timesfor each non-�nal set to the times produced by the appropriate steps of �. Condition 5 givesa similar consistency condition for the �rst time of the �nal set (if any); in place of theconsistency condition for the last time, there is a \co�nality" condition asserting that thetimes grow to the same limit in both executions.The following two straightforward lemmas show the relationship between timed executionfragments and ordinary execution fragments.Lemma 2.4 If � is an execution fragment of A then there is a timed execution fragment �of A such that � samples �.Lemma 2.5 If � is a timed execution fragment of A then there is an execution fragment �of A such that � samples �.De�ne a state s to be t-reachable in timed automaton A provided that there is a �nitetimed execution � such that �:lstate = s. The following lemma shows that t-reachabilitycan equivalently be de�ned by means of ordinary executions.Lemma 2.6 State s is t-reachable in A if and only if it is reachable in A, i.e., there is a�nite (ordinary) execution of A that ends in s.Proof: Straightforward using Lemmas 2.4 and 2.5.An important consequence of Lemma 2.6 is that any technique that can prove thata property holds for all �nal states of �nite (ordinary) executions is a sound techniquefor proving that a property holds in all t-reachable states of a timed automaton. Mostimportantly, induction on the steps of ordinary executions is sound in this sense. Conversely,any technique that can prove that a property holds for all t-reachable states also proves thatit holds for all reachable states.2.4.2 Finite, Admissible and Zeno Execution FragmentsHere we de�ne the �nite, admissible and Zeno execution fragments, and relate them to the�nite, admissible and Zeno timed execution fragments de�ned in Section 2.2.2.As in Part I, an execution fragment � is de�ned to be �nite if it is a �nite sequence.An execution fragment � is de�ned to be admissible if there is no �nite upper bound onthe :now values of the states in �. Finally, an execution fragment is said to be Zeno if it isneither �nite nor admissible.Lemma 2.7 If � samples � then1. � is �nite i� � is �nite,2. � is admissible i� � is admissible, and3. � is Zeno i� � is Zeno. 10

2.4.3 Timed TracesIt is possible to give a sensible de�nition of timed trace for an ordinary execution fragment ofa timed automaton. Namely, suppose � = s0a1s1a2s2 � � � is a execution fragment of a timedautomaton A. First, de�ne �:ltime to be the supremum of the : :now values of all the statesin �. Then let
 be the sequence consisting of the actions in � paired with their times ofoccurrence:
 = (a1; s1:now)(a2; s2:now) � � � :Then t-trace(�), the timed trace of �, is de�ned to be the pair(
d(vis(A) � R�0); �:ltime):The following lemma shows that the de�nitions of timed traces for execution fragmentsand timed execution fragments are properly related:Lemma 2.8 If � samples � then t-trace(�) = t-trace(�).3 Restricted Kinds of Timed AutomataIn this section, we continue our parallel development with Part I by de�ning certain restrictedkinds of automata that are useful in our proofs. Recall that in the earlier paper, we de�nedwhat it meant for an untimed automaton to be deterministic, �n and a forest. We de�neanalogous notions here.Each timed automaton that contains a � step fails to be deterministic in the sense ofPart I, as a consequence of the trajectory axiom S5. Thus the notion of determinism is notuseful for timed automata, and we will use the following notion of t-determinism instead.We say that A is t-deterministic if jstart(A)j = 1, and for any state s0 and any �nite timedsequence pair p over vis(A), there is at most one state s such that s0 p;A s. The followinglemma gives a \local" characterization of t-determinism.Lemma 3.1 A timed automaton A is t-deterministic i� jstart(A)j = 1, every � transitionis of the form (s; �; s) for some s, ands a�! r ^ s a�! r0 ^ r:now = r0:now) r = r0: (1)Proof: \)" jstart(A)j = 1 by de�nition of t-determinism. There can be no step s0 ��! swith s0 6= s, because, taking p = (�; s:now), this would imply s0 p;A s0 and s0 p;A s, whichcontradicts t-determinism. Thus every � transition is of the form (s; �; s) for some s, Finally,suppose s a�! r, s a�! r0 and r:now = r0:now = t. De�ne p = ((a; t); t) if a 2 vis(A), andp = (�; t) otherwise. Then s p;A r and s p;A r0. But this means that r = r0, because oft-determinism.\(" Suppose that p = (�; t) is a timed sequence pair over vis(A), and s; s0; s00 are statessuch that s00 p;A s and s00 p;A s0. We must prove s = s0. A has �nite timed executions� and �0 with �:fstate = �0:fstate = s00, t-trace(�) = t-trace(� 0) = p, �:lstate = s and�0:lstate = s0. Without loss of generality we can assume that � and �0 contain no �11

steps: since all � steps of A are of the form (s; �; s), such steps can be removed from timedexecutions. Since � and �0 have the same timed trace, s:now = s0:now . Also because � and�0 have the same timed trace and because they do not contain � 's, both sequences have thesame length. By induction on this length we establish that � = �0. This then implies thats = �:lstate = �0:lstate = s0.Suppose that � consists of just one state set, say S. Then �0 also consists of a singlestate set, call it S0. In this case it easily follows via (1) that S = S0, which immediatelyimplies � = �0.Now suppose � is of the form �1aS. Then �0 is of the form �2aS 0, with t-trace(�1) =t-trace(�2) = p0, for some p0. Let �1:fstate = s1 and �2:fstate = s2. By induction hypothesisit follows that �1 = �2, and hence s1 = s2. Application of (1) now gives that S:fstate =S0:fstate, and via a subsequent application of the same property it follows that S = S0. Fromthis � = �0 follows, as required.Likewise, any timed automaton that contains a � step is not �n, again as a consequenceof S5, so we de�ne a new notion of t-�nite invisible nondeterminism. We say that A hast-�nite invisible nondeterminism (t-�n) if start(A) is �nite, and for any state s0 and any �nitetimed sequence pair p over vis(A), there are only �nitely many states s such that s0 p;A s.Also, any timed automaton that contains a � step cannot be a forest, because if a statehas one incoming time-passage step then axiom S5 implies that it must have an in�nitenumber of them. Recall that a forest is characterized by the property that for each statethere is a unique execution that leads to it. In analogy we de�ne a t-forest to be a timedautomaton with the property that for each state s there is a unique timed execution � thatleads to it, i.e., such that �:lstate = s. The following lemma gives a \local" characterizationof a t-forest.Lemma 3.2 A timed automaton A is a t-forest i� all states of A are reachable, start stateshave no incoming steps, and for every state s, if there are two distinct steps leading to s,r a�! s and r0 a0�! s, then a = a0 = � and either r ��! r0 or r0 ��! r.Proof: \)" All states in a t-forest are reachable by de�nition. It is also easy to see thatstart states have no incoming steps. Suppose that r a�! s and r0 a0�! s, with (r; a) 6= (r0; a0).Let � and �0 be the unique timed executions leading to r and r0, respectively. We considerfour cases.1. a = a0 6= �. Then r 6= r0 and hence � 6= �0. It is easy to see that both �afsgand �0afsg are timed executions leading to s. Since A is a t-forest we have that�afsg = �0afsg, which implies � = �0. This is a contradiction.2. a 6= a0 = �. Again we derive a contradiction by constructing two di�erent timedexecutions leading to s. The �rst one is �afsg. Since r0 ��! s, there exists a trajectoryw from r0 to s, by axiom S5. Let �00 be the sequence obtained from �0 by extendingthe last state set of �0 with the states in the range of w. Then it is easy to check that�00 is a timed execution leading to s. Since �afsg and �00 are clearly di�erent, we havea contradiction as required. 12

