
Abstract

Counting Networks are Practically Linearizable”

Nancy Lynch t Nir Shavit $ Alex Shvartsman~ Dan Touitou f

Counting networks are a class of concurrent structures

that allow the design of highly scalable concurrent data

structures in a way that eliminates sequential bottle-

necks and contention. Linearizable counting networks

assure that the order of the values returned by the net-

work reflects the real-time order in which they were re-

quested. We argue that in many concurrent systems the

worst case scenarios that violate linearizability require

a form of timing anomaly that is uncommon in practice.

The linear time cost of designing networks that achieve

linearizability under all circumstances may thus prove

an unnecessary burden on applications that are willing

to trade-off occasional non-linearizability for speed and

parallelism.

This paper presents a very simple measure that is io-

cal to the individual links and nodes of the network, and

that quantifies the extent to which a network can suf-

fer from timing anomalies and still remain linearizable.

Perhaps counter-intuitively, this measure is independent

of network depth. We use our measure to mathemati-

cally support our experiment al results: that in a vari-

ety of normal situations tested on a simulated shared

memory multiprocessor, the Monic counting networks

of Aspnes, Herlihy, and Shavit are “for all practical pur-

poses” Iinearizable.

*This work was supported by the following grants: ARPA

NOO014-92-J-4033 and F19628-95-C-0118, NSF 922124-CCR, and

ONR-AFOSR F49620-94-1-01997.

t Massachusetts Institute of Technology, Laboratory for Com-
puter Science. Email: lynch@ theory. lcs .mit. edu.

~Massachusetts Institute of Technology and Tel-Aviv Univer-
sity. Contact author: MIT Laboratory for Computer Science, 545
Technology Square, NE43-340, Cambridge, MA 02139. Email:
shanir@theory. lcs .mit. edu. The work of this author was also
supported by grant CCR 9520298.

~Massachusetts Institute of Technology, Laboratory for Com-
puter Science. Email: alex@theory. lcs .mit .edu.

~Tel-Aviv University, Department of Computer Science.
Email: danidin@cs .tau. ac. il.

Pcrminioo to make digitalhard copies of all m put of ti omtcrial *
pcmood or cluBroom we is grmted wibut fee provided that tho copie8
am M made or ddbutcd for profit or coOUnClcid advantage, Ihe copy-
right aotice. the ,titk *of the pub@ioo and its date appear, and mtice is.
given that copyngltt u by pcruusmon of the ACM, h. To WY othMwM,
to rcpubliab, to pod on aorvcm ~ to rdstributc to Ii@s, mquucs apccitlc
DcrulisIioo dor fee.
‘~DC’%, Philadelphia PA, USA
O 1996 ACM @89T91+~~9(j/OS. .$3.50

1 Introduction

Counting networks [4] are a class of concurrent struc-
tures that allow the design of highly scalable concur-

rent data structures in a way that eliminates sequential

bottlenecks and contention. A recently developed form

of counting network called a Diffracting Tree [21] has

been shown to scale especially well, and has low latency

since its depth is less than logarithmic in the number of

processors n.

The notion of linearizabdity due to Herlihy and

Wing [13] is the requirement that the values chosen

by a concurrent object reflect the real-time order in

which they were requested. The use of linearizable

data abstractions greatly simplifies both the specifi-

cation and the proofs of multiple instruction/multiple

data (MIMD) shared memory algorithms. As explained

in [13], linearizability generalizes and unifies a number

of ad-hoc correctness conditions in the literature, and it

is related to (but not identical with) correctness criteria

such as sequential consistency [16] and strict serializ-

ability [19].

Herlihy, Shavit, and Waarts defined the class of lin-

earizable counting networks [12], networks that assure

that the order of the values returned by the network re-

flects the real-time order in which they were requested.

Linearizable counting lies at the heart of concurrent

timest amp generation, as well as concurrent implemen-

tations of shared counters, FIFO buffers, priority queues

and similar data structures. Unfortunately, for both the

bitonic networks of Aspnes, Herlihy, and Shavit [4] and

the Diffracting Trees of Shavit and Zemach [21], there

exist worst case asynchronous schedules in which lin-

earizability is violated. In [12] linear depth linearizable

counting network constructions were presented, and it

was proven that this depth is inescapable: any low con-

tention counting network that is linearizable in all exe-

cutions must have linear depth, and hence is bound to

have rather poor latency.

We argue that in many concurrent systems (e.g.,

distributed OS kernels or systems with limited mul-

tithreading) the worst case scenarios that violate lin-

earizability require a form of timing anomaly that is

uncommon in practice. The linear time cost of design-

ing networks achieving linearizability under all circum-

stances may thus prove an unnecessary burden on ap-

plications that are willing to trade-off occasional non-

280

.=L.ILJ= ‘d-l
O~yi–y~~lforanyi<j

Figure 1: Balancing node and its input-output properties.

linearizability for speed and parallelism. Yet it is im-

portant to clearly characterize the parameters govern-

ing linearizability so that an intelligent trade-off decision

can be made.

Our Contributions: We present a very simple mea-

sure that is iocal to the individual links and nodes of

the network, and that quantifies the extent to which a

network can suffer from timing anomalies and still re-

main linearizable. The measure does not depend on

network size. We use our measure to mathematically

support our experimental results: that in a variety of

normal situations tested on a simulated shared memory

multiprocessor, the bitonic counting networks of Asp-

nes, Herlihy, and Shavit are “for all practical purposes”

linearizable. By this we mean that over a wide range

of concurrency levels tested, even if one skews system

timings by introducing large timing variations among

processes, the network rarely exhibits violations of lin-

earizability.

