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2 N.A. Lynch and F.W. Vaandragerthe correctness of timed protocols for communication, audio control and real-time process control, respectively. In this paper, we continue the developmentby studying process algebras for the same model. Eventually, we envision usinga combination of proof methods, perhaps even using several in the veri�cationof single system.Timed automata A timed automaton is an automaton (or labelled transitionsystem) with some additional structure. There are three types of actions: time-passage actions, visible actions and the special internal action � . All exceptthe time-passage actions are thought of as occurring instantaneously. To specifytimes, a dense time domain is used, speci�cally, the nonnegative reals, and nolower bounds are imposed on the times between events. Two notions of externalbehaviour are considered. First, as the �nite behaviours, we take the �nite timedtraces, each of which consists of a �nite sequence of timed visible actions togetherwith a �nal time. Second, as the in�nite behaviours, we take the admissible timedtraces, each of which consists of a sequence of timed visible actions that can occurin an admissible execution, i.e., an execution in which time grows unboundedly.The timed automatonmodel permits description of algorithms and systems atdi�erent levels of abstraction. We say that one timed automaton A implementsanother timed automaton B if the sets of �nite and admissible timed tracesof A are included in the corresponding trace sets of B. Justi�cation for theuse of trace inclusions to de�ne \implementation" appears, for example, in thework of Gawlick, Segala, S�gaard-Andersen and Lynch [GSSL94]. Basically, thisjusti�cation amounts to showing that the set of admissible timed traces of Ais not trivial. Doing this depends on a classi�cation of the visible actions of Aas input actions or output actions, as in the I/O automaton model of [LT87].Then A is required to have the property that each of its �nite executions can beextended to an admissible execution in a way that includes any given \non-Zeno"input pattern. Showing that this property holds for a given timed automaton Ais an interesting problem, but we do not address this problem in this paper.In the untimed setting, bisimulation equivalences have been reasonably suc-cessful as notions of implementation between transition systems [BW90, Mil89].Consequently, bisimulation equivalences have also been proposed as implementa-tion relations for the timed setting [BB91, Klu93, MT90, NS94, Yi90]. However,we do not believe that bisimulations will turn out to be very useful as imple-mentation relations in the timed case. The problem is that they do not allowone to abstract in speci�cations from the often very complex timing behaviourof implementations (see Chapter 10 of [Klu93] for an example).Since we believe that timed trace inclusion does form a good notion of im-plementation, we are interested in identifying operations on timed automata forwhich the timed trace inclusion relation is substitutive. This substitutivity is aprerequisite for the compositional veri�cation of systems using timed automata.It should also enable veri�cation of systems using a combination of compositionalmethods and methods based on levels of abstraction.Action transducers We represent operations by automaton-like objects thatwe call action transducers, rather than, for example, using SOS speci�cations[Plo81]. For an example of an action transducer, consider the operation jjj ofinterleaving parallel composition. It can be described by an automaton with asingle state s and transitions (one for each action a):



Action Transducers and Timed Automata 3s a�!(1;a) s and s a�!(2;a) s:The left transition says that the composition can perform an a action whenits �rst argument performs an a-action, while the right transition says that thecomposition can perform an a action when its second argument does so. Together,the transitions say that the automaton A jjj B can do an a-step whenever oneof its arguments can do so. In the SOS approach, the same operator jjj can bedescribed by inference rules (one for each action a):x a! x0x jjj y a! x0 jjj y and y a! y0x jjj y a! x jjj y0:The two styles of describing operators, SOS and action transducers, are quitesimilar. In fact, it is shown in [Vaa93] how SOS speci�cations in a variant of aformat proposed by De Simone [Sim85] can be translated to equivalent actiontransducers, and vice versa.However, action transducers are more convenient for our purposes. First, al-though it is easy to see how SOS speci�cations determine automata, it is less clearhow to regard them as de�ning operations on automata. For action transduc-ers, this correspondence is more direct. Second, as noted by Larsen and Xinxin[LX90], action transducers are a convenient tool for studying compositionalityquestions, and their use tends to simplify proofs. Third, action transducers caneasily be de�ned to allow multiple start states. Multiple start states have turnedout to be useful in untimed automaton formalisms for concurrency such as theI/O automaton model, and we would like to include them. We do not know howto model start states in the setting of SOS.As mentioned above, the action transducers we consider have multiple startstates. They also include holes, which describe locations for holding argumentautomata. In fact, our action transducers also allow holes to be coloured, whichallows us to express the condition that several holes (those of the same colour)must hold copies of the same automaton. The concepts of multiple start statesand of coloured holes are not present in [LX90].Results The major result of our paper is that the timed trace inclusion rela-tion is substitutive with respect to all operations that can be described by ouraction transducers, provided they satisfy a number of conditions that concernthe handling of internal and time-passage steps.After proving substitutivity for a general class of operations, we describemany examples of speci�c operations that fall into this class. These include mostof the usual untimed operations from process algebra, in particular, sequentialand parallel composition, external choice, action hiding and renaming. Otheruntimed operations included are an interrupt operation similar to those usedin Extended LOTOS [Bri88] and CSP [Hoa85], disjoint union, and a binaryversion of Kleene's star. We also describe several timed operations as timed ac-tion transducers: a CLOCK operation directly inspired by the clock variables of[AD94, AH94], a BOUND operation that can block the passage of time, and aRATE operation that can change the speed of its argument. On the other hand,there are several operators that have been proposed in the literature that do not�t our format of action transducers, in particular, the CCS-style choice opera-tion present in [BB91, MT90, NS94, Yi90]. This operation cannot be expressed



4 N.A. Lynch and F.W. Vaandrageras a timed action transducer because the timed trace inclusion relation is notsubstitutive with respect to it.We brie
y consider the design of an appropriate language of operators for de-scribing timing-based systems. Such a language should consist of a small numberof basic operations, both timed and untimed, out of which more complex opera-tions can be built. The basic and derived operations together should be su�cientto describe most interesting timing-based systems. As a starting point, we believethat such a language ought to include the basic untimed operations that are al-ready well understood and generally accepted. To this end, we describe a simpleand general construction, inspired by Nicollin and Sifakis [NS92], to transformany untimed operation into a timed one that behaves essentially the same andmoreover does not use or constrain the time. By applying this construction to thewell-known untimed operations, we obtain a collection of corresponding timedoperations that we believe should be included in a real-time process language.The untimed operations alone are not enough, however; a real-time processlanguage also must include operations that use and constrain time explicitly.Of the many possibilities, we would like to identify a small number that canbe used for constructing all the others. For this purpose, we tentatively proposeour CLOCK, BOUND and RATE operations mentioned above. Using only theseoperations and untimed operations, we can construct many of the other timedoperations appearing in the literature, including a very general timer similar tothat used in the timed !-automata model of Alur and Dill [AD94], the timeoutconstruct of Timed CSP [RR88, DS89], and the execution delay operation ofthe timed process algebra ATP [NS94]. We can also de�ne a minor variant ofAlur and Dill's timed automata [AD94], as well as the �nite-state subcase of thetimed automaton model of Merritt, Modugno and Tuttle [MMT91]. All of thisprovides evidence of the power of our proposed language.The decidability and closure properties of Alur-Dill automata suggest thatthey can be regarded as a real-time analogue of classical �nite automata. In theuntimed setting, a crucial characteristic of algebras like CCS is that they caneasily describe �nite automata. Thus by analogy, a natural requirement for a real-time process language is that it can easily describe Alur-Dill automata. Nicollin,Sifakis and Yovine [NSY93] give a translation from ATP into Alur-Dill automata,but do not investigate the reverse translation. In fact it appears that, besidesour language, only the real-time ACP language of Baeten and Bergstra [BB91]is su�ciently expressive to allow for a direct encoding of Alur-Dill automata.We present our de�nitions and results for timed systems by �rst presentingrelated de�nitions and results for untimed systems, and then building upon thoseto obtain the corresponding timed concepts. Thus, byproducts of our results fortimed systems include a de�nition and a substitutivity theorem for untimedaction transducers, as well as a demonstration that the most commonly useduntimed operations can be expressed as action transducers. These byproductsmay be of some interest in themselves.In summary, we believe that the main contributions of the paper are: (1) thede�nitions of action transducers and timed action transducers, (2) the substitu-tivity results for traces and timed traces, (3) the presentation of a large numberof interesting operators, timed and untimed, as action transducers, and (4) apreliminary proposal for a process language for timed systems. We see these allas pieces of a uni�ed proof methodology for timed systems.



Action Transducers and Timed Automata 52. The Untimed SettingWe begin by describing action transducers for the untimed setting. Later, theconcepts needed for the timed setting will be de�ned in terms of correspondingconcepts for the untimed setting.2.1. AutomataAn (untimed) automaton A consists of:� a set states(A) of states,� a nonempty set start(A) � states(A) of start states,� a set acts(A) of actions that includes the internal action � , and� a set steps(A) � states(A) � acts(A) � states(A) of steps.We let s; s0; u; u0,.. range over states, and a,.. over actions. The set ext(A) ofexternal actions is de�ned by ext(A) �= acts(A) � f�g. We write s0 a!A s asa shorthand for (s0; a; s) 2 steps(A). We suppress the subscript A where noconfusion is likely. Automaton A is called �nite if all its components are �nitesets.The term event will be used to refer to an occurrence of an action in asequence.2.2. Executions and TracesAn execution fragment of an automaton A is a �nite or in�nite alternating se-quence s0a1s1a2s2 � � � of states and actions of A, beginning with a state, and ifit is �nite also ending with a state, such that for all i, si ai+1! si+1. An executionof A is an execution fragment that begins with a start state. A state s of A isreachable if it is the last state of some �nite execution of A.For � = s0a1s1a2s2 � � � an execution fragment, trace(�) is de�ned as the se-quence obtained from a1a2 � � � by removing all � 's. A sequence � of actions isa trace of A if A has an execution � with � = trace(�). We write traces�(A),traces!(A) and traces(A) for the sets of �nite, in�nite and all traces of A, re-spectively. These notions induce three preorders on automata: we de�ne A ��B �= traces�(A) � traces�(B), A �! B �= traces!(A) � traces!(B), andA � B �= traces(A) � traces(B). Recall that the kernel of a preorder v isthe equivalence � de�ned by x � y �= x v y ^ y v x. We denote by ��, �! and� , the respective kernels of these preorders.2.3. Action TransducersWe now de�ne a notion of action transducer, as an explicit representation ofcertain operations on automata. We consider operations with a possibly in�niteset of arguments. As placeholders for these arguments, an action transducercontains a set of colours. Sometimes we will �nd it useful to make several copiesof an argument automaton. To this end an action transducer is equipped with a