3. � = a 6= a0. Analogous to case (2).4. a = a0 = �. Using axiom S5, we can extend both � and �0 to timed executions �1 and�01, respectively, that lead to s; the construction ensures that r is in the last state setof �1 and r0 is in the last state set of �01. Since A is a t-forest, we have �1 = �01, so r0is in the last state set of �1. Then by de�nition of a timed execution, either r ��! r0or r0 ��! r.\(" Because all states of A are reachable we know that for each state s there is at leastone timed execution that leads to it. In order to show uniqueness, suppose that A has twotimed executions, � and �0 that lead to s. By induction on the sum of the lengths of � and�0 we prove that � = �0. Let S be the last state set of �, and let S0 be the last state set of�0. Moreover, let r (resp., r0) be the state in S (resp., S0) with minimum time.First suppose that r0:now < r:now . Then S0 contains a state r00 with r00:now = r:now .Since r ��! s and r00 ��! s, it follows that r = r00. Since r:now > 0, S is not the �rst stateset of �, so S is immediately preceded in � by a (non-�) action. This implies that thereis a non-� transition of A leading to r. However, since r = r00, r also has an incoming �-transition from r0, and we have obtained a contradiction. A similar contradiction is reachedif r:now < r0:now . Therefore, it must be that r:now = r0:now .We now argue that S = S 0: if not, then there must be states u 2 S and u0 2 S0 such thatu 6= u0 but u:now = u0:now . But this cannot be because both u ��! s and u0 ��! s.Now suppose � consists of S only. Then the state r of S with minimum :now value isa start state, and hence has no incoming steps. This implies that also �0 must consist of Sonly. Symmetrically, if �0 consists of S only, then so does �.The remaining case to be considered is the one in which � is of the form �1aS and �0 isof the form �01a0S. It is easy to show that a = a0 and the last states of �1 and �01 are equal.Thus by induction hypothesis �1 = �01, and � = �0 follows.Suppose A is a timed automaton. In analogy with the untimed case, the relationt-after(A) consists of those pairs (p; s) 2 tsp(vis(A)) � states(A) for which there is a �-nite timed execution of A with timed trace p and last state s.t-after(A) �= f(p; s) j 9� 2 t-execs �(A) : t-trace(�) = p and �:lstate = sg:The relation t-past(A) �= t-after(A)�1 relates a state s of A to the timed traces of timedexecutions that lead to s.Lemma 3.31. If A is t-deterministic then t-after(A) is a function from t-traces�(A) to states(A).2. If A has t-�n then t-after(A) is image-�nite.3. If A is a t-forest then t-past(A) is a function from states(A) to t-traces�(A).13

Proof: Parts 1 and 2 are straightforward from the de�nitions.For 3, suppose that A is a t-forest. Because all states of A are reachable we know thatfor each state s of A, t-past(A)[s] contains at least one element. But this element is uniquelydetermined by the unique timed execution that leads to s.4 Timed Trace PropertiesFor each timed automaton A, its timed behavior, t-beh(A), is de�ned byt-beh(A) �= (vis(A); t-traces(A)):Completely analogously to the way in which we characterized, in Section 3.3 of Part I, thebehaviors of automata in terms of trace properties, we now characterize the timed behaviorsof timed automata in terms of timed trace properties.A set of timed sequence pairs is pre�x closed if, whenever a timed sequence pair is in theset all its pre�xes are also. A timed trace property P is a pair (K;L) whereK is a set of labelsand L is a nonempty, pre�x closed set of �nite and admissible timed sequence pairs over K.We will refer to the constituents of P as sort(P) and t-traces(P), respectively. Also, we writet-traces�(P) for the set of �nite timed sequence pairs in t-traces(P), and t-traces1(P) for theset of admissible timed sequence pairs in t-traces(P). For P and Q timed trace properties, wede�ne P �t�T Q �= t-traces�(P) � t-traces�(Q), P �t1T Q �= t-traces1(P) � t-traces1(Q),and P �tT Q �= t-traces(P) � t-traces(Q). The kernels of these preorders are denoted by�t�T, �t1T and �tT, respectively.P is limit-closed if each in�nite chain p1 � p2 � p3 � � � � of elements of t-traces�(P) in whichtime grows unboundedly has a limit in t-traces1(P), i.e., an admissible timed sequence pairp with for all i, pi � p.Lemma 4.1 Suppose P and Q are timed trace properties with Q limit-closed. Then P �t�T Q, P �tT Q.A timed trace property P is feasible if every element of t-traces�(P) is a pre�x of someelement of t-traces1(P).Lemma 4.2 Suppose P and Q are timed trace properties such that P is feasible. ThenP �t1T Q , P �tT Q.Lemma 4.31. t-beh(A) is a timed trace property.2. If A has t-�n then t-beh(A) is limit-closed.3. If A is feasible then t-beh(A) is feasible.4. A �tT B , t-beh(A) �tT t-beh(B), A �t�T B , t-beh(A) �t�T t-beh(B), and A �t1T B, t-beh(A) �t1T t-beh(B). 14

Proof: We sketch the proof of 2; it is analogous to that of Lemma 3.5 of Part I. Suppose Ahas t-�n and p1 � p2 � : : : is an in�nite chain of timed sequence pairs in t-traces�(A) suchthat the limits of the time components of the pi's is1. Assume without loss of generality thatpi < pi+1, for all i � 1. Let p be the limit of the pi's. We must show that p 2 t-traces1(A).We use Lemma 2.1 of Part I. This time, G is constructed as follows. The nodes are pairs(pi; s), where pi is one of the timed sequence pairs in the sequence above, and s is a state ofA, such that (p; s) 2 t-after(A). There is an edge from node (pi; s0) to node (pi+1; s) exactlyif s0 q;A s, where pi+1 = pi; q. Using Lemma 2.3, it is not di�cult to show that G satis�esthe hypotheses of Lemma 2.1 of Part I. Then that lemma implies the existence of an in�nitepath in G starting at a root; given this path, it is easy to construct an admissible timedexecution of A having p as its timed trace.Proposition 4.41. If B has t-�n then A �t�T B , A �tT B.2. If A is feasible then A �t1T B , A �tT B.Proof: Part 1 follows from Lemmas 4.1 and 4.3. Part 2 is a corollary of Lemmas 4.2 and4.3.Example 4.5 We present two timed automata, TA and TB, which are in a sense the timedanalogues of the automata A and B of Example 3.1 of Part I. The example illustrates thenecessity of the t-�n condition in Prop. 4.4(1). Timed automaton TA does an a-action atinteger times:� states(TA) = R�0 � N,� (t; n):nowA = t,� start(TA) = f(0; 0)g,� acts(TA) = f�; �; ag, and� steps(TA) is speci�ed by:(t0; n) ��! (t; n) if t0 < t � n;(t; n) a�! (t; n+ 1) if t = n:Timed automaton TB also does an a-action at integer times, but only �nitely often:� states(TB) = R�0 � N� N,� (t; n;m):nowTB = t,� start(TB) = f(0; 0;m) j m 2 Ng, 15

� acts(TB) = f�; �; ag, and� steps(TB) is speci�ed by:(t0; n;m) ��! (t; n;m) if t0 < t � n;(t; n;m) a�! (t; n+ 1;m) if t = n < m:One can check that TA �t�T TB but TA 6�tT TB.Example 4.6 In order to see that the feasibility condition in Prop. 4.4(2) is actually needed,we consider a timed automaton Zeno with states drawn from the interval [0; 1), t:now = t,start state 0, actions from f�; �g, and a step t0 ��! t whenever t0 < t. Since Zeno has noadmissible timed traces, Zeno �t1T TA. However, because TA does not allow for initialtime-passage steps, Zeno 6�tT TA.We close this section with the construction of the canonical timed automaton for a giventimed trace property.For P a timed trace property, the associated canonical timed automaton t-can(P) is thestructure A given by� states(A) = t-traces�(P),� (�; t):nowA = t,� start(A) = f(�; 0)g,� acts(A) = sort(P) [f�; �g, and� steps(A) is speci�ed by:(�0; t0) a�!A (�; t) if a 2 vis(A) ^ t0 = t ^ �0 (a; t) = �;(�0; t0) ��!A (�; t) if t0 < t ^ �0 = �:(It is not hard to check that t-can(P) is indeed a timed automaton).Lemma 4.7 Suppose P is a timed trace property. Then1. t-can(P) is t-deterministic and is a t-forest,2. t-beh(t-can(P)) �t�T P ,3. P �tT t-beh(t-can(P)), and4. if P is limit-closed then t-beh(t-can(P)) �tT P .16

