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Abstract

A general automaton model for timing-based systems is presented and is used as the
context for developing a variety of simulation proof techniques for such systems. These
techniques include (1) refinements, (2) forward and backward simulations, (3) forward-
backward and backward-forward simulations, and (4) history and prophecy relations.
Soundness and completeness results are given for these simulations. These results are
largely analogous to the results in Part I of this paper for untimed systems. In fact,
many of the results for the timed case are obtained as consequences of the analogous
results for the untimed case.
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1 Introduction

In this paper, we describe a basic timed automaton model for real-time and other timing-
based systems. We intend that the model should provide a suitable basis for formal reasoning
about timing-based systems, in particular, for verification of their correctness and for analysis
of their complexity. It should support many different kinds of correctness proof techniques,
including process algebraic and assertional methods. So far, process algebraic and assertional
methods have been used primarily to prove properties of untimed (asynchronous) systems; we
would also like to use them for timing-based systems. Also, the kinds of properties generally
proved using these methods have been “ordinary” safety properties; we would like also to
use similar methods to prove timing properties (e.g., upper and lower bounds on time).

We use our model to express some powerful simulation techniques for proving correct-
ness of timing-based systems. Since simulation techniques are a special case of assertional
methods, the automata-theoretic style of our model is the natural style for presenting them.
However, we expect that the model can also serve as a semantic model for interesting alge-
braic languages, and thus that process algebraic methods can also be employed in the same
framework.

The kinds of simulation techniques we describe are timed versions of the techniques stud-
ied in Part I of this paper, [15]. That is, we consider timed versions of refinements, forward
simulations, backward simulations, forward-backward, backward-forward simulations, history
relations and prophecy relations. Again, we prove soundness and completeness theorems,
and theorems relating the different kinds of simulations to each other.

The goal of extending simulation techniques to timing-based systems is also the motiva-
tion for the work of Lynch and Attiya in [12]. That work, however, only explores forward
simulations. Also, the model used in [12] has considerably more structure than the very
general model proposed here; it is based closely on the timed automaton model of Merritt,
Modugno and Tuttle [16], which assumes that the system being modeled is describable in
terms of a collection of separate tasks, each with associated upper and lower bounds on its
speed. This extra structure supports the development of a useful progress measure proof
method, which we do not develop here. On the other hand, the basic theorems about for-
ward simulations that appear in [12] are stated in a setting that has more structure than is
really necessary for those theorems. In this paper, we make only those assumptions that are
needed for the basic results about simulation proof techniques.

We propose a notion of timed automaton, which is just an automaton (or labeled transi-
tion system) equipped with some additional structure. Specifically, each state of the automa-
ton has an associated current time value. (Thus we use absolute time in the sense of [2].)
The actions of the automaton are of three kinds: wisible actions, a special internal action
7, and a special time-passage action v. As in many other formalisms for real-time (See, for
instance, [2, 5, 8, 16, 18, 19, 23].), all actions except for the time-passage action are modeled
as occurring instantaneously, i.e., they do not change the time component of the state.

To specify times, we use a dense time domain, specifically, the nonnegative reals (starting
with time 0 in the initial state), and we impose no lower bound on the time between events.
This choice distinguishes our work from many others’, e.g., [7, 8, 18, 19, 21, 24], in which
discrete time values or universal positive lower bounds on step time are used. Use of real-



valued time is less restrictive, and we believe that the extra flexibility will be useful in the
design and analysis of timing-based distributed algorithms. The penalty we pay for this
flexibility is that our automata may admit some “Zeno executions”, i.e., infinite executions
in which the time component is bounded.

Timed automata are required to satisfy a small set of basic axioms that express natural
properties of time. For instance, there is an axiom saying that time-passage actions must
increase the time, and another saying that all the other actions are instantaneous. Also,
if time can advance by a particular amount in two steps, it can also advance by the same
amount in a single step. Finally, if time can advance by a particular amount in one time-
passage step, then it is possible to assign states to all the times that occur during the step.
We attempt to use as few axioms as possible to obtain the results about simulations. Later,
as we try to express different proof methods in terms of this model, we expect to have to
add additional requirements to obtain the desired properties.

In order to define correctness for timed automata, we require notions of external behav-
ior. We emphasize two such notions. First, as the finite behaviors of a timed automaton,
we take the finite timed traces, each of which consists of a finite sequence of timed external
actions together with a final time. Second, as the infinite behaviors, we take the admissible
timed traces, each of which consists of a sequence of timed external actions that can occur
in an execution in which the time grows unboundedly (i.e., a “non-Zeno” infinite execution).
In [22] it is argued that inclusion of finite and admissible timed traces is a good notion of
implementation, provided that the implementation automaton satisfies the technical condi-
tion of 1/O feasibility. In this paper we will not be concerned with 1/0 feasibility. Instead
our objective will be to develop simulation-style proof techniques to show inclusion of timed
traces.

Even though our notion of timed automata has less structure than those of [16] and
[12], it is closely related to those models. Ours can be regarded as a generalization of the
model in [12], in which the notion of separate tasks is removed. (There are some minor
distinctions; for instance, we do not include names for internal actions, but label them all by
the special symbol 7. This distinction is unimportant in a setting without separate tasks.)
Also, the model of [16] includes treatment of fairness and liveness, whereas our model does
not. (The model in [16] was originally designed as an extension of the untimed input/output
automaton model of [13], which emphasizes the notion of fair execution.) The reason we
have not equipped our model with facilities for handling fairness and liveness is that we
believe that in the setting of timing-based systems, most properties of practical importance
can be expressed as safety properties, given the admissibility assumption that time increases
without bound. The absence of fairness and liveness considerations in our model seems
to remove various technical and philosophical complications, and to lead to simpler and
more systematic proof techniques. In cases where liveness properties are required, it will be
necessary to augment the model of this paper with special liveness conditions; we anticipate
that all the results of this paper should extend to this augmented model.

Our model can also be considered to be a generalization of the finite-state model of Alur
and Dill [1], since we are not restricted to the special structure of [1] for specifying time
bounds. Also, we do not impose any finiteness restrictions on our automata. On the other
hand, the model of [1] does have some facility for modeling liveness.



We refer the reader to Part [ for a general discussion of the various simulation techniques,
for the case of untimed systems. The simulations we consider here are defined similarly to
those in Part I but using our new notions of external behavior, and with the addition of the
requirement that corresponding states must have the same current time component. Again,
we give soundness and completeness results, as well as results relation the various kinds of
simulations to each other.

In order to prove our results for timed automata, we find it convenient to use the cor-
responding results already proved in Part I, for the simpler untimed setting. The results
for the timed setting are analogous to those for the untimed setting. In fact, in most cases,
our results for the timed setting are derived from those for the untimed setting, while in
the remaining cases, new proofs analogous to those in Part I are presented. An advantage
of this two-phase approach is that it highlights the adaptability of the various verification
techniques from the untimed to the timed setting.

Because of the logical dependence of this paper on Part I, we have not tried to write this
paper in a self-contained manner. Thus, we employ freely the notation and definitions of
Part I, and refer in many places to the results from Part I.

We consider the main contributions of this paper to be the following. First, we introduce
the notions of a timed automaton and its behavior, and extend existing simulation notions
to this new setting. Second, we give an organized presentation, in terms of this general timed
automaton model, of a wide range of important simulation techniques, together with their
basic soundness and completeness properties. Third, our presentation style, which bases the
timed case on the untimed case, explains the connections between these two settings.

The rest of the paper is organized as follows. Section 2 contains the definitions for timed
automata and their executions and traces. Section 3 contains some definitions and results for
restricted types of timed automata. Section 4 discusses the structures that can be obtained
as the behaviors of timed automata. Section 5 contains the major results of the paper — the
definitions of all the timed simulations and the results that follow from the analogous results
in Part I. Section 6 contains the results about the new simulations that require new proofs.
Finally, Section 7 contains our conclusions.

2 Timed Automata and Their Behaviors

This section presents the basic definitions and results for timed automata. The development
is generally parallel to that in Section 3 of Part I of this paper [15]. A

2.1 Timed Automata

A timed automaton A is an automaton whose set of actions contains a special time-passage
action v. The set of wvisible actions is defined by vis(4) = ext(A) — {r}. As an additional
component, a timed automaton contains a mapping .now 4 : states(A) — R2% this indicates
the current time in the given state. As in Part I, we will suppress the subscript A where no
confusion is likely. We assume that a timed automaton satisfies the following axioms.

S1 If s € start(A) then s.now = 0.



S2 If & —% s and a # v, then s'.now = s.now.
S3 If s 5 s then s'.now < s.now.
S4 If ' 5 ¢” and s” - s, then s’ - s.

In order to state the last axiom, we need an auxiliary definition. Suppose &', s are states of
A with ¢ = s'.now < s.now =t. A trajectory from s’ to s is a function w : [t', 1] — states(A)
satisfying the following conditions:

Low(t') =4,
2. w(t) = s, and
3. w(ty) = w(ts) for all ty, 4y € [t',t] with t; < 1s.
4. w(t").now = t" for all t" € [t',1].
Now our final axiom can be formulated as follows:

S5 If s’ - s then there exists a trajectory from s’ to s.

Axiom S1 says that the time is always 0 in a start state. Axiom S2 says that non-time-
passage actions do not change the time; that is, they occur “instantaneously”, at a single
point in time. Axiom S3 says that time-passage actions must cause the time to increase.
Axiom S4 allows repeated time-passage steps to be combined into one step. Axiom S5 says
that if time can pass from time ¢’ to time ¢ then it is possible to associate states with all
times in the interval in a “consistent” way.!

Suppose S is a nonempty set of states of A. Then S.ftime and S.ltime denote the infimum
and supremum of the .now values of the states in S, respectively. If S contains a unique
state with minimal .now-value, then S.fstate is defined to be this state. Otherwise S.fstate
is undefined. Similarly, S.lstate denotes the unique state in S with maximal .now-value, if
it exists, and is undefined otherwise.

In this paper A, B, ... will range over timed automata.