6 N.A. Lynch and F.W. Vaandragerset of holes and a mapping that associates a colour to each hole. The idea is thatwe plug into each hole a copy of the argument automaton for which the colourof the hole serves as placeholder. As a useful analogy one can consider the wayin which a term with free variables determines an operation on terms: here thevariables play the role of colours, and the occurrences of variables serve as holes.As the rest of its \static" description, an action transducer has an associatedglobal set of actions, and, for each colour, a local set of actions.The \dynamic" part of an action transducer is essentially an automaton: aset of states, a nonempty set of start states, and a step relation. The elementsof the step relation are 4-tuples of source state, action, trigger and target state.Here the trigger is a function that tells, for each hole, whether the argumentautomaton in that hole idles or participates in the step, and if it participates, bywhich action.2.3.1. De�nitionFormally, an (action) transducer T consists of:� a set states(T ) of states,� a nonempty set start(T ) � states(T ) of start states,� a set holes(T ) of holes,� a set colours(T ) of colours,� for each hole i, a colour col(T; i),� a set acts(T ) of actions that includes � ,� for each colour c, a set acts(T; c) of actions that includes � but excludes thenoaction symbol 0,� a set steps(T ) � states(T ) � acts(T ) � triggers(T ) � states(T ) of steps,where triggers(T ) is the set of maps � that assign to each hole i either 0 oran action in acts(T; col(T; i)).We say that hole i participates in a step (s0; a; �; s) if �(i) 6= 0; hole i is activein s0 if it participates in some step starting with s0. For each state s0, we de�neactive(T; s0) as the set of holes that are active in s0.We de�ne the sets of external actions of T by ext(T ) �= acts(T ) � f�g,and, for each c, ext(T; c) �= acts(T; c) � f�g. We write s0 a�!� T s instead of(s0; a; �; s) 2 steps(T ), and suppress the argument T when no confusion is likely.We often represent a trigger � by the set f(i; a) j �(i) = a 6= 0g.2.3.2. Executions and tracesAn execution fragment of an action transducer T is a �nite or in�nite alternatingsequence s0a1�1s1a2�2s2 � � � of states, actions and triggers of T , beginning witha state, and if it is �nite also ending with a state, such that for all i, si ai+1�!�i+1 si+1.An execution of T is an execution fragment that begins with a start state.For 
 = s0a1�1s1a2�2s2 � � � an execution fragment and i a hole, we de�netrace(
) �= (a1a2 � � �)dext(T );trace(
; i) �= (�1(i)�2(i) � � �)dext(T; col (T; i)):



Action Transducers and Timed Automata 72.3.3. Relation with automataWe view action transducers as a generalisation of automata. Speci�cally, if Ais an automaton, then the associated action transducer trans(A) has the samestates, start states and actions as A, empty sets of holes and colours, and itsstep relation given by:s0 a�!� trans(A) s �= � = ; ^ s0 a!A s:In this way, automata are embedded into the class of action transducers. We willfrequently identify an automaton with its corresponding action transducer.Conversely, if T is an action transducer, then we can de�ne an associatedautomaton, aut(T ). Namely, aut(T ) inherits the sets of states, start states andactions of T , and has its step relation de�ned bys0 a!aut(T ) s �= 9� : s0 a�!� T s:It is not hard to see that, for any automaton A, aut(trans(A)) = A, and for anyaction transducer T with an empty set of holes, trans(aut(T )) = T .2.3.4. Combining action transducers and automataWe de�ne the meaning of an action transducer as an operation on automata.First, de�ne an automaton assignment for T to be a function � that maps eachcolour c of T to an automaton in such a way that acts(�(c)) = acts(T; c). Suppose� is an automaton assignment for T , and let Z be the function that associatesan automaton to each hole, by the rule Z(i) = �(col (T; i)). Then T (�) is theautomaton A given by:� states(A) = f(s; z) j s 2 states(T ), z maps holes i of T to states of Z(i)g,� start(A) = f(s; z) j s 2 start(T ), z maps holes i of T to start states of Z(i)g,� acts(A) = acts(T ), and� (s0; z0) a!A (s; z) if and only if9� : s0 a�!� T s ^ 8i : [if �(i)=0 then z0(i)=z(i) else z0(i) �(i)!Z(i) z(i)]:Thus, the steps of the automaton T (�) are just those that are allowed by theaction transducer T , using triggers that describe steps allowed by the automatain the holes.It is useful to have explicit terminology for the sequence of triggers that areused to justify the steps in an execution of T (�). Thus, suppose that� = (s0; z0)a1(s1; z1)a2(s2; z2) � � �is an execution of T (�). Suppose that for each hole i and each j � 1, sj�1 aj�!�j T sjand if �j(i) = 0 then zj�1(i) = zj(i) else zj�1(i) �j (i)! Z(i) zj(i). Then we say thatthe sequence �1�2 � � � is a trigger sequence for �. By de�nition of T (�) everyexecution has at least one trigger sequence (there may be more than one).Lemma 2.1. Suppose that T is an action transducer, � is an automaton assign-ment for T , and � = (s0; z0)a1(s1; z1)a2(s2; z2) � � � is an execution of T (�) with



8 N.A. Lynch and F.W. Vaandragertrigger sequence � = �1�2 � � �. Then 
 = s0a1�1s1a2�2s2 � � � is an execution of T ,and for each hole i of T , trace(
; i) 2 traces(�(col (T; i))).2.3.5. RemarksThe importance of action transducers for process algebra and concurrency theorywas �rst noted by Larsen and Xinxin [LX90], who introduced a certain type ofaction transducer, which they call context systems, to study compositionalityquestions in the setting of process algebra. Our action transducers generalisethose of Larsen and Xinxin [LX90] in several respects: the distinction betweencolours and holes, which allows us to copy arguments, is new here. Also, Larsenand Xinxin [LX90] only consider operations with a �nite number of arguments,and a setting where automata just have one start state and no explicit set ofassociated actions.Note that, since we always start copies of an argument automaton from a startstate, our notion of copying is di�erent from that of Bloom, Istrail and Meyer[BIM88], who also allow copying from intermediate states. As a consequence, thetrace preorder is substitutive for our operations, whereas it is not substitutive ingeneral for the operations of [BIM88].In this section we have de�ned the semantics of an action transducer as anoperation on automata. In fact, it is often useful to interpret action transducersin a more general (and somewhat more complex) way, as operations on actiontransducers. We leave this generalisation to the reader.2.4. SubstitutivityWe say that a relation R on a class of automata A is substitutive for an actiontransducer T if for all automaton assignments �; �0 for T with range A,8c 2 colours(T ) : �(c) R � 0(c) ) T (�) R T (� 0):In this subsection we present two substitutivity results for untimed action trans-ducers. These results depend on certain additional assumptions involving theinternal steps of the arguments. We express these assumptions in the followingde�nition of the subclass of � -respecting action transducers. Then we show that�� and � are substitutive for all action transducers in this class.An action transducer T is � -respecting if it satis�es the following constraints:1. For each state s and for each hole i that is active in s, T contains a clearingstep, i.e., a step s ��!f(i;�)g s.2. The only steps with � in the range of the trigger are clearing steps, i.e., ifs0 a�!� s and �(i) = � , then s0 a�!� s is a clearing step for s0 and i.3. Only �nitely many holes participate in each step, i.e., s0 a�!� s implies thatfi j �(i) 6= 0g is �nite.Condition 1 says that the action transducer must permit the component au-tomata to take internal steps, by means of special clearing steps of the actiontransducer, whereas Condition 2 says that clearing steps are the only steps ofthe action transducer that permit internal steps of the components. Condition 3does not explicitly mention internal steps; however, this condition is needed in



Action Transducers and Timed Automata 9the substitutivity proof because of complications caused by internal steps. Condi-tions 1 and 2 slightly strengthen similar constraints that are presented in [Vaa91]in the setting of SOS. Condition 3 does not occur in [Vaa91] because there onlyoperations with a �nite number of arguments are considered. However, a similarconstraint appears in the I/O automaton model of [LT87].Theorem 2.2. The relations �� and � on automata are substitutive for all� -respecting action transducers.Proof Let T be a � -respecting action transducer. We show that� is substitutivefor T . The proof that �� is substitutive for T is similar but slightly simpler.Suppose �; �0 are automaton assignments for T such that, for all c, �(c) ��0(c), and suppose that � 2 traces(T (�)). We must prove that � 2 traces(T (� 0)).For this, de�ne Z �= �i:�(col(T; i)) and Z 0 �= �i:� 0(col (T; i)). Then Z(i) � Z0(i)for each hole i.Since � 2 traces(T (�)), T (�) has a (possibly �nite) execution� = (s0; z0)a1(s1; z1)a2(s2; z2) � � �with trace(�) = �. Let �1�2 � � � be a trigger sequence for �, and let
 = s0a1�1s1a2�2s2 � � � :By Lemma 2.1, 
 is an execution of T , and �i �= trace(
; i) 2 traces(Z(i)), forall i. Since Z(i) � Z 0(i), we obtain �i 2 traces(Z0(i)), for all i. Therefore foreach i, Z 0(i) has an execution �i with trace(�i) = �i. Let 
0 be the sequenceobtained from 
 by removing all clearing steps. Then 
0 is a execution of T andtrace(
0 ) = �.Informally speaking, our job is to \paste" together 
0 and the �i to obtain anexecution of T (� 0). We construct an automatonA that describes several allowableways to do this pasting and that generates executions of T (�0) with the requiredproperties. The set of states of A consists of all valuations of the following statevariables in their domains:� a variable frag ranging over the set of execution fragments of T . This variabledenotes the part of 
0 that still has to be dealt with. The initial value of fragis 
0.� for each hole i, a variable fragi ranging over execution fragments of Z 0(i).This variable denotes the part of �i that still has to be pasted together with(the remainder of) 
0. The initial value of fragi is �i.� a variable exec ranging over �nite executions of T (�0). The limit of the valuesof exec will be the execution of T (� 0) in which we are interested. The initialvalue of exec is the trivial execution consisting of the state composed fromthe �rst states of 
0 and the �rst states of the �i.Automaton A has actions CLEARING and BASIC , which correspond to thetwo di�erent types of actions of T (� 0): clearing steps, and \basic" steps. Thetransitions of A are de�ned using precondition/e�ect style in Figure 14. The4 Here and elsewhere we use Lamport's [Lam93] list notation for conjunction. In this notationthe formula b1 ^ b2 � � � ^ bn is written as the aligned list ^ b1^ b2...̂ bn.



10 N.A. Lynch and F.W. VaandragerBASICPrecondition^ frag begins with sa�^ for all holes i that participate in the �rst step of frag :frag i begins with an �(i) stepE�ectremove the �rst step from frag ;for each hole i that participates in the �rst step of frag doremove the �rst step from frag i;append to exec an a followed by the state of T (�0) composedfrom the �rst states of frag and all the fragiCLEARINGPrecondition^ frag contains at least one step^ hole i0 participates in the �rst step of frag^ fragi0 begins with a � stepE�ectremove the �rst step from fragi0 ;append to exec a � followed by the state of T (�0) composedfrom the �rst states of frag and all the fragiFig. 1. Algorithm for pasting together 
0 and the �i.intuition is that, while building an execution of T (� 0), automaton A peels o�initial steps of 
0 and the �i. If the remainder of 
0 starts with an a step and,for each hole i that participate in this step, the remainder of �i starts with theaction required for hole i, then A can perform a BASIC step. If, for some holei, the remainder �i starts with a � step then A can perform a correspondingCLEARING step, provided that i participates in the next step of 
0.We leave it to the reader to check that the de�nition of A is type correct, inthe sense that each variable is only assigned values in its domain.Pick an arbitrary maximal execution � = u0b1u1b2u2 � � � of A. Since the onlyway that exec is modi�ed is by appending values, we can de�ne �0 as the limitof the values of exec along �. By construction, �0 is an execution of T (�0). Weclaim that trace(�0) = �.In order to see this, we �rst establish that A satis�es the following invariantproperties. Here we write u:v for the value of state variable v of A in state u.1. For all reachable states u, trace(u:exec) trace(u:frag) = �.2. For all reachable states u and for all holes i, trace(u:fragi ) = trace(u:frag; i).Proof By simple inductive arguments.Using Invariants 1 and 2, we next prove two claims.Claim 1. Suppose u is a reachable state of A and u:frag is not a single stateexecution fragment. Then u has an outgoing step.Proof Let s0 a�!� s be the �rst step of u:frag. If, for some hole i that participatesin this �rst step, u:fragi begins with a � -step, then a CLEARING action isenabled in u. If, for no hole i that participates in the �rst step, frag i starts witha � step, then it follows by Invariant 2 that, for each of these holes i, fragi startswith an �(i) step. But this means that a BASIC action is enabled in u.