Proof: Part 1 follows easily using Lemmas 3.1 and 3.2. Part 2 follow from the de�nitions.Since t-can(P) has t-�n, it follows by Lemma 4.3 that t-beh(t-can(P)) is limit-closed. Now3 and 4 follow by combination of 2 and Lemma 4.1.Lemma 4.8 Suppose A and B are timed automata. Then1. t-can(t-beh(A)) is t-deterministic and is a t-forest,2. t-can(t-beh(A)) �t�T A,3. A �tT t-can(t-beh(A)), and4. if A has t-�n then t-can(t-beh(A)) �tT A.Proof: By combining Lemmas 4.3 and 4.7.5 Simulations for Timed AutomataOur aim is to develop proof techniques for showing inclusion between the sets of timed tracesof timed automata. One way of doing this is to show how this problem can be reduced tothe problem of proving inclusion between the sets of traces of certain derived automata.This reduction solves our problem, in a sense, since it allows us to use the various simulationtechniques of Part I to prove inclusion results for timed automata. The approach is analogousto that followed for Milner's CCS [17] where the problem of establishing a weak bisimulationis reduced to the problem of �nding a strong bisimulation. Another example of this approachappears in [12], where the problem of showing including of timed behaviors of certain kinds oftimed automata is reduced to that of proving inclusion between sets of admissible behaviorsof certain derived I/O automata. A key role in our reduction is played by the constructionof the closure of a timed automaton.An alternative approach that is sometimes preferable is to de�ne new simulations directlyin terms of timed automata. In this section, we also de�ne such simulations, and givesoundness and completeness results for them and relationships between them. Proofs ofthese results again use the closure construction, and are based on corresponding results forthe untimed case.5.1 The Closure ConstructionThe closure of a timed automaton A, denoted by cl(A), is the automaton B given by� states(B) = states(A),� start(B) = start(A),� acts(B) = (ext(A) � R�0) [f�g, 17

� steps(B) is the smallest relation such thats0 a�!A s ^ a 2 vis(A) ^ s:nowA = t) s0 (a;t)�!B s;s0 ��!A s) s0 ��!B s;s0 (�;t); A s) s0 (�;t)�!B s:Thus, the closure construction augments A by attaching a time, more speci�cally the :nowcomponent of the resulting state, to each visible and time-passage action, and by addingnew time-passage actions to short-circuit the e�ects of any number of � and � actions. Notethat, unlike the � steps in A, the (�; t) steps in the closure do not always strictly increasethe time. In particular there is an idling step s (�;t)�!B s (where t = s:now) from each state sto itself.We now wish to show the relationship between executions of A and of cl(A). In order todo this, we �rst need to de�ne a simple well-formedness condition for timed sequences. Lett0; t 2 R�0 with t0 � t. We say a �nite timed sequence � over ext(A) passes properly from t0to t if (1) the time components of the pairs in � are in the interval [t0; t], (2) each pair (a; u)in � with a 2 vis(A) and u > t0 is preceded (not necessarily immediately) by a pair (�; u),and (3) if t0 < t then � includes a pair with time component t.Lemma 5.1 If � is a �nite sequence over ext(cl(A)) and s0 �=)cl(A)s then � is a �nite timedsequence over ext(A) and passes properly from s0:now to s:now.The next two lemmas show the close relationship between executions of A and of cl(A).Lemma 5.2 Suppose s0 and s are states of A, and � is a �nite timed sequence over ext(A)that passes properly from s0:now to s:now. Thens0 �=)cl(A)s , s0 p;A s; where p = (�d(vis(A)� R�0); s:now)Proof: Straightforward.Lemma 5.3 Suppose s0 p;A s, where p = (�; s:now). Let �0 be the sequence obtained from �by adding a pair (�; t) just before each pair (a; t) in �, and also appending a pair (�; s:now)at the end of the sequence. Then s0 �0=)cl(A)s.Proof: It is easy to check that �0 is a timed sequence over ext(A) that passes properly froms0:now to s:now , and that p = (�0d(vis(A) � R�0); s:now). From this the lemma follows viaan application of Lemma 5.2.We are now prepared to prove some important properties of the closure construction.Lemma 5.4 18

1. A is t-deterministic if and only if cl(A) is deterministic.2. A has t-�n if and only if cl(A) has �n.Proof: We prove case (1). Case (2) is similar and left to the reader.Suppose A is t-deterministic. Then jstart(A)j = 1 and hence jstart(cl(A))j = 1. Supposes0 is a state of cl(A) and � is a �nite sequence over ext(cl(A)). We have to show that thereis at most one state s such that s0 �=)cl(A)s. So suppose that s0 �=)cl(A)s1 and s0 �=)cl(A)s2.Using Lemma 5.1, it follows that � passes properly from s0:now to s1:now and to s2:now ,which implies that s1:now = s2:now . By Lemma 5.2, we infer that, for p = (�d(vis(A) �R�0); s1:now), s0 p;A s1 and s0 p;A s2. Since A is t-deterministic, we have that s1 = s2, asrequired.For the other direction, suppose that cl(A) is deterministic. Then jstart(cl(A))j = 1 andhence jstart(A)j = 1. Suppose s0 is a state of A and p is a �nite timed sequence pair overvis(A). We have to show that there is at most one state s such that s0 p;A s. So supposethat s0 p;A s1 and s0 p;A s2. By Lemma 5.3, there is a sequence � such that s0 �=)cl(A)s1 ands0 �=)cl(A)s2. Since cl(A) is deterministic, we have that s1 = s2, as required.Lemma 5.5 A �t�T B , cl(A) ��T cl(B).Proof: \)" Suppose � 2 traces�(cl(A)). Then there are s0 2 start(A) and s 2 states(A)such that s0 �=)cl(A)s. By Lemma 5.1, � is a �nite timed sequence over ext(A) and passesproperly from s0:now to s:now . Thus we can apply Lemma 5.2 to obtain s0 p;A s, wherep = (�d(vis(A) � R�0); s:now). This means that p 2 t-traces�(A), and therefore also p 2t-traces�(B). So there are r0 2 start(B) and r 2 states(B) such that r0 p;B r. ApplyingLemma 5.2 in the other direction gives r0 �=)cl(B)r. Thus � 2 traces�(cl(B)), as required.\(" Suppose p = (�; t) 2 t-traces�(A). Then there are s0 2 start(A) and s 2 states(A)such that s0 p;A s. Let �0 be the sequence obtained from � by adding a pair (�; t0) justbefore each pair (a; t0) in �, and also appending a pair (�; t) at the end of the sequence.By Lemma 5.3, s0 �0=)cl(A)s. This means that �0 2 traces�(cl(A)), and therefore also �0 2traces�(cl(B)). So there are r0 2 start(B) and r 2 states(B) such that r0 �0=)Br. ByLemma 5.1, �0 is a �nite timed sequence over ext(A) and passes properly from r0:nowto r:now . Thus we can apply Lemma 5.2 to obtain r0 p0;A r, where p0 = (�0d(vis(A) �R�0); r:now). It easily checked that p0 = p. Thus p 2 t-traces�(B), as required.Lemma 5.6 cl(A) �T cl(B)) A �tT B.Proof: Suppose cl(A) �T cl(B). Then certainly cl(A) ��T cl(B), so by Lemma 5.5,A �t�T B. Thus it remains to be shown that A �t1T B. For this, suppose that p = (�;1) 2t-traces1(A). We will prove p 2 t-traces1(B). Let �0 be the sequence obtained from � byadding a pair (�; t) just before each pair (a; t) in �, and, if � is �nite, appending to the resultof that the sequence (�; u)(�; u + 1)(�; u + 2) � � �, where u 2 R�0 is some arbitrary numberlarger than all time components in �. It is routine to check that �0 2 traces!(cl(A)). Thus�0 2 traces!(cl(B)). It is now easy to �nd a corresponding admissible timed execution � ofB with t-trace(�) = p. Thus p 2 t-traces1(B).19