2.2 Timed Executions

Since a timed automaton is a special case of an automaton (as defined in Part I), we already
have a notion of execution for timed automata. However, this type of execution only describes
the system state at a countable number of points in time. Since our trajectory axiom gives
us the ability to associate states with all real times, we define a notion of timed execution,
which includes such information. The usual kind of execution can be regarded as “sampling”
our kind of timed execution at countably many points in time, as we show in Subsection
2.4.1 below.

!This axiom is a strengthening of a similar axiom used in [14, 20, 23], which, rephrased in our terminology,
reads:

S5 If s' %+ s and s'.now < t < s.now, then there is an s’ with s”.now = t such that s’ 2= s"” and s"" %> s.

We strengthen S5’ in this paper because the new definition seems natural to us and because we need it for
some of our later results (Lemma 3.2, for instance). In Appendix A, we discuss the relationship between
axioms S5 and S5’ in more detail and show in particular that S5’ does not in general imply S5.



2.2.1 Basic Definitions

A timed execution fragment of a timed automaton A is a finite or infinite alternating sequence
Y = SpayStazSs - - - of nonempty sets of states of A and actions in acts(A) — {v}, beginning
with a set of states, and if it is finite also ending with a set of states, such that the following
holds for each index .

1. The function .now is injective on 5;.

2. If S; is not the last state set in ¥ then the set S;.now is a closed interval; if S; is the
last state set in ¥ then S;.now is a left-closed interval (and either closed or open to

the right).
3. For all §',s € 5;, s'.now < s.now implies s’ - s.
4. If S; is not the last state set, then S;.lstate “*% S; ;. fstate.

Property 1 says that 5; contains at most one state for every value of the current time
variable .now. Property 2 says that 5; contains states for exactly the times in some interval
of the real numbers. Property 3 describes a consistency condition among the different states
in S;. Property 4 describes a consistency condition between values in consecutive intervals.

A timed execution ¥ is a timed execution fragment whose first state set contains a start
state.

It ¥ is a timed execution fragment, then X.ftime denotes the minimum .now value in
the first state set in X, and X.ltime denotes the supremum of the .now values of all states
in Y. Note that, if ¥ is a timed execution, then X.ftime = 0. Also, we define X.fstate to be
the state with the minimum .now value in the first state set in 3.

2.2.2 Finite, Admissible and Zeno Timed Executions

In this paper, we will be interested in certain subclasses of the set of timed executions: the
finite, admissible and Zeno timed executions.

We define a timed execution fragment ¥ to be finite it ¥ is a finite sequence and the
interval associated with the last state set is closed. If ¥ is finite, then it contains only
finitely many events. Moreover, Y. ltime is the largest .now component in the last state set
in ¥, and X.ltime is finite. If ¥ is finite then we define X.[state to be the unique state in the
last state set in X with its .now value equal to X.ltime.

We define a timed execution fragment ¥ to be admissible if Y.ltime = oo.

Timed automata do not include any features for describing liveness or fairness (such as
the class structure of 1/O automata). We believe that such features are less important in
the timed setting than they are in the untimed setting. Instead, we generally focus on the
admissible timed executions. The notion of an admissible timed execution is more tractable
mathematically than the notion of a fair execution in the I/O automaton model; this is
because the admissible timed executions of a timed automaton can be expressed as the
limits of infinite sequences of finite timed executions.

More precisely, if ¥ = Spa1.51 ... and X' = S§a}S] ... are timed execution fragments, then

define ' to be a t-prefiz of X, denoted by ¥/ < X if either ¥/ = X, or else ¥/ = S{a! 5] ... a.5!



is finite, the prefix Sya}S] ... a} of ¥ is equal to the prefix Spa1 Sy ...a; of ¥, and the final
state set S7 of ¥ is included in the next state set S; of ¥. Then the admissible timed
executions are exactly the limits of the infinite sequences of finite timed executions, where
each timed execution in the sequence is a t-prefix of the next and the maximum .now values
of the final state sets go to oco. This characterization permits the reduction of questions about
infinite behaviors to questions about finite behaviors. A similar reduction is not possible in
untimed models that incorporate fairness.

A timed execution fragment is said to be Zeno if it is neither finite nor admissible. Note
that there are two types of Zeno timed executions: those containing infinitely many actions,
but for which there is a finite upper bound on the .now values that occur in the state sets, and
those containing finitely many actions, but for which the time interval of the final state set
is right-open. Zeno timed executions are those in which an infinite amount of activity occurs
within a bounded period of time. (For the second type of Zeno timed execution described
above, the “infinite amount of activity” corresponds to the infinite number of time-passage
steps needed to span the right-open interval.) Some models of real-time computation, for
instance the earlier version of Timed CSP [21], exclude Zeno executions altogether, but we
allow them in order to make our results as general as possible.

We note that, according to our definitions, there are timed automata in which from some
(or even all) states no admissible timed execution fragment is possible. This can be, for
instance, because from these states time can continue advancing, but not beyond a certain
point (that is, all timed execution fragments starting from these states are Zeno), or because
time cannot advance at all (that is, a time deadlock occurs). Time deadlocks have also been
studied in the context of several process algebraic models ([2, 8, 18]). Our model does allow
time deadlocks. However, in several of our theorems we will require that the automata be
feasible. A timed automaton A is feasible provided that each finite timed execution is a
t-prefix of some admissible timed execution. Thus, a feasible timed automaton does not
have time deadlocks, although it may have Zeno timed executions.

We denote by t-frag™(A), t-frag™(A) and t-frag(A) the sets of finite, admissible and
all timed execution fragments of A. Similarly, we denote by t-execs*(A), t-execs™(A) and
t-execs(A) the sets of finite, admissible and all timed executions of A.

2.3 Timed Traces

Since a timed automaton is an automaton (as defined in Part I), we already have a notion
of trace for timed automata. However, the traces of timed automata do not provide a
sufficiently abstract view of their behavior, because they do not contain information about
the real times at which visible events occur, and because they do not reflect the invisible
nature of time-passage actions. In this subsection, we define a notion of external behavior
for timed automata which we call timed traces. These do not include explicit v events, but
do include information about the real time of visible events, and about the final time up to
which the observation is made. As an auxiliary definition along the way to the definition of
a timed trace, we define the notion of a timed sequence pair.



2.3.1 Timed Sequence Pairs

A timed sequence over a given set K is defined to be a (finite or infinite) sequence § over
K x R2% in which the time components are nondecreasing, i.e., t <" if (k,t) and (&, ') are
consecutive elements in 6. We say that ¢ is Zeno if it is infinite and the limit of the time
components is finite.

A timed sequence pair over K is a pair p = (6,t), where ¢ is a timed sequence over K
and t € RZ% U {00}, such that ¢ is greater or equal than all time components in §. We write
p.seq, and p.ltime for the two respective components of p. We define p.ftime to be equal to
the time component of the first pair in p.seq in case p.seq is nonempty, and equal to p.ltime
otherwise. We denote by tsp(K) the set of timed sequence pairs over K. We say that a
timed sequence pair p is finite if both p.seq and p.ltime are finite, and admissible if p.seq is
not Zeno and p.ltime = oo.

Let p and p’ be timed sequence pairs over K such that pis finite and p.ltime < p'.ftime.
Then define p; p’ to be the timed sequence pair (p.seq p'.seq, p'.ltime). If p and ¢ are timed
sequence pairs over a set K, then p is a prefiz of ¢, notation p < ¢, if either p = ¢, or p is
finite and there exists a timed sequence pair p’ such that ¢ = p;p’.

Lemma 2.1 < is a partial ordering on timed sequence pairs over K.

2.3.2 Timed Traces of Timed Automata

Suppose Y = Spai51a25; - - is a timed execution fragment of a timed automaton A. For
each a;, define the time of occurrence t; to be S;_y.ltime, or equivalently, S;.ftime. Let v be
the sequence consisting of the actions in X paired with their times of occurrence:

7 = (a1, t)(az, t2) -
Then t-trace(X), the timed trace of ¥, is defined to be the pair
t-trace(X) = ([ (vis(A) x R2%), ¥.ltime).

Thus, t-trace(X) records the occurrences of visible actions together with their times of oc-
currence, and the limit time of the timed execution fragment. Note that in a timed trace
both 7 and v actions are supressed. It is easily checked that t-trace(Y') is a timed sequence
pair over vis(A).

A timed trace of A is the timed trace of some finite or admissible timed execution of A.
Thus, we explicitly exclude the traces of Zeno executions. We write t-traces(A) for the set of
all timed traces of A, t-traces*(A) for the set of finite timed traces, i.e., those that originate
from a finite timed execution of A, and t-traces™(A) for the admissible timed traces, i.e.,
those that originate from an admissible timed execution of A. The following proposition is
a direct consequence of the definitions.

Proposition 2.2 The sets t-traces*(A) and t-traces™(A) consist of finite timed sequence
pairs and admissible timed sequence pairs over vis(A), respectively.

These notions induce three preorders on timed automata in an obvious way: A <f
B = t-traces(A) C t-traces(B), A <!1 B =1 t-traces*(A) C t-traces*(B), and A <! B =
t-traces™(A) C t-traces™(B). The kernels of these preorders are denoted by =5, =L and
=! 1, respectively.



2.3.3 Moves

Suppose A is a timed automaton, s’ and s are states of A, and p is a timed sequence pair over
vis(A). Then we say that (s, p,s) is a t-move of A, and write s’ & 4 s, or just s’ ~% s when
A is clear, if A has a finite timed execution fragment ¥ with X.fstate = §', t-trace(X) = p
and Y.lstate = s.

Lemma 2.3 Suppose s’ L4 s and p = q;r. Then there exists s” such that s’ ~% 4 s" and

sy s,

2.4 Relationships Between Timed and Untimed Execution Frag-
ments

In this section, we observe some close connections between the timed execution fragments
and the ordinary execution fragments of a timed automaton. Note that the rest of the paper
does not depend on this subsection, the reader who is comfortable with our definition of a
timed execution can skip to Section 3.

2.4.1 Sampling

Roughly speaking, an ordinary execution fragment can be regarded as “sampling” the state
information in a timed execution fragment at a countable number of points in time. Formally,
we say that an execution fragment a = spaysy ... of A samples a timed execution fragment
Y = SobSy... of A if there is a monotone increasing function f : N — N such that the
following conditions are satisfied.