Action Transducers and Timed Automata 11Claim 2. Execution � has no in�nite su�x that consists of CLEARING stepsonly.Proof Suppose that starting from some state un, execution � consists entirelyof CLEARING steps. That is, from un onwards all the steps of � simulate �steps of components that participate in the �rst step of un:frag. Because T is� -respecting, there are only �nitely many such participants. Consider any indi-vidual participant i. By Invariant 2, un:fragi contains an �(i) step after �nitelymany � steps. Therefore, only �nitely many CLEARING steps in � correspondto � steps of i. Thus, � contains only a �nite number of consecutive CLEARINGstarting from un, a contradiction.Now we return to the proof that trace(�0) = �. Again we consider cases.1. Suppose � contains only �nitely many BASIC actions. By Claim 2, execution� does not have an in�nite su�x that consists of CLEARING steps only, so� is �nite.5 Suppose un is the �nal state of �. Then, by Claim 1, un:fragconsists of a single state execution fragment. In combination with Invariant1, this gives trace(un :exec) = �. But �0 is de�ned as the limit of un:exec, so�0 = un:exec. Hence trace(�0) = �.2. Suppose � contains in�nitely many BASIC actions. Since frag is initially 
0,and each BASIC step removes a step from 
0, it follows that 
0 is in�nite.By Invariant 1, trace(uj :exec) is a pre�x of � for each j. Since each step of
0 is eventually simulated in �0, trace(�0) = �.Hence, � 2 t-traces(T (�0)), as required. This completes the proof of the theorem.In Section 3.4, we give an example to show that �! is not substitutive, evenfor � -respecting action transducers. The converse of Theorem 2.2 does not hold:there are many examples of non-� -respecting action transducers for which ��and � are substitutive. We give one example in Section 3.4.3. An Untimed Process AlgebraIn this section, we give several examples of operations that can be expressed asaction transducers; all these operations are directly inspired by operations fromwell-known \untimed" process algebras such as CSP [Hoa85], CIRCAL [Mil85],CCS [Mil89], Extended LOTOS [Bri88] and ACP [BW90]. Our motivation forpresenting these examples is twofold: �rst, they serve as an illustration of howfamiliar process algebraic operations can be de�ned using action transducers,and second, the resulting language Lu will form the basis of a timed processalgebra that we will de�ne in Section 5.3.1. PreliminariesWe �rst describe a number of conventions so that, in most cases, we do nothave to specify the static part of action transducers explicitly. To begin with,5 At this point the proof for�� is simpler, since all in�nite executions can be excluded trivially.



12 N.A. Lynch and F.W. Vaandragerwe adopt the convention that, unless otherwise speci�ed, the sets of holes andcolours are the same, and the colouring function is the identity. Often, the setof colours will be an initial fragment f1; : : : ; ng of the natural numbers. In thiscase we write T (A1; : : : ; An) for T (�c:Ac). We also use in�x notation in the caseof binary operations. All action transducers that we de�ne are parameterisedby the action sets of their arguments. Some of the action transducers also haveother parameters. Unless stated otherwise, the (global) action set of an actiontransducer can be obtained by taking the set of all actions that occur in steps ofthe action transducer.We �nd it convenient to structure external actions as nonempty �nite sets oflabels, and to identify � with the empty set of labels. This will permit a compo-nent automaton to perform several activities (labels) together, which the actiontransducer can handle separately. For instance, the sequential composition actiontransducer, described below, takes advantage of composite actions: a componentcan perform an arbitrary label simultaneously with a termination label, and theaction transducer handles these two in di�erent ways. The idea to choose sets oflabels as the structure of actions was �rst introduced in CIRCAL, but is usedin other algebras as well, for instance in Extended LOTOS. Typically, the gen-eralisation to multiple label actions increases the expressive power of a processalgebra.We regard non-composite external actions as a special case of compositeactions, identifying the non-composite action a with the set fag. For each actiontransducer T we de�ne labels(T ) �= S ext(T ). Similarlywe de�ne, for each colourc, labels(T; c) �= S ext(T; c).In our language we assume a special labelp to indicate successful terminationand to transfer control to a subsequent process. Symbolp is in the label set of allaction transducers in the language as well as in the label sets of all their colours.The language has been designed such that any (closed) expression denotes anautomaton in which no further transitions are possible after a transition whoselabel contains p.3.2. Operators3.2.1. ActionsFor any �nite set a of labels with p 62 a, we introduce an action transducer a.This action transducer performs the composite action consisting of a togetherwith the termination label p, and then halts. The action transducer has twostates s and t: it starts in s, performs action a [ fpg, and then terminates in t:s a[fpg�!; tBy the correspondence described earlier, action transducer a can equally well beregarded as an automaton.3.2.2. Sequential compositionTransducer \;" describes the binary sequential composition operation of ExtendedLOTOS. The action transducer has two states s1 and s2. In the start state s1,the action transducer runs its �rst argument up to successful termination, and



Action Transducers and Timed Automata 13then in state s2 the action transducer runs its second argument. The steps are(for all actions a; b of the �rst and second argument, respectively):s1 a�!f(1;a)g s1 if p 62 as1 a�fpg�!f(1;a)g s2 if p 2 as2 b�!f(2;b)g s2Note that, unlike in ACP, a ; � is di�erent from a (for a 6= � ), because in thesecond automaton successful termination occurs simultaneously with a whereasin the �rst automaton it occurs after the a.3.2.3. External choiceThe external choice operation 2 is taken from CSP. This operation, which isparameterised by a �nite index set I, waits for the �rst external action of any ofits arguments and then runs that argument. The action transducer has distinctstates si, for each i 2 I, plus an additional state s, which is the start state. Thesteps are (for all i and all actions a of the i-th argument):s ��!f(i;�)g ss a�!f(i;a)g si if a 6= �si a�!f(i;a)g siWe write STOP for external choice over an empty index set. STOP is the simplestaction transducer from our language. It has no holes, no colours, no steps, asingle state, a single action p, and no steps. STOP represents the inactive agent,capable of no action whatsoever.3.2.4. Disjoint unionParameterised by a �nite index set I, action transducer t takes the disjoint unionof automata indexed by I. The t construct exploits the feature of multiple startstates. For each i 2 I, the action transducer has a distinct state si, which is alsoa start state, and steps (for all actions a of the i-th argument):si a�!f(i;a)g siOperation t behaves in a similar way to the internal choice operation u ofCSP: it runs one, nondeterministically chosen argument. An interesting di�erencebetween the operational semantics of t and u is that in a ; (b t c) the choicebetween b and c is made before execution of the a, whereas in a ; (buc) this choiceis made after the a has been done. This becomes apparent from the automatafor these expressions, which are displayed in Figure 2. Modulo trace equivalence,the di�erences between the two operations disappear: for all automata A and B,A t B � A uB.3.2.5. RelabelingFor each function f on labels such that f(l) = p i� l = p, we introduce a unaryrelabeling operation f that renames actions of its argument according to f . The



14 N.A. Lynch and F.W. Vaandrager? ?q q? ?q q? ?q qa afb;pg fc;pga ; (b t c) ?q?q��	 @@Ra� �q q? ?q qfb;pg fc;pga ; (b u c)Fig. 2. The di�erence between t and u.action transducer has a single state s, which is the start state, and steps (for allactions a of the argument, and with f lifted to sets of labels):s f(a)�!f(1;a)g s3.2.6. Parallel compositionThe binary action transducer k, which describes the binary operation of parallelcomposition, is a slight variant of the dot operation of CIRCAL. The operation kgeneralises the usual de�nition of composition, taking into account the compositenature of actions. In the case where all actions of the arguments are singletonsor � , the operator behaves just as the composition operator of CSP and theI/O automata model. The additional power of our composition operator is usedin the proof of Theorem 3.1 and is indispensable in the timed extension of Luin Section 5, where actions do not only contain synchronisation labels but alsolabels expressing timing constraints.The action transducer k has a single state s, which is the start state, andsteps (for all actions a; b of the �rst and second argument, respectively):s a�!f(1;a)g s if a \ labels(k; 2) = ;s b�!f(2;b)g s if b \ labels(k; 1) = ;s a[b�!f(1;a);(2;b)g s if a \ labels(k; 2) = b \ labels(k; 1) 6= ;The restriction to nonempty sets of labels in the last step is not present inCIRCAL. There, independent actions from di�erent components may occur si-multaneously without synchronisation. We have excluded such behavior here inorder to keep our composition operation compatible with the one of CSP andthe I/O automata model.When specifying systems it is often convenient to use a derived operatorkH that only requires its arguments to synchronise on a set of labels H [ fpg.Suppose A and B are automata with label sets LA and LB , respectively, andsuppose H � LA \ LB is a set of non-p labels. We de�neAkHB �= Untag(Tag1(A)kTag2(B));



Action Transducers and Timed Automata 15where Untag and Tag i (i = 1; 2) are relabeling functions given by:Tagi(l) �= � li if l 2 (LA \ LB)�Hl otherwiseUntag(l) �= � k if l := kj ; k 2 (LA \ LB)�H; j 2 f1; 2gl otherwiseThe idea behind this de�nition is that �rst the functions tag1 and tag2 renamethose labels of A and B on which we do not want to synchronise so that theyare distinct. Then after the resulting automata have been composed in parallel,the function Untag renames the tagged labels back to what they were originally.Note that the k and kH operators are commutative and associative.3.2.7. HidingThe unary hiding operation nL hides all elements from a set L of labels byremoving them from all actions of its argument. The action transducer has asingle state s, which is the start state, and steps (for all a):s a�L�!f(1;a)g s3.2.8. InterruptsThe binary action transducer ^ is very similar to the disruption composition ofExtended LOTOS and the interrupt operation of CSP. The action transducerhas three states s1, s2 and t. In start state s1, the action transducer runs its �rstargument until the second argument performs an external action; if and whenthis occurs, the action transducer moves to state s2 in which the �rst argumentis disabled and the second argument takes over. If in state s1 the �rst argumentterminates successfully, the action transducer moves to the termination state t.The steps are (for all actions a; b of the �rst and second argument, respectively):s1 a�!f(1;a)g s1 if p 62 a s1 ��!f(2;�)g s1s1 a�!f(1;a)g t if p 2 a s1 b�!f(2;b)g s2 if b 6= �s2 b�!f(2;b)g s23.2.9. IterationWe introduce iteration in our language by means of a binary version of Kleene'sstar operator: A � B is the automaton that chooses between A and B, and uponsuccessful termination of A has this choice again. A key identity satis�ed by theoperator isA � B � A ; (A � B) 2 B:Kleene's star operation is best known in its unary form, but in fact the originaloperator introduced by Kleene in [Kle56] was binary. Recently, the binary starhas been studied in the context of ACP in [BBP94, FZ94].The iteration construct exploits the ability of action transducers to copy theirarguments: it uses an in�nite number of copies of both the �rst and the second