Example 5.7 The reverse implication of Lemma 5.6 does not hold in general. For acounterexample, takeB to be a timed automaton that nondeterministically chooses a positivenatural number n, then does action a at times 1 � 2�1, 1 � 2�2,..., 1 � 2�n, and then idlesforever. B is a feasible timed automaton with in�nite invisible nondeterminism. Let A be thesame as B, except that it may also choose ! at the beginning, in which case it subsequentlydoes action a at times 1 � 2�1, 1 � 2�2,..., 1 � 2�n,... Timed automaton A is not feasiblebecause by choosing ! it reaches a state from where only a Zeno execution is possible andno admissible execution. Timed automata A and B have the same timed traces, but cl(A)has an in�nite trace (a; 1� 2�1), (a; 1� 2�2),..., (a; 1� 2�n),... which cl(B) does not have.It turns out that we do have the reverse of Lemma 5.6 in case B has t-�n.Lemma 5.8 Suppose B has t-�n. Then cl(A) �T cl(B),A �tT B.Proof: cl(A) �T cl(B) , (by Lemma 5.4, and Prop. 3.6 of Part I)cl(A) ��T cl(B) , (by Lemma 5.5)A �t�T B , (by Prop. 4.4)A �tT BCorollary 5.9 The following statements are equivalent.1. A �t�T B.2. cl(A) �FB cl(B).3. cl(A) �BF cl(B).If B has t-�n then also the following statements are equivalent, with each other and the threestatements above.1. A �tT B.2. cl(A) �iFB cl(B).Proof: A �t�T B , (by Lemma 5.5)cl(A) ��T cl(B) , (by Theorems 5.5 and 5.6 of Part I)cl(A) �FB cl(B) , (by Prop. 5.9 of Part I)cl(A) �BF cl(B)If B has t-�n thenA �t�T B) (by Lemma 5.5)cl(A) ��T cl(B)) (by Lemma 5.4, and Theorem 5.6 of Part I)cl(A) �iFB cl(B)) (by Theorem 5.5 of Part I)cl(A) �T cl(B)) (by Lemma 5.6)A �tT B) A �t�T B 20

In a sense, we have solved our problem now: we have found a way to prove inclusion ofthe sets of timed traces of timed automata A and B, under the reasonable assumption thatB has t-�n. All we have to do is to establish a forward-backward simulation between twoclosely related timed automata, cl(A) and cl(B). The automata cl(A) and cl(B) are verysimilar to A and B: they are the same except for their step relations, which are just a kindof transitive closure of the step relations of A and B.5.2 Direct Simulations Between Timed AutomataWe have already provided su�cient machinery to permit simulation methods to be used forreasoning about timed automata. However, we would like to go further: we would also liketo de�ne the various simulations directly on the timed automata themselves. We do thisin the present section. Later, we give a simple lemma relating the new simulations to thesimulations between the closures of the automata.Suppose A and B are timed automata. A timed re�nement from A to B is a functionr : states(A)! states(B) that satis�es:1. r(s):now = s:now .2. If s 2 start(A) then r(s) 2 start(B).3. If s0 a�!A s then r(s0) p;B r(s), where p = t-trace((s 0; a; s)).A timed forward simulation from A to B is a relation f over states(A) and states(B) thatsatis�es:1. If u 2 f [s] then u:now = s:now .2. If s 2 start(A) then f [s] \ start(B) 6= ;.3. If s0 a�!A s and u0 2 f [s0], then there exists u 2 f [s] such that u0 p;B u, where p =t-trace((s 0; a; s)).A timed backward simulation fromA to B is a total relation b over states(A) and states(B)that satis�es:1. If u 2 b[s] then u:now = s:now .2. If s 2 start(A) then b[s] � start(B).3. If s0 a�!A s and u 2 b[s], then there exists u0 2 b[s0] such that u0 p;B u, where p =t-trace((s 0; a; s)).A timed forward-backward simulation from A to B is a relation g over states(A) andN(states(B)) that satis�es:1. If u is an element of any set in g[s] then u:now = s:now .21

2. If s 2 start(A) then there exists S 2 g[s] such that S � start(B).3. If s0 a�!A s and S 0 2 g[s0], then there exists S 2 g[s] such that for every u 2 S thereexists u0 2 S0 such that u0 p;B u, where p = t-trace((s 0; a; s)).A timed backward-forward simulation from A to B is a total relation g over states(A) andP(states(B)) that satis�es:1. If u is an element of any set in g[s] then u:now = s:now .2. If s 2 start(A) then for all S 2 g[s], S \ start(B) 6= ;.3. If s0 a�!A s and S 2 g[s], then there exists S0 2 g[s0] such that for every u0 2 S0 thereexists u 2 S such that u0 p;B u, where p = t-trace((s 0; a; s)).A relation h over states(A) and states(B) is a timed history relation from A to B if it isa timed forward simulation from A to B and h�1 is a timed re�nement from B to A.A relation p over states(A) and states(B) is a timed prophecy relation from A to B if itis a timed backward simulation from A to B and p�1 is a timed re�nement from B to A.Analogous to Part I, we write A �tR B, A �tF B, etc. in case there exists a timedre�nement, timed forward simulation, etc., from A to B.Without working out the details, we note here that, analogous to the untimed case, thereexists a full correspondence between timed history/prophecy relations and the obvious notionof timed history/prophecy variables.5.3 SynchronicityA new feature in the de�nitions of the various timed simulations is the requirement thatrelated states have the same :now component. In this subsection we explore the consequencesof this natural restriction.Suppose A and B are timed automata. A relation f over states(A) and states(B) issynchronous if for all (s; u) 2 f , u:now = s:now . For each relation f over states(A) andstates(B), we de�ne the subrelation syn(f) to bef(s; u) 2 f j u:now = s:nowg:Thus, f is synchronous if and only if syn(f) = f .Similarly, a relation g over states(A) and P(states(B)) is synchronous if for all (s; S) 2 gand all u 2 S, u:now = s:now . For each relation g over states(A) and P(states(B)), wede�ne the subrelation syn1 (g) to bef(s; S) 2 g j 8u 2 S : u:now = s:nowg:Thus, g is synchronous if and only if syn1 (g) = g.Also, for each relation g over states(A) and P(states(B)), we de�ne the relation syn2 (g)to be f(s; S)j9T : (s; T) 2 g and S = fu 2 T j u:now = s:nowgg:22

So also g is synchronous if and only if syn2 (g) = g.Obviously, all the timed versions of re�nements, forward simulations, etc., that we de�nedabove are synchronous. The following observation is more interesting.Lemma 5.101. Any re�nement from cl(A) to cl(B) is synchronous.2. If f is a forward simulation from cl(A) to cl(B), then syn(f) is a synchronous forwardsimulation from cl(A) to cl(B).3. Any backward simulation from cl(A) to cl(B) is synchronous.4. If g is a forward-backward simulation from cl(A) to cl(B), then syn1 (g) is a syn-chronous forward-backward simulation from cl(A) to cl(B).5. If g is a backward-forward simulation from cl(A) to cl(B), then syn2 (g) is a syn-chronous backward-forward simulation from cl(A) to cl(B).6. Any history relation from cl(A) to cl(B) is synchronous.7. Any prophecy relation from cl(A) to cl(B) is synchronous.Proof: For 1, suppose that r is a re�nement from cl(A) to cl(B) and s is a state of Awith s:nowA = t. By de�nition of the closure construction, s (�;t)�!cl(A) s. Thus, as r is are�nement, r(s) (�;t)=) cl(B)r(s). From this it easily follows that r(s):now = t = s:now .For 2, suppose f is a forward simulation from cl(A) to cl(B). By the de�nition of aforward simulation, if s 2 start(A), then there is a state u 2 f [s] that is in start(B). AxiomS1 implies that s:now = u:now = 0, and thus u 2 syn(f)[s].Suppose s0 ��!cl(A) s and u0 2 syn(f)[s0]. Then u0:now = s0:now = s:now . Also, u0 2 f [s0]and therefore there exists a state u 2 f [s] such that u0 �=)cl(B)u. It follows that u:now =u0:now = s:now . Hence u 2 syn(f)[s].Now suppose s0 (a;t)�!cl(A) s, for some a 2 ext(A), and u0 2 syn(f)[s0]. Then s:now = t.Also, u0 2 f [s0] and therefore there exists a state u 2 f [s] such that u0 (a;t)=) cl(B)u. Asu:now = t, it follows that u:now = s:now . Hence u 2 syn(f)[s].For 3, suppose that b is a backward simulation from cl(A) to cl(B), and suppose s is astate of A with s:now = t. Let u 2 b[s]. Now we use that cl(A) has an `idling' transitions (�;t)�!cl(A) s. Thus, since b is a backward simulation there exists u0 2 b[s] with u0 (�;t)=) cl(B)u.This implies u:now = t = s:now .Next we prove 4. Suppose that g is a forward-backward simulation from cl(A) to cl(B) Byde�nition of a forward-backward simulation, if s 2 start(A), then there is a set S 2 g[s] suchthat S � start(B). By axiom S1, u:now = 0 for every u 2 S. Therefore, S 2 syn1 (g)[s], asneeded.Now suppose s0 (a;t)�!cl(A) s and S 0 2 syn1 (g)[s0]. Then for all u0 2 S0, we have u0:now =s0:now . Also, S0 2 g[s0] and therefore there exists a set S 2 g[s] such that for every u 2 Sthere exists u0 2 S0 with u0 (a;t)=) cl(B)u. We must show that S 2 syn1 (g)[s], i.e., that u:now =23

