
Fast Lean Erasure-coded Atomic Memory Object1

Kishori M. Konwar2

Department of EECS, MIT, Cambridge, USA3

kishori@mit.edu4

N. Prakash 1
5

Intel Inc6

prakashnarayanamoorthy@gmail.com7

Muriel Médard8

Department of EECS, MIT, Cambridge, USA9

medard@mit.edu10

Nancy Lynch11

Department of EECS, MIT, Cambridge, USA12

lynch@csail.mit.edu13

Abstract14

In this work, we propose FLECKS, an algorithm which implements atomic memory objects in a multi-writer15

multi-reader (MWMR) setting in asynchronous networks and server failures. FLECKS substantially reduces16

storage and communication costs over its replication-based counterparts by employing erasure-codes. FLECKS17

outperforms the previously proposed algorithms in terms of the metrics that to deliver good performance such as18

storage cost per object, communication cost a high fault-tolerance of clients and servers, guaranteed liveness of19

operation, and a given number of communication rounds per operation, etc. We provide proofs for liveness and20

atomicity properties of FLECKS and derive worst-case latency bounds for the operations. We implemented and21

deployed FLECKS in cloud-based clusters and demonstrate that FLECKS has substantially lower storage and22

bandwidth costs, and significantly lower latency of operations than the replication-based mechanisms.23

2012 ACM Subject Classification Theory of computation→ Concurrency24

Keywords and phrases Atomicity, Distributed Storage System, Erasure-codes25

Digital Object Identifier 10.4230/LIPIcs...26

1 Introduction27

In the recent years, the demand for efficient and reliable large-scale distributed storage systems (DSSs)28

has grown at an unprecedented scale. DSSs that store massive data sets across several hundreds of29

servers are commonly used for both industrial and scientific applications, and numerous Internet-30

based applications. Many applications demand concurrent and consistent access to the stored data by31

multiple writers and readers. Therefore, some form of consistency must be guaranteed of the stored32

objects is essential for the application developer to reason about the correctness of the application.33

The consistency model we adopt is atomicity, also often referred to as strong consistency. Atomic34

consistency gives the users of the data service the impression that the various concurrent read and35

write operations happen sequentially. Therefore, strong consistency or linearizability is the most36

preferred form of consistency guarantee. However, providing strong consistency is a non-trivial task37

in most practical distributed storage systems due the asynchronous behavior of the communication38

and component failures endemic in any large network. Also, the ability to withstand failures and39

network delays are essential features of any robust DSS. The traditional solution for emulating an40

atomic fault-tolerant shared storage system involves replication of data across the servers. Perhaps, the41

earliest of replication-based algorithms atomic memory emulation in asynchronous networks appear42

1 This work was done while the author was still at MIT.

© Kishori M. Konwar, N. Prakash, Muriel Médard and Nancy Lynch;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kishori@mit.edu
mailto:prakashnarayanamoorthy@gmail.com
mailto:medard@mit.edu
mailto:lynch@csail.mit.edu
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Fast Lean Erasure-coded Atomic Memory Object

in the work by Attiya, Bar-Noy and Dolev [4] (we refer to this as the ABD algorithm).Replication43

based strategies incur high storage costs; for example, to store a value (an abstraction of a data file)44

of size 1 MB across a 5-server system, the ABD algorithm replicates the value in all the 5 servers,45

which blows up the worst-case storage cost to 5 MB. Additionally, every write or read operation has46

a worst-case communication cost of 5 MB. The communication cost, or simply the cost, associated47

with a read or write operation is the amount of total data in bytes that gets transmitted in the various48

messages sent as part of the operation. Since the focus in this paper is on large data objects, the storage49

and communication costs include only the total sizes of stable storage and messages dedicated to the50

data itself. Ephemeral storage and the cost of control communication is assumed to be negligible.51

Under this assumption, we further normalize both the storage and communication costs with respect52

to the size of the value, say v, that is written, i.e., we simply assume that the size of v is 1 unit (instead53

of 1 MB), and say that the worst-case storage or read or write cost of the ABD algorithm is n units,54

for a system consisting of n servers.55

Erasure codes provide an alternative way to emulate fault-tolerant shared atomic storage, with the56

added benefit of reducing storage cost. In comparison with replication, algorithms based on erasure57

codes significantly reduce both the storage and communication costs of the implementation. An [n,k]58

erasure code splits the value v of size 1 unit into k elements, each of size 1
k units, creates n coded59

elements, and stores one coded element per server. The size of each coded element is also 1
k units, and60

thus the total storage cost across the n servers is n
k units. For example, if we use an [n = 5,k = 3] MDS61

code, the storage cost is simply 1.67 per unit of data, instead of 5 as in the case of replication-based62

algorithms, such as ABD. A class of erasure codes known as Maximum Distance Separable (MDS)63

codes have the property that value v can be reconstructed from any k out of these n coded elements.64

In systems that are centralized and synchronous, the parameter k is simply chosen as n− f , where65

f denotes the number of server crash failures that need to be tolerated. In this case, the read cost,66

write cost and total storage cost can all be simultaneously optimized. The usage of MDS codes to67

emulate atomic shared storage in decentralized, asynchronous settings is way more challenging, and68

often results in additional communication or storage costs for a given level of fault tolerance, when69

compared to the synchronous setting. Even then, as has been shown in the past [6, 10], significant70

gains over replication-based strategies can still be achieved while using erasure codes. The works71

in [6, 10] contain algorithms based on MDS codes for emulating fault-tolerant shared atomic storage,72

and offer different trade-offs between storage and communication costs.73

The performance of a DSS that stores millions of objects, and accessed concurrently by hundreds74

of thousands of clients must excel in terms of several performance measures. While designing75