16 N.A. Lynch and F.W. Vaandragerargument. Formally, the action transducer has colours f1; 2g, holes f1; 2; : : :g [f10; 20; : : :g, and a colouring function that, for i 2 N+, maps hole i to colour 1and hole i0 to colour 2. The action transducer has states fsi; li; ri j i 2 N+g. Instate si, the action transducer chooses between execution of the i-th copy of the�rst argument or execution of the i-th copy of the second argument. In stateli, the action transducer is running the i-th copy of the �rst argument, and instate ri the action transducer runs the i-th copy of the second argument. Theinitial state is s1, and the steps are (for all actions a and b of the �rst and secondargument, respectively):si a�!f(i;a)g li if p 62 a 6= � li a�!f(i;a)g li if p 62 asi a�fpg�!f(i;a)g si+1 if p 2 a li a�fpg�!f(i;a)g si+1 if p 2 asi b�!f(i0 ;b)g ri if b 6= � ri b�!f(i0;b)g risi ��!f(i;�)g si si ��!f(i0 ;�)g siUsing the � operator, we can easily de�ne the unary looping operator !, whichrestarts its argument upon each successful termination:A! �= A � STOP:Despite what the notation might suggest, operator ! does not run A a �nitenumber of times and then stop! In a choice context the STOP process shouldbe viewed as the absence of an alternative: each time the action transducer � isfaced with a choice between A and STOP, it must choose the A.As an example of the iteration and looping constructs, consider the followingexpression, which describes an automatic switch-o� mechanism:SWITCH �= (sw on ; (sw on � sw o� ))!:The system allows the environment to switch on a lamp at any time by pushingsome button; once the lamp has been switched on, it will remain on, even if thebutton is pushed again, until it is switched o� by the system. In Section 5, wewill come back to this example and show how we can add real-time constraintsto make it more interesting.3.3. Expressivity of LuWe de�ne Lu to be the language consisting of all (closed) expressions built withthe operations of Section 3.2. Since all the corresponding action transducersare � -respecting, it follows from Theorem 2.2 that the preorders �� and � aresubstitutive for all the operations in Lu.The automata denoted by expressions in Lu are always acyclic but need notbe �nite. In particular, each nontrivial use of the iteration construct gives riseto an automaton with an in�nite number of reachable states. However, underthe condition that no t occurs within the �rst argument of a �-operator, eachexpression in Lu has a tree unfolding which is isomorphic to the tree unfoldingof a �nite automaton. In the case of expressions where t occurs within the �rstargument of a �-operator, the underlying automaton will still be trace equivalentto a �nite automaton, but no longer \tree equivalent" (consider the automatondenoted by (a t b)!: this automaton has in�nitely many start states, one for each



Action Transducers and Timed Automata 17in�nite sequence over fa; bg). All automata denoted by Lu-expressions furtherhave the property that after a transition with a label containing p, no furthersteps are possible. The following theorem states that Lu is universally expressivefor the class of �nite automata with this property. In the proof of this result alloperators of the language play a role.Theorem 3.1. Suppose that A is a �nite automaton in which no further stepsare possible after a transition whose label contains p. Then the tree unfoldingof A is isomorphic to the tree unfolding of the automaton associated to someexpression in Lu.Proof (Sketch) Without loss of generality, we may assume that A only has asingle start state: any �nite automaton with n > 1 start states is tree equivalentto the disjoint union of n copies of this automaton in which the set of start statesis restricted to a singleton.Also without loss of generality, we may assume that A has no self-loops, i.e.,steps of the form s a! s: for each �nite automaton with such self-loops one canconstruct an equivalent �nite automaton without them, for instance by adding aboolean \history variable" that records whether the number of transitions thusfar is even.Let states(A) = fs0; : : : ; sng, let start(A) = fs0g, and let S be short forsteps(A). In the Lu-expression that encodes A, we use elements of S as auxiliarylabels. The expression is(((X0 kS1X1) kS2X2) � � � kSn Xn)nS;where, for i > 0,Si �= the set of all steps between si and states in fs0; :::; si�1g[ the set of all steps t with p 2 action(t)X0 �= ((non �nal step0 ; wait0) � �nal step0) ^ �nal step other0;Xi �= [waiti ; ((non �nal stepi ; waiti) � �nal stepi)] ^ �nal step other i;where, for i � 0,wait i �= 2ft2Sjtarget(t)=si^p62action(t)g ftg;non �nal stepi �= 2ft2Sjsource(t)=si^p62action(t)g ftg [ action(t);�nal stepi �= 2ft2Sjsource(t)=si^p2action(t)g ftg [ (action(t) � fpg);�nal step other i �= 2ft2Sjsource(t)6=si^p2action(t)g ftg:3.4. CounterexamplesAn example of an operation for which �� is not substitutive is parallel compo-sition over an in�nite index set I. We have a �� � ; a but notki2I(a) �� ki2I(� ; a);because the automaton on the left has a trace a, which the automaton on the rightdoes not have, since it has do an in�nite number of � -actions \�rst". Anotherexample is the version of (binary) parallel composition obtained by requiring



18 N.A. Lynch and F.W. Vaandragerthe argument automata to synchronise on � . Here one loses substitutivity sincea �� � ; a but not aka �� (� ; a)ka, because the automaton on the left hasa trace a, which the automaton on the right does not have, since the initial � -action of the �rst argument cannot synchronise with a � -action of the secondargument. Note that neither of these two examples is � -respecting.It is not the case that preorder �! is substitutive for all � -respecting actiontransducers. For instance, we have � �! STOP but not � ; a! �! STOP ; a!.As an example of a non-� -respecting action transducer for which �� and �are substitutive, consider the choice operation + from CCS. The action trans-ducer for this operation can be obtained by removing all clearing steps from theinitial state of the action transducer for 2, and instead allowing a to range over �in the second equation as well, so that � -steps can force the choice. The resultingaction transducer is clearly not � -respecting. In Section 5.3, we will show thatthe timed trace preorders are not substitutive for the timed version of the CCSchoice operation.4. The Timed SettingNow we extend the notions described in Section 2 to the case of timed systems.We follow the same general outline, introducing time systematically into all ofthe de�nitions and results.4.1. Timed AutomataWe use a slight variant of the timed automaton model from [LV93].6 A timedautomaton A is an automaton whose set of actions includes R+, the set of positivereals. Actions from R+ are referred to as time-passage actions. We let d; d0; : : :range over R+ and, more generally, t; t0; : : : over the set R of real numbers. Theset of visible actions is de�ned by vis(A) �= ext(A)�R+. We assume that a timedautomaton satis�es the following axioms.S1 If s0 d! s00 and s00 d0! s, then s0 d+d0! s.For the second axiom, an auxiliary de�nition is needed. A trajectory for a steps0 d! s is a function w : [0; d]! states(A) such that w(0) = s0, w(d) = s, andw(t) t0�t! w(t0) for all t; t0 2 [0; d] with t < t0:Now we can state the second axiom.S2 Each step s d! s0 has a trajectory.Axiom S1 gives a natural property of time, namely that if time can pass in twosteps, then it can also pass in a single step. The trajectory axiom S2 is a kind ofconverse to S1; it says that any time-passage step can be \�lled in" with statesfor each intervening time, in a \consistent" way. For a further discussion of thisaxiom we refer to [LV93, JSV93].6 The di�erence is just the explicit indicationof the amount of elapsed time in the time-passageaction instead of using a .now function that associates the current time to a state.



Action Transducers and Timed Automata 194.2. Timed TracesExecutions of timed automata correspond to what are called sampling computa-tions in [MP93]: they provide information about a run of a system at a countablenumber of points in time. In [LV93], a notion of timed execution is also de�nedfor timed automata: these are alternating sequences of trajectories and actions,which correspond to the super-dense computations of [MP93]. It can be arguedthat timed executions provide a more precise representation of the behaviour ofreal-time systems than (sampling) executions. However, our trajectory axiom S2guarantees that for each (sampling) execution of a timed automaton there ex-ists a corresponding timed execution. This means that the full externally visiblebehaviour of timed automata can already be inferred from the technically muchsimpler (sampling) executions. This is done in the following de�nitions.Suppose � = s0a1s1a2s2 � � � is an execution fragment of a timed automatonA. For each index j, let tj be given byt0 = 0;tj+1 = if aj+1 2 R+ then tj + aj+1 else tj :The limit time of �, notation ltime(�), is the smallest element of R�0 [ f1glarger than or equal to all the tj, i.e., we de�ne ltime(�) �= supj(tj). We say �is admissible if ltime(�) = 1, and Zeno if it is an in�nite sequence but with a�nite limit time. The timed trace t-trace(�) associated with � is de�ned byt-trace(�) �= (((a1; t1)(a2; t2) � � �)d(vis(A) � R�0); ltime(�)):Thus, t-trace(�) records the visible actions of � paired with their times of oc-currence, as well as the limit time of the execution.A pair � is a timed trace of A if it is the timed trace of some �nite or admis-sible execution of A. Thus, we explicitly exclude the timed traces that originatefrom Zeno executions. We write t-traces(A) for the set of all timed traces of A,t-traces�(A) for the set of �nite timed traces, i.e., those that originate from �-nite executions, and t-traces1(A) for the admissible timed traces, i.e., those thatoriginate from admissible executions. These notions induce three preorders ontimed automata: A �t B �= t-traces(A) � t-traces(B), A �t� B �= t-traces�(A) �t-traces�(B), and A �t1 B �= t-traces1(A) � t-traces1(B). The kernels of thesepreorders are denoted by �t, �t� and �t1, respectively.A timed sequence over a given alphabet K is a (�nite or in�nite) sequence� over K � R�0 in which the time components are nondecreasing, i.e., t � t0 if(k; t) and (k0; t0) are consecutive elements in �. A timed sequence pair over K isa pair � = (�; t), where � is a timed sequence over K and t 2 R�0 [ f1g, suchthat t is greater or equal than all time components in �. We say that � is �niteif � is a �nite sequence and t <1.Clearly, all timed traces of a timed automaton A are timed sequence pairsover ext(A). In particular, all �nite timed traces are �nite timed sequence pairs.Suppose � and �0 are timed sequence pairs such that � is �nite. Let� = ((k1; t1)(k2; t2) � � � (kn; tn); t);�0 = ((k01; t01)(k02; t02) � � � ; t0):Then we de�ne � ; �0 to be the timed sequence pair((k1; t1)(k2; t2) � � � (kn; tn)(k01; t+ t01)(k02; t+ t02) � � � ; t+ t0):



20 N.A. Lynch and F.W. VaandragerIf � and �0 are timed sequence pairs then � is a pre�x of �0, notation � � �0, ifeither � = �0, or � is �nite and there exists a timed sequence pair �00 such that�0 = � ; �00.4.3. Timed Action TransducersIn this section we introduce the notion of a timed action transducer, de�ne whatare the timed traces of a timed action transducer, and show how timed actiontransducers de�ne operations on timed automata.4.3.1. De�nitionA timed action transducer T is an action transducer with acts(T ) � R+ and,for all colours c, acts(T; c) � R+. The sets of visible actions are de�ned byvis(T ) �= ext(T )� R+ and, for all c, vis(T; c) �= ext(T; c) � R+.We assume that T satis�es �ve axioms.T1 If s0 a�!� s and �(i) 2 R+, then a 2 R+.T2 If s0 d�!� s and i 2 active(T; s0), then �(i) 2 R+.T3 If s0 d�!� s then active(T; s0) = active(T; s).T4 If s0 d�!� s00 and s00 d0�!�0 s, then s0 d+d0�!�+�0 s.(Here addition on triggers is de�ned by pointwise extension; we identify thenoaction symbol 0 and the real-number 0.)Axiom T1 says that non-time-passage steps do not change any of the localtimes. Axiom T2 says that time-passage steps must cause an increase in thelocal times for all of the active holes; note that we permit di�erent amounts oftime to pass for the action transducer and the components. Axiom T3 statesthat time-passage steps do not change the set of active holes. Axiom T4 allowsrepeated time-passage steps to be combined into one step.In order to state the last axiom, we �rst need the de�nition of a \transducertrajectory". The notion of a transducer trajectory is analogous to that of atrajectory, and describes restrictions on the state changes that can occur duringtime-passage. A transducer trajectory for a step s0 d�!� s of T consists of:1. a function w : [0; d]! states(T ) with w(0) = s0 and w(d) = s, and2. for each hole i, a continuous, monotonic function tt i : [0; d]! [0; �(i)] withtti(0) = 0 and tti(d) = �(i), such thatw(t) t0�t�!�i:tti(t0)�tti(t) w(t0) for all t; t0 2 [0; d] with t < t0:A transducer trajectory assigns, to each time t in interval [0; d], a state w(t).As before, this assignment allows time-passage steps to span between any pairof states in the range of w. The functions tti can be viewed as time tables thattranslate a global increase in time to a local increase in time. Note that for eachinactive hole i, the time table function tti is constant 0, and for each active holei, tt i is strictly monotonic by axiom T2.Now we can state the �nal axiom for a timed action transducer.