s:now for every u 2 S. So �x u 2 S. There exists u0 2 S 0 such that u0 (a;t)=) cl(B)u. Then itfollows using axioms S2 and S3 that u:now = s:now . Therefore, S 2 syn1 (g)[s].The case where s0 ��!cl(A) s and S0 2 syn1 (g)[s0] is similar.It remains to show the nonemptiness property, i.e., that for every state s 2 states(A),every set S 2 syn1 (g)[s] is nonempty. But this follows from the fact that S 2 g[s] and g isa forward-backward simulation.For 5, suppose g is a backward-forward simulation from cl(A) to cl(B). Let s 2 start(A)and let S 2 syn2 (g)[s]. Then there exists a set T 2 g[s] such that S = fu 2 T j u:now =s:nowg. Since g is a backward-forward simulation, T contains an element u 2 start(B). Byaxiom S1, u:now = s:now = 0, so u 2 S. This su�ces for the start condition.Now suppose s0 (a;t)�!cl(A) s and S 2 syn2 (g)[s]. Then there is a set T 2 g[s] with S =fu 2 T j u:now = s:nowg. Since T 2 g[s], there exists a set T 0 2 g[s0] such that for everyu0 2 T 0 there exists u 2 T with u0 (a;t)=) cl(B)u. Let S 0 = fu0 2 T 0 j u0:now = s0:nowg. ThenS0 2 syn2 (g)[s0], by de�nition. Now consider any u0 2 S0. Since u0 2 T 0, there exists u 2 Twith u0 (a;t)=) cl(B)u. Then it follows by axioms S2 and S3 that u:now = s:now , which impliesthat u 2 S.The case where s0 ��!cl(A) s and S 2 syn2 (g)[s] is similar. This su�ces for the secondcondition.It remains to show that syn2 (g) is total, i.e., that for every state s 2 states(A), thereis some set S 2 syn2 (g)[s]. But this follows from the fact that any backward-forwardsimulation, and hence g in particular, is total, and every set in g[s] has a subset in syn(g)[s].Parts 6 and 7 are easy: the inverse of any history or prophecy relation is a re�nement,and by Part 1 re�nements are synchronous.5.4 Relating Timed and Untimed SimulationsIn Section 5.1 we showed that (under certain �niteness conditions) there is a one-to-onecorrespondence between inclusion of timed traces for timed automata, and inclusion of tracesbetween the closures of these automata. In this subsection we observe that there is alsoa strong connection between timed simulations between timed automata, and the samefunctions viewed as untimed simulations between the closures of these automata. As animmediate consequence of this observation we obtain easy soundness proofs for all the timedsimulations of Section 5.2, since soundness of the timed simulations reduces to the soundnessof the corresponding untimed simulations. Moreover, we obtain a completeness result fortimed forward-backward simulations.Lemma 5.11 A synchronous relation is a timed re�nement from A to B if and only ifit is a re�nement from cl(A) to cl(B). Moreover, the above property also holds if bothoccurrences of the word \re�nement" are replaced by \forward simulation", \backward sim-ulation", \forward-backward simulation", \backward-forward simulation", \history relation"or \prophecy relation".Proof: Here we prove the case of re�nements. The other mappings can be handled similarly.24

First, suppose r is a timed re�nement from A to B. We show that r is a re�nementfrom cl(A) to cl(B), and the only thing nontrivial here is to demonstrate that r satis�es thesecond clause of the de�nition of a re�nement. We distinguish between three possible cases.1. s0 (a;t)�!cl(A) s, for some a 2 vis(A). By de�nition of the closure construction, s0 a�!A s.Thus, since r is a timed re�nement from A to B, r(s0) ((a;t);t); B r(s). This means thatB has an execution fragment from r(s0) to r(s) consisting of � steps and one single astep. There can be no � steps in the execution since r(s0):now = s0:now = s:now =r(s):now = t. But this implies that also cl(B) has an execution fragment from r(s0)to r(s) consisting of � steps and one (a; t) step, that is r(s0) (a;t)=) cl(B)r(s).2. s0 ��!cl(A) s. By de�nition of the closure construction, s0 ��!A s. Since r is a timedre�nement, r(s0) (�;t); B r(s), where t = s:now . Since r(s0):now = s0:now = s:now = t =r(s):now , this implies that B, and hence cl(B), has an execution fragment from r(s0)to r(s) consisting of � steps only. Thus, r(s0) �=)cl(B)r(s).3. s0 (�;t)�!cl(A) s. By de�nition of the closure construction, s0 (�;t); A s. Thus, A has anexecution fragment � from s0 to s consisting of � and � steps only. Using that r is atimed re�nement from A to B, we can construct a corresponding execution fragmentin B from r(s0) to r(s): for each � step in � we construct an execution fragment in Bconsisting of � steps only, and for each � step in � we can �nd an execution fragmentconsisting of � and � steps only. If we glue all these execution fragments together weobtain an execution fragment in B from r(s0) to r(s) consisting of � and � steps only.Thus, r(s0) (�;t); B r(s). By de�nition of closure, this implies r(s0) (�;t)�!cl(B) r(s), which inturn implies r(s0) (�;t)=) cl(B)r(s).For the other direction, suppose r is a re�nement from cl(A) to cl(B). By Lemma 5.10,we know that r is synchronous. We have to establish that r is a timed re�nement from Ato B, and for this again the only nontrivial part is the second clause in the de�nition of atimed re�nement. So suppose s0 a�!A s. Let t = s:now . Again we distinguish between threecases.1. a 2 vis(A). Then s0 (a;t)�!cl(A) s. Using that r is a re�nement we get r(s0) (a;t)=) cl(B)r(s).This means that cl(B) has an execution fragment from r(s0) to r(s) consisting of �steps and one single (a; t) step. Thus B has an execution fragment from r(s0) to r(s)consisting of � steps and one single a step. This implies r(s0) ((a;t);t); B r(s), as required.2. a = � . Then s0 ��!cl(A) s. Since r is a re�nement, we get r(s0) �=)cl(B)r(s). From thisr(s0) (�;t); B r(s) follows via a simple argument, as in (1).3. a = �. Then s0 (�;t)�!cl(A) s. Since r is a re�nement, we get r(s0) (�;t)=) cl(B)r(s). From thisr(s0) (�;t); B r(s) follows via a simple argument, as in (1).Corollary 5.12 Suppose X 2 fR, F, (i)B, (i)FB, (i)BF, H, (i)Pg. Then A �tX B ,cl(A) �X cl(B). 25