1. f(0) =0,

2. b; = ay) for all 7 > 1,

3. a; = v for all j not in the range of f,

4. For all « > 0 such that S5; is not the last set in X,
(a) 5 € S for all j, f(6) < j < f(i 1)
(b) ss().now = S;.ftime, and
(¢) s¢(i41)—1-n0w = Sy.ltime.
5. If S; 1s the last set in ¥, then
(a) s; € 5; forall j, f(z) <,
(b) ss().now = S;.ftime, and

(c) the .now values of states in {s; : f(i) < j} are cofinal with the .now values of
states in .5;.2

?This simply means that for every state in {s; : f(i) < j}, there is a state in S; with a .now value that
is at least as great, and vice versa.



In other words, the function f in this definition maps the (indices of) events in ¥ to
corresponding events in «, in such a way that exactly the non-time-passage events of « are
included in the image. Condition 4 is a consistency condition relating the first and last times
for each non-final set to the times produced by the appropriate steps of . Condition 5 gives
a similar consistency condition for the first time of the final set (if any); in place of the
consistency condition for the last time, there is a “cofinality” condition asserting that the
times grow to the same limit in both executions.

The following two straightforward lemmas show the relationship between timed execution
fragments and ordinary execution fragments.

Lemma 2.4 If a is an execution fragment of A then there is a timed execution fragment ¥
of A such that a samples Y.

Lemma 2.5 If Y is a timed execution fragment of A then there is an execution fragment «
of A such that a samples Y.

Define a state s to be t-reachable in timed automaton A provided that there is a finite
timed execution ¥ such that Y.lstate = s. The following lemma shows that t-reachability
can equivalently be defined by means of ordinary executions.

Lemma 2.6 State s is t-reachable in A if and only if it is reachable in A, i.e., there is a
finite (ordinary) execution of A that ends in s.

Proof: Straightforward using Lemmas 2.4 and 2.5. |

An important consequence of Lemma 2.6 is that any technique that can prove that
a property holds for all final states of finite (ordinary) executions is a sound technique
for proving that a property holds in all t-reachable states of a timed automaton. Most
importantly, induction on the steps of ordinary executions is sound in this sense. Conversely,
any technique that can prove that a property holds for all t-reachable states also proves that
it holds for all reachable states.

2.4.2 Finite, Admissible and Zeno Execution Fragments

Here we define the finite, admissible and Zeno execution fragments, and relate them to the
finite, admissible and Zeno timed execution fragments defined in Section 2.2.2.

As in Part I, an execution fragment « is defined to be finite if it is a finite sequence.
An execution fragment « is defined to be admissible if there is no finite upper bound on
the .now values of the states in a. Finally, an execution fragment is said to be Zeno if it is
neither finite nor admissible.

Lemma 2.7 If a samples X then
1. « is finite iff ¥ is finite,
2. « ts admissible iff ¥ is admissible, and

3. « is Zeno iff ¥ is Zeno.

10



2.4.3 Timed Traces

It is possible to give a sensible definition of timed trace for an ordinary execution fragment of
a timed automaton. Namely, suppose a = spays1assy -+ - is a execution fragment of a timed
automaton A. First, define a.ltime to be the supremum of the : .now values of all the states
in . Then let 4 be the sequence consisting of the actions in « paired with their times of
occurrence:

v = (a1, $1.now)(ay, sz.n0w) - - - .
Then t-trace(«), the timed trace of «, is defined to be the pair
(v[(vis(A) x R2%), av.ltime).

The following lemma shows that the definitions of timed traces for execution fragments
and timed execution fragments are properly related:

Lemma 2.8 [f o samples ¥ then t-trace(a) = t-trace(Y).

3 Restricted Kinds of Timed Automata

In this section, we continue our parallel development with Part I by defining certain restricted
kinds of automata that are useful in our proofs. Recall that in the earlier paper, we defined
what it meant for an untimed automaton to be deterministic, fin and a forest. We define
analogous notions here.

Each timed automaton that contains a v step fails to be deterministic in the sense of
Part I, as a consequence of the trajectory axiom S5. Thus the notion of determinism is not
useful for timed automata, and we will use the following notion of t-determinism instead.

We say that A is t-deterministic if |start(A)| = 1, and for any state s’ and any finite timed
sequence pair p over vis(A), there is at most one state s such that s’ &4 s. The following
lemma gives a “local” characterization of t-determinism.

Lemma 3.1 A timed automaton A is t-deterministic iff |start(A)| = 1, every 7 transition
is of the form (s,7,s) for some s, and
s—r As—7 Arnow=rnow = r=r'. (1)
Proof: “=7" |start(A)| = 1 by definition of t-determinism. There can be no step s’ — s
with s’ # s, because, taking p = (A, s.now), this would imply s’ & 4 s" and s" & 4 s, which
contradicts t-determinism. Thus every 7 transition is of the form (s, 7, s) for some s, Finally,
suppose s == r, s =" and r.now = r’.now = t. Define p = ((a,1),1) if a € vis(A4), and
p = (A1) otherwise. Then s &4 and s %4 1'. But this means that r = 1/, because of
t-determinism.
“<” Suppose that p = (4,1) is a timed sequence pair over vis(A), and s, s, s” are states

such that s” &4 s and s” 445, We must prove s = s’. A has finite timed executions
Y and ¥ with Y.fstate = Y .fstate = s", t-trace(X) = t-trace(X’) = p, Y.lstate = s and
Y.istate = s’. Without loss of generality we can assume that ¥ and ¥’ contain no 7
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steps: since all 7 steps of A are of the form (s, 7,s), such steps can be removed from timed
executions. Since Y and ¥/ have the same timed trace, s.now = s’.now. Also because ¥ and
Y have the same timed trace and because they do not contain 7’s, both sequences have the
same length. By induction on this length we establish that ¥ = ¥’. This then implies that
s = N.lstate = Y lstate = $'.

Suppose that ¥ consists of just one state set, say S. Then X' also consists of a single
state set, call it S’. In this case it easily follows via (1) that S = S’, which immediately
implies 3 = X',

Now suppose ¥ is of the form ¥1aS. Then ¥/ is of the form ¥ya5’, with t-trace(X;) =
t-trace(Xy) = p/, for some p'. Let ¥.fstate = s; and X,.fstate = s5. By induction hypothesis
it follows that ¥; = ¥, and hence s; = s3. Application of (1) now gives that S.fstate =
S’.fstate, and via a subsequent application of the same property it follows that S = 5’. From
this ¥ = Y’ follows, as required. [

Likewise, any timed automaton that contains a v step is not fin, again as a consequence
of S5, so we define a new notion of t-finite invisible nondeterminism. We say that A has
t-finite invisible nondeterminism (t-fin) if start(A) is finite, and for any state s’ and any finite
timed sequence pair p over vis(A), there are only finitely many states s such that s' & 4 s.

Also, any timed automaton that contains a v step cannot be a forest, because if a state
has one incoming time-passage step then axiom S5 implies that it must have an infinite
number of them. Recall that a forest is characterized by the property that for each state
there is a unique execution that leads to it. In analogy we define a t-forest to be a timed
automaton with the property that for each state s there is a unique timed execution ¥ that
leads to it, i.e., such that Y.lstate = s. The following lemma gives a “local” characterization
of a t-forest.

Lemma 3.2 A timed automaton A is a t-forest iff all states of A are reachable, start states
have no incoming steps, and for every state s, if there are two distinct steps leading to s,
r—s and ' %> s, then a = a' = v and either r =1’ or v’ 2 r.

Proof: “=7 All states in a t-forest are reachable by definition. It is also easy to see that
start states have no incoming steps. Suppose that r — s and r’ -5 s, with (rya) # (1, d").
Let 3 and ¥’ be the unique timed executions leading to r and 1/, respectively. We consider
four cases.

l.a = d # v. Then r # r' and hence ¥ # Y. It is easy to see that both Xa{s}
and Y'a{s} are timed executions leading to s. Since A is a t-forest we have that
Ya{s} = ¥'a{s}, which implies ¥ = ¥’. This is a contradiction.

2. a # a = v. Again we derive a contradiction by constructing two different timed
executions leading to s. The first one is Ya{s}. Since r’ = s, there exists a trajectory
w from 1’ to s, by axiom S5. Let ¥ be the sequence obtained from ¥’ by extending
the last state set of ¥’ with the states in the range of w. Then it is easy to check that
Y is a timed execution leading to s. Since Ya{s} and X" are clearly different, we have
a contradiction as required.
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3. v =a # d. Analogous to case (2).

4. a = d = v. Using axiom S5, we can extend both ¥ and ¥’ to timed executions ¥; and
¥, respectively, that lead to s; the construction ensures that r is in the last state set
of ¥y and " is in the last state set of ¥j. Since A is a t-forest, we have ¥; = ¥, so 7/
is in the last state set of ¥;. Then by definition of a timed execution, either r - r’

or v s r.

“«<” Because all states of A are reachable we know that for each state s there is at least
one timed execution that leads to it. In order to show uniqueness, suppose that A has two
timed executions, ¥ and Y’ that lead to s. By induction on the sum of the lengths of ¥ and
Y we prove that ¥ = ¥/, Let S be the last state set of ¥, and let S’ be the last state set of
Y. Moreover, let r (resp., r’') be the state in S (resp., S’) with minimum time.

First suppose that r".now < r.now. Then S’ contains a state r” with r”.now = r.now.
Since r — s and " = s, it follows that » = . Since r.now > 0, S is not the first state
set of ¥, so S is immediately preceded in ¥ by a (non-v) action. This implies that there
is a non-v transition of A leading to r. However, since r = ", r also has an incoming v-
transition from 7/, and we have obtained a contradiction. A similar contradiction is reached
if r.now < r'.now. Therefore, it must be that r.now = r'.now.

We now argue that S = 5’ if not, then there must be states u € S and v’ € S’ such that
u # v but u.now = u’'.now. But this cannot be because both u > s and v > s.

Now suppose X consists of S only. Then the state r of S with minimum .now value is
a start state, and hence has no incoming steps. This implies that also ¥/ must consist of S
only. Symmetrically, if ¥’ consists of S only, then so does ¥..