Action Transducers and Timed Automata 21T5 Each step s0 d�!� s has a transducer trajectory.AxiomT5 says that any time-passage step can be \�lled in" with states for eachintervening time, in a \consistent" way.Note that, for each timed automatonA, trans(A) is a timed action transducer,and conversely, for each timed action transducer T , aut(T ) is a timed automaton.As in the untimed case, for any timed automaton A, aut(trans(A)) = A, and forany timed action transducer T with an empty set of holes, trans(aut(T )) = T .The de�nition of � -respecting in Section 2.4 applies to timed action trans-ducers, since they are a special case of action transducers. In this case, however,axiom T2 combines with Condition 3 of the � -respecting de�nition to yield thefollowing:Lemma 4.1. If T is a � -respecting timed action transducer, and s is a state ofT in which an action d 2 R+ is enabled, then there are only �nitely many holesactive in state s.4.3.2. Timed tracesLet 
 = s0a1�1s1a2�2s2 � � � be an execution fragment of timed action transducerT . For each index j, let tj be given byt0 = 0;tj+1 = if aj+1 2 R+ then tj + aj+1 else tj :Then we de�ne ltime(
) �= supj(tj). The notions of Zeno and admissible execu-tion fragments are de�ned for timed action transducers as for timed automata.The timed trace of 
, is de�ned to be the pairt-trace(
) �= (((a1; t1)(a2; t2) � � �)d(vis(T ) � R�0); ltime(
)):Thus, t-trace(
) records the visible events of 
 paired with their times of occur-rence, as well as the limit time of the sequence. Also, for each index j and eachhole i, we de�ne the local time of occurrence tj;i by:t0;i = 0;tj+1;i = if �j+1(i) 2 R+ then tj;i + �j+1(i) else tj;i:For each hole i, we let hltime(i; 
) �= supj(tj;i); this is the largest local time forhole i.The timed trace for hole i of 
 is de�ned to be the pairt-trace(
; i) �= (((�1(i); t1;i)(�2(i); t2;i) � �)d(vis(T; col(T; i))� R�0); hltime(i; 
)).4.3.3. Zeno-respecting propertyThe following de�nition is needed for the substitutivity results. A timed actiontransducer T is Zeno-respecting if for each admissible execution
 = s0a1�1s1a2�2s2 � � �of T , the following condition holds: for each hole i, either hltime(i; 
) = 1, orthere is an index j such that i =2 active(T; sk) for all k � j.Thus, if a Zeno-respecting timed action transducer advances time to in�nity



22 N.A. Lynch and F.W. Vaandragerthen, for each hole, either the local time also advances to in�nity, or the holebecomes permanently inactive from some point on.4.3.4. Combining timed action transducers and timed automataLet T be a timed action transducer. A timed automaton assignment for T is anautomaton assignment for T that maps each colour to a timed automaton.Lemma 4.2. Suppose T is a timed action transducer and � is a timed automa-ton assignment for T . Then T (�) is a timed automaton.Proof We show that T (�) satis�es axioms S1-S2. Let Z �= �i:�(col(T; i)).For axiom S1, assume (s0; z0) d!T (�) (s00; z00) and (s00; z00) d0!T (�) (s; z). Wemust prove (s0; z0) d+d0! T (�) (s; z). By the assumption and the de�nition of com-position, there exist triggers � and �0 such that1. s0 d�!� T s002. 8i : [if �(i) = 0 then z0(i) = z00(i) else z0(i) �(i)! Z(i) z00(i)]3. s00 d0�!�0 T s4. 8i : [if �0(i) = 0 then z00(i) = z(i) else z00(i) �0(i)! Z(i) z(i)]Now it is routine to check that1. s0 d+d0�!�+�0T s2. active(T; s0) = active(T; s00)3. i 2 active(T; s0) implies z0(i) �(i)+�0(i)! Z(i) z(i)4. i 62 active(T; s0) implies z0(i) = z(i)Together this implies the validity of axiom S1.For axiom S2, assume (s0; z0) d!T (�) (s; z). We must prove that there exists atransducer trajectory for (s0; z0) d! (s; z). By the assumption and the de�nitionof composition, there exists a trigger � such that1. s0 d�!� T s2. 8i : [if �(i) = 0 then z0(i) = z(i) else z0(i) �(i)!Z(i) z(i)]Choose a transducer trajectory w, tt i (i 2 holes(T )) for s0 d�!� s. Next, choose foreach i 2 active(T; s0) a trajectory wi for z0(i) �(i)!Z(i) z(i). For i 62 active(T; s0),let wi be the function with domain [0; 0] given by wi(0) = z0(i). Let w0 be thefunction with domain [0; d] given by w0(t) �= (w(t); zt), where zt = �i:wi(tti(t)).We claim that w0 is a transducer trajectory for (s0; z0) d! (s; z). For this, �rstobserve that:w0(0) = (w(0); z0)= (s0; �i:wi(tt i(0))



Action Transducers and Timed Automata 23= (s0; �i:wi(0))= (s; �i:z0(i))= (s0; z0):By similar reasoning w0(d) = (s; z). Now assume t; t0 2 [0; d] with t < t0. It isroutine to check1. w(t) t0�t�!�i:tti(t0)�tti(t) w(t0)2. i 62 active(T; s0) implies zt(i) = zt0(i)3. i 2 active(T; s0) implies zt(i) tti(t0)�tti(t)! zt0(i)Together this implies w0(t) t0�t! T (�) w0(t0). This completes the proof that w0 is atransducer trajectory, and thereby the proof of the lemma.The next lemma is analogous to Lemma 2.1 in the untimed case, and playsan important role in the substitutivity result for timed action transducers in thenext section.Lemma 4.3. Suppose T is a Zeno-respecting timed action transducer, � is atimed automaton assignment for T , and � = (s0; z0)a1(s1; z1)a2(s2; z2) � � � is anon-Zeno execution of T (�) with trigger sequence �1�2 � � �. Let Z(i) = �(col(T; i))for each hole i.Then 
 = s0a1�1s1a2�2s2 � � � is a non-Zeno execution of T , t-trace(
) =t-trace(�), and for each hole i, t-trace(
; i) 2 t-traces(Z (i)).Proof By Lemma 2.1, we know that 
 is an execution of T . Because � is non-Zeno 
 is non-Zeno as well, and t-trace(
) = t-trace(�). Fix a hole i. De�ne �0to be the sequence obtained by taking the sequence z0(i)�1(i)z1(i)�2(i)z2(i) � � �and removing all subsequences �j(i)zj (i) with �j(i) = 0. Then, by de�nition ofT (�), �0 is an execution of Z(i). Because T is Zeno-respecting, �0 is non-Zeno.Let t0;i = 0;tj+1;i = if �j+1(i) 2 R+ then tj;i + �j+1(i) else tj;i:Then t-trace(�0) = (((�1(i); t0;i)(�2(i); t1;i) � � �)d(vis(Z (i)) � R�0); supj tj;i)= t-trace(
; i);which implies t-trace(
; i) 2 t-traces(Z (i)).4.4. SubstitutivityWe are now ready to state and prove our substitutivity results for timed actiontransducers. Our results require the hypothesis that the action transducers areZeno-respecting. Without this hypothesis, it might happen that an admissibleexecution of a composition includes a Zeno execution of some argument. Sincetimed trace inclusion does not imply inclusion of the sets of Zeno traces, thismeans that �t need not be substitutive for such action transducers.



24 N.A. Lynch and F.W. VaandragerTheorem 4.4. The relations �t� and �t on timed automata are substitutive forall Zeno- and � -respecting timed action transducers.Proof Similar to the proof of Theorem 2.2. Let T be a Zeno- and � -respectingtimed action transducer. We show that �t is substitutive for T . The proof that�t� is substitutive for T is similar.Suppose �; �0 are timed automaton assignments for T such that, for all c,�(c) �t � 0(c), and suppose that � 2 t-traces(T (�)). We have to prove that� 2 t-traces(T (�0)). For this, let Z �= �i:�(col(T; i)) and Z0 �= �i:�0(col(T; i)).Then Z(i) �t Z 0(i) for each hole i.Since � 2 t-traces(T (�)), T (�) has a non-Zeno execution� = (s0; z0)a1(s1; z1)a2(s2; z2) � � �with t-trace(�) = �. Let � = �1�2 � � � be a trigger sequence for �, and let
 = s0a1�1s1a2�2s2 � � �By Lemma 4.3, 
 is a non-Zeno execution of T , t-trace(
) = �, and for each holei, �i �= t-trace(
; i) 2 t-traces(Z (i)):Since Z(i) �t Z 0(i), we obtain �i 2 t-traces(Z 0(i)), for all i. Therefore, Z0(i)has, for each i, a non-Zeno execution �i with t-trace(�i) = �i. Let 
0 be thesequence obtained from 
 by removing all clearing steps. Then 
0 is a non-Zeno execution of T and t-trace(
0 ) = �. As in the untimed case, our job is to\paste" together 
0 and the �i to obtain an execution of T (� 0). We construct anautomaton A that describes several allowable ways to do this pasting and thatgenerates executions of T (�0) with the required properties. The set of states ofA consists of all valuations of the following state variables in their domains:� a variable frag ranging over the set of execution fragments of T . This variabledenotes the part of 
0 that still has to be dealt with. The initial value of fragis 
0.� for each hole i, a variable fragi ranging over execution fragments of Z 0(i).This variable denotes the part of �i's that still has to be pasted togetherwith (the remainder of) 
0. The initial value of fragi is �i.� a variable exec ranging over �nite executions of T (�0). The limit of the valuesof exec will be the execution of T (� 0) in which we are interested. The initialvalue of exec is the trivial execution consisting of the state composed fromthe �rst states of 
0 and the �rst states of the �i.� a variable delay ranging over R�0.� a vector w; tti(i 2 holes(T )) of variables ranging over transducer trajectoriesof T .� for each hole i, a variable wi ranging over trajectories of Z 0(i).Automaton A has actions CLEARING , TIME and BASIC , which correspondto the three di�erent types of actions of T (� 0): clearing steps, time-passage steps,and the remaining \basic" steps. The transitions of A are de�ned using precon-dition/e�ect style in Figure 3. The intuition is that, while building an executionof T (� 0), automaton A peels o� initial steps of 
0 and the �i. If the remainder of
0 starts with a non-time-passage step a, and, for each hole i that participatesin this step, the remainder of �i starts with the action required for hole i, then