Proof: We give the proof for the case X = F . The other cases are similar. By de�nition,A �tF B i� there exists a timed forward simulation from A to B. By Lemma 5.11, this is thecase i� there exists a synchronous simulation from cl(A) to cl(B). But by Lemma 5.10, thisin turn is the case i� there exists a simulation from cl(A) to cl(B), that is, cl(A) �F cl(B).Proposition 5.13 The relations �tR, �tF, �tB, �tiB, �tFB, �tiFB, �tBF, �tH, �tP and �tiP areall preorders. (However, �tiBF is not a preorder.)Proof: By Corollary 5.12, since the corresponding untimed simulations are preorders.Essentially the same counterexample that we used to show that �iBF is not a preorder (theautomata I and J of Example 5.10), can be used again in the proof that �tiBF is not apreorder. In order to turn the untimed automata into timed automata one only has toattach :now -value 0 to each state.5.5 ReachabilityAnalogously to the way in which we de�ned, in Section 7 of Part I, weak versions of thevarious untimed simulations, we will now de�ne weak versions of all the timed simulations.For any timed automaton A, let the reachable timed subautomaton R(A), be the timedautomaton de�ned as follows.� states(R(A)) = rstates(A),� s:nowR(A) = s:nowA,� start(R(A)) = start(A),� acts(R(A)) = acts(A), and� steps(R(A)) = steps(A) \ (rstates(A)� acts(A) � rstates(A)).For X 2 fR, F, (i)B, (i)FB, (i)BF, H, (i)Pg, de�ne A �twX B i� R(A) �tX R(B).Lemma 5.14 R(cl(A)) = cl(R(A)).Proof: Straightforward from the de�nitions.Proposition 5.15 Suppose X 2 fR, F, (i)B, (i)FB, (i)BF, H, (i)Pg. Then A �twX B i�cl(A) �wX cl(B).Proof: A �twX B , (By de�nition)R(A) �tX R(B) , (By Corollary 5.12)cl(R(A)) �X cl(R(B)) , (By Lemma 5.14)R(cl(A)) �X R(cl(B)) , (By de�nition)cl(A) �wX cl(B): 26

We leave it to the reader to give direct de�nitions of weak timed simulations that donot involve reachable timed subautomata. This can be done completely analogously to theuntimed case.5.6 Classi�cation of Basic Relations Between Timed AutomataThe classi�cation of Section 8 of Part I carries over to the timed setting: Figure 1, exceptfor the superscripts t, is the same as Figure 6 of Part I, which gives an overview of therelationships in the untimed case.Theorem 5.16 Suppose X;Y 2 fT, �T, (w)R, (w)F, (w)(i)B, (w)(i)FB, (w)(i)BF, (w)H,(w)(i)Pg. Then A �tX B) A �tY B for all timed automata A and B if and only ifthere is a path from �tX to �tY in Figure 1 consisting of thin lines. If B has t-�n, thenA �tX B) A �tY B for all automata A and B if and only if there is a path from �tX to �tYconsisting of thin lines and thick lines. �tiP �tP�tR �tiB �tB�twR �twiB �twB�twH�tH �t(w)F �t(w)iBF �t(w)BF�t(w)iFB �t(w)FB�tT �t�T
�twiP �twP@@R @@R�������
 �������
-- - -

- - ---
? ????

????66
--- ? ? ?

6�
� �
�Figure 1: Classi�cation of basic relations between timed automata.Proof: Note that except for the superscripts t, Figure 1 is the same as Figure 6 in PartI, which gives an overview of the relationships in the untimed case. Using Corollary 5.12,27

Corollary 5.9, and Prop. 5.15 the inclusions for the timed case follow from the correspondinginclusions for the untimed case.In order to show that all the inclusions are strict, one can use essentially the samecounterexamples as in the untimed setting. In order to turn the untimed automata intotimed automata one only has to attach :now -value 0 to each state. Only for establishingthe di�erence between �t�T and �tT the examples of Part I, Section 3 are not adequate, andone has to use Example 4.5 instead. (If A0 and B0 denote the timed automata obtainedby associating time 0 to all states of the automata A and B of Example 3.1 in Part I,respectively, then A0 �t�T B0 but, since both timed automata have no admissible traces, alsoA0 �tT B0.)Here are two more results that carry over because of the correspondence between thetimed and the untimed case.Theorem 5.17 (Partial completeness of timed forward simulations)Suppose B is t-deterministic and A �t�T B. Then A �tF B.Proof: By Lemma 5.4(1), cl(B) is deterministic, and by Lemma 5.5, cl(A) ��T cl(B).Thus by the partial completeness result for forward simulations (Theorem 4.11, Part I),cl(A) �F cl(B). Now Corollary 5.12 allows us to conclude A �tF B, as required.Proposition 5.18 Suppose all states of A are reachable, B is t-deterministic and A �tB B.Then A �R B.Proof: All states of cl(A) are reachable, cl(B) is deterministic and cl(A) �B cl(B). ByProp. 4.19, the untimed version of the fact we are proving, cl(A) �R cl(B). Hence A �tR B.6 Additional Results for Timed AutomataThe previous sections show how some simple correspondences cause most of the results foruntimed automata to carry over to the timed setting. There are some results about untimedautomata that do not carry over because of these correspondences, but are nonetheless true.First, there are the partial completeness results that involve t-forests. These do not carry oversince the closure construction does not map t-forests to forests. Also, the various results thatrequire the construction of a timed automaton, such as the completeness result for forwardand backward simulations and the Abadi-Lamport completeness result, do not carry overvia the correspondence. In this section, we establish these remaining results in the settingof timed automata. In each case, the proof is analogous to the corresponding proof in PartI. 28

6.1 Partial Completeness ResultsWe begin with the partial completeness results for t-forests.Theorem 6.1 (Partial completeness of timed re�nements) Suppose A is a t-forest, B ist-deterministic and A �t�T B. Then A �tR B.Proof: Analogous to the proof of Theorem 4.5 in Part I. De�ne r �= t-after(B) � t-past(A).We claim that r is a timed re�nement from A to B. Conditions 1 and 2 are straightforward.For Condition 3, suppose that s0 a�!A s. Let q = t-trace((s 0; a; s)). We must show thatr(s0) q;B r(s).By Lemma 3.3, there is a unique timed trace leading from a start state of A to s0, andalso a unique timed trace leading from a start state of A to s. Let p0 and p denote theserespective timed traces; then p0 � q = p. Let q0 be such that p0; q0 = p.Since B is t-deterministic, Lemma 3.3 implies that B has a unique start state; call its0. By construction of r, we have that s0 p0;B r(s0) and s0 p;B r(s). Since s0 p;B r(s),Lemma 2.3 implies that B has a state s00 such that s0 p0;B s00 and s00 q0;B r(s). But since Bis t-deterministic, s0 p0;B r(s0) and s0 p0;B s00, implies that s00 = r(s0). Thus, r(s0) q;B r(s),as needed.Theorem 6.2 (Partial completeness of timed backward simulations) Suppose A is a t-forestand A �t�T B. Then1. A �tB B, and2. if B has t-�n then A �tiB B.Proof: Analogous to the proof of Theorem 4.18 in Part I. For a given state s ofA, Lemma 3.3implies that there is a unique timed trace leading to s, say p. De�neb[s] = fuj9� 2 t-execs�(B) : t-trace(�) = p;�:fstate = u; and[�0 � �! t-trace(� 0) 6= p]g:Using t-traces�(A) � t-traces�(B), it follows that relation b is total. By construction, therelation satis�es Condition 1. Condition 2 follows as in the proof of Theorem 4.18, andCondition 3 uses an argument similar to that in the proof of Prop. 6.1.Clearly, if B had t-�n then relation b is image-�nite.6.2 Completeness of Timed Forward and Timed Backward Simu-lationsIn this subsection, we give the completeness results for timed forward and timed backwardsimulations.Lemma 6.3 29

1. A �tFB B , (9C : A �tF C �tB B).2. A �tiFB B , (9C : A �tF C �tiB B).3. A �tBF B , (9C : A �tB C �tF B).4. A �tiBF B , (9C : A �tiB C �tF B).Proof: Similar to the corresponding proofs in Part I (Theorems 5.1 and 5.7). We sketchthe proof of the implication \)" in 3. De�ne the structure C by:� states(C) = f(t; S) 2 R�0 �P(states(B))j8s 2 S : s:nowB = tg,� (t; S):nowC = t,� start(C) = f(0; S) 2 states(C)jS \ start(B) 6= ;g,� acts(C) = acts(B), and� for (t0; S0); (t; S) 2 states(C) and a 2 acts(C) � f�g,(t0; S0) a�!C (t; S) , t0 = t and 8u0 2 S0 9u 2 S : u0 â=)Bu; and(t0; S0) ��!C (t; S) , t0 < t and 8u0 2 S0 9u 2 S : u0 (�;t); B u:Then C is a timed automaton. Let g be a timed backward-forward simulation from A to B.Then the relation g0 given byg0 = f(s; (t; S)) 2 states(A) � states(C) j t = s:nowA and S 2 g[s]gis a timed backward simulation from A to C. Also, the relation f given byf = f((t; S); u) 2 states(C)� states(B) j u 2 Sgis a timed forward simulation from C to B.Theorem 6.4 (Completeness of timed forward and timed backward simulations) SupposeA �t�T B. Then1. 9C : A �tF C �tB B,2. if B has t-�n then 9C : A �tF C �tiB B, and3. 9C : A �tB C �tF B.Proof: Immediate from Lemma 6.3 and Theorem 5.16.An alternative proof of 1 and 2 can be obtained analogous to the proof of Theorem 4.22 ofPart I. Let C = t-can(t-beh(A)). By Lemma 4.8, C is a t-deterministic t-forest and A �t�T C.Since C is t-deterministic, A �tF C by partial completeness of timed forward simulations(Theorem 5.17), and because C is a t-forest, C �tB B follows by partial completeness oftimed backward simulations (Theorem 6.2(1)). Similarly, if B has t-�n then C �tiB B followsby Theorem 6.2(2). 30