These results are especially interesting, for even a sim-

pIe counting network of depth one easily exhibits non-

linearizable behavior.

Example: Consider the scenario for a counting network

consisting of the balancer 1? and two atomic counters A.

and Al with initial values O and 1, and that count by 2.

Xo Yo

8 J —

Token To enters the balancer via Z., exits via y., and

then is delayed. Token T1 enters via X. and exits via yl

and obtains the value 1 from the counter Al. Token T2

enters via X. and exits via y. and obtains the value O

from the counter A.. Finally To obtains the value 2

from A..

Here the behavior is not linearizable because the

traversal of the network by T1 completely precedes T2,

yet T2 returns a lower counter value. c1

A common structuring property of almost all pub-

lished counting networks [1, 4,3,12,14, 15,10,7,20, 21]

is uniformity: each node of the network lies on some

path from inputs to outputs and all paths from inputs

to outputs have equal lengths.

Our measure is as follows. Let c1 be the minimum

time that it takes for a token to traverse a wire from

balancer to balancer, let C2 be the maximum such time,

and assume that balancer transitions are instantaneous.

This timing model is general enough to capture both

message passing and shared memory implementations

using the same frameworks as [4, 21].

We prove (Section 3) the following for any uniform

counting network, whether explicitly constructible or

not:

If C2 ~ 2. c1 then the network is linearizable. This

is so regardless of the network depth.

If cz = k . c1, where k >2 then the network is lin-

earizable if for any two tokens traversing the net-

work their traversals either overlap or they are sep-

arated by time t > h .k(c2 – 20 cl), where h is the

depth of the network.

If a constant k > 2 is known a priori, such tlhat

cz = k . c1, then given a counting network of depth

h we can extend this network by prefixing eachl of

its inputs with h(k — 2) l-input l-output nodes so

that the resulting network is a Iinearizable network

of depth O(h).

We also show (Section 4) that counting (diffracting)

trees and bitonic counting networks are not lineariza,ble

for C2 > 2. c1, and we exhibit executions with large

numbers of non-linearizable operations.

Finally, we provide experimental results collected for

an Alewife [2] shared-memory multiprocessor simulated

using Proteus [6], and use the c2/cl ratio to explain

bitonic counting network and diffracting tree lineariz-

ability properties (Section 5).

The full paper will be available on WWW in

http: //theory. lcs. mit. edu/tds/papers. htnil.

Z Models and definitions

Consider balancing networks consisting of acyclically
wired multiple-input-multiple-output balancers or bal-

ancing nodes in the style of Aharonson and Attiya [1]

and Felten, LaMarca, and Ladner [10] (Figure 1). We
let xi (respectively vi) stand for the name of the input

port (output port) and its value for the number of tokens

281

inputs
‘“”””w ah”’mah ‘Utputs

B1p- Wph +

A
uniform count ing network

Figure 2: Equal length paths lead to any node in a uniform counting network.

that have entered (exited) via that port. Each balanc-

ing node has a step property on its ordered outputs: in

any state of the node, its outputs yO, YI, . . . , ~&l Satisfy

0< Yi – Yj <1 for any i < j, where d is the number of
outputs. Tokens are routed through a balancing node

in a way that preserves the step property on its out-

puts. A balancing node does not generate any tokens
spontaneously, but only routes tokens from the inputs to

the outputs: ~j~~ z~ ~ ~~j~ y~, where the equality is

achieved in a state, called @escent, in which all tokens

have been routed and no new tokens arrive. This model

is consistent with both the message passing and shared

memory toggle bit based balancer implementations [4],

and diffracting balancers [21], as all can be expressed in

terms of balancers with atomic transitions.

Balancing or counting operations are processed in

the form of tokens that are routed through a net-

work. A quiescent state of a balancing network with

v input ports Xo, Xl, XV_l and w output ports

Y., Y1, YW– 1 is defined as the state when all tokens

that have ever entered it have already exited. A count-

ing network with w outputs is a balancing network that

satisfies the following step property:

In any quiescent state, O ~ X – Yj ~ 1 for any i < j.

The step property of counting networks is the corner-

stone of the claims and proofs we will present.

The actual state transition of a balancer, i.e., the

passing of a token from the node’s input port to its out-

put port, will be modeled as an instantaneous event.

While balancer transitions are instantaneous, transi-

tions along a link connecting an output port of one node

to an input port of another are not. However, we as-

sume that there is some c1 that is the lower bound on

time it takes for a token to traverse a link between bal-

ancers. Similarly there exists C2 that is the upper bound

on such time. Note that such links are also used to
connect output ports of balancing nodes to the output

ports of the network they are a part of. On the other

hand, the input ports of a network are identified with

the input ports of the nodes attached to

inputs. Such nodes are called input nodes.

the network

The output ports (or outputs) of a network are con-

nected to atomic counters. Since these counters have

a single input, we identify the counter attached to the

output port Yi by the name of the port. The tokens exit-
ing from port Yi are consecutively assigned the numbers
i, i + w, i + 2w, etc. The number assigned to a token by

a counter is called the token’s returned value.