Action Transducers and Timed Automata 25BASICPrecondition^ frag begins with s0 a�!� s^ a 62 R+^ for all holes i that participate in the �rst step of frag :fragi begins with an �(i) stepE�ectremove the �rst step from frag ;for each hole i that participates in the �rst step of frag doremove the �rst step from fragi;append to exec an a followed by the state of T (�0) composedfrom the �rst states of frag and all the fragiCLEARINGPrecondition^ frag contains at least one step^ hole i0 participates in the �rst step of frag^ frag i0 begins with a � stepE�ectremove the �rst step from fragi0 ;append to exec a � followed by the state of T (�0) composedfrom the �rst states of frag and all the fragiTIMEPrecondition^ frag begins with s0 d�!� s^ for all holes i that are active is s0: fragi begins with s0i di! siE�ectw; tti(i 2 holes(T)) := any transducer trajectory for s0 d�!� s;for each hole i that is active in s0 dowi := any trajectory for s0i di! si ;delay := min(fdg [ ftt�1i (di) j i is active in s0 and di � �(i)g);if delay = d then remove �rst step from fragelse replace �rst step s0 d�!� s of frag by s00 d0�!�0 s,where s00 = w(delay), d0 = d� delay and �0 = � � �i:tti(delay);for each hole i that is active in s0 doif tti(delay) = di then remove �rst step from frag ielse replace �rst step s0i di! si of frag i by s00i d0i! si ,where s00i = wi(tti(delay)) and d0i = di � tti(delay);append to exec the real-value of delay followed by the state of T (�0) composedfrom the �rst states of frag and all the fragiFig. 3. Algorithm for pasting together 
0 and the �i.a BASIC step is taken by A. If, for some hole i, the remainder of �i starts witha � step then A can do a corresponding CLEARING action, provided that iparticipates in the next step of 
0. The most complicated part of the de�nitionof A is the description of the TIME step. Here the intuition is that if the remain-der of 
0 starts with a time passage step and, for each hole i that participatesin this step, the remainder of �i also starts with a time passage step, automa-ton A nondeterministically chooses trajectories corresponding to all these steps,and then determines the maximal progress it can make along these trajectorieswithout passing beyond the limit time of any of them. More speci�cally, supposethat the remainder of 
0 begins with a step s0 d�!� s with transducer trajectory



26 N.A. Lynch and F.W. Vaandragerw; tti(i 2 holes(T )). Suppose further that for all holes i that are active is s0, theremainder of �i begins with s0i di! si. Then the maximal global increase in timeis d. For each active hole i the maximal local increase of time is the minimum ofdi and �(i). In order to translate this to a global increase in time, observe thatthe inverse mapping of tt i is de�ned, since this function is both continuous andstrictly monotonic. Therefore the requirement that the local increase in time forhole i is at most min(di; �(i)) is equivalent to the requirement that the globalincrease in time is at most min(tt�1i (di); d).We leave it to the reader to check that the de�nition of A is type correct, inthe sense that each variable is only assigned values in its domain. Note that inthe e�ect part of the TIME action the argument of the min operator is alwaysa nonempty, �nite set of positive real numbers: by Lemma 4.1, the number ofholes that participate in a time passage step of T is �nite.Pick an arbitrary maximal execution � = u0b1u1b2u2 � � � of A. Since the threeactions of A only append values to variable exec, we can de�ne �0 as the limitof the values of exec along �. By construction, �0 is an execution of T (�0). Weclaim that �0 is non-Zeno and t-trace(�0) = �.In order to see this, we �rst establish that A satis�es the following invariantproperties. Here we write u:v for the value of state variable v of A in state u.1. For all reachable states u, t-trace(u:exec) ; t-trace(u:frag) = �.2. For all reachable states u and holes i, t-trace(u:fragi) = t-trace(u:frag; i).Proof By simple inductive arguments.Using Invariants 1 and 2, we next prove three claims.Claim 1. Suppose that u is a reachable state of A and u:frag is not a singlestate execution fragment. Then u has an outgoing step.Proof Let s0 a�!� s be the �rst step of u:frag. If, for some hole i that participatesin this �rst step, u:fragi begins with a � -step, then a CLEARING action isenabled in u. So suppose that for all holes i that participate in the �rst stepu:fragi does not begin with a � -step. We consider two cases.1. Suppose a 62 R+. It follows by Invariant 2 that, for each hole i that partici-pates in the �rst step of u:frag, fragi starts with an �(i) step. But this meansthat a BASIC action is enabled,2. Suppose a 2 R+. If hole i participates in the �rst step, then it follows by axiomT2 that �(i) 2 R+. Since u:fragi does not begin with a � -step, Invariant 2implies that it begins with a time passage step. Because this is the case foreach hole i that participates in the �rst step, a time passage action is enabledin state u.Claim 2. Execution � has no in�nite su�x that consists of CLEARING stepsonly.Proof Analogous to the corresponding proof in the untimed case.Claim 3. If � contains an in�nite su�x that consists of CLEARING and TIMEsteps only, then ltime(�0) =1.



Action Transducers and Timed Automata 27Proof The proof is by contradiction. Suppose � has an in�nite su�x withCLEARING and TIME steps only, but ltime(�0) is �nite.Suppose u0 TIME! u is a step of A, d is the label of the �rst step of u0:fragand, for each i that participates in the �rst step of u0:frag, di is the label of the�rst step of u0:fragi. Then we say that u0 TIME! u is full if u:delay = d, and i-fullfor hole i if u:tti(u:delay) = di. By de�nition, each TIME step is either full ori-full for at least one hole i.If � contains in�nitely many full TIME steps then ltime(�0) = 1, because
0 is non-Zeno. So we may assume that � contains only �nitely many full TIMEsteps. This means that � has an in�nite su�x �0 that consists of CLEARING andnon-fullTIME steps only. By Claim2, �0 contains in�nitely many non-full TIMEsteps. If in A there is a non-full TIME step from u0 to u, s0 is the �rst state ofu0:frag and s is the �rst state of u:frag, then active(T; s0) = active(T; s) by axiomT3. Also, if in A there is a CLEARING step from u0 to u, then the �rst stateof u0:frag equals the �rst state of u:frag. Therefore, there is a �xed collection ofholes that participate in the non-full TIME steps of �0. By Lemma 4.1 we know,moreover, that this collection is �nite. So, the execution fragment �0 containsin�nitely many i-full TIME steps for some hole i. This means that �i is in�nite;then since it is non-Zeno �i is admissible.For u0 TIME! u a step of A, u:tti(u:delay) gives the amount of time that haspassed for hole i during that step. Because �i is admissible, the sum of thetime-passage actions for hole i along � increases without bound:limk!1 Xfjj1�j�k; bj=TIMEguj:tti(uj:delay) =1:But this contradicts the fact that �0 contains no full TIME steps: if ul is the �rststate of �0 and ul:frag begins with a step s0 d�!� s, then for all k > l:Xfjjl<j�k; bj=TIMEguj:tt i(uj :delay) < �(i):We return to the proof that �0 is non-Zeno and t-trace(�0) = �. Again we considercases.1. Suppose � is �nite, with �nal state un. Then, by Claim 1, un:frag consists ofa single state execution fragment. In combination with Invariant 1, this givest-trace(un :exec) = �. But �0 is de�ned as the limit of un:exec, so �0 = un:exec.Hence �0 is �nite (and hence non-Zeno) and t-trace(�0) = �.2. Suppose � is in�nite and contains in�nitely many BASIC actions. Since fragis initially 
0, and each BASIC step removes a step from 
0, it follows that
0 is in�nite. But since 
0 is non-Zeno, it is in fact admissible. Because thereare in�nitely many BASIC steps in �, it follows by construction of A that thelimit as j !1 of ltime(uj:exec) is 1, and that hence �0 is admissible (andhence non-Zeno). By Invariant 1, t-trace(uj :exec) is a pre�x of � for each j.Since the limit �0 of the executions uj is admissible, t-trace(�0) = �.3. Suppose � is in�nite and contains only �nitely many BASIC actions. Then �has an in�nite su�x with CLEARING and TIME actions only. Combination



28 N.A. Lynch and F.W. Vaandragerof this fact with Claim 3 gives that �0 is admissible (and hence non-Zeno).Now we use the same argument as in the previous case. By Invariant 1,t-trace(uj :exec) is a pre�x of � for each j. Since the limit �0 of the executionsuj is admissible, t-trace(�0) = �.The fact that �0 is non-Zeno and t-trace(�0) = � implies � 2 t-traces(T (� 0)), asrequired.5. A Timed Process AlgebraIn this section, we give examples of operations that can be expressed as timedaction transducers. Together, these operations form a language that we will callLt. Paraphrasing Alur and Henzinger [AH94], we can summarise the main ideabehind Lt as:real-time process algebra = untimed process algebra + timers.After the de�nition of the operators of Lt in Section 5.1, we will discuss theexpressivity of the language in Section 5.2.5.1. Operators5.1.1. The patient constructionAn important collection of timed action transducers can be obtained from un-timed action transducers. In this subsection we present a simple but importantconstruction, inspired by Nicollin and Sifakis [NS92], that transforms an untimedaction transducer into a timed one, by simply inserting arbitrary time-passagesteps. Suppose T is an (untimed) action transducer with R+ \ acts(T ) = ; andR+ \ acts(T; c) = ;, for all c. Then patient(T ) is the timed action transducer T 0that has exactly the same components as T , except:� acts(T 0) = acts(T ) [ R+,� for all c, acts(T 0; c) = acts(T; c) [ R+,� steps(T 0) = steps(T ) [fs d�!� s j s 2 states(T ); d 2 R+; � = �i:if i 2 active(T; s) then d else 0g.It is straightforward to check that patient(T ) is indeed a timed action trans-ducer. However, patient(T ) need not be Zeno-respecting. For example, consideran action transducer T that activates and deactivates the same hole i in�nitelymany times in one execution. The action transducer patient(T ) can interspersethe activations of i time-passage steps, in such a way that all the time-passageoccurs when i is inactive. This problematic behaviour is not possible with theaction transducers of Section 3, since these activate and deactivate each holeat most once during an execution. In general, patient(T ) need also not be � -respecting even if T is � -respecting. For instance, the variant of the externalchoice operation 2 with an in�nite index set is � -respecting, but its patienttimed version is not. The problem with in�nitary external choice is that in theinitial state in�nitely many holes are active. Since in a timed action transducerall active holes participate in time-passage steps, this means that the patient