The remaining case to be considered is the one in which ¥ is of the form ¥;a5 and ¥/ is
of the form ¥{a’S. It is easy to show that @ = @’ and the last states of ¥; and X} are equal.
Thus by induction hypothesis ¥ = ¥/, and ¥ = ¥/ follows. [

Suppose A is a timed automaton. In analogy with the untimed case, the relation
t-after(A) consists of those pairs (p,s) € tsp(vis(A)) x states(A) for which there is a fi-
nite timed execution of A with timed trace p and last state s.

t-after(A) = {(p,s) | AL € t-execs™(A) : t-trace(X) = p and X.lstate = s}.

The relation t-past(A) = t-after(A)_l relates a state s of A to the timed traces of timed
executions that lead to s.

Lemma 3.3
1. If A is t-deterministic then t-after(A) is a function from t-traces*(A) to states(A).
2. If A has t-fin then t-after(A) is image-finite.

3. If A is a t-forest then t-past(A) is a function from states(A) to t-traces™(A).
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Proof: Parts 1 and 2 are straightforward from the definitions.

For 3, suppose that A is a t-forest. Because all states of A are reachable we know that
for each state s of A, t-past(A)[s] contains at least one element. But this element is uniquely
determined by the unique timed execution that leads to s. [

4 Timed Trace Properties

For each timed automaton A, its timed behavior, t-beh(A), is defined by
t-beh(A) = (vis(A), t-traces(A)).

Completely analogously to the way in which we characterized, in Section 3.3 of Part I, the
behaviors of automata in terms of trace properties, we now characterize the timed behaviors
of timed automata in terms of timed trace properties.

A set of timed sequence pairs is prefir closed if, whenever a timed sequence pair is in the
set all its prefixes are also. A timed trace property P is a pair (K, L) where K is a set of labels
and L is a nonempty, prefix closed set of finite and admissible timed sequence pairs over K.
We will refer to the constituents of P as sort(P) and t-traces(P), respectively. Also, we write
t-traces™( P) for the set of finite timed sequence pairs in t-traces(P), and t-traces™(P) for the
set of admissible timed sequence pairs in t-traces(P). For P and () timed trace properties, we
define P <! Q = i-traces*(P) C t-traces*(Q), P <t Q = t-traces™(P) C t-traces™(Q),
and P <% Q = t-traces(P) C t-traces(Q). The kernels of these preorders are denoted by
=y, =t and =k, respectively.

P is limit-closed if each infinite chain p; < py < ps < -+ of elements of t-traces™(P) in which
time grows unboundedly has a limit in ¢-traces™(P), i.e., an admissible timed sequence pair
p with for all ¢, p; < p.

Lemma 4.1 Suppose P and () are timed trace properties with Q) limit-closed. Then P <'1 @
& P <t Q.

A timed trace property P is feasible if every element of t-traces*(P) is a prefix of some
element of t-traces™(P).

Lemma 4.2 Suppose P and ) are timed trace properties such that P is feasible. Then
P<irQe P<iQ.

Lemma 4.3

1. t-beh(A) is a timed trace property.

2. If A has l-fin then t-beh(A) is limil-closed.

3. If A is feasible then t-beh(A) is feasible.

4. A <Y B & t-beh(A) <t t-beh(B), A <1 B < t-beh(A) <ty t-beh(B), and A <'_; B
& t-beh(A) <!y t-beh(B).
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Proof: We sketch the proof of 2; it is analogous to that of Lemma 3.5 of Part I. Suppose A
has t-fin and p; < py < ... 1is an infinite chain of timed sequence pairs in t-traces*(A) such
that the limits of the time components of the p;’s is co. Assume without loss of generality that
pi < pit1, for all ¢ > 1. Let p be the limit of the p;’s. We must show that p € t-traces™(A).

We use Lemma 2.1 of Part I. This time, G is constructed as follows. The nodes are pairs
(pi, s), where p; is one of the timed sequence pairs in the sequence above, and s is a state of
A, such that (p,s) € t-after(A). There is an edge from node (p;, s’) to node (p;11,s) exactly
if s’ ~% 4 s, where p;y1 = p;;q. Using Lemma 2.3, it is not difficult to show that G satisfies
the hypotheses of Lemma 2.1 of Part 1. Then that lemma implies the existence of an infinite
path in GG starting at a root; given this path, it is easy to construct an admissible timed
execution of A having p as its timed trace. |

Proposition 4.4

1. If B has t-fin then A <!; B & A <} B.

2. If A is feasible then A <' ; B & A <} B.

Proof: Part 1 follows from Lemmas 4.1 and 4.3. Part 2 is a corollary of Lemmas 4.2 and

4.3. |

Example 4.5 We present two timed automata, T'A and T'B, which are in a sense the timed
analogues of the automata A and B of Example 3.1 of Part I. The example illustrates the
necessity of the t-fin condition in Prop. 4.4(1). Timed automaton T'A does an a-action at
integer times:

o states(TA) = R2% x N,

o (t,n).nowy =1,

start(TA) = {(0,0)},

acts(TA) = {7,v,a}, and

steps(TA) is specified by:
(t',n) - (t,n) ift' <t <mn,
(t,n)—> (t,n+1) ift=n.
Timed automaton T'B also does an a-action at integer times, but only finitely often:
e states(TB) = RZ% x N x N,
e (t,n,m).nowrp =1,

o start(TB) ={(0,0,m) | m € N},
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e acts(TB) ={7,v,a}, and

e steps(TB) is specified by:
(t',n,m) - (t,n,m) ift' <t <n,
(t,n,m)—">(t,n+1,m) ift=n<m.
One can check that TA <. TB but TA £ T'B.

Example 4.6 In order to see that the feasibility condition in Prop. 4.4(2) is actually needed,
we consider a timed automaton Zeno with states drawn from the interval [0, 1), t.now =,
start state 0, actions from {7,r}, and a step ¢/ ¢ whenever ¢’ < {. Since Zeno has no
admissible timed traces, Zeno <' ; T'A. However, because T'A does not allow for initial
time-passage steps, Zeno L5 T A.

We close this section with the construction of the canonical timed automaton for a given
timed trace property.

For P a timed trace property, the associated canonical timed automaton t-can(P) is the
structure A given by

o states(A) = t-traces™(P),
o (8,1).n0ws =1,

o start(A) = {(),0)},

o acts(A) = sort(P) U {r,v}, and

o steps(A) is specified by:
(6" 4) =24 (6,4) ifacvis(A)At =t A& (a,t) =8,
(6" 1) =54 (8,1) ift' <tAS = 6.
(It is not hard to check that t-can(P) is indeed a timed automaton).

Lemma 4.7 Suppose P is a timed trace property. Then
1. t-can(P) is t-deterministic and is a t-forest,
2. t-beh(t-can(P)) =Ly P,
3. P <& t-beh(t-can(P)), and

4. if P is limit-closed then t-beh(t-can(P)) =% P.

16



Proof: Part 1 follows easily using Lemmas 3.1 and 3.2. Part 2 follow from the definitions.
Since t-can(P) has t-fin, it follows by Lemma 4.3 that t-beh(t-can(P)) is limit-closed. Now
3 and 4 follow by combination of 2 and Lemma 4.1. [

Lemma 4.8 Suppose A and B are timed automata. Then
1. t-can(t-beh(A)) is t-deterministic and is a t-forest,
2. t-can(t-beh(A)) =41 A,
3. A <& t-can(t-beh(A)), and
4. if A has t-fin then t-can(t-beh(A)) =5 A.

Proof: By combining Lemmas 4.3 and 4.7. |

5 Simulations for Timed Automata

Our aim is to develop proof techniques for showing inclusion between the sets of timed traces
of timed automata. One way of doing this is to show how this problem can be reduced to
the problem of proving inclusion between the sets of traces of certain derived automata.
This reduction solves our problem, in a sense, since it allows us to use the various simulation
techniques of Part I to prove inclusion results for timed automata. The approach is analogous
to that followed for Milner’s CCS [17] where the problem of establishing a weak bisimulation
is reduced to the problem of finding a strong bisimulation. Another example of this approach
appears in [12], where the problem of showing including of timed behaviors of certain kinds of
timed automata is reduced to that of proving inclusion between sets of admissible behaviors
of certain derived I/O automata. A key role in our reduction is played by the construction
of the closure of a timed automaton.

An alternative approach that is sometimes preferable is to define new simulations directly
in terms of timed automata. In this section, we also define such simulations, and give
soundness and completeness results for them and relationships between them. Proofs of
these results again use the closure construction, and are based on corresponding results for
the untimed case.

5.1 The Closure Construction

The closure of a timed automaton A, denoted by ¢l(A), is the automaton B given by
o states(B) = states(A),
e start(B) = start(A),

o acts(B) = (eat(A) x RZ%) U {7},
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e steps(B) is the smallest relation such that

=S4 N aé€uvis(A) A s.nows =1 = S’ﬂ)B s,

Thus, the closure construction augments A by attaching a time, more specifically the .now
component of the resulting state, to each visible and time-passage action, and by adding
new time-passage actions to short-circuit the effects of any number of 7 and v actions. Note
that, unlike the v steps in A, the (v,t) steps in the closure do not always strictly increase
the time. In particular there is an idling step s M)B s (where t = s.now) from each state s
to itself.

We now wish to show the relationship between executions of A and of ¢/(A). In order to
do this, we first need to define a simple well-formedness condition for timed sequences. Let
;1 € R2° with ¢/ < ¢. We say a finite timed sequence § over ext(A) passes properly from t’
to tif (1) the time components of the pairs in 6 are in the interval [t/,¢], (2) each pair (a,u)
in 6 with @ € vis(A) and v > t' is preceded (not necessarily immediately) by a pair (v,u),
and (3) if ¢/ <t then ¢ includes a pair with time component ¢.

Lemma 5.1 [If 3 is a finite sequence over ext(cl(A)) and s’ ‘—Q>CI(A)3 then 3 is a finite timed
sequence over ext(A) and passes properly from s'.now to s.now.

The next two lemmas show the close relationship between executions of A and of ¢l(A).