FLECKS algorithm we focused on the following key performance metrics that are often used by76

the systems researchers to evaluate the performance of such system. (i) Storage cost is the total77

number of bytes stored across all servers, must be low, which essentially increases the capacity of78

the storage system, and also reduces the cost of storing data for the user. (ii) Maximum number of79

server failures the system can experience without service interruption directly contributed to increases80

in data durability. (iii) Number of rounds per operation reduces the latency of operations, thereby81

increasing the throughput of clients’ operations and also reduces overall messaging in the network.82

(iv) Read cost is the amount of data transmitted in order to complete a read operation. In most83

practical systems reads are several orders of magnitude more frequent than writes. Therefore, read84

cost, must be as low as possible. (v) Write cost is the number of bytes transmitted during a write85

operation should be as low as possible, which would reduce latency of write and network bandwidth86

consumption.87

Our Contributions. In this work, we present FLECKS, an erasure-code based, fault-tolerant algo-88

rithm for implementing MWMR atomic memory in asynchronous networks, with optimized storage89

and communication costs. When compared to other erasure-code based or replication-based atomic90

K.M. Konwar et al. XX:3

memory emulation algorithms, FLECKS achieves superior or comparable values for the performance91

metrics mentioned above. Moreover, FLECKS is the only such algorithm that scores reasonable92

values across all of the performance metrics (see Table 1), making it suitable for implementations in93

practical systems. Firstly, the storage cost of FLECKS is (1+δ) n
k , where δ is the maximum number94

of writes concurrent with any read. In a typical DSS, the frequency of reads is 10,000+ fold more95

than that of writes [8]. Therefore, δ is rarely larger than 1 as reported in [7]. FLECKS exploits this to96

provide one-round reads, but occasionally, in the presence of concurrent writes, carries out a second97

round. This results in lower latency for most reads and increases throughput of the system. Writes98

always take two rounds. We would like to emphasize that δ is not explicitly hard-coded in FLECKS;99

therefore, is a run-time property. The underpinning idea behind FLECKS achieving lower storage100

cost is to use writes help garbage collect stale values, i.e., values introduced by previous writes. As a101

result, during the course of an execution, the additional storage cost due to the temporary increase102

of δ for individual object is small and transient. In a system with several hundred or more stored103

objects, the fraction of reads that experiences concurrent writes would be tiny (see third plot in Fig.104

1). Therefore, when considered system wide, FLECKS achieves storage cost very close to the optimal105

value n
k (discussed later in the context of Fig. 3 (a)). FLECKS can tolerate a maximum of n−k server106

crashes, which is the maximum number of erasures tolerated by and MDS [n,k] code. The read and107

write-communication costs are very comparable to the synchronous EC-based scenarios (see Table 1).108

We provide analytical proofs of atomicity and liveness properties of FLECKS. We also derived109

bounds for the read and write latency based on maximum message delay of ∆ for any point-to-point110

message in the network. Finally, we implemented FLECKS, deployed our implementation, and ran111

experiments where our implementation can emulate a large number of atomic objects. We compare112

our results with an optimized replication-based algorithm adapted from ABD where we emulate a113

shared storage of up to 10,000 objects of various sizes. Our results corroborate our design goals and114

theoretical results on storage and communication cost bounds, and lower latency of reads and writes115

in FLECKS. For example, Fig. 1 shows that FLECKS (EC) has much lower latency, compared to the116

replication-based method (REP) for the read and write operations. Furthermore, it shows that most of117

the reads (GET) comprise of a single-round.118

Figure 1 READ (GET) and WRITE (PUT) latencies, and percentage of READs with 2 phases for the multi
object experiment. For each operation, a client accesses a object chosen uniformly at random. We compare
[n = 5,k = 3] FLECKS (EC) against 5-way replication (REP), for objects of sizes 10KB, 100KB and 1MB.

1.1 Comparison with Other Algorithms, and Related Work119

There is a rich history of erasure coding based shared memory emulation algorithms [5,6,10–12,15,20].120

In Table 1, we provide a comparison between FLECKS and other atomic memory algorithms. We121

add ABD as a benchmark to compare the performance metrics of the erasure-coded algorithms with122

replication based schemes. In [6], the authors provide two algorithms - CAS and CASGC - based on123

XX:4 Fast Lean Erasure-coded Atomic Memory Object

[n,k] MDS codes, and these are primarily motivated with a goal of reducing the communication costs.124

Both algorithms tolerate up to f = n−k
2 server crashes, and incur a communication cost (per read or125

write) of n
n−2 f . The CAS algorithm is a precursor to CASGC, and its storage cost is not optimized.126