Definition 2.1 A counting network is uniform, if each

node of the network lies on some path from inputs to

outputs, and all paths from inputs to outputs have equal

lengths.

We define the depth of a uniform counting network as

the number of links between any input node and output

counter. The time t it takes for a token to traverse a

uniform network of depth h is bounded by: h . c1 < t <

h .C2. It is easy to see, from the above definition, that

for each node D, the lengths all paths from the input

nodes to D are equal and the lengths of all paths from D

to the output nodes are equal (see Figure 2 – there and

in the remaining figures, we do not show the counters

attached to the outputs). For 1 < i ~ h we also define

layer i of a network to be the collection of nodes whose

distance from the inputs is i – 1.

In the proofs, and without the loss of generality, we
sequentially number the tokens traversing the network

according to the time of their entry (ties are broken

arbitrarily).

An execution of a network is a sequence E = e1, e2, . . .

of instantaneous transition events ei = (T, D) with the

meaning of “token T traverses node D“. Here D ranges

over the balancing nodes and the atomic counters.

We associate history variables with tokens and nodes
to capture their implicit knowledge about the execution.

The history variables are sets of token ids. A history

variable HT is associated with each token T, and HD

wit h each node D. For every execution E the values

of these variables are computed inductively as follows,

282

where Hj and H$ denote the values of HD and HT

after the event ei:

● At the beginning of the execution, we define H: =

o and H] = {Z’}. In other words, at the beginning

of the execution the knowledge of every node is an

empty set and the knowledge of every token is the

token’s own id.

. The inductive step is ,W follows: Let ei = (T, D),

then H~ = H; = H~-l U H~- 1. Intuitively, the

token T and the node D combine their knowledge

as the result of e;.

For every other token T’ # T and node D’ # D,

H+, = H;; 1 and H~, = H&l.

Definition 2.2 A timzng schedule S for an execution

of a uniform network of depth h and input width v is

a triplet (K, L, Q). K is the set of token ids produced

by numbering the tokens based on their arrival times.

L : K - {xi :0< i < v} is the function such that for

a token Tk, L(k) is the input node on which the token

enters the network. Q : K x [1.. (h + 1)] ~ Af is the

function such that Q(k, j) is the real time instant when

the token k passes through a node in the layer j of the

network.

Adapting Herlihy and Wing definition [13] to count-

ing networks:

Definition 2.3 A counting network is linearizable if for

any execution, when two tokens traverse the network

one after another without overlap, the earlier token ob-

t ains a smaller value than the later one.

Definition 2.4 Given an execution of a counting net-

work, we say that some operation O is non-lineam”zable,

if there exists some other operation 0’ completely pre-
ceding O in time that returns a higher counter value

than O. The fraction of non-linearizable operations in

an execution is the number of non-linearizable opera-

tions divided by the total number of operations of an

execution.

S A linearizability characterization for

counting networks

In this section and the next, we now show that the ra-

tio C2/cl plays a key role in determining whether a uni-

form counting network is linearizable. In this section

we show a very general condition implying that a uni-

form network is linearizable. In the following section we
construct execution scenarios that prove that our anal-

ysis is tight for at least counting (diffracting) trees and

bitonic networks.

We prove several lemmas that lead to the main result

that uniform networks are linearizable for C2 < 2C1. The

first lemma shows that in every counting network, when

a token returns a certain value having traversed the net-

work, it has implicit knowledge about the “existence”

of a certain minimum number of other tokens.

Lemma 3.1 Let N be a counting network with w out-

put ports Yo, YW_ 1. If the token T is the at~ token

to exit on ~, then IHTI > w(a– l)+i+ 1.

Proof: We sketch a proof by contradiction. We start by

defining the notion of events injhtencing other events.

For a pair of events e and e’ in an execution E, we

say that e influences e! if there is sequence of events

S=el, ez,. . . en such that (1) S is a subsequence of E,

(2)e=el anden =e’ and(3) foreveryk=l...l --l

if ek = (Tk, Dk) and e~+l = (Tk+l, Dk+l), then either

Tk = Tk+l or Dk = Dk+l.

We now assume that there exists an execution E, in
which T is the ath token to exit on Yi, but IHT I <

w(a – 1) + i + 1. We fix E and construct a new execu-

tion E’ in the following way: Let E’ be the subsequence

of E consisting of all events involving T, and all the

events that influence these events. From the definition

of implicit knowledge, it is clear that E’ contains events

involving only the tokens found in HT during the e:~e-

cution. We can show (the details are in the full paper)

that E’ is a possible execution of the counting network.

In E’, T is still the at~ token to exit on Y~. Since only

the tokens of H~ participate in E’, every completion of

E’ in which no new token enters the network, will lead

to a quiescent state with the step property violated. 0

The next lemma shows that the implicit knowledge in

the history variables can only reflect information propa-

gation at the maximum pace of 1 link per c1 time units.

Lemma 3.2 Let N be a uniform counting network of

depth h. For any execution E = el, ez, ..., if ek =

(T, D) occurs at the time t, where D is a node in layer

(9-t 1), then H; contains only tokens that have entered
the network by the time t – g . c1,

Proof: By induction on g: The base case for g = O is

trivial. Assume lemma holds for g – 1. We now show it

holds for g.