Lemma 5.2 Suppose ' and s are states of A, and 6 is a finite timed sequence over ext(A)
that passes properly from s'.now to s.now. Then

s'=Lmys & s Bus, where p=(8§[(vis(A) x R2%), s.now)

Proof: Straightforward. |

Lemma 5.3 Suppose s’ L4 s, where p= (6, s.now). Let &' be the sequence obtained from 6
by adding a pair (v,1) just before each pair (a,t) in 6, and also appending a pair (v,s.now)
at the end of the sequence. Then s’ :5/>C;(A)3.

Proof: It is easy to check that ¢’ is a timed sequence over ext(A) that passes properly from
s'.now to s.now, and that p = (&'[(vis(A) x R2%), s.now). From this the lemma follows via
an application of Lemma 5.2. |

We are now prepared to prove some important properties of the closure construction.

Lemma 5.4
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1. A is t-deterministic if and only if ¢l(A) is deterministic.
2. A has t-fin if and only if cl(A) has fin.

Proof: We prove case (1). Case (2) is similar and left to the reader.

Suppose A is t-deterministic. Then |start(A)| = 1 and hence |start(cl(A))| = 1. Suppose
s’ is a state of ¢l(A) and [ is a finite sequence over ext(cl(A)). We have to show that there
is at most one state s such that 5"—%61(,4)5. So suppose that 3"—Q>CI(A)31 and 5"—%61(14)52.
Using Lemma 5.1, it follows that 3 passes properly from s'.now to s;.now and to sy.now,
which implies that s;.now = sy.now. By Lemma 5.2, we infer that, for p = (8[(vis(A4) x
R2%), s1.n0w), s’ &4 51 and s’ &4 55, Since A is t-deterministic, we have that s; = s,, as
required.

For the other direction, suppose that c/(A) is deterministic. Then |start(cl(A))] = 1 and
hence |start(A)] = 1. Suppose s’ is a state of A and p is a finite timed sequence pair over
vis(A). We have to show that there is at most one state s such that s’ & 4s. So suppose
that s’ & 4 s; and s’ & 4 s5. By Lemma 5.3, there is a sequence 3 such that s’ ;Q>C,(A)31 and
s ‘—Q>C;(A)52. Since ¢l(A) is deterministic, we have that s; = sg, as required. [

Lemma 5.5 A <!, B < cl(A) <.r ¢l(B).

Proof: “=7 Suppose 8 € traces*(cl(A)). Then there are s' € start(A) and s € states(A)
such that 3"—Q>C,(A)5. By Lemma 5.1, 3 is a finite timed sequence over ext(A) and passes
properly from s'.now to s.now. Thus we can apply Lemma 5.2 to obtain s’ & 4 s, where
p = (B[(vis(A) x RZ%), s.now). This means that p € t-traces*(A), and therefore also p €
t-traces*(B). So there are r' € start(B) and r € states(B) such that ' L pgr. Applying
Lemma 5.2 in the other direction gives r’/ ‘—Q>C;(B)r. Thus 8 € traces*(cl(B)), as required.
“<” Suppose p = (6,t) € t-traces*(A). Then there are s' € start(A) and s € states(A)
such that s’ &4 s. Let 8’ be the sequence obtained from 6 by adding a pair (v,t') just
before each pair (a,?’) in 6, and also appending a pair (v,t) at the end of the sequence.
By Lemma 5.3, 3’:5/>C;(A)5. This means that ¢’ € traces*(cl(A)), and therefore also ¢ €
traces*(cl(B)). So there are r' € start(B) and r € states(B) such that r/ L pr. By
Lemma 5.1, ¢’ is a finite timed sequence over ext(A) and passes properly from r'.now
to r.now. Thus we can apply Lemma 5.2 to obtain 1’ 2, r, where p' = (¢'[(vis(A) x
R2%), r.now). Tt easily checked that p’ = p. Thus p € t-traces™(B), as required. [

Lemma 5.6 cl(A) <t cl(B)= A<} B.

Proof: Suppose cl(A) <t ¢l(B). Then certainly ¢l(A) <.v ¢l(B), so by Lemma 5.5,
A <!y B. Thus it remains to be shown that A <% B. For this, suppose that p = (,00) €
t-traces™(A). We will prove p € t-traces™(B). Let 8’ be the sequence obtained from é by
adding a pair (v,t) just before each pair (a,?) in 8, and, if 6 is finite, appending to the result
of that the sequence (v,u)(v,u + 1)(v,u + 2)---, where u € RZ° is some arbitrary number
larger than all time components in 6. It is routine to check that 6" € traces”(cl(A)). Thus
8" € traces*(cl(B)). It is now easy to find a corresponding admissible timed execution ¥ of
B with t-trace(X) = p. Thus p € t-traces™(B). [
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Example 5.7 The reverse implication of Lemma 5.6 does not hold in general. For a
counterexample, take B to be a timed automaton that nondeterministically chooses a positive
natural number n, then does action @ at times 1 — 271, 1 —272,.., 1 — 27", and then idles
forever. B is a feasible timed automaton with infinite invisible nondeterminism. Let A be the
same as B, except that it may also choose w at the beginning, in which case it subsequently
does action @ at times 1 — 271, 1 —272..., 1 — 27" ... Timed automaton A is not feasible
because by choosing w it reaches a state from where only a Zeno execution is possible and
no admissible execution. Timed automata A and B have the same timed traces, but ¢/(A)
has an infinite trace (a,1 —27%), (a,1 —272),..., (a,1 — 27"),... which ¢/(B) does not have.

Y

It turns out that we do have the reverse of Lemma 5.6 in case B has t-fin.

Lemma 5.8 Suppose B has t-fin. Then cl(A) <t cl(B)&A <i B.

Proof:  ¢/(A) <1 cl(B) < (by Lemma 5.4, and Prop. 3.6 of Part I)
cl(A) <.t cel(B) < (by Lemma 5.5)
A<t B & (by Prop. 4.4)
A<} B

Corollary 5.9 The following statements are equivalent.
1. A<iy B.
2. cl(A) <pp cl(B).
3. cl(A) <gp cl(B).

If B has t-fin then also the following statements are equivalent, with each other and the three
statements above.

1. A< B.
2. CZ(A) SiFB CZ(B)
Proof: A<y B & (by Lemma5.5)
cl(A) <.t cl(B) < (by Theorems 5.5 and 5.6 of Part I)
cl(A) <pp cl(B) < (by Prop. 5.9 of Part I)
CZ(A) SBF CZ(B)
If B has t-fin then

A<t B = (by Lemma 5.5)
cl(A) <.t el(B) = (by Lemma 5.4, and Theorem 5.6 of Part I)
cl(A) <ipp ¢l(B) = (by Theorem 5.5 of Part I)
cl(A) <t cl(B) = (by Lemma 5.6)
A<p B = A<xB
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In a sense, we have solved our problem now: we have found a way to prove inclusion of
the sets of timed traces of timed automata A and B, under the reasonable assumption that
B has t-fin. All we have to do is to establish a forward-backward simulation between two
closely related timed automata, ¢l/(A4) and ¢l(B). The automata cl(A) and cl(B) are very
similar to A and B: they are the same except for their step relations, which are just a kind
of transitive closure of the step relations of A and B.

5.2 Direct Simulations Between Timed Automata

We have already provided sufficient machinery to permit simulation methods to be used for
reasoning about timed automata. However, we would like to go further: we would also like
to define the various simulations directly on the timed automata themselves. We do this
in the present section. Later, we give a simple lemma relating the new simulations to the
simulations between the closures of the automata.

Suppose A and B are timed automata. A timed refinement from A to B is a function
r: states(A) — states(B) that satisfies:

L. r(s).now = s.now.
2. If s € start(A) then r(s) € start(B).
3. If ' —% 4 s then r(s') L pr(s), where p = t-trace((s, a, s)).

A timed forward simulation from A to B is a relation f over states(A) and states(B) that
satisfies:

L. If u € f[s] then u.now = s.now.
2. If s € start(A) then f[s] N start(B) # 0.

3. If ' —%4 s and v’ € f[s'], then there exists u € f[s] such that u' &g u, where p =
t-trace((s', a, s)).

A timed backward simulation from A to B is a total relation b over states(A) and states(B)
that satisfies:

L. If w € b[s] then u.now = s.now.
2. If s € start(A) then b[s] C start(B).

3. If ' —%4 s and u € b[s], then there exists u' € b[s'] such that v’ & pu, where p =
t-trace((s', a, s)).

A timed forward-backward simulation from A to B is a relation g over states(A) and

N{(states(B)) that satisfies:

1. If u is an element of any set in ¢[s] then w.now = s.now.
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2. If s € start(A) then there exists S € g[s] such that S C start(B).

3. If ' =54 s and 5" € g[s'], then there exists S € g[s] such that for every u € S there
exists u’ € S such that v’ &g u, where p = t-trace((s, a, s)).

A timed backward-forward simulation from A to B is a total relation g over states(A) and

P(states(B)) that satisfies:
1. If u is an element of any set in ¢[s] then w.now = s.now.

2. If s € start(A) then for all S € g[s], S N start(B) # 0.

3. If s —%4 s and S € ¢[s], then there exists S’ € g[s'] such that for every v’ € S’ there
exists u € S such that v’ &g u, where p = t-trace((s', a, s)).

A relation h over states(A) and states(B) is a timed history relation from A to B if it is
a timed forward simulation from A to B and A™! is a timed refinement from B to A.

A relation p over states(A) and states(B) is a timed prophecy relation from A to B if it
is a timed backward simulation from A to B and p~! is a timed refinement from B to A.

Analogous to Part I, we write A <l B, A <i B, etc. in case there exists a timed
refinement, timed forward simulation, etc., from A to B.

Without working out the details, we note here that, analogous to the untimed case, there
exists a full correspondence between timed history /prophecy relations and the obvious notion
of timed history/prophecy variables.

5.3 Synchronicity

A new feature in the definitions of the various timed simulations is the requirement that
related states have the same .now component. In this subsection we explore the consequences
of this natural restriction.

Suppose A and B are timed automata. A relation f over states(A) and states(B) is
synchronous if for all (s,u) € f, u.now = s.now. For each relation f over states(A) and
states(B), we define the subrelation syn(f) to be

{(s,u) € f|u.now = s.now}.

Thus, f is synchronous if and only if syn(f) = f.