Action Transducers and Timed Automata 29version of the action transducer does not satisfy the third condition in the de�-nition of � -respecting, which requires that in each step only �nitely many holesparticipate. The following simple lemma characterises the situations in whichthe patient operation preserves the property of being � -respecting, and returnsa timed action transducer that is Zeno-respecting.Lemma 5.1. Suppose T is an action transducer. Then1. patient(T ) is Zeno-respecting i� T can activate and deactivate each hole atmost �nitely many times in each execution.2. patient(T ) is � -respecting i� T is � -respecting and in each state of T only�nitely many holes are active.The characterisation in the �rst part of Lemma 5.1 looks a little less thansatisfying because it is expressed in terms of executions rather than the basicaction transducer de�nition. However, this seems unavoidable.All the patient timed versions of the operators in the language Lu are Zeno-and � -respecting, by Lemma 5.1. Thus, by Theorem 4.4, the timed trace pre-orders �t� and �t are substitutive for the patient variants of all these operations.The timed action transducers obtained by the patient construction turn out tobe quite useful, so in the subsequent sections we will adopt the convention thatT means patient(T ) for any of the action transducers of Lu.5.1.2. ClocksTimed action transducers that are obtained via the patient construction do notimpose time constraints on their arguments. One way to impose such constraintsis by using explicit clock variables, as advocated in [AD94, AH94]. In this sub-section, we show how clock variables can be expressed using timed action trans-ducers. The unary timed action transducer CLOCKx models the e�ect of addinga clock variable x to a system.We consider a set X of clock variables, ranged over by x; y; : : :. The set ofclock constraints � is de�ned inductively by (here t ranges over R�0):� ::= x<t j x=t j � ^ �0 j :�:Note that constraints such as true, 5<4, x�0, and x2[2; 5) can be de�ned asabbreviations. A time assignment � assigns a nonnegative real value �(x) to eachclock variable x. A time assignment � satis�es a clock constraint �, denoted by� j= �, i� � evaluates to true using the values given by �. We say that � is atautology i� for all time assignments �, � j= �. We say that � is satis�able i� thereexists a time assignment � such that � j= �. We denote by �[t=x] the formulaobtained from � by replacing all occurrences of x by t.The state set of action transducer CLOCKx is R�0, with 0 as the initial state.There is a single hole called 1. Time proceeds at the same rate for the actiontransducer and its argument. The argument automaton can reset the value ofthe clock variable x at any moment by performing an action containing thelabel reset(x). In addition, the argument automaton can use clock constraints aslabels to test the value of the clock variable. In order to de�ne the step relationformally it is convenient to de�ne some auxiliary functions. Let x be a clockvariable, t 2 R�0 and a a set of labels. Then a[t=x] is the label set obtained froma by replacing each clock constraint � in a by �[t=x]. We say a[t=x] is satis�able



30 N.A. Lynch and F.W. Vaandragerif all time constraints contained in it are satis�able. We also de�neV(x; t; a) �= if reset(x) 2 a then 0 else t:Now the steps of CLOCKx can be de�ned by:t d�!f(1;d)g t+ d if d > 0;t b�!f(1;a)g V(x; t; a) if a 62 R+ and b = a[t=x] satis�able:As an example, let the actions a, b, c be given by a �= fsw o� ; x2(9; 10]g,b �= fsw o� ; 9:52(9; 10]g and c �= fsw o� ; 12(9; 10]g Then CLOCKx has a step9:5 b�!f(1;a)g 9:5;but not a step1 c�!f(1;a)g 1;because in the second case the clock constraint x2(9; 10] is violated. CLOCKx istrivially Zeno- and � -respecting. Thus relations �t� and �t are substitutive forthis action transducer.Our de�nition of clocks directly follows the one proposed in [AD94, AH94].In fact, it is possible to encode each (�nite state) clock-constrained system inthe sense of [AH94] within our language: by Theorem 3.1 we can encode theunderlying �nite automaton (with the clock constraints viewed as part of thetransition labels), and if we then apply a CLOCK operator for each of the clockvariables that is used, the resulting expression will generate the same timedtraces as the clock constrained system that it encodes. We suppose that, forsome applications, it will be useful to have a more general notion of clock. Onecan, for instance, extend the set of clock constraints with formulas like x+ y<1,or allow for assignments of the form x:=y + 4, or introduce labels that ask theclock to emit its current time. The important point here is that explicit clocksconstitute an important and useful construct in real-time process algebra. Ourspeci�c choice of clock operations is just an example, subject to modi�cation.5.1.3. BoundsNone of the timed action transducers introduced so far constrain the passage oftime; in particular, all action transducers we have de�ned are willing to advancetime by any amount d. However, in order to express that a certain event isguaranteed to occur before or at a given time, for instance in the speci�cation ofa timeout, we need an operator which (under certain conditions) can block time.In this subsection we give an example of such an operator.For any clock variable x, the unary timed action transducer BOUNDbx ensuresthat the value of x does not advance beyond a given upper bound in R�0[f1g,initially b. The state set of this action transducer is R�0 � (R�0 [ f1g), with(0; b) as the initial state. The �rst state component gives the current value of x,and the second component gives a bound on the value of x.7 There is a singlehole called 1. The value of x can be reset at any moment by an action with label7 For simplicity, we do not consider strict bounds. Such bounds can be imposed by parame-terising the action transducer with an additional boolean that tells whether the time bound



Action Transducers and Timed Automata 31reset(x); similarly the bound can be modi�ed via an action with label x:�u, foru 2 R�0[f1g. For x a clock variable, u 2 R�0[f1g and a a �nite set of labels,B(x; u; a) �= if fu0 j x:�u0 2 ag = ; then u else minfu0 j x:�u0 2 ag:Now the steps of BOUNDbx can be de�ned by:(t; u) d�!f(1;d)g (t+ d; u) if 0 < d � u� t;(t; u) a�!f(1;a)g (V(x; t; a);B(x; u; a)) if a 62 R+:Thus there is, for instance, a step(1; 10) 8:5! (9:5; 10);but not a step(1; 10) 9:5! (10:5; 10);because that would violate the time bound. Clearly, BOUNDbx is Zeno- and � -respecting. Thus relations �t� and �t are substitutive for this action transducer.In the literature many other proposals can be found on how to constrain thepassage of time: [AD94] uses a B�uchi style acceptance criterion for this purpose,[HNSY92] advocates the use of program invariants, [AH94] proposes the relatednotion of delay predicates, [MP93] uses so-called important events, and [BPV94]uses stability with respect to linear inequalities. It is not clear to us how theseapproaches can be transferred to a process algebraic setting, where automataare built up step by step and not given a priori. Our approach to use BOUNDoperators can be viewed as a special case of the invariant approach of [HNSY92],with a �xed invariant stating that the values of the clock variables never exceedthe values of the corresponding bound variables.5.1.4. TimersIn applications, we will mostly want to use the clock and bound action trans-ducers in combination. Furthermore, we typically want to hide the assignmentlabels outside the scope of these action transducers, where they are no longerneeded. Finally, it is convenient to do a \garbage collection" and remove vacuousconstraints like 4<7 that are generated by clock action transducers. For thesereasons, we de�ne the following derived operation TIMERux, for any clock variablex and initial bound u 2 R�0 [ f1g:TIMERux(A) �= (CLOCKx(BOUNDux(A)))n(T [ Lx);where T is the set of all tautologies and Lx is the set of all assignments to x.Example. We de�ne a timed version of the automatic switch-o� mechanism wedescribed in Section 3. The system allows a lamp to be switched on at any time;then between 9 and 10 time units after the last time the lamp has been switchedon, it will be switched o�.is strict or not. Alternatively, one can follow a suggestion of Abadi and Lamport [AL92], andintroduce, as additional elements of the time domain, the set of all `in�nitesimally shifted' realnumbers r�, where t � r� i� t < r, for any reals t and r.



32 N.A. Lynch and F.W. VaandragerSWITCH 0 �= TIMER1x ((fsw on ; reset(x); x:�10g ;(fsw on ; reset(x)g � fsw o� ; x2[9; 10]; x:�1g))!):Example. To illustrate the use of multiple, nested clocks we specify the processof having breakfast. Breakfast should be both started and �nished after 6 amand before 9 am. The whole breakfast should take at least 15 minutes, and,since fresh bread is only available at 7.50 am, the end of the breakfast should besituated after 8 am.BREAKFAST �= TIMER834x (TIMER1y (fstart; x�6; x:�9; reset(y)g ;f�nish ; x�8 ^ y�14 ; x:�1g ; STOP)):5.1.5. Changing speedThus far, in all timed action transducers that we have considered, time advanceswith the same rate for the action transducer and all the (active) holes. How-ever, the framework of timed action transducers allows us to de�ne, quite easily,operators that change the speed of processes.For all l; u 2 R+ with l � r, we de�ne a unary timed action transducerRATE[l;u]. The action transducer has a single state s, which is also the initialstate. Both the action transducer and its argument have the same set of actions,and in fact the action transducer allows the argument to perform any non time-passage action a at any time. However, the rate at which the local time changesrelative to the global time lies in the interval [l; u].s a�!f(1;a)g s if a 62 R+;s d�!f(1;d0)g s if d0d 2 [l; u]:It is routine to verify that RATE[l;u] is a timed action transducer. RATE actiontransducers can be used both to speed up clocks and to make them drift. Forr > 1, RATE[r;r] speeds its argument up by a factor r. For �� 1, RATE[1��;1+�]introduces a tolerance of � on all timing of its argument. We think that RATEaction transducers can be useful in the process algebraic description of proto-cols that involve drifting clocks, such as the audio control protocol analyzed in[BPV94].An interesting property of the RATE action transducers is that in general theydo not preserve Wang's [Yi90] axiom of time determinism. This axiom, which isvalid for all timed process algebras that we have encountered in the literature,states that the resulting state after a time step is uniquely determined by theamount of time that has passed:s d! s0 ^ s d! s00 ) s0 = s00:



Action Transducers and Timed Automata 335.2. Expressivity of LtWe de�ne Lt as the language consisting of (1) the timed action transducersobtained by applying the patient operation to the untimed operations of thelanguage Lu, (2) the CLOCK, BOUND, TIMER and RATE operators.The operations from Lt are su�ciently expressive to de�ne | as derivedoperators | all the constructs that we have encountered in the literature ontimed process algebras, except those that involve binding mechanisms (like theintegration construct of [BB91]) and those that are not compatible with timedtrace inclusion (like the + from CCS). In this section, we give some of thesederived operators. Also, we show how one can encode within Lt the �nite statefragment of the timed-bounded automata model of [MMT91].5.2.1. Wait constructsUsing a single timer, we can program the process WAIT d of Timed CSP [RR88,DS89], which waits time d and then terminates successfully.WAIT d �= TIMERdx(x=d):More generally, we can specify a process that terminates successfully after waitingsome nondeterministically chosen time from the closed interval [l; u].WAIT [l; u] �= TIMERux(x�l):5.2.2. UrgencyUsing a timer, we can force any action a to be performed immediately: we de�nethe urgent action a bya �= TIMER0x(a);where x is a clock variable to which a does not refer. With urgent actions itbecomes trivial to de�ne the urgent pre�xing operators of TCCS [MT90] andATP [NS94]: a:A �= a ; A. Urgent actions are also useful for de�ning the timeoutconstruct of Timed CSP. For a given delay d this operator is de�ned, as in [DS89],by A d� B �= (A 2 (WAIT d ; abort ; B))nfabortg;where abort is a fresh label, not in the label set of A and B. If, at time d, Ahas not performed any visible action, an interrupt occurs and automaton B isstarted. Note the use of the auxiliary label abort to force the choice between Aand B at time d.Example. We consider a simple resource-granting system described in [LA92].The system consists of two components, a watch and a manager. The watch ticksat an approximately-predictable rate, and the manager counts ticks in order todecide when to grant a resource. The watch is modeled as an automatonWATCHthat does tick actions, such that the times between successive tick actions, andthe time of the �rst tick action are in the interval [c1; c2]:WATCH �= (WAIT [c1; c2] ; tick )!:



34 N.A. Lynch and F.W. VaandragerAutomatonMANAGER models the manager: it waits a particular number k > 0of tick actions before it does a grant action, counting from the beginning or fromthe last preceding grant . We assume that a grant action occurs within l timeunits after it has been enabled, for some l < c1.MANAGER �= (MANAGERk)!MANAGERi �= tick ;MANAGERi�1 for 0 < i � kMANAGER0 �= WAIT [0; l] ; grantThe full system can now be described as the parallel composition of automataWATCH and MANAGER, with the tick action hidden:SYSTEM �= (WATCHkMANAGER)nftickg:Essentially, the result about the resource-granting system proved in [LA92] isthat SYSTEM �t (WAIT [k � c1 � l; k � c2 + l] ; grant)!:Example. Another example, taken from [BB91], is a watch that is perfect, exceptfor some 
uctuations of the ticks:WATCH 0 �= WAIT 0:5 ;((WAIT [0:5� �; 0:5 + �] ; tick ; STOP) ^ WAIT 1)!:5.2.3. Execution delayThe execution delay operator of ATP [NSY93, NS94] is given by:dAed(B) �= (TIMERdx((A ^ (abort ; B)) k C))nfabort ; cancelg;whereC �= (cancel 2 fabort; x=dg) ; x:�1 ; STOP:dAed(B) behaves as A until time d; at time d, A is interrupted and B is started.However, if A performs an action with the label cancel , then the interrupt iscancelled and A can continue to run forever. The process C takes care that onceA has done a cancel , it can no longer be interrupted by B. Also C removesdeadline d after a cancel or abort action. We assume that A and B do not haveabort in their label set, nor any label referring to timer x. The labels canceland abort are hidden so that they cannot synchronise with any action of theenvironment. A minor di�erence between our execution delay operator and theone from ATP is that ours allows machine A to perform visible actions at timed.5.2.4. MMT-automataIt is possible to encode within Lt each �nite state timed-bounded automaton in thesense of [MMT91]. We will refer to time-bounded automata as MMT-automata,derived from the names of the authors of [MMT91]. The MMT-automata modelis an extension with real-time of the I/O automata model of [LT87]. It has beenused extensively in [LA92, SALL93] for veri�cation purposes.