In CASGC, each server stores coded elements (of size 1
k) for up to δ +1 different versions of the127

value v, where δ is a hard-coded upper bound on the number of writes that are concurrent with a128

read A garbage collection mechanism, which removes all the older versions, is used to reduce the129

storage cost. The worst-case total storage cost of CASGC is shown to be n
n−2 f (δ +1). Liveness and130

atomicity of CASGC are proved under the assumption that the number of writes concurrent with a131

read never exceeds δ . On the other hand, SODA [15] is designed to optimize the storage cost rather132

than communication cost, where a write cost is very high (n2). In SODA, the parameter δw, which133

indicates the number of writes concurrent with a read, to bound the read cost. However, neither134

liveness or atomicity of SODA depends on the knowledge of δw; the parameter appears only in the135

analysis and not in the algorithm. But the effect of the parameter δ in CASGC is rather rigid. In136

CASGC, any time after δ + 1 successful writes occurs during an execution, the total storage cost137

remains fixed at n
n−2 f (δ +1), irrespective of the actual number of concurrent writes during a read.138

For a given [n,k] MDS code, CASGC tolerates only up to f = n−k
2 failures, whereas SODA tolerates139

up to f = n− k failures.140

In [10], the authors present the ORCAS-A and ORCAS-B algorithms for asynchronous crash-141

recovery models. In this model, a server is allowed to undergo a temporary failure such that when142

it returns to normal operation, contents of temporary storage (like memory) are lost while those of143

permanent storage are not. Only the contents of permanent storage count towards the total storage144

cost. Furthermore they do not assume reliable point-to-point channels. The ORCAS-A algorithm145

offers better storage cost than ORCAS-B when the number of concurrent writers is small. Like SODA,146

in ORCAS-B coded elements corresponding to multiple versions are sent by a writer to reader, until147

the read completes. However, unlike in SODA, a failed reader might cause servers to keep sending148

coded elements indefinitely. RADON [16], an erasure-code based atomic memory algorithm which149

allows servers restarts, provides liveness guarantees under most practical network settings and allows150

efficient repair of crashed nodes. ARES [20] improves on the number of rounds compared to the151

previously known erasure-code based algorithms. From Table 1 is it evident that FLECKS strikes a152

balance among all the erasure-code based algorithms performs in all of the measures of performance.153

1.2 Other related works154

In [21], the authors consider algorithms that use erasure codes for emulating regular registers.155

Regularity [17] is a weaker consistency notion than atomicity. Applications of erasure codes to156

Byzantine fault tolerant DSS are discussed in [5, 12].157

During the last few years several erasure-code-based DSS with strongly consistent distributed158

storage have become available. Cocytus [22] is an in-memory key-value store that guarantees strong159

consistency and reduces storage cost using erasure codes. The values are erasure coded and the coded160

elements are stored among a subset or group of servers, referred to as coding group, from the set of161

available servers.162

Giza [7] is a recently proposed strongly-consistent multi-version object store and heavily used163

in Microsoft’s OneDrive storage system. Giza is designed for cross-data center (cross-DC) object164

storage, which is deployed over 11 data-centers around the world. Giza uses FastPaxos [18] which, in165

the absence of concurrent writes, completes in one round trip, but in the case of concurrent updates,166

uses the more expensive consensus algorithm Paxos.167

Recently, a large class of new erasure codes have been proposed and employed (see [9] for a168

survey) in DSS where the focus is on the efficient storage of immutable (like archival) data. Recovery169

K.M. Konwar et al. XX:5

algorithm max rounds/ rounds/ repl or storage read write explicit
failures write read EC cost cost cost δ?

ABD [4] b n−1
2 c 2 2 Repl. n 2n n -

CASGC [6] b n−k
2 c 3 2 EC (δ +1) n

k
n
k

n
k Yes

SODA [15] n− k 2 2 EC n
k (δ +1) n

k
n2

k No
ORCAS-A [10] b n−k

2 c 3 ≥ 2 EC n n n Yes
ORCAS-B [10] b n−k

2 c 3 3 EC ∞ ∞ ∞ -
RADONc [16] b n−k

2 c 2 2 EC (δ +1) n
k (δ +2) n

k
n
k Yes

ARES [20] b n−k
2 c 2 2 EC (δ +1) n

k (δ +1) n
k

n
k Yes

FLECKS n− k 2 ≤ 2 EC (δ +1) n
k (δ +1) n

k
n
k No

SYNCH EC n− k 1 1 EC n
k 1 n

k -

Table 1 Performance metrics of replication-based, FLECKS and other algorithms with erasure-codes (for
MDS code of dimension [n,k]) for atomic read/write memory emulation. δ is the maximum number of concurrent
writes with any read during the course of an execution of the algorithm. In practice, δ < 4 [7]. The optimal case
is the use of EC in a synchronous system.

of contents in failed servers is an important operation in such systems. These new codes offer the170

dual benefits of reduced storage cost as well as reduced repair cost during recovery from server171

failures. It remains to be seen whether the advantages of these codes carry over to systems that have172

consistency/concurrency requirements.173

Document Structure. In Section 2, we provide the models and definitions. In Section 3 we describe174

FLECKS. Section 4 provides the proof for correctness and liveness guarantees for FLECKS along175

with bounds for storage and communication costs, and latency analysis of the operations. In Section176

5, we discuss the implementation and experimental validation of FLECKS. Finally, in Section 6 we177

conclude our paper. Due to lack of space some of the proofs are omitted.178

2 Model and Definitions179

A shared atomic storage can be emulated by composing individual atomic objects. Therefore, we aim180

to implement a single atomic read/write memory object. Each data object takes a value from a set181