Similarly, a relation g over states(A) and P(states(B)) is synchronous if for all (s,5) € ¢
and all v € 5, u.now = s.now. For each relation g over states(A) and P(states(B)), we
define the subrelation syni(g) to be

{(s,5) € g |YuéeS:unow=snow}.

Thus, ¢ is synchronous if and only if syni(g) = g.
Also, for each relation ¢ over states(A) and P(states(B)), we define the relation syn2(g)
to be

{(5,9)[3T : (s,T) € gand S ={u € T | u.now = s.now}}.
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So also ¢ is synchronous if and only if syn2(g) = g.
Obviously, all the timed versions of refinements, forward simulations, etc., that we defined
above are synchronous. The following observation is more interesting.

Lemma 5.10
1. Any refinement from ¢l(A) to cl(B) is synchronous.

2. If f is a forward simulation from ¢l(A) to cl(B), then syn(f) is a synchronous forward
simulation from cl(A) to cl(B).

3. Any backward simulation from cl(A) to ¢l(B) is synchronous.

4. If g is a forward-backward simulation from ¢l(A) to c¢l(B), then synl(g) is a syn-
chronous forward-backward simulation from cl(A) to cl(B).

5. If g is a backward-forward simulation from cl(A) to cl(B), then syn2(g) is a syn-
chronous backward-forward simulation from cl(A) to cl(B).

6. Any history relation from cl(A) to el(B) is synchronous.

7. Any prophecy relation from cl(A) to c¢l(B) is synchronous.

Proof: For 1, suppose that r is a refinement from ¢l(A) to ¢l(B) and s is a state of A
with s.now, = t. By definition of the closure construction, s —(l;’ct,)(A) s. Thus, as r is a
refinement, r(s) iy c(B)r(s). From this it easily follows that r(s).now =t = s.now.

For 2, suppose f is a forward simulation from ¢l(A) to ¢l(B). By the definition of a
forward simulation, if s € start(A), then there is a state v € f[s] that is in start(B). Axiom
S1 implies that s.now = w.now = 0, and thus u € syn(f)[s].

Suppose s' —4y s and u' € syn(f)[s’]. Then u'.now = s".now = s.now. Also, u' € f[s]
and therefore there exists a state u € f[s] such that U/AC](B)U. It follows that w.now =
u'.now = s.now. Hence u € syn(f)[s].

Now suppose s’ —31’5,(14) s, for some a € ext(A), and v’ € syn(f)[s]. Thents.now = t.
Also, u' € f[s'] and therefore there exists a state u € f[s] such that o’ é>C;(B)u. As
u.now = t, it follows that u.now = s.now. Hence u € syn(f)[s].

For 3, suppose that b is a backward simulation from ¢l(A) to ¢l(B), and suppose s is a
state of A with s.now = t. Let u € b[s]. Now we use that ¢/(A) has an ‘idling’ transition
s —(l;f,)(A) s. Thus, since b is a backward simulation there exists v’ € b[s] with v’ gcl(g)u.
This implies u.now = t = s.now.

Next we prove 4. Suppose that ¢ is a forward-backward simulation from ¢l(A) to ¢l(B) By
definition of a forward-backward simulation, if s € start(A), then there is a set S € g¢[s] such
that S C start(B). By axiom S1, u.now = 0 for every u € S. Therefore, S € synl(g)[s], as
needed.

Now suppose s’ —(31’5;)(14) s and S € syni(g)[s']. Then for all v’ € S’, we have u'.now =
s'.now. Also, S’ € g[s'] and therefore there exists a set S € ¢[s] such that for every u € §
there exists u’ € S’ with v/ =5 ci(Byu. We must show that S € syni(g)[s], i.e., that u.now =
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s.now for every u € S. So fix u € S. There exists v’ € S’ such that u’ g)C](B)U. Then it

follows using axioms S2 and S3 that u.now = s.now. Therefore, S € syni(g)[s].

The case where s —";4) 5 and 5" € synl(g)[s] is similar.

It remains to show the nonemptiness property, i.e., that for every state s € states(A),
every set S € synl(g)[s] is nonempty. But this follows from the fact that S € g[s] and g is
a forward-backward simulation.

For 5, suppose ¢ is a backward-forward simulation from ¢l(A) to ¢l(B). Let s € start(A)
and let S € syn2(g)[s]. Then there exists a set T' € g[s] such that S = {u € T' | u.now =
s.now}. Since ¢ is a backward-forward simulation, T' contains an element u € start(B). By
axiom S1, u.now = s.now = 0, so u € S. This suffices for the start condition.

Now suppose s’ —(31’;,)(14) s and S € syn2(g)[s]. Then there is a set T € g[s] with S =
{u € T | unow = s.now}. Since T' € g[s], there exists a set T" € g[s'] such that for every
u’ € 1" there exists u € T with o' gcl(g)u. Let 8" = {v € T" | v'.now = s .now}. Then
S" € syn2(g)[s'], by definition. Now consider any u’ € S’. Since u' € T", there exists v € T
with o/ 25 (Byu. Then it follows by axioms S2 and S3 that u.now = s.now, which implies
that v € S.

The case where s' —;4) s and S € syn2(g)[s] is similar. This suffices for the second
condition.

It remains to show that syn2(g) is total, i.e., that for every state s € states(A), there
is some set S € syn2(g)[s]. But this follows from the fact that any backward-forward
simulation, and hence ¢ in particular, is total, and every set in g[s] has a subset in syn(g)[s].

Parts 6 and 7 are easy: the inverse of any history or prophecy relation is a refinement,
and by Part 1 refinements are synchronous. [

5.4 Relating Timed and Untimed Simulations

In Section 5.1 we showed that (under certain finiteness conditions) there is a one-to-one
correspondence between inclusion of timed traces for timed automata, and inclusion of traces
between the closures of these automata. In this subsection we observe that there is also
a strong connection between timed simulations between timed automata, and the same
functions viewed as untimed simulations between the closures of these automata. As an
immediate consequence of this observation we obtain easy soundness proofs for all the timed
simulations of Section 5.2, since soundness of the timed simulations reduces to the soundness
of the corresponding untimed simulations. Moreover, we obtain a completeness result for
timed forward-backward simulations.

Lemma 5.11 A synchronous relation is a timed refinement from A to B if and only if
it is a refinement from cl(A) to ¢l(B). Moreover, the above property also holds if both
occurrences of the word “refinement” are replaced by “forward simulation”, “backward sim-
ulation”, “forward-backward simulation”, “backward-forward simulation”, “history relation”
or “prophecy relation”.

Proof: Here we prove the case of refinements. The other mappings can be handled similarly.
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First, suppose r is a timed refinement from A to B. We show that r is a refinement
from ¢l(A) to ¢l(B), and the only thing nontrivial here is to demonstrate that r satisfies the
second clause of the definition of a refinement. We distinguish between three possible cases.

1. & —(31’5,)(14) s, for some a € vis(A). By definition of the closure construction, s’ —%4 s.

Thus, since r is a timed refinement from A to B, r(s') ((UL«’Q’”B r(s). This means that
B has an execution fragment from r(s’) to r(s) consisting of 7 steps and one single «a
step. There can be no v steps in the execution since r(s').now = s'.now = s.now =
r(s).now = t. But this implies that also ¢/(B) has an execution fragment from r(s’)

to r(s) consisting of 7 steps and one (a,t) step, that is r(s’) g)C](B)T(S).

2. 8" —y4) s. By detﬁnition of the closure construction, s’ —54 s. Since r is a timed
refinement, r(s') ~5>'gr(s), where t = s.now. Since r(s').now = §'.now = s.now =1 =
r(s).now, this implies that B, and hence ¢l(B), has an execution fragment from r(s’)
to r(s) consisting of 7 steps only. Thus, r(s) $Cl(3)r(5).

3. 4 —(l;’ct,)(A) s. By definition of the closure construction, s’ Qﬁ)A s. Thus, A has an

execution fragment « from s’ to s consisting of 7 and v steps only. Using that r is a
timed refinement from A to B, we can construct a corresponding execution fragment
in B from r(s') to r(s): for each 7 step in o we construct an execution fragment in B
consisting of 7 steps only, and for each v step in « we can find an execution fragment
consisting of 7 and v steps only. If we glue all these execution fragments together we
obtain an execution fragment in B from r(s') to r(s) consisting of 7 and v steps only.
Thus, r(s") o BT ‘325 By definition of closure, this implies r(s’) —(l;’ct,)(B) r(s), which in
turn implies r(s') = .y pyr(s).

For the other direction, suppose r is a refinement from ¢l(A) to ¢/(B). By Lemma 5.10,
we know that r is synchronous. We have to establish that r is a timed refinement from A
to B, and for this again the only nontrivial part is the second clause in the definition of a
timed refinement. So suppose s’ —% 4 s. Let { = s.now. Again we distinguish between three
cases.

1. a € vis(A). Then s —(31’;,)(14) s. Using that r is a refinement we get r(s’) g)C](B)T(S).
This means that ¢/(B) has an execution fragment from r(s’) to r(s) consisting of 7
steps and one single (a,t) step. Thus B has an execution fragment from r(s’) to r(s)

7 (a,t),t)

consisting of 7 steps and one single a step. This implies r(s") <4 g r(s), as required.

2. a = T.AtThen s —"i(4y s. Since r is a refinement, we get r(s’) $Cl(3)r(5). From this
r(s) («’»)B r(s) follows via a simple argument, as in (1).

3. a= v ;Then s’ —(lf’ctl)(A) s. Since r is a refinement, we get r(s') (é;)cl(g)r(s). From this
r(s) («’»)B r(s) follows via a simple argument, as in (1).

Corollary 5.12 Suppose X € {R, F, (i)B, (()FB, (i)BF, H, (i)P}. Then A <{ B &
cl(A) <x cl(B).
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Proof: We give the proof for the case X = F'. The other cases are similar. By definition,
A <} B iff there exists a timed forward simulation from A to B. By Lemma 5.11, this is the
case iff there exists a synchronous simulation from ¢l(A) to ¢/(B). But by Lemma 5.10, this
in turn is the case iff there exists a simulation from ¢l(A) to ¢l(B), that is, ¢/(A) <p ¢l(B).
|

<t

t
FB> S

Proposition 5.13 The relations <}, <k, <b, <lg, B <bp, <t <p and <jp are

all preorders. (However, <!gp is not a preorder.)