Let e~ = (T, D) be the event of token T traversing

node D at time t having traversed g links for some ini-
tial execution sequence E = el, ez, . . . ek. From the def-

inition of historical knowledge, H$ = H;- 1 U H;- 1.

Consider the tokens in H$- 1. This set reflects T’s

knowledge after traversing g – 1 links. By the induction
hypothesis and because it takes at least c1 time to tra-

k-1 have entered the networkverse a link, all tokens in HT

not later than time (t – cl) – (g – l)c1 = t – g oCI.

283

Now consider the tokens in 17;- 1. This set consists

only of the accumulated knowledge of the tokens that

have traversed D. Because the network is uniform, each

~– 1 traversed g links before reaching D. Sincetoken in H~
such token reached D before time t,itreached the for-

mer node before time t – c1 and by the induction hy-

pothesis such token enter the network not later than

time (t–cl)– (g–l)cl=t–g. cl. •1

The next result combines the lemmas above:

Lemma 3.3 Let N be a uniform counting network of

depth h with w exits. If the token T is the a ‘h token

to exit through the output ~ at time t then at least

w(a – 1) + i + 1 tokens have entered the network by the

time t–h. cl.

Proofi Let ej = (T, ~). Lemma 3.1 establishes IHJI z

w(a – 1) + i + 1. Lemma 3.2 establishes that the tokens

in H; = H&, have entered the network no later than

the timet – h cl. ❑

In the next lemma we show that if there exists time t

such that if the tokens in the set 1{1 enter the network

by the time t and the tokens in the set K2 enter after

t,then any tokens that entered after t can only increase

the number of tokens that exit on any output of any

node.

Lemma 3.4 Let t by a time instant and S1 =

(Kl, Ll, Ql) and S2 = (Kl U K2, Lz, Q2) be two tim-

ing schedules for a uniform counting network N, such

that KI n Kz = o, L1 C Lz, Q1 ~ Qa and Qa(i, 1) <
t < Q2(j, 1) for all tokens i G KI, j E Ka. If D is a

balancing node within the layer (g + 1) of N, then at

time t + g . C2 the number of tokens that have traversed

each of D’s outputs in S2 is no smaller than the number

of tokens that have traversed each of D’s outputs in S1.

Proofi By induction on g: For g = 0 the lemma follows

trivially from the fact that in S1 and S2, at time t only

the tokens in K1 have entered and they entered through

the same input nodes.

Now, assuming the lemma holds for g, we show it

holds for g + 1. Consider a balancer D within the layer

g +2. Since N is uniform, all of D’s inputs are connected
to the outputs of some balancers within the layer g + 1.

By the induction hypothesis, at time t +gc2 the number

of tokens that traversed these outputs in S2 is no smaller

than in S1. Thus at time t + (g + 1)c2 the number of

tokens that enter D in S2 is no smaller than in S1.

In any execution, the number of tokens that are

output on each output by any balancing node is non-

decreasing in time. Since Q1 ~ Q2, for any balancing

node between the time t + gcz and t + (g + 1)c2 there

are at least as many tokens transitioning from its inputs

to its outputs in S2 as in S1. Since D is a balancer,

any additional tokens that enter it will only increase

the number of tokens that have exited on its outputs

in establishing the output step property. So the lemma

follows. •1

Lemma 3.5 Let N be a uniform counting network of

depth h with w exits. If m tokens enter N by the time

t,then by the time t+ h . C2 the number of tokens that

exit on each output Y~ (O ~ k < w) is at least a~, where

ak values are uniquely determined by m = ~~=!,l a~ and

O~a~–aj ~lforanyi <j.

Proofi Let S1 = (Kl, L1, Ql) be a timing schedule with

IKII = m and Ql(k, 1) s t fork c K1. It takes at most

h .C2 time for a token to traverse the network. Therefore,

any of the m tokens that enter the network by the time

tmust exit the network by the time t2= t+ h. C2. Since

no other tokens enter the network by the definition of

S1, then m = ~~=~1 aj and O ~ a~ – aj ~ 1 for any

i < j is established, since the counting network is now

in a quiescent state.

Suppose additional tokens enter the network after

time t.Let S2 be the timing schedule as in Lemma 3.4

that describes an execution with additional tokens en-

tering after time t.By Lemma 3.4 with g = h, for each

output yk, the new number of tokens that exited in S2

is no smaller than the number Uk that exited in S1. ❑

Now we prove the main theorem about the lineariz-

ability of uniform counting networks.

Theorem 3.6 If tokens T1 and T2 traverse a uniform

counting network during periods [t., t1]and [tz,t3]re-

spectively such that tl+ h .C2– 2. h . c1 < t z, then T2

returns a higher number than T1.

Proof: Let h be the depth and w be the output width

of the network. If ai is the number of tokens that exit

by time tl on output ~ for O s i < w, we define r as

follows:

r=max{i:O<i<w Aa~= max{a~:()~~<w}}

By Lemma3.3, there are at least m = w(ar–l)+r+l

tokens that enter the network no later than the time

t==tl– h . c1 (see Figure 3).

By Lemma3.5, at timet’ = t+h. c2 = tl–h.cl+h. c2,
for each output Yk (O < k < w) the number of tokens

that exit is at least ak such that m = ~~=~1 a~ and

O ~ ai – aj ~ 1 for any i < j. Let K be the set of such

tokens.