V . We assume a system consisting of three distinct sets of processes: a set W of writers, a set R182

of readers and S , a set of servers. Servers host data elements (replicas or encoded data fragments).183

Each writer is allowed to WRITE the value of a shared object, and each reader is allowed to READ the184

value of that object. Processes communicate via messages through asynchronous, reliable channels.185

Executions. An execution of an algorithm A is an alternating sequence of states and actions of A186

starting with the initial state and ending in a state. An execution ξ is well-formed if each client does187

not invoke a one operation until it completed the previously invoked operation and it is fair if enabled188

actions perform a step infinitely often. In the rest of the paper we consider executions that are fair and189

well-formed. When process p crashes it stops executing any further step.190

Write and Read Operations. An implementation of a read or a write operation contains an invocation191

action and a response action (such as a return from the procedure). An operation π is complete in an192

execution, if it contains both the invocation and the matching response actions for π; otherwise π193

is incomplete. We say that an operation π precedes an operation π ′ in an execution ξ , denoted by194

π → π ′, if the response step of π appears before the invocation step of π ′ in ξ . Two operations are195

concurrent if neither precedes the other.196

Erasure Codes. Background on Erasure coding: In FLECKS, we use an [n,k] linear MDS code197

[14] over a finite field Fq to encode and store the value v among the n servers. An [n,k] MDS code has198

XX:6 Fast Lean Erasure-coded Atomic Memory Object

the property that any k out of the n coded elements can be used to recover (decode) the value v. For199

encoding, v is divided2 into k elements v1,v2, . . .vk with each element having size 1
k (assuming size200

of v is 1). The encoder Φ takes the k elements as input and produces n coded elements c1,c2, . . . ,cn201

as output, i.e., [c1, . . . ,cn] = Φ([v1, . . . ,vk]). For ease of notation, we simply write Φ(v) to mean202

[c1, . . . ,cn]. The vector [c1, . . . ,cn] is referred to as the codeword corresponding to the value v. Each203

coded element ci also has size 1
k . In our scheme we store one coded element per server. Without loss204

of generality, we associate the coded element ci with server i, 1≤ i≤ n.205

Liveness of operations. We require algorithms to satisfy certain liveness properties, specifically,206

in every fair execution that satisfies certain restrictions in terms of the number of failed nodes, we207

require every operation by a non-faulty client completes, irrespective of the behavior of other clients.208

Storage and Communication Costs. We define the total storage cost as the size of the data209

stored across all servers, at any point during the execution of the algorithm. The communication210

cost associated with a read or write operation is the size of the total data that gets transmitted in the211

messages sent as part of the operation. We assume that metadata, such as version number, process ID,212

etc. used by various operations is of negligible size, and therefore, ignore this in the calculation of213

storage and communication cost. Further, we normalize both the costs with respect to the size of the214

value v; in other words, we compute the costs under the assumption that v has size 1 unit.215

Pseudocode 1 Writer protocol in FLECKS: WRITE(v) at writer w

Variables:
opnum, indicates the operation number for the writer.
Initially 1.

2: put-data:
Compute the coded elements c1, . . . ,cn from v

4: Send (opnum,ci) to server si, 1≤ i≤ n.
Wait for responses from k servers. Let the responses

be {zi,1≤ i≤ k}.

6: Compute z = maxi zi

8: put-tag:
Let t = (w,z)

10: Send (t,opnum) to server si, 1≤ i≤ n.
opnum++. Terminate after receiving k acknowledg-

ments.

Pseudocode 2 Reader protocol in FLECKS: READ at reader r

get-tag-data:
2: Request final tuple from all servers

Wait for responses from k servers.
4:

if all k responses have common tag then
6: decode the corresponding value

return the value.
8: else

compute the maximum received tag and call it treq
10: Let opnumreq be the corresponding opnum.

collect all coded elements corresponding to treq in
list DL

12:

get-data:
14: Send (treq,opnumreq) to all servers.

Collect every response tuple (t,opnum,c) into DL.
16: for received tuple (t,opnum,c), do

if ∃ k coded elements t in DL then.
18: decode the value v for tag t

send read-complete to all servers
20: return v

else
22: if t > treq then

send commit-tag(t,opnum) to all servers,
24: Continue to wait for more tuples.

2 In practice v is a file, which is divided into many stripes based on the choice of the code, various stripes are
individually encoded and stacked against each other. We omit details of represent-ability of v by a sequence of
symbols of Fq, and the mechanism of data striping, since these are fairly standard in the coding theory literature.

K.M. Konwar et al. XX:7

Pseudocode 3 Server response protocol in FLECKS: at server si, 1≤ i≤ n

Variables:
List L ∈ Tags×N× coded elements×{Pre,Fin}, ini-
tially empty.
Last Opnum received from each writer: Op(w),w ∈W
Final tuple (t f ,opnum f ,ci, f), initially
(t0,opnum0,ci,0).
The set R of outstanding READ requests. An element
of R is the form (r, treq,opnumreq). Initially, empty.

2:
put-data-resp received (opnum,ci) from writer w :

4: Op(w) = max(Op(w),opnum)
/*change from Fin to Pre for writing of algorithm*/

6: if ((w, z̃),opnum,⊥,Fin) ∈ L then
L← L∪{((w, z̃),opnum,ci,Pre)}

8: Do commit-tag((w, z̃),opnum)
else

10: Let tin = (w, t f .z+1).
L← L∪{(tin,opnum,ci,Pre)}.