Proof: By Corollary 5.12, since the corresponding untimed simulations are preorders.
Essentially the same counterexample that we used to show that <igp is not a preorder (the
automata [ and J of Example 5.10), can be used again in the proof that <!z is not a
preorder. In order to turn the untimed automata into timed automata one only has to
attach .now-value 0 to each state. |

5.5 Reachability

Analogously to the way in which we defined, in Section 7 of Part I, weak versions of the
various untimed simulations, we will now define weak versions of all the timed simulations.

For any timed automaton A, let the reachable timed subautomaton R(A), be the timed
automaton defined as follows.

o states(R(A)) = rstates(A),

® S.NOWR(4) = S.N0W4,

start(R(A)) = start(A),

o acts(R(A)) = acts(A), and

)
steps(R(A)) = steps(A) N (rstates(A) x acts(A) x rstates(A)).
For X € {R, F, (i)B, ())FB, (i)BF, H, (i)P}, define A <!y B iff R(A) <\ R(B).
Lemma 5.14 R(cl(A)) = cl(R(A)).

Proof: Straightforward from the definitions. |

Proposition 5.15 Suppose X € {R, F, (i)B, (i)FB, (i)BF, H, (i)P}. Then A <'y B iff
cl(A) <ux cl(B).

Proof: A<« B & (By definition)
R(A) <\ R(B) & (By Corollary 5.12)
cl(R(A)) <x cl(R(B)) < (By Lemma 5.14)
R(cl(A)) <x R(cl(B)) < (By definition)
c(A) <ux cl(B).
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We leave it to the reader to give direct definitions of weak timed simulations that do
not involve reachable timed subautomata. This can be done completely analogously to the
untimed case.

5.6 Classification of Basic Relations Between Timed Automata

The classification of Section 8 of Part I carries over to the timed setting: Figure 1, except
for the superscripts ¢, is the same as Figure 6 of Part I, which gives an overview of the
relationships in the untimed case.

Theorem 5.16 Suppose X,Y € {T, «T, (w)R, (w)F, (w)(i)B, (w)(i)FB, (w)(i)BF, (w)H,
(w)(@i)P}. Then A <& B = A <, B for all timed automata A and B if and only if
there is a path from <% to <% in Figure 1 consisting of thin lines. If B has t-fin, then
A<\ B= A< B for all automata A and B if and only if there is a path from <\ to <%
consisting of thin lines and thick lines.

Y
SWiP —_— T <WP
t t
<R S B SB
t t - t
SWR —wiB —— —=wB

t — t
<t =<

Figure 1: Classification of basic relations between timed automata.

Proof: Note that except for the superscripts ¢, Figure 1 is the same as Figure 6 in Part
I, which gives an overview of the relationships in the untimed case. Using Corollary 5.12,
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Corollary 5.9, and Prop. 5.15 the inclusions for the timed case follow from the corresponding
inclusions for the untimed case.

In order to show that all the inclusions are strict, one can use essentially the same
counterexamples as in the untimed setting. In order to turn the untimed automata into
timed automata one only has to attach .now-value 0 to each state. Only for establishing
the difference between <!} and <! the examples of Part I, Section 3 are not adequate, and
one has to use Example 4.5 instead. (If A° and BY denote the timed automata obtained
by associating time 0 to all states of the automata A and B of Example 3.1 in Part I,
respectively, then A° =L B but, since both timed automata have no admissible traces, also

A° =4 BY) u

Here are two more results that carry over because of the correspondence between the
timed and the untimed case.

Theorem 5.17 (Partial completeness of timed forward simulations)
Suppose B is t-deterministic and A <! B. Then A <} B.

Proof: By Lemma 5.4(1), ¢/(B) is deterministic, and by Lemma 5.5, ¢l(A) <.r ¢l(B).
Thus by the partial completeness result for forward simulations (Theorem 4.11, Part I),
cl(A) <g cl(B). Now Corollary 5.12 allows us to conclude A <l B, as required. [

Proposition 5.18 Suppose all states of A are reachable, B is t-deterministic and A <} B.
Then A <p B.

Proof: All states of ¢l(A) are reachable, ¢/(B) is deterministic and ¢l(A) <g ¢l(B). By
Prop. 4.19, the untimed version of the fact we are proving, cl/(A) <g ¢l/(B). Hence A <}; B.
|

6 Additional Results for Timed Automata

The previous sections show how some simple correspondences cause most of the results for
untimed automata to carry over to the timed setting. There are some results about untimed
automata that do not carry over because of these correspondences, but are nonetheless true.
First, there are the partial completeness results that involve t-forests. These do not carry over
since the closure construction does not map t-forests to forests. Also, the various results that
require the construction of a timed automaton, such as the completeness result for forward
and backward simulations and the Abadi-Lamport completeness result, do not carry over
via the correspondence. In this section, we establish these remaining results in the setting
of timed automata. In each case, the proof is analogous to the corresponding proof in Part

L.
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6.1 Partial Completeness Results

We begin with the partial completeness results for t-forests.

Theorem 6.1 (Partial completeness of timed refinements) Suppose A is a t-forest, B is
t-deterministic and A <1 B. Then A <, B.

Proof: Analogous to the proof of Theorem 4.5 in Part 1. Define r = t-after(B) o t-past(A).
We claim that r is a timed refinement from A to B. Conditions 1 and 2 are straightforward.
For Condition 3, suppose that s’ —%4 s. Let ¢ = t-trace((s’,a,s)). We must show that
r(s') Lpr(s).

By Lemma 3.3, there is a unique timed trace leading from a start state of A to ', and
also a unique timed trace leading from a start state of A to s. Let p’ and p denote these
respective timed traces; then p’ < ¢ = p. Let ¢’ be such that p'; ¢’ = p.

Since B is t-deterministic, Lemma 3.3 implies that B has a unique start state; call it
so. By construction of r, we have that s ,E;B r(s") and s L pr(s). Since soLpr(s),
Lemma 2.3 implies that B has a state s’ such that sg ,E;B s" and s” «q;B r(s). But since B
is t-deterministic, s 2y r(s') and so L s”, implies that s” = r(s'). Thus, r(s') Lpr(s),

as needed. [ |

Theorem 6.2 (Partial completeness of timed backward simulations) Suppose A is a t-forest
and A <!y B. Then

1. A<§ B, and
2. if B has t-fin then A <ig B.

Proof: Analogous to the proof of Theorem 4.18 in Part I. For a given state s of A, Lemma 3.3
implies that there is a unique timed trace leading to s, say p. Define

b[s] = {u|3X € t-execs™(B) : t-trace(X) = p, ¥.fstate = u, and
[/ < ¥ — t-trace(X') # pl]}.

Using t-traces*(A) C t-traces*(B), it follows that relation b is total. By construction, the
relation satisfies Condition 1. Condition 2 follows as in the proof of Theorem 4.18, and
Condition 3 uses an argument similar to that in the proof of Prop. 6.1.

Clearly, if B had t-fin then relation b is image-finite. [

6.2 Completeness of Timed Forward and Timed Backward Simu-
lations

In this subsection, we give the completeness results for timed forward and timed backward
simulations.

Lemma 6.3
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1. A<ty B< (3C: A< C <y B).
2. A<by Be (3C:A<LC < B).
3. A<hp B < (3C: A<y C <L B).
4. A<lgp B < (3C: A < C <b B).

Proof: Similar to the corresponding proofs in Part I (Theorems 5.1 and 5.7). We sketch
the proot of the implication “=" in 3. Define the structure C' by:

o states(C) = {(t,5) € RZ° x P(states(B))|Vs € S : s.nowp = t},

e (1,5).nowe =1,

e start(C) = {(0,5) € states(C)|S N start(B) £ 0},
o acts(C) = acts(B), and
o for (t',57),(t,5) € states(C) and a € acts(C) — {v},

(',8") % (1,5) & t'=tandVu' €5 Fue S:u =pu, and

(1,8) Yo (1,8) & ' <tandVu' € S JueS:u Wy

Then C' is a timed automaton. Let ¢ be a timed backward-forward simulation from A to B.
Then the relation ¢’ given by

g ={(s,(1,9)) € states(A) x states(C) | t = s.now4 and S € g[s]}
is a timed backward simulation from A to C'. Also, the relation f given by

fF=H(t,9),u) € states(C) x states(B) | u € 5}

is a timed forward simulation from C to B. [ |

Theorem 6.4 (Completeness of timed forward and timed backward simulations) Suppose
A< B. Then

1. 3C A<t C <y B,
2. if B has t-fin then 3C : A <, C <! B, and
3.3C A<y C <L B.

Proof: Immediate from Lemma 6.3 and Theorem 5.16.

An alternative proof of 1 and 2 can be obtained analogous to the proof of Theorem 4.22 of
Part I. Let C' = t-can(t-beh(A)). By Lemma 4.8, C is a t-deterministic t-forest and A =Ly C.
Since (' is t-deterministic, A <i C by partial completeness of timed forward simulations
(Theorem 5.17), and because C' is a t-forest, C' <} B follows by partial completeness of
timed backward simulations (Theorem 6.2(1)). Similarly, if B has t-fin then C' <3 B follows
by Theorem 6.2(2). |
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6.3 Auxiliary Variable Constructions

In this subsection, we present results about timed auxiliary variable constructions.

6.3.1 Timed History Relations

Here we describe the results about timed history relations. We begin with a timed analogue

to the unfolding construction of Part I.
The timed unfolding of A, notation t-unfold(A), is the timed automaton B defined by

o states(B) = t-execs*(A),

o Y.nowg = X.ltime,

o start(B) = {{s}|s € start(A)},
o acts(B) = acts(A), and
o for ¥'S" S € states(B),

S Lp¥S & Y=YASCS
and, for ¥, ¥ € states(B) and a € acts(B) — {v},
Y—Lp ¥ & Y=Y a{X.lstate}.
We leave it to the reader to verify that B is a timed automaton.
Proposition 6.5 t-unfold(A) is a t-forest and A <}; t-unfold(A).