From the fact that it takes at least h. c1 to traverse the

network and because tl+ h. C2—2- h . c1 < tz, token T2

exits attimet3 ~tz+h. cl >tl+h. cz–2. h.cl+h. cl =

tl +h. C2– h cl. This means that all tokens that enter by

time t1– h. c1 exit before time t3.Thus, all of the tokens

in K exit prior to the exit of token T2. Since by time

284

w(ar – 1) + r + 1 tokens enter by t and exit by t’

L

Token TI Token Tz time
, , T ,

tc) t=tl–h. cl tl tz tl–h. cl+h. cz=t’ t3

P

t’–t=c2. h

Figure 3: Illustration for Theorem 3.6.

t3 the number of tokens that exit each of the outputs

exceeds the number of tokens needed to establish the

step property using m tokens, token T2 returns a higher

number than any of the m tokens and therefore higher

than T1. ❑

From the finish-start token time relationship in the

above theorem we can establish the following result

about the start-start time relationship:

Lemma 3.7 If tokens T1 and T2 traverse a uniform

counting network during periods [f,o, t 1] and [t2,ts]re-

spectively such that tO + 2. h(cz – q) < tz, then T2

returns a higher number than T1.

Note that this corollary is tight. In the full paper we

show that if to+ 2. h(c2 – cl) – c < t2, then for any

E >0 there is an execution scenario such that Tz returns

a smaller number.

The next corollary also follows from Theorem 3.6

when cz < 2c1:

Corollary 3.8 If tokens TI and Tz traverse a uniform

counting network during disjoint successive time periods

[to,tI]and [tz,ts]respectively (i.e., tl < t2), and C2 <

2C1 then T2 returns a larger number than T1.

Together with the definition of linearizability, this

leads to the result for uniform networks:

Corollary 3.9 Uniform counting networks are lineariz-

able for C2 s 20 cl.

The next two corollaries instantiate the linearizability

result for specific network definitions.

Corollary 3.10 Bitonic counting networks [4], peri-

odic counting networks [4], the networks of [14] and [7]

are linearizable for cz s 2. c1.

Corollary 3.11 Counting (diffracting) trees [21] and

the uniform trees [8] are linearizable for Cz <2- c1.

We now consider the case of C2 < k . c1 for k >2.

Corollary 3.12 For any uniform counting network of

depth h and a known constant k >2 such that C2 < k.cl,

there exists a linearizable uniform counting network. of

depth h . (k – 1)

Proof: Given the original network, we precede each of

its inputs with a path of length h . (k – 2) of l-input 1-

output “balancers”. The tokens traversing such nodes

simply proceed to the next balancer. If two tokens tra-

verse the new network in a time-disjoint fashion, then

their traversals of the original (sub) network are such

that the second token enters it h - C2 – 2. h . c1 time

after the first token exited. By Theorem 3.6, the second

token returns a higher number. ❑

4 Limits on linearizability of trees and

bitonic counters

We now show some limitations on the linearizability of

diffracting trees and bitonic networks by constructing

execution scenarios that exhibit non-linearizable beb av-

ior.

Theorem 4.1 Counting (diffracting) trees are not lin-

earizable if C2 >2. c1.

Proof: Let h be the depth of the tree and let c:? =

(2+ e) . c1 for some e >0. We consider an execution

scenario in which the first two tokens enter the tree at

the same time to.Without loss of generality, let To and

T1 be these tokens that go right (toggle bit transition

from O to 1 at the root) and left (toggle bit transition

from 1 back to O) respectively. Upon traversing the

root, To proceeds at the slowest possible pace, while T1

proceeds at the fastest possible pace. TI reaches the

rightmost leaf of the left subtree at time tl = tO + h . CI

and returns the value 1 (by the definition of the counting

tree and c1).

Immediately after T1’s exit, a wave of 2h – 1 tokens

enters the tree, say at time t2= tl+ 6> tl.We choose

6 to be such that O <6< e. These tokens proceed at

the fastest possible pace of 1 link per c1 time. Of these

285

.
$0 ~1 ,0 u ,0 yo
xl Ul,l ‘m,] I/l

W%2
Bitonicl [w] ❑ Mergerl [w] . y2

y3

V2,0
U2,1

BitonicZ[w] Mergerz[w]

z2w–l— y Bitonic[2w]

Figure4: Inductive step for Lemma 4.2.

tokens, 2h–1 – 1 tokens go to the left subtree and the

remaining 2 ‘–1 tokens go to the right subtree.

Since the token TO is slow, it reaches a leaf at time

t4= to+ h C2. The second wave fast tokens reaches the

leaves at timets = tz+h.cl= tl+f5+h.cl= to+2.h..cl+

6 =to+h. (CZ– CIE)+6 = t13+h. c2-cIhE+6 < tO+h-C2.

Thus t3 < t4 and these fast tokens reach the leaves

‘-1 tokens in addition to Toahead of To. Since we have 2

traversing the right subtree, at least one token reaches

the rightmost leaf of the tree and returns the value O

(by the quiescence requirement). By the construction,

this token traverses the counting tree completely after

T1 exits, but returned a smaller value. !3

We now consider bitonic networks.