12: Send tin to writer w.

14: put-tag-resp received (t,opnum) from writer w :
Do commit-tag(t,opnum)

16: Send ACK to writer w.

18: get-tag-data-resp request received from reader r :
Send final tuple (t f ,opnum f ,ci, f) to reader r

20:
get-data-resp received (treq,opnumreq) from reader r :

22: R = R ∪ (r, treq,opnumreq).
if t f ≥ treq then

24: send (t f ,opnum f ,ci, f) to reader r.
Do commit-tag(treq,opnumreq)

26:
read-complete-resp request received from reader r :

28: R = R\(r,∗,∗).

30: commit-tag-resp(t,opnum) :
Let t = (w,z).

32: if ((t.w,∗),opnum,ci,Pre) ∈ L then
Update final tuple:

34: if t > t f then
(t f ,opnum f ,ci, f)← (t,opnum,ci).

36: Relay: Send (t,opnum,ci) to every r,(r, treq,∗) ∈
R s.t. t ≥ treq.

Remove from list: L = L\{((w,∗),opnum,ci,∗)}.
38: else if opnum > Op(t.w)

For Future:L← L∪ (t,opnum,⊥,Fin)

3 The FLECKS algorithm216

The FLECKS algorithm is presented in three parts in Pseudocodes. 1, 2 and 3, corresponding to a217

writer, reader and server, respectively. The erasure-code parameter k is chosen as k = n− f , where218

f is the desired server-fault tolerance. By assumption, f < n/2, and thus we get that k > n/2. The219

algorithm relies on the notion of quorums during both phases of the WRITE operation, and the first220

phase of the READ operation. The parameter k denotes the size of quorum in these phases, and is at221

least a majority since k > n/2.222

Tags are used for version control of key values. A tag t is defined as a pair (z,w), where z is an223

positive integer and w ∈W denotes the writer ID. We use T to denote the set of all possible tags. For224

any two tags t1, t2 ∈T we say t2 > t1 if (i) t2.z > t1.z or (ii) t2.z = t1.z and t2.w > t1.w. The relation225

> imposes a total order on T .226

Server-side Local Variables: Each server maintains the following local variables: a) a List227

L ⊂ Tags×N× coded elements×{Pre,Fin}, which forms a temporary storage for tag and coded-228

elements pairs during WRITE operations. The second entry indicates the operation number (opnum)229

of the writer whose entry is stored. The last entry’s meaning will be described further in the text.230

b) A finalized tuple (t f ,opnum f ,ci, f). We refer to t f as the finalized tag, opnum f as the finalized231

opnum, and ci, f as the finalized coded-element, c) Op(w),w ∈W , indicating the last opnum received232

from writer w, and d) the set R of outstanding READ requests. An element of R is the form233

(r, treq,opnumreq).234

We now describe the WRITE and READ operations with the help of Pseudocode 1, 2 and 3, and a235

high-level schematic diagram for the read and write operations are given in Fig. 3.236

The WRITE Operation. Assume that a writer w wishes to WRITE (update to) value v. The writer237

computes the n coded elements [c1, . . . ,cn]. The WRITE operation consists of two rounds. At a high238

level, the first round is the temporary storage phase, where the server adds the coded element into the239

XX:8 Fast Lean Erasure-coded Atomic Memory Object

Writer()

Round 1 Round 2

• Update
• Remove from List
• ACK writer

(a) WRITE operation

reader

Round 1 Round 2

reader

• Register reader
• Relay during 2nd round

of write-operation

Writer

Round2: Finalize (t, c)

1/35

(b) READ Operation

Figure 2 High Level schematic overview of the WRITE and READ protocols of FELCKS.

list. Once the writer gathers that k servers have done so, it starts the second round where a commit240

command is issued whereby the server updates the finalized tuple using the entry in the list (if the241

entry is newer). A pictorial overview of the WRITE protocol appears in Pseudocode 1. We now242

explain the two rounds in detail.243

In the first round put-data, the writer sends the pair (opnum,ci) to server si,1 ≤ i ≤ n, where244

opnum denote the writer’s operation number for the ongoing WRITE operation. The server responds245

via put-data-resp. Upon receiving the message, under normal circumstances (the else part of246

the if statement), the server computes a new tag for this WRITE operation. This is obtained as247

tin = (w, t f .z+1), where t f denotes the finalized tag stored by si, and t f .z denotes the integer part of248

the t f . The server adds the tuple (tin,opnum,ci,Pre) to the temporary storage list L, and responds249

to the writer by sending tin. The if part of the pseudo-code is to take care of the rare case, when250

the message from the writer arrives too slow at the server, where the server has already learned by251

other means that the WRITE operation has already been committed by a quorum of servers. In this252

case, server si directly commits the message (opnum,ci) in round 1. The commit step, under normal253

circumstances, is part of the second round response of the WRITE operation, and is explained below.254

The writer waits to hear tags from k servers, and computes maximum z of the integer parts of the255

received tags. This completes round 1.256

In the second round put-tag, the writer w creates the new tag t = (w,z), and sends the pair257