Proof: Using Lemma 3.2 it follows easily that t-unfold(A) is a t-forest. The function
.state, which maps each finite timed execution of A to its last state is a timed refinement
from t-unfold(A) to A, and the relation .l[state™ is a timed forward simulation from A to
t-unfold(A). Thus, .Istate™" is a timed history relation from A to t-unfold(A). [

We are now in a position to prove a timed version of Sistla’s completeness result.

Theorem 6.6 (Completeness of timed history relations and timed backward simulations)
Suppose A <'.. B. Then

1. 3C: A<y C <y B, and
2. If B has t-fin then 3C' : A <}; C <y B.

Proof: Analogous to the proof of Theorem 6.6 in Part I. |

We next define a notion of timed superposition, analogous to the notion of superposition
in Part 1. Suppose k is a synchronous relation over states(A) and states(B) satisfying kN
(start(A) x start(B)) # 0. The timed superposition t-sup(A, B, k) of B onto A via k is the
timed automaton C' given by
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states(C') = k,

(s,v).nowe = s.now 4,

start(C) = kN (start(A) x start(B)),
o acts(C) = acts(A) N acts(B), and

o for (s',v'), (s,v) € states(C) and a € vis(C),

(Av.now)

(A,s.now) P
~ ‘p28Avwv ~ ‘B,

(s',v) —%¢e (s,v) & snow < s.mow A S
(s, 0") =D (5,0) & 8B s Ao 2 g,
(s",0") —L¢c (s,v) & =2 as Ao Zpo.

Again we leave it to the reader to check that € is indeed a timed automaton.
Theorem 6.7 A<\ B < (3C : A <, C <} B).

Proof: Suppose A <l B. Let f be a timed forward simulation from A to B, let C' =
t-sup(A, B, f) and let 1 and 73 be the projection functions that map states of C' to their
first and second components, respectively. Then it is easy to check that 77! is a timed
history relation from A to €' and 7 is a timed refinement from C to B.

The reverse implication also follows via a standard argument. |

6.3.2 Timed Prophecy Relations

Finally, we describe the results about timed prophecy relations. We give a timed analogue
to the guess construction of Part I. This can be regarded as a dual to the timed unfolding
construction of the previous subsection.

The timed guess of A, notation t-guess(A), is the timed automaton B defined by

o states(B) = t-frag™(A),
o Y.nowg = X.ftime,
o start(B) = t-execs™(A),
o acts(B) = acts(A), and
o for S’ SY € states(B),
S By SY & SO SAS ltime=Sltime NY =%
and, for ¥, ¥ € states(B) and a € acts(B) — {v},

Y —Lp ¥ & {Y fstate} a ¥ = X
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As usual, we leave it to the reader to verify that B is a timed automaton.
Proposition 6.8 A <}, {-guess(A).

Proof: Similar to the proof of Prop. 6.5. |

Theorem 6.9
1. A<y Be (3C: A<L C < B).
2. A<y B & (30 : A< C <b B).

Proof: Similar to the proof of Theorem 6.7, using timed backward simulations instead. Wl

Theorem 6.10 (Completeness of timed prophecy relations and timed forward simulations)
A<, B=3C:A<,C<YB.

6.3.3 Completeness of Timed History and Timed Prophecy Relations

Theorem 6.11 (Completeness of timed history/prophecy relations and refinements) Sup-
pose A <!y B. Then

1.3C,D: A<t C <t D<t B.
2. If B has t-fin then 3C,D : A <l C' <, D <& B.
3.3C,D: A<hC <4 D<hB.

Proof: Completely analogous to the proofs of Theorems 6.18 and 6.19 in Part I. |

7 Discussion

In this paper, we have presented an automata-theoretic model for timing-based systems, and
have used it to develop a variety of simulation proof techniques for such systems. These in-
clude timed refinements, timed forward and backward simulations and combinations thereof,
and timed history and prophecy relations. These techniques are analogous to those described
in Part I, [15], for untimed systems. As in that paper, we present basic results for all of the
simulations, including soundness and completeness results. The development is organized so
that the proofs are based on the results of Part I. In fact, we have shown that all the results
of Part I carry over to Part II, except for Prop. 4.12. At present we do not know whether
the timed version of this result holds, i.e., whether if A is a t-forest and A <[ B, it is the
case that A <} B.

It remains to apply these methods to a wide range of practical verification examples, in

Y

order to determine their utility, to develop them further, and to exploit their power. Timed
forward simulations have already been used in [12] to verify some simple toy example timed
systems, and in [11] to verify more realistic algorithms. These uses already suggest that
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at least the timed forward simulations will prove to be very useful in practice, but more
evidence is needed. Note that the results in [12] use a more restrictive model than the one
in this paper, namely, that of [16]. The extra structure of that model supports development
of specialized progress measure techniques not discussed in this paper. It remains to develop
this and other specialized methods further.

It remains to develop other proof methods within the same general timed automaton
model. In particular, we are interested in extending the methods of process algebra to
our timed automaton model. Our recent paper [22] contains the beginning of such work,
including definitions of interesting operators on timed automata, and proofs of substitutivity
results for the timed trace semantics, but there is more to be done.

Finally, although the timed automaton model presented here is very general, there are at
least two ways in which it could be extended: to include reasoning about liveness and about
probabilities. It remains to extend the model in these ways, while preserving the ability to
use the simpler model of this paper where appropriate. Some preliminary work on integrating
liveness into the present model appears in [11]. Both liveness and probabilities introduce their
own sets of additional proof methods, e.g., temporal logic and Markov analysis. Eventually,
the entire collection of proof tools should be integrated into a sensibly coordinated whole.
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A The Trajectory Axiom

Of the five axioms we give for timed automata, the axiom
S5 If s’ > s then there exists a trajectory from s’ to s.

seems to us like the only one that might be controversial. In Wang [23] and elsewhere
([14, 20]), the following weaker axiom S5’ occurs instead:

S5 If & % s and s'.now < t < s.now, then there is an s” with s”.now = t such that

s’ %5 s"” and s % s.

It is immediate from the definition of a trajectory that S5 = S5’. In this appendix we
discuss the reverse implication. The relationship between the two axioms is also investigated
in [10].

As the time domain for our timed automata we have chosen the set RZ° of nonnegative
real numbers. We could have chosen a different time domain though, or parametrized our
automata with an arbitrary time domain as in [9, 20]. In order to state the axioms for timed
automata, all we need is the presence of a set T' of points in time, containing an initial
point in time 0, and equipped with a binary relation < expressing precedence. Thus we can
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generalize our notion of a timed automaton by parametrizing it with a time domain (T,0, <).
For an overview of different types of time domains that have been proposed in the literature
we refer to [4].

Define a semi-timed automaton to be a timed automaton, except that it does not have
to satisfy S5, but only the weaker axiom S5’. Here we give three results:

1. Each time deterministic semi-timed automaton is a timed automaton.

2. Fach semi-timed automaton is a timed automaton, if instead of RZ% a countable, totally
ordered time domain is used, like for instance the set Q2% of nonnegative rational
numbers.

3. If the time domain consists of RZ%, then there exists a semi-timed automaton that is
not a timed automaton.

The axiom of time determinism can be formulated in our setting as follows:
TD If s % s/, s %5 s" and s'.now = s".now, then s’ = s".

The axiom TD says that time is deterministic in the sense that, after a certain amount of
time has elapsed since the system arrived in some state, the new state is uniquely determined
provided no internal or visible action has taken place. The following theorem is easy to prove.

Theorem A.1 Fach time deterministic semi-timed automaton is a timed automaton.

Theorem A.2 Suppose A is a semi-timed automaton over a time domain (1,0,<). If T is
countable and < is a total order, then A satisfies S5 (and is thus a timed automaton).

Proof: Suppose T is countable, < is a total order, and s’ —% 4 s. We have to prove that
there exists a trajectory from s’ to s. Let ¢’ = s’.now and ¢t = s.now, and let ¢{,¢5,... be
some arbitrary enumeration of all the points in time in the interval (#',¢). Inductively, we
define a sequence 1, sq, ... of states of A such that, for all ¢, (1) s;.now = t;, and (2) the set
S ={s',8,81,...,8:}1s time connected, that is, for all v’ u € S;, v/ .now < u.now = v - w.

Suppose that, for some n > 0, we have defined states sq,..., s, that satisfy properties (1)
and (2) above. Let v’ be the state in S, with the largest time that is smaller than ¢,41, and
let u be the state in S,, with the smallest time that is larger than ¢,41. (The existence and
uniqueness of v’ and u are guaranteed since .now is injective on 5, and < is a total order.)
Since v’ % w and «’.now < t,11 < u.now, there exists, by axiom S5’ a state s,,1 such that
u - $,41 and s,41 —= u. Let u” be a state in S, — {v/,u}. Then either u”.now < t,41 or
torr < u”.now. If u”’.now < t,41 then u”.now < v'.now, and thus, since S, is time conected
by induction hypothesis, v - v’. From u” > v and v’ - 5,41, v’ - 8,41 follows by
axiom S4. If ¢, .1 < u”.now then we can infer via a similar argument that s,.; — u”. Thus
it follows that 5,11 is time connected, and we have proved the induction step.

Once we have constructed the sequence sq,s,,... as above, it is immediate that the
function w defined by w(t') = s/, w(t) = s, and w(t;) = s;, for all ¢, is a trajectory from s’
to s. |
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The above proof relies heavily on the assumption that the time domain is countable:
since the interval [', {] is countable we can construct a trajectory from s’ to s in an inductive
fashion, state by state. Such a construction is no longer possible if the time domain is
uncountable, as in the case of R2%, This is illustrated by the following counterexample.

Theorem A.3 (Schneider) Let D be defined by
e states(D) = R2% x Q2°,
e start(D)={(0,0)},

e (t,q).nowp =1,

acts(D) ={v, 1},

steps(D) is specified by (t',¢') —%p (1,q) & ' <tAN¢ <q.

Then automaton D is semi-timed, but not timed.

Proof: One can easily check that D is semi-timed. However, it is not timed: D does not
satisfy the trajectory axiom S5 because that would imply, for instance, that the interval
[0, 1] of reals can be injectively mapped into the rationals. [

At the time we first defined axiom S5, we constructed a complex counterexample to show
that it was stronger than S5’. The simpler counterexample described above was subsequently
discovered by Steve Schneider.
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