Lemma 4.2 Given a bitonic counting network, let To

be the first token to enter the network through input Z.

and completely traverse the network alone. (a) If T1 and

T2 are the next two tokens to enter through the same

input in this order, then the balancer that is attached to

that entrance is the only balancer that both T1 and T2

pass through. (b) Token To exits through output y., T1

through output yl and T2 through output 92 (mod w).

Proof: By induction on the width of the network w:

Base case is trivial for w = 2 with a single balancer and

two counters (we only need to note that outputs y. and

y2 are the same for this network).

Assuming the lemma holds for some w ~ 2, we now

show it holds for networks of width 2w. The induc-

tive step is depicted in Figure 4, and the node and

exit labels below refer to the figure. We use the in-

ductive construction of bitonic counting networks as

in [4]. Bitonic[2w] is made of two Bitonic [w] networks,

two Merger[w] merging networks and additional w bal-

ancers. Even-numbered outputs of Bitonicl [w] are con-

nected to the first w/2 inputs of Mergerl [w] and odd-

numbered outputs of Bitonic2 [w] are connected to the

last w/2 inputs of Mergerl [w]. The rest of the outputs

are similarly connected to Merger2 [w]. The outputs of

the two mergers are then shufled into a row of w bal-

ancers whose outputs are the outputs of Bitonic[2w].

Using the inductive hypothesis for Bitonicl [w], TO ex-

its via output Ul,o, T1 via U1,l and T2 via U1,2 (note that

for w = 2 the outputs U1,0 and U1,2 are one and the

same). By the construction of Bitonic[2w], To and T1

enter Mergerl [w] via its first balancer. Since these are

the only two tokens to enter Mergerl [w] and since they

traverse the merger one after the other, To must exit

via Vl,o and T1 via Vl,l, else Bitonic[2w] will not be in

a quiescent state in the execution where To is the only

token. Similarly, Tz exits via v2,0 of Mergerz [w]. In the

final row of balancers, To and T2 traverse D1, and T1

traverses D2.

To show (a), we observe that To traverses the network

alone and it reaches D1 first and exit via y., and so T1

necessarily exits via yl. The only remaining token T2

exits via yz.

To show (b) we observe that T1 and T2 may only

traverse the same balancer inside Bitonicl [w], and by

the inductive hypothesis, Do is the only such balancer.

c1

Theorem 4.3 Bitonic counting networks are not lin-

earizable if C2 > 2. c1.

Proofi In the example in Section 1 we have established

that a network of width 2 consisting of single balancer

and two counters is not linearizable and it is easy to

see that it is not Iinearizable under the above condition.

Below we consider networks with w >2. Let C2 = 2. c1 +

s for some c >0. Using the framework of Lemma 4.2, we

deploy the three tokens To, T1, and T2 in the following

scenario, where yO, V1, y~ _ I are the network outputs

and w is its width. Starting in the initial state, we let

To enter via the input ZO and completely traverse the

network and exit via the output y. thus returning the

value O. Following this, token T1 also enters via Z. at

time tl, and T2 enters via X. immediately behind T1

at time tl + 61 for some 61 > 0. We let T1 proceed at

the slowest possible pace of 1 link per C2 time, while

T2 proceeds at the fastest possible pace of 1 link per c1

time. This means that T1 exits at time t{ = tl + M .

c1 + h, and T2 exits at time tj = tl + & + h . cl.

286

By Lemma 4.2, the paths that T1 and T2 traverse have

no balancers in common, with the exception of the first

balancer in their paths. Thus, in the execution fragment

that follows and does not include these tokens’ traversal

of the first balancer, T1 is not influenced by T2 and still

proceeds to the exit yl.

As soon as the fast token T2 exits via yz and obtains

the counter value 2, w fast tokens enter the network at

time t~ = t! + 62 for some 62 > 0. Regardless of the

paths these token take, they exit the network at time

t;= t3+ h . c1. Since we can choose 61 + 62< e, these

tokens exit before the slow token T2.

During this execution, the network is traversed by

the total of w + 3 tokens. If no other tokens enter the

network, then by the quiescence requirement, outputs

YO, Y1, and Y2 have each two tokens that exit through

them, and outputs y4, yW _ 1 each have one. Thus

one of the fast tokens exits via yl and because it is faster

than T1, it obtains the counter value 1, while T1 obtains

the value 1 + w. As a result the fast token obtains a

lower value than T2. ❑

As we will see in the experimental section that follows,

the c2/cl ratio greater then 2 may cause higher percent-

age of non-linearizable operations. In the theorem below

we show that for bitonic networks there can be a large

fraction of tokens that exhibit non-linearizable behavior

for certain cz/cl:

Theorem 4.4 Bitonic counting networks are not lin-

earizable if C2 > V . c1, where w is the width of the

net work.

Proof: Bitonic counting networks [4] of width w,

Bitonic[w] have depth h = *Ogw’$gW+l). The net-

work consists of two stages, the first stage includes two

Bitonic[w/2] networks of depth hl = h–log w connected

in parallel to the second stage that is a merging network

of depth hz = log w. Merger[w].

Merger [w] consists of a row of balancers connected

to two Merger [w/2] mergers (for details see [9]). Note

that this inductive construction of the merger is differ-

ent from, but isomorphic to the construction in Figure 4.

,nH’w2x!4
EEliHO”’

A non-linearizable schedule is constructed as follows:

The first wave of w/2 tokens enters at the same time

Bitonicl [w/2] network and proceed in lock step at some

pace to the exits of the first stage. The second wave of

w/2 tokens enters the same network immediately behind

the first wave after a small delay 6>0.