(t,opnum) to all servers. Upon receiving the message, a server performs, via put-tag-resp, the258

commit-tag step. Under normal circumstances (the if clause of commit-tag-resp), as part of the259

commit-tag-response, the server updates the finalized tuple with the entry in the list corresponding260

to (t.w,opnum), if3 t > t f . The server also removes the entry from the list. This ensures that for any261

successful WRITE operation, every non-faulty server eventually automatically garbage-collects the262

temporary storage entry in the list. The if clause of the commit-tag-resp contains a Relay step that is263

used to server outstanding READ requests. This is explained as part of the READ operation below.264

The else part of commit-tag-resp step is executed during rare circumstances, when the server initiates265

the commit-tag step not as part of the round 2 of the corresponding WRITE operation, but learns266

from a reader that the WRITE operation has already begun the second round but this server has not267

even received the first round message form the writer yet. In the case, the server adds an indicator268

entry to the list L (using the forth Pre/Fin part of the entry), so that when the writer message arrives in269

future, the server can directly proceed to commit the coded-element. Finally, the writer terminates270

after receiving acknowledgments from k servers.271

The READ Operation. The reader during the first round contacts all the servers for the finalized272

3 It is possible that the local temporary tag for corresponding the entry in list is higher than the received tag t. The
reason is that the writer computes the tag by computing maximum among a quorum, and not all the servers. This
local temporary tag is simply ignored, and the finalized tuple is saved using the tag received from the writer. The local
temporary tag is used during the second round only to identify the correct entry in the list that must be committed.

K.M. Konwar et al. XX:9

tuples, and waits for responses from k servers. If all the responses have the same tag, clearly the273

reader can decode using the k responses, and the READ ends in the first round itself. Otherwise, the274

reader computes the maximum tag from among the tags received as part of the finalized tuples, and275

we call this the request tag treq. The corresponding opnumreq is called request opnum. The goal in the276

second round is to use the relay-technique to let the reader decode a value corresponding to a tag that277

is at least as high as treq. A pictorial overview of READ protocol appears in Pseudocode 2.278

In the second round, the reader sends the pair (treq,opnumreq) to all servers. Any server that279

receives the message registers the read-request, as part of the get-data-resp by adding the tuple280

(r, treq,opnumreq) to the set R of outstanding READ requests. Further, if the finalized tag is at least as281

high as the request tag, the server sends finalized tuple to the reader. The goal of the reader registration282

is to enable relaying to the reader until the reader gathers k coded elements corresponding to some283

common tag. The relaying (to outstanding READ requests) happens whenever the server executes284

the commit-tag-resp step for a pair (t,opnum) such that t ≥ treq. Recall that commit-tag-resp step is285

executed as part of the second round response of WRITE operations. It may be noted that a server286

only sends those (tag, coded-element) pairs that are committed, and thus form potential candidates287

for the finalized tuple. In this regard, from the point of view of the reader, the temporary storage list L288

can be thought as elongating the channel from the writer to the server such that a (tag, coded-element)289

pair is ready for consumption by the server only after the writer executes the second round.290

As part of the get-data-resp step, the server also performs the commit-tag step for the pair291

(treq,opnumreq). This is to handle the case where the writer crash fails half-way into the second round292

for the WRITE operation corresponding to (treq,opnumreq). In this case, only a partial set of the servers293

would have performed commit-tag step for the pair (treq,opnumreq), while the rest of the servers294

still hold the coded elements in the temporary storage list L. The execution of the commit-tag step295

as part of the READ operation is in spirit analogous to the reader-write-back (read-repair) operation296

performed replication algorithms [4], and helps complete a partially completed WRITE operation.297

The reader collects (tag, coded-element) pairs until it receives k corresponding to a common298

tag, say tr, whose corresponding value is decoded. During this process, if the reader receives a299

coded-element for a tag t > treq, then (while waiting for further pairs), the reader sends out commit-300

tag(t,opnum) message to the servers. The purpose of this commit tag is exactly the same as that of301

the commit-tag(treq,opnumreq) described above. It may be noted that the utility of these messages302

only arise when the WRITE corresponding to (t,opnum) failed half-way. Under normal circumstances,303

these messages are simply ignored by the server that has already seen the writer commit-tag message.304

In fact, as we shall see in the experiments, even with read-write ratio of 1, the number of reads305

needing the second round is a tiny fraction.306

Finally, once the reader decodes, it sends a READ complete message so that the servers can stop307

relaying. Note that no responses are expected for these read-complete messages.308

Handling Client Failures. While we show that FLECKS ensures linearizable executions and wait-309

freedom availability corresponding to non-faulty client processes despite failure of a reader or310

and writer process, we note that a failed reader/writer process introduces the need for additional311

intervention for performance optimization. A failed reader can result in servers relaying to the reader312

indefinitely. While it is definitely possible to stop relaying algorithmically as in [15] via a gossip313

protocol among the servers, the protocol is redundant for successful reads, and thus contributes high314

burden on the system from a practical point of view. Alternate practical solutions include letting the315

server stop the relaying after a certain timeout duration or threshold number relay messages. In fact,316

if point-to-point channel latency is bounded by ∆, any READ operation completes within 6∆ (see317