Action Transducers and Timed Automata 35An MMT-automaton B consists of8:� an (untimed) automaton A,� a partitioning of acts(A) into three sets of input, output and internal actions,respectively; it is required that input actions are enabled in each state, i.e.,for each state s0 and for each input action a there exists a state s such thats0 a!A s,� a partition fC1; : : : ; Cng of the locally controlled (output and internal) actionsinto equivalence classes,� for each class Ci, a lower time bound bl(Ci) 2 R�0 and an upper time boundbu(Ci) 2 R+ [ f1g, such that bl(Ci) � bu(Ci).Intuitively, in a real-time execution of B we just take steps fromA, but the timesat which these steps may occur are constrained by the bound maps bl and bu.Suppose that during execution a class Ci becomes enabled at time t. Then bland bu specify that if Ci stays enabled, an action from Ci must be executed inthe time interval [t+ bl(Ci); t+ bu(Ci)]. If Ci becomes disabled, then the timingconstraints on Ci are removed.Without loss of generality, we may assume that A has only a single startstate: if there are n > 1 start states then the encoding of A can be de�ned as thedisjoint union of the encodings of n copies of A in which the set of start statesis restricted to a singleton. In our encoding of A, we assume for each class Ci acorresponding clock variable xi.As an intermediate step, we de�ne an auxiliary automaton A+, which isidentical to A except that the labels of the transitions have been enriched withextra information: the set of labels of A+ consists of the input and output actionsof A, together with the set of clock constraints and assignments that refer tox1; : : : ; xn. For each step s0 a! s of A, automaton A+ contains a correspondingstep s0 b[f�g[S! s;where b is empty if a is an internal action and equal to fag otherwise, � is a clockconstraint that is equal to true if a is an input action and equal to xj � bl(Cj)if a is a locally controlled action that belongs to class Cj, and S is a label setconsisting of:� a label reset(xj) if a is a locally controlled action in Cj,� labels reset(xj) and xj :�bu(Cj) for those classes Cj that are not enabled ins0 but are enabled in s,� a label xj:�1 for those classes Cj that are enabled in s0 but not in s.Under the assumption that A (and hence A+) is �nite there exists, by Theo-rem 3.1, an Lu-expression expr(A+) denoting A+ up to tree equivalence. Usingthis auxiliary expression, we de�ne the Lu-expression expr (B) byexpr (B) �= TIMERu1x1 (� � �TIMERunxn ((expr (A+))) � � �);8 Here we follow the de�nition from [LA92], which is slightly more restrictive than the originalde�nitionof [MMT91] because it does not allow for strict bounds. This restriction is not crucial,but only convenient.



36 N.A. Lynch and F.W. Vaandragerwhere ui equals bu(Ci) if Ci is enabled in the start state, and1 otherwise. With-out proof, we claim that expr(B) generates exactly the same timed behavioursas the MMT-automaton B according to the de�nition of [MMT91].5.3. CounterexamplesAlthough the converse of Theorem 4.4 does not hold, our result appears to bequite sharp: for many examples of timed action transducers that are not Zeno-and � -respecting, the timed trace preorders are indeed not substitutive.The timed trace preorders �t� and �t are for instance not substitutive for theoperation of in�nitary external choice. It is easy to see that WAIT 2 �t� WAIT1 ;WAIT 1: both processes wait time 2 and then terminate successfully. However,for in�nite I,2i2I (WAIT 2) 6�t� 2i2I (WAIT 1 ;WAIT 1)because, unlike the �rst process, the second process will never manage to do asuccessful termination action at time 2 since it has to do an in�nite number of� actions at time 1.Another example is the choice operator + that plays a dominant role in manyreal-time process calculi (TCCS [MT90], the timed extension of CCS proposed in[Yi90], ATP [NS94], and ACP� [BB91]). This operator is just the patient versionof the choice operator from CCS, which has three states s; s1; s2, with s startstate, and steps (for i 2 f1; 2g, and all actions a and b of the �rst and secondargument, respectively):s a�!f(i;a)g si si a�!f(i;a)g siRelation �t� is not substitutive for the patient version of + because, for instance,WAIT 2 +WAIT 1:5 6�t� (WAIT 1 ;WAIT 1) +WAIT 1:5:The �rst process terminates at time 1:5, whereas the second process terminatesat time 2.The loss of substitutivity may be viewed as a problem for a process algebrawith CCS choice based on trace equivalence (it is not a problem if certain otherequivalence are used, such as observational congruence [MT92]). Via Lemma 5.1we have identi�ed a general class of operations for which trace equivalence isa congruence and with patient versions for which timed trace equivalence is acongruence. Even though we advocate in this paper the use of timed trace equiv-alence, we think it will be quite interesting to extend Van Glabbeek's [Gla93]lattice of process equivalences with a real-time dimension, and to study the im-pact of the patient construction on congruence properties for other equivalencesas well.5.4. RemarksSome untimed operators display undesired behaviour when transformed intotimed operators via the patient construction. We give an example. In a timedprocess algebra, one typically wants to have the identityWAIT 1 ;WAIT 1 = WAIT 2:



Action Transducers and Timed Automata 37In order for this equation to be valid it is essential that in the action transducerfor the untimed sequential composition operator \;", the second argument isnot active in the initial state. In [GV92], a sequential composition operator isdescribed for which this is not the case:s1 a�!f(1;a)g s1 if p 6= as1 b�!f(1;p);(2;b)g s2s2 b�!f(2;b)g s2For the patient version of this operator we obtain the undesired identityWAIT 1 ;WAIT 1 = WAIT 1:A very interesting issue that we can only touch upon in this paper, is theimpact of patient construction on the validity of algebraic laws. All the laws thatwe have checked and that are valid for Lu up to trace equivalence, remain validfor Lt up to timed trace equivalence. However, in general it is not the case thatthe patient construction preserves validity of algebraic laws. For instance, thelaw A � B = A ; (A � B) 2 Bholds (in a semantics based on ��) for the variant of the iteration operator inwhich only a single copy is made of the second argument, but does not hold afterpatient has been applied (in a semantics based on �t�).6. DiscussionThe main result of this paper is the characterisation in terms of action transduc-ers of a very general class of operations that preserve inclusion of timed traces.For the untimed case, several substitutivity results for classes of operations havebeen reported in the literature (see, for instance, [Sim85, BIM88, GV92]). Webelieve our result to be the �rst one of this kind for the timed case. The combinedcomplexity of multiple start states, in�nitely many arguments, copying, activa-tion and deactivation of arguments, internal actions, and di�erent rates makesthe proof of our result rather involved. It looks like that we have now reached apoint at which any obvious generalisation of the class of operations violates thesubstitutivity property.We think that many other equivalences and preorders for timed systems thathave been proposed in the literature, such as the timed bisimulation equivalenceof [Klu93], are also preserved by our class of action transducers. We expect thatthe situation in the timed case will be largely analogous to the one in the untimedlinear time { branching time spectrum of [Gla93] where, roughly speaking, wesee that the �ner the behavioural equivalence, the larger the class of operationsfor which it is substitutive. However, results in this area still need to be workedout.An obvious question left open in this paper is to �nd a sound and completeaxiomatisation of timed trace inclusion for the language Lt or a fragment of it.Results of [AD94] can be adapted to show that, even if we exclude the RATEoperator and only allow for rational numbers in clock constraints and bounds,deciding timed trace inclusion for Lt is �1 hard. Hence there does not exist a



38 N.A. Lynch and F.W. Vaandrager�nite equational axiomatisation of timed trace inclusion for the full languageLt. However, it may be possible to �nd interesting partial results: axioms thatallow the elimination of certain operators in favor of others, or complete axioma-tisations of subcalculi. For this it might be necessary to add to the languageauxiliary operators such as the integration construct of timed ACP [BB91].Before it can become practically useful, the language Lt will have to beextended with a more powerful mechanism for recursion, and with the possibilityto parameterise processes and actions with data. Such extensions are standard,however, and one could simply follow the approaches taken in process algebrassuch as Extended LOTOS [Bri88] or �CRL [GP93].We do not believe that one single approach, assertional or process algebraic,can solve all problems regarding the speci�cation and veri�cation of timed sys-tems. A solution has to be sought rather in a smooth combination of variousformalisms. Use of process algebraic notation often allows one to give compact,intuitive speci�cations of timed systems. Thus far, however, process algebraictechniques cannot claimmuch success when it comes to veri�cation of timed sys-tems. Here assertional methods appear to perform much better (see, for instance,[SALL93, HL94, BPV94]). Because the notion of explicit timers �ts rather wellwith assertional proof techniques for real-time (see [AL92, BPV94]), we hopethat it will be not too di�cult to use these techniques, and in particular thesimulation proof methods of [LV92, LV93], in the setting of our language Lt. To-gether with a limited repertoire of algebraic laws, this may then form the basisof a methodology in which the bene�ts of algebraic and assertional methods canbe combined.Acknowledgement Roberto Segala pointed out to us the importance of makingan in�nite number of copies of the second argument in the action transducer forKleene's star operator. Pedro D'Argenio and Jan Tretmans discovered a mistakein an earlier version.References[AD94] R. Alur and D.L. Dill. A theory of timed automata.Theoretical Computer Science,126:183{235, 1994.[AH94] R. Alur and T.A. Henzinger. Real-time system = discrete system + clock vari-ables. In T. Rus and C. Rattray, editors, Theories and Experiences for Real-TimeSystem Development | Papers presented at First AMAST Workshop on Real-Time System Development, Iowa City, Iowa, November 1993, pages 1{29. WorldScienti�c, 1994.[AL92] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In de Bakkeret al. [dBHRR92], pages 1{27.[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of FormalAspects of Computing Science, 3(2):142{188, 1991.[BBP94] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting.The Computer Journal, 37(4):243{258, 1994.[BIM88] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: Preliminaryreport. In Conference Record of the 15th ACM Symposium on Principles ofProgramming Languages, San Diego, California, pages 229{239, 1988. Full versionavailable as Technical Report 90-1150, Department of Computer Science, CornellUniversity, Ithaca, New York, August 1990. Accepted to appear in Journal of theACM.[BK90] J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amsterdam,volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.
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