As soon as the first wave enters Merger[w], it slows

down to the slowest possible pace of one link per C2 time.

This wave proceeds to the Mergerl [w/2] sub-component

of the merger after passing through the top row of bal-

ancers of Merger[w].

Similarly, the second wave proceeds to Merger2[w/2],

except that it proceeds at the fastest possible pace of

one link per c1 time. As soon as the second wave exits,

a third wave enters Bitonic[w] as the first two waves.

The third wave proceeds in lock step at the fsstest

possible pace of one link per c1 time to the exits. By

the quiescence requirement, this wave exits through the

first w/2 exits.

It takes the first wave tl > hz . C2 = C2 . log w time

to reach the exits. It takes the second wave t z = /12 .

q = c1 . log w time to exit. It takes the third wave

t3=h. cl= cl. 10gw “(ljg ‘+1> time to traverse the entire

network. Since cz > 3+1~g w cl, we have that tl > t2+t3.

Thus the third wave passes the first wave on the final

link out and returns counter values that are all lower

than those obtained by the second wave. ❑

5 Simulation results

We empirically evaluated the linearizability of count-

ing networks on a simulated 256 processor distributed-

shared-memory machine similar to the MIT Alewife mac-

hine [2] of Agarwal et al. Our simulations were per-

formed using Proteus , a multiprocessor simulator de-

veloped by Brewer, Dellarocas, Colbrook and Weihl [6].

In our benchmark a certain fraction F = 25%, 50% of

the processors waits W = 100,1000,10000, 100000 cy-

cles after traversing a node in the net. The execution

is stopped when 5000 operations were performed. The

data collected is the non-linearizability ratio, i.e the

percentage of non-linearizable operations (see Defini-

tion 2.4) among all the operations during the execution.

The networks implemented are the diffracting tree [21]

and the bitonic counting network [4]. Both the network

and the tree are of width 32.

Every balancer is implemented as a critical sec-

tion protected by a Mellor-Crummey and Scott (M(X)

queue-lock [18] and, in the diffracting tree, using the

multi-prism implementation of [20]. This is done to

reduce contention on the nodes which would have at-

tenuated the influence of the W-waiting periods on the

c2/cl relation. The results are given in Figures 5 ancl 6.

The y-axis shows the non-linearizability ratio.

In the table in Figure 7 we provide the average c2/cl

rat io as measured during the simulation. The average

c2/cl is defined as (Tog+ W)/Tog where Tog is the av-

erage time a token waits before toggling the balancer

(clearly one can add other factors, e.g., standard devia-

tion, to the analysis, which we defer to the full version

287

for lack of space). As can be seen, for the lower de-

lay levels the average c2/cl ratio is less then or around

2, and no violations were detected. When the average

goes up far above 2, violations occur. Diffracting trees

have a higher fraction of violations because of their lower

depth, which means that there is less of a padding effect

as implied by Theorem 3.6.

Notice that the number of violations increases with

concurrency. As more processors pass through the net-

work concurrently, the slow processes have fewer transi-

tions that affect fast transitions. The 100,000 becomes

better than the 10,000 at high concurrency levels be-

cause each delayed token is effectively standing still so

the total number of such slow transitions while fast to-

kens traverse is much smaller than in the 10,000 case.

We also tested the linearizability of these implemen-

tation when F = O?lO,100~0 and/or W = O and no non-

linearizable operations were detected. Another scenario

in which every token waits a random number of cycles

between O and W was also simulated and was observed

to be completely linearizable.

This experimental study shows that there are count-

ing network implementations that over a wide range of

timing variations remain linearizable.

References

[1]

[2]

[3]

[4]

[5]

[6]

E. Aharonson and H. Attiya. Counting networks with

arbitrary fan out. In Proceedings of the 3Td Syrapo-

siwn on Discrete Algorithms, Orlando, Florida, Jan-

uary 1992. Also: Technical Report 679, The Technion,

June 1991.

A. Agarwal, D. Chaiken, K. Johnson, D. Krantz, J.

Kubiatowicz, K. Kurihara, B. Lim, G. Maa, and D.

Nussbaum. The MIT Alewife Machine: A Large-Scale

Distributed-Memory Multiprocessor. To appear in

Scalable Shared Memory Multiprocessors, Kluwer Aca-

demic Publishers, 1991. Also as MIT Technical Report

MIT/LCS/TM-454, June 1991.

B. Aiello, R. Venkatesan, and M. Yung. Coins, Weights

and Contention in Balancing Networks. In Thirteenth

ACM SIGA CT- SIGOPS Symposium on Principles of

Distributed Computing, August 1994, pp. 193-214.

J. Aspnes, M.P. Herlihy, and N. Shavit. Counting Net-

works and Multi- Processor Coordination. In Proceed-

ings of the 2.3rct Annual Sytnposium on Theory of Com-

puting, May 1991.

E.A. Brewer, C.N. Dellarocas. PROTEUS User Docu-

mentation. MIT, 545 Technology Square, Cambridge,

MA 02139, 0.5 edition, December 1992.

E.A. Brewer, C.N. Dellarocas, A. Colbrook and W.E.