Section 4), independent of the number of concurrent writes. In the rare event when the relaying stops318

even before the READ completes (when the point-to-point latency bound is not respected), one can319

always timeout the reader, and restart the read.320

XX:10 Fast Lean Erasure-coded Atomic Memory Object

Similarly, a WRITE that fails during the first round leaves entries in the temporary storage list321

L that is not garbage collected by the algorithm. In our implementation, each server additionally322

garbage collects any entry in the list that is older than a certain threshold time that is set sufficiently323

high from a practical viewpoint.324

4 Liveness and Atomicity of FLECKS325

Liveness. Now we state and prove the liveness property of FLECKS. We recall that the algorithm326

uses an [n,k] MDS code. We assume if a client has already started an operation (say π), the (same)327

client will wait until π is completed before starting a new operation.328

I Theorem 1. (Liveness) Consider any well-formed execution of FLECKS in which at most329

f = n− k servers crash fail during the execution. Then, an operation corresponding to a non-faulty330

client completes irrespective of any past, ongoing or future successful or failed client operations.331

Proof. Liveness of a WRITE operation is easily verified from an inspection of the algorithm. For332

a READ operation, there is nothing to prove if the READ completes in the first round itself. The333

non-trivial part is proving liveness of a READ operation that executes the second phase. Let π be334

such a READ operation corresponding to reader r. As in the algorithm, let (treq,opnumreq) denote the335

message sent by the reader during the get-data phase. Without loss of generality, let s1, . . . ,sk denote336

the set of k servers that never fail during the execution. Let Ti denote the point of execution when si337

receives the get-data request from reader r. Let Tmax = max1≤i≤kTi. Next, let ti = si.t f |Tmax , i.e., ti338

denotes the finalized tag stored by server si at Tmax. Further, let tmax = max1≤i≤kti. The tags tmax and339

treq are not necessarily ordered in any specific way. We now divide the discussion into the following340

cases:341

Case a) tmax ≤ treq: In this case, we show that corresponding to every server si,1≤ i≤ k, there342

exists a point of execution T̂i when si will send the message (treq,opnumreq,ci) to reader r, unless343

si received read-complete message before T̂i. In this case, it is clear that the reader gets k coded344

elements corresponding to the tag treq and thus, can definitely decode the value corresponding to treq,345

after receiving the kth coded-element, unless the READ is complete even before. We consider two sub346

cases here:347

Subcase i) Sever si did not receive put-data request with message (treq.w,opnumreq,ci) until Ti:348

We know that the server si registers the READ request at Ti (by adding the corresponding entry to R).349

Further, by assumption the channel from every writer to every server is ordered, and thus if the server350

has not received the put-data request with message (treq.w,opnumreq,ci) until Ti, this means that351

si.Op(w)|Ti < opnumreq. In this case, the server adds the tuple (treq,opnumreq,⊥,Fin) to its list as352

part of the execution of commit-tag step of get-data-resp. Let T̃i > Ti denote the point of execution353

when si receives put-data request with message (treq.w,opnumreq,ci). Such a point in the execution354

necessarily exists because the tag treq is committed tag, and thus at least one server received the355

put-tag request with message (treq,opnumreq) directly from writer treq.w. This means that the writer356

treq.w necessarily completed the put-data phase in which messages were sent to all n servers (since it357

already executed at least a part of the second phase). We recall here our channel model assumption358

that once message is placed in the channel, it is eventually delivered to the destination process, as359

long as the destination is non-faulty. In the current proof, the server si is non-faulty, and thus will360

eventually receive (treq.w,opnumreq,ci). This completes our justification of the existence of the point361

of execution T̃i.362

To continue with the proof, we note that during the put-data-resp action corresponding to363

(treq.w,opnumreq,ci), server si finds that the WRITE operation has an entry in the list with Fin in the364

last field, and consequently executes commit-tag for the same WRITE operation. In this case, if si did365

K.M. Konwar et al. XX:11

not receive read-complete message until T̃i, it is clear that server will relay the tuple (treq,opnumreq,ci)366

to reader r, as part of the execution of commit-tag-resp(treq,opnumreq). Note that in this case, we367

have T̂i = T̃i.368

Subcase ii) Sever si received put-data request with message (treq.w,opnumreq,ci) before Ti: In this369

case, we first note that si.t f |Ti ≤ si.t f |Tmax ≤ tmax ≤ treq. If si.t f |Ti = treq, then the server sends the tuple370

(treq,opnumreq,ci) to reader r as part of execution Step 2. of get-data-resp corresponding to message371

(treq,opnumreq). If si.t f |Ti < treq, then it is clear that si never received commit-tag(treq,opnumreq)372

request until Ti, and hence it must be true that the tuple (treq.w,opnumreq,ci) ∈ si.L|Ti . In this case,373

the tuple (treq.w,opnumreq,ci) is relayed to the reader r as part of the execution of Step 3, commit-374

tag-resp(treq.w,opnumreq), of the get-data-resp action.375

Case b) tmax > treq: In this case, we show that corresponding to every server si,1≤ i≤ k, there376

exists a point of execution T̂i when si will send the message (tmax,opnummax,ci) to reader r, unless377

si received read-complete message before T̂i. In this case, it is clear that the reader gets k coded378

elements corresponding to the tag tmax and thus, can definitely decode the value corresponding to tmax,379

after receiving the kth coded-element, unless the READ is complete even before.380