6.3 Auxiliary Variable ConstructionsIn this subsection, we present results about timed auxiliary variable constructions.6.3.1 Timed History RelationsHere we describe the results about timed history relations. We begin with a timed analogueto the unfolding construction of Part I.The timed unfolding of A, notation t-unfold(A), is the timed automaton B de�ned by� states(B) = t-execs�(A),� �:nowB = �:ltime,� start(B) = ffsgjs 2 start(A)g,� acts(B) = acts(A), and� for �0S0;�S 2 states(B),�0S 0 ��!B �S , �0 = � ^ S0 � Sand, for �0;� 2 states(B) and a 2 acts(B) � f�g,�0 a�!B � , � = �0 a f�:lstateg:We leave it to the reader to verify that B is a timed automaton.Proposition 6.5 t-unfold(A) is a t-forest and A �tH t-unfold(A).Proof: Using Lemma 3.2 it follows easily that t-unfold(A) is a t-forest. The function:lstate, which maps each �nite timed execution of A to its last state is a timed re�nementfrom t-unfold(A) to A, and the relation :lstate�1 is a timed forward simulation from A tot-unfold(A). Thus, :lstate�1 is a timed history relation from A to t-unfold(A).We are now in a position to prove a timed version of Sistla's completeness result.Theorem 6.6 (Completeness of timed history relations and timed backward simulations)Suppose A �t�T B. Then1. 9C : A �tH C �tB B, and2. If B has t-�n then 9C : A �tH C �tiB B.Proof: Analogous to the proof of Theorem 6.6 in Part I.We next de�ne a notion of timed superposition, analogous to the notion of superpositionin Part I. Suppose k is a synchronous relation over states(A) and states(B) satisfying k \(start(A)� start(B)) 6= ;. The timed superposition t-sup(A;B ; k) of B onto A via k is thetimed automaton C given by 31

� states(C) = k,� (s; v):nowC = s:nowA,� start(C) = k \ (start(A)� start(B)),� acts(C) = acts(A) \ acts(B), and� for (s0; v0); (s; v) 2 states(C) and a 2 vis(C),(s0; v0) ��!C (s; v) , s0:now < s:now ^ s0 (�;s:now); A s ^ v0 (�;v:now); B v;(s0; v0) ��!C (s; v) , s0 �=)As ^ v0 �=)Bv;(s0; v0) a�!C (s; v) , s0 a=)As ^ v0 a=)Bv:Again we leave it to the reader to check that C is indeed a timed automaton.Theorem 6.7 A �tF B , (9C : A �tH C �tR B).Proof: Suppose A �tF B. Let f be a timed forward simulation from A to B, let C =t-sup(A;B ; f) and let �1 and �2 be the projection functions that map states of C to their�rst and second components, respectively. Then it is easy to check that ��11 is a timedhistory relation from A to C and �2 is a timed re�nement from C to B.The reverse implication also follows via a standard argument.6.3.2 Timed Prophecy RelationsFinally, we describe the results about timed prophecy relations. We give a timed analogueto the guess construction of Part I. This can be regarded as a dual to the timed unfoldingconstruction of the previous subsection.The timed guess of A, notation t-guess(A), is the timed automaton B de�ned by� states(B) = t-frag�(A),� �:nowB = �:ftime,� start(B) = t-execs �(A),� acts(B) = acts(A), and� for S0�0; S� 2 states(B),S0�0 ��!B S� , S0 � S ^ S0:ltime = S:ltime ^ �0 = �and, for �0;� 2 states(B) and a 2 acts(B) � f�g,�0 a�!B � , f�0:fstateg a� = �0:32

As usual, we leave it to the reader to verify that B is a timed automaton.Proposition 6.8 A �tP t-guess(A).Proof: Similar to the proof of Prop. 6.5.Theorem 6.91. A �tB B , (9C : A �tP C �tR B).2. A �tiB B , (9C : A �tiP C �tR B).Proof: Similar to the proof of Theorem 6.7, using timed backward simulations instead.Theorem 6.10 (Completeness of timed prophecy relations and timed forward simulations)A �t�T B) 9C : A �tP C �tF B.6.3.3 Completeness of Timed History and Timed Prophecy RelationsTheorem 6.11 (Completeness of timed history/prophecy relations and re�nements) Sup-pose A �t�T B. Then1. 9C;D : A �tH C �tP D �tR B.2. If B has t-�n then 9C;D : A �tH C �tiP D �tR B.3. 9C;D : A �tP C �tH D �tR B.Proof: Completely analogous to the proofs of Theorems 6.18 and 6.19 in Part I.7 DiscussionIn this paper, we have presented an automata-theoretic model for timing-based systems, andhave used it to develop a variety of simulation proof techniques for such systems. These in-clude timed re�nements, timed forward and backward simulations and combinations thereof,and timed history and prophecy relations. These techniques are analogous to those describedin Part I, [15], for untimed systems. As in that paper, we present basic results for all of thesimulations, including soundness and completeness results. The development is organized sothat the proofs are based on the results of Part I. In fact, we have shown that all the resultsof Part I carry over to Part II, except for Prop. 4.12. At present we do not know whetherthe timed version of this result holds, i.e., whether if A is a t-forest and A �tF B, it is thecase that A �tR B.It remains to apply these methods to a wide range of practical veri�cation examples, inorder to determine their utility, to develop them further, and to exploit their power. Timedforward simulations have already been used in [12] to verify some simple toy example timedsystems, and in [11] to verify more realistic algorithms. These uses already suggest that33

at least the timed forward simulations will prove to be very useful in practice, but moreevidence is needed. Note that the results in [12] use a more restrictive model than the onein this paper, namely, that of [16]. The extra structure of that model supports developmentof specialized progress measure techniques not discussed in this paper. It remains to developthis and other specialized methods further.It remains to develop other proof methods within the same general timed automatonmodel. In particular, we are interested in extending the methods of process algebra toour timed automaton model. Our recent paper [22] contains the beginning of such work,including de�nitions of interesting operators on timed automata, and proofs of substitutivityresults for the timed trace semantics, but there is more to be done.Finally, although the timed automaton model presented here is very general, there are atleast two ways in which it could be extended: to include reasoning about liveness and aboutprobabilities. It remains to extend the model in these ways, while preserving the ability touse the simpler model of this paper where appropriate. Some preliminary work on integratingliveness into the present model appears in [11]. Both liveness and probabilities introduce theirown sets of additional proof methods, e.g., temporal logic and Markov analysis. Eventually,the entire collection of proof tools should be integrated into a sensibly coordinated whole.AcknowledgementsWe thank Albert Meyer, Je� Sanders, Roberto Segala, J�rgen S�gaard-Andersen, EugeneStark and George Varghese for their valuable criticism and useful comments on this paperand on [15]. We also thank the organizers of the 1991 REX Workshop for providing theenvironment for an active research interchange that led to many improvements in our work.A The Trajectory AxiomOf the �ve axioms we give for timed automata, the axiomS5 If s0 ��! s then there exists a trajectory from s0 to s.seems to us like the only one that might be controversial. In Wang [23] and elsewhere([14, 20]), the following weaker axiom S50 occurs instead:S50 If s0 ��! s and s0:now < t < s:now , then there is an s00 with s00:now = t such thats0 ��! s00 and s00 ��! s.It is immediate from the de�nition of a trajectory that S5) S50. In this appendix wediscuss the reverse implication. The relationship between the two axioms is also investigatedin [10].As the time domain for our timed automata we have chosen the set R�0 of nonnegativereal numbers. We could have chosen a di�erent time domain though, or parametrized ourautomata with an arbitrary time domain as in [9, 20]. In order to state the axioms for timedautomata, all we need is the presence of a set T of points in time, containing an initialpoint in time 0, and equipped with a binary relation < expressing precedence. Thus we can34