Weihl. PROTEUS: A High-Performance Parallel-

Architecture Simulator. MIT Technical Report

/MIT/LCS/TR-561, September 1991.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. Busch and M. Mavronicolas. A Combinatorial Treat-

ment of Balancing Networks. In 13th ACM SIGA CT-

SIGOPS Symp. on Principles of Distributed Comput-

ing, August 1994, pp. 206–215.

C. Busch and M. Mavronicolas. New Bounds on Depth

and Contention for Counting Net works. preprint, Univ.

of Cyprus, October 1995.

T.H. Cormen, C.E. Leiserson, and R. L. Rivest. In-

troduction to Algorithms MIT Press, Cambridge MA,

1990.

E.W. Felten, A. LaMarca, R. Ladner. Building Count-

ing Networks from Larger Brdancers. University of

Washington T.R. #93-04-09.

A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic

techniques for the efficient coordination of very large

numbers of cooperating sequential processors. ACM

Transactions on Programming Languages and Systems,

5(2):164–189, April 1983.

M.P. Herlihy, N. Shavit, and O. Waarts. Linearizable

Counting Networks. In Proceedings of the 32nd Annual

Symposium on Foundations of Computer Science, San

Juan, Puerto Rico, October 1991, pp. 526-535. Detailed

version with empiricaJ results appeared as MIT/LCS

technical manuscript 459, November 1991.

M.P. Herlihy and J.M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems,

12(3):463–492, July 1990.

M. Klugerman and C.G. Plaxton. Small-depth Count-

ing Networks. In ACM Symposium on Theory of Com-

puting (STOC), 1992

M. Klugerman, Small-Depth Counting Networks.

Ph.D. Thesis, MIT, 1994.

L. Lamport. How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE

Transactions on Computers, C-28(9), September 1979

N.A. Lynch and M.R. Tuttle. Hierarchical Correct-

ness Proofs for Distributed Algorithms. In Skcth ACM

SIGA CT- SIGOPS Symposium on Principles of Dis-

tributed Computing, August 1987, pp. 137–151. Full

version available as MIT/LCS/TR–387.

J.M. Mellor-Crummey and M.L. Scott. Algorithms for

Scalable Synchronization on Shared-Memory Multipro-

cessors. Technical Report 342, University of Rochester,

Rochester, NY 14627, April 1990.

C.H. Papadimitriou. The serializability y of concurrent

database updates. Journal of the A CM, 26(4):631-653,

October 1979.

N. Shavit, and D. Touitou. Elimination Trees and the

Construction of Pools and Stacks. In Proceedings of

the Annual Symposium on Parallel Algorithms and Ar-

chitectures (SPAA), June 1995.

N. Shavit and A. Zemach. Diffracting Trees. In Proceed-

ings of the Annual Symposium on Parallel Algorithms

and Architectures (SPAA), June 1994.

288

s

Bitonic C.N
8, [1 1 I 1 I

7

1

workload=100 -e-
workload=l 000 +-.

6 workload=l 0000 -H--
workload=l OCOOO+--

5
I

4 ~jf
$

3 ~ ‘.,,

2 - \
}%

1 ‘j
,-

0 $-$ --m
J

., ~
o 50 100 150 200 250 300

processors

Diff. Tree
20, 1 t 1 1 I (

I
workload.100 +-

workload=l 000 +--

15
workloed=l 0000 -• ---

vmrkbad=l 00000 -x--

1
10 -

,,Q.

0 -:
.-

! t 1 I I
050 100 150 200 250 300

processors

Figure 5: Non-linearizability Ratios for F = 25% delayed processors.

10 ~: “*
:;

8 ; q..<
3

6 - \\.h

4 - !i ‘ “...%

2 - \, ““’”’’”m.
----------‘h

o 4’?
...........J

0 50 100 150 200 250 800
processors

Difi. Tree
25 , # I , 1

workload=l 00 4-

20
workload=l 000 +--

workload=l 0000 -n ----

\

workload.1 00000 +-—

15 - Q...

: ‘Jb,

10 ;
5 \

....
....

5 -
~~....

“----------- ..,~-...-
a--%...-

----”...%
o •~ ------- ,,,,,,,,,,,

0 50 I&) 150 200 250 300
processors

Figure 6: Non-linearizability Ratios for F = 50% delayed processors,

I Bitonic Counting Network Diffracting Tree

Workload n=4 n=16 n=64 128 n=256 n=4 n=16 n=64 I 128 n=256
m %

[
--, -
100 1.45 1.39 1.25 1.22 1.18 1.11 1.11 1.10 1.11 1.11
1000 5.67 5.03 3.70 3.24 2.73 2.06 2.06 1.94 2.01 2.09
10000 48.77 41.26 27.98 24.49 21.21 12.14 11.55 10.10 10.57 11.36
100000 483 410.21 280.27 244.34 215.22 115.54 107.39 91.86 96.72 105.62
OKw
40 /0

100 1.45 1.39 1.25 1.22 1.17 1.11 1.11 1.10 1.11 1.11
1000 5.54 4.95 3.56 3.16 2.68 2.06 2.08 1.96 2.03 2.09
10000 46.18 40.15 26.67 23.39 19.63 11.67 11.70 10.38 10.97 11.78
100000 456.70 395.70 262.08 226.80 193.06 108.42 107.96 93.89 101.02 109.12

Figure 7: Average c2/cl in the simulations of bitonic networks and diffracting trees.

289