generalize our notion of a timed automaton by parametrizing it with a time domain (T; 0; <).For an overview of di�erent types of time domains that have been proposed in the literaturewe refer to [4].De�ne a semi-timed automaton to be a timed automaton, except that it does not haveto satisfy S5, but only the weaker axiom S50. Here we give three results:1. Each time deterministic semi-timed automaton is a timed automaton.2. Each semi-timed automaton is a timed automaton, if instead of R�0 a countable, totallyordered time domain is used, like for instance the set Q�0 of nonnegative rationalnumbers.3. If the time domain consists of R�0, then there exists a semi-timed automaton that isnot a timed automaton.The axiom of time determinism can be formulated in our setting as follows:TD If s ��! s0, s ��! s00 and s0:now = s00:now , then s0 = s00.The axiom TD says that time is deterministic in the sense that, after a certain amount oftime has elapsed since the system arrived in some state, the new state is uniquely determinedprovided no internal or visible action has taken place. The following theorem is easy to prove.Theorem A.1 Each time deterministic semi-timed automaton is a timed automaton.Theorem A.2 Suppose A is a semi-timed automaton over a time domain (T; 0; <). If T iscountable and < is a total order, then A satis�es S5 (and is thus a timed automaton).Proof: Suppose T is countable, < is a total order, and s0 ��!A s. We have to prove thatthere exists a trajectory from s0 to s. Let t0 = s0:now and t = s:now , and let t1; t2; : : : besome arbitrary enumeration of all the points in time in the interval (t0; t). Inductively, wede�ne a sequence s1; s2; : : : of states of A such that, for all i, (1) si:now = ti, and (2) the setSi = fs0; s; s1; : : : ; sig is time connected, that is, for all u0; u 2 Si, u0:now < u:now) u0 ��! u.Suppose that, for some n � 0, we have de�ned states s1; : : : ; sn that satisfy properties (1)and (2) above. Let u0 be the state in Sn with the largest time that is smaller than tn+1, andlet u be the state in Sn with the smallest time that is larger than tn+1. (The existence anduniqueness of u0 and u are guaranteed since :now is injective on Sn and < is a total order.)Since u0 ��! u and u0:now < tn+1 < u:now , there exists, by axiom S50, a state sn+1 such thatu0 ��! sn+1 and sn+1 ��! u. Let u00 be a state in Sn � fu0; ug. Then either u00:now < tn+1 ortn+1 < u00:now . If u00:now < tn+1 then u00:now < u0:now , and thus, since Sn is time conectedby induction hypothesis, u00 ��! u0. From u00 ��! u0 and u0 ��! sn+1, u00 ��! sn+1 follows byaxiom S4. If tn+1 < u00:now then we can infer via a similar argument that sn+1 ��! u00. Thusit follows that Sn+1 is time connected, and we have proved the induction step.Once we have constructed the sequence s1; s2; : : : as above, it is immediate that thefunction w de�ned by w(t0) = s0, w(t) = s, and w(ti) = si, for all i, is a trajectory from s0to s. 35

The above proof relies heavily on the assumption that the time domain is countable:since the interval [t0; t] is countable we can construct a trajectory from s0 to s in an inductivefashion, state by state. Such a construction is no longer possible if the time domain isuncountable, as in the case of R�0. This is illustrated by the following counterexample.Theorem A.3 (Schneider) Let D be de�ned by� states(D) = R�0 � Q�0,� start(D) = f(0; 0)g,� (t; q):nowD = t,� acts(D) = f�; �g,� steps(D) is speci�ed by (t0; q0) ��!D (t; q) , t0 < t ^ q0 < q.Then automaton D is semi-timed, but not timed.Proof: One can easily check that D is semi-timed. However, it is not timed: D does notsatisfy the trajectory axiom S5 because that would imply, for instance, that the interval[0; 1] of reals can be injectively mapped into the rationals.At the time we �rst de�ned axiom S5, we constructed a complex counterexample to showthat it was stronger than S50. The simpler counterexample described above was subsequentlydiscovered by Steve Schneider.References[1] R. Alur and D.L. Dill. The theory of timed automata. In de Bakker et al. [6], pages45{73.[2] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal Aspectsof Computing Science, 3(2):142{188, 1991.[3] J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amsterdam, volume458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.[4] J. van Benthem. Time, logic and computation. In J.W. de Bakker, W.P. de Roever,and G. Rozenberg, editors, REX School/Workshop on Linear Time, Branching Timeand Partial Order in Logics and Models for Concurrency, Noordwijkerhout, volume 354of Lecture Notes in Computer Science, pages 1{49. Springer-Verlag, 1989.[5] G. Berry and L. Cosserat. The Esterel synchronous programming language and itsmathematical semantics. In S.D. Brookes, A.W. Roscoe, and G. Winskel, editors, Sem-inar on Concurrency, volume 197 of Lecture Notes in Computer Science, pages 389{448.Springer-Verlag, 1984. 36

[6] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors. Proceedingsof the REX Workshop \Real-Time: Theory in Practice", volume 600 of Lecture Notesin Computer Science. Springer-Verlag, 1992.[7] R. Gerber and I. Lee. The formal treatment of priorities in real-time computation. InProceedings 6th IEEE Workshop on Real-Time Software and Operating Systems, 1989.[8] J.F. Groote. Speci�cation and veri�cation of real time systems in ACP. Report CS-R9015, CWI, Amsterdam, 1990. An extended abstract appeared in L. Logrippo, R.L.Probert and H. Ural, editors, Proceedings 10th International Symposium on ProtocolSpeci�cation, Testing and Veri�cation, Ottawa, pages 261{274, 1990.[9] A. Je�rey. A linear time process algebra. In K.G. Larsen and A. Skou, editors, Proceed-ings of the Third Workshop on Computer Aided Veri�cation, Aalborg, Denmark, July1991, volume 575 of Lecture Notes in Computer Science, pages 432{442. Springer-Verlag,1992.[10] A. Je�rey, S. Schneider, and F.W. Vaandrager. A comparison of additivity axioms intimed transition systems, 1993. In preparation.[11] B. Lampson, N. Lynch, and J. S�gaard-Andersen. Correctness of at-most-once messagedelivery protocols, 1993. Submitted for publication.[12] N.A. Lynch and H. Attiya. Using mappings to prove timing properties. DistributedComputing, 6(2):121{139, 1992.[13] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms.In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Com-puting, pages 137{151, August 1987. A full version is available as MIT Technical ReportMIT/LCS/TR-387.[14] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-basedsystems. In de Bakker et al. [6], pages 397{446.[15] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part I: Untimedsystems, 1993. In preparation.[16] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In J.C.M. Baetenand J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, volume 527 of LectureNotes in Computer Science, pages 408{423. Springer-Verlag, 1991.[17] R. Milner. Communication and Concurrency. Prentice-Hall International, EnglewoodCli�s, 1989.[18] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baeten andKlop [3], pages 401{415. 37

[19] X. Nicollin, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: An algebra for timed processes.In M. Broy and C.B. Jones, editors, Proceedings IFIP TC2 Working Conference onProgramming Concepts and Methods, Sea of Gallilea, Israel, pages 402{429, 1990.[20] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.In de Bakker et al. [6], pages 549{572.[21] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes.Theoretical Computer Science, 58:249{261, 1988.[22] F.W. Vaandrager and N.A. Lynch. Action transducers and timed automata. In W.R.Cleaveland, editor, Proceedings CONCUR 92, Stony Brook, NY, USA, volume 630 ofLecture Notes in Computer Science, pages 436{455. Springer-Verlag, 1992.[23] Wang Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop [3], pages502{520.[24] A. Zwarico. Timed Acceptance: An Algebra of Time Dependent Computing. PhD thesis,Department of Computer and Information Science, University of Pennsylvania, 1988.

38