To prove this, observe that there exists a server s j ∈ {s1, . . . ,sk} such that s j.t f |Tmax = tmax. We381

know that Tj ≤ Tmax, and hence s j.t f |Tj ≤ s j.t f |Tmax = tmax. If s j.t f |Tj = tmax (trivially true if Tmax = Tj),382

the server s j sends the tuple (tmax,opnummax,c j) to reader r as part of the execution Step 2 of get-383

data-resp. If s j.t f |Tj < tmax, it is clear that there exists a point of execution T̂j,Tj < T̂j < Tmax, where384

server s j executes commit-tag-resp(tmax,opnummax) and changes the finalized tag to tmax. Thus, the385

server s j relays the tuple (tmax,opnummax,ci) to reader r at T̂j, if the server s j has not yet received386

read-complete response. In summary, we have shown that there exists one server s j among the set387

of non-faulty servers that will definitely send the tuple corresponding to (tmax,opnummax) to the388

reader. Once the reader gets the first coded element corresponding to the pair (tmax,opnummax), since389

tmax > treq, the reader sends the commit-tag(tmax,opnummax) message to all the servers.390

It remains to be shown that every other server si ∈ {s1, . . . ,sk}\{s j} also sends coded element391

corresponding to (tmax,opnummax) to the reader. To show this, we once again observe that si.t f |Ti ≤392

si.t f |Tmax ≤ tmax. If si.t f |Ti = tmax, it is clear that the server si sends the tuple (tmax,opnummax,ci)393

to reader r as part of the execution Step 2 of get-data-resp. Now consider the case si.t f |Ti < tmax.394

The READ request is clearly registered. From the discussion so far, we note that the server si will395

eventually receive both the put-data request corresponding to message (tmax.w,opnummax,ci), and396

also the commit-tag request corresponding to message (tmax,opnummax). The put-data request is397

eventually received since the writer has definitely completed the Phase 1 of the WRITE operation, and398

we know from the channel assumption that once a message is placed in the channel, it eventually399

arrives at the destination. The commit-tag request is eventually received since as observed above400

the reader sends the commit-tag(tmax,opnummax) message to all the servers (useful if the writer401

failed during the execution of Phase 2 of the corresponding WRITE operation). Further, the algorithm402

is designed in such a way that the ordering of the arrivals of these two messages does not matter;403

arguments (using the Pre/Fin indicator) similar to those used in Case a) can be used to show that404

the tuple (tmax,opnummax,ci) is committed at the earliest point in the execution when both these405

messages are received. In this case, the server si relays the tuple corresponding to (tmax,opnummax) to406

the reader, if si did not get read-complete message yet. This completes the proof of Case b), and407

hence the proof of liveness of a READ operation corresponding to a non-faulty reader. J408

Atomicity. Below we state and prove the atomicity property of the FLECKS algorithm.409

I Theorem 2. (Atomicity) Any well-formed execution of FLECKS is atomic.410

Proof. Our proof of atomicity is based on the sufficient condition presented in Lemma 13.16 of [19].411

We restrict ourselves to executions consisting of finite number of client operations.412

XX:12 Fast Lean Erasure-coded Atomic Memory Object

Let Π denote the set of all successful client operations in β . Let us also add to Π any failed WRITE413

operation that at least completed its first phase. Corresponding to any such failed WRITE operation,414

we place a response event in the execution, after the response events of every successful operation in415

Π. The relative ordering of response events corresponding to failed WRITE operations do not matter.416

Also, it may be assumed that for any failed WRITE operation π ∈Π, the steps of the WRITE operation417

that were not executed after the failure, get executed after the final response event corresponding to418

any successful operation, and before the artificial response event. With these considerations, every419

operation in Π can be considered as a successful operation. We ignore failed READ operations in β .420

We also ignore failed WRITE operations, that did not manage to complete the first phase.421

We now associate a partial ordering on Π, and show that the partial ordering satisfies the conditions422

of Lemma 13.16 [19]. Note that Lemma 13.16 [19] works with an execution consisting of only423

successful client operations. So we artificially completed those failed WRITE operations whose effect424

might have been captured in the system, and we did this in a such a way that does not affect the425

response events of any of the successful client operations. Technically, if β̂ denotes the execution426

after the addition of the virtual response events corresponding to failed WRITE operations, then β ∼ β̂ ,427

where the equivalence operator ∼ of two executions is defined as in [13]. We prove Lemma 13.16 for428

β̂ . It is a known fact this is sufficient to prove that the original execution β is linearizable. Given this429

material, without loss of generality, we assume β to consist only of successful client operations.430

In order to define the partial ordering on Π, we first define the Tag function for every operation431

in π . For a WRITE operation π , we define the Tag(π) as the commit tag t = (w,z) corresponding432

to the WRITE operation π . For a READ operation φ , we define the Tag(φ) as the finalized tag433

tr = (w,z) whose corresponding value is returned by the READ operation. Recall that the any two434

tags t1 are t2 generated in the algorithm can be compared with each other (see Section 3). The435

partial order (≺) in Π is defined as follows: For any π,φ ∈Π, we say π ≺ φ if one of the following436

holds: (i) Tag(π)< Tag(φ), or (ii) Tag(π) = Tag(φ), and π and φ are WRITE and READ operations,437

respectively.438

We are now ready to prove the properties P1,P2 and P3 stated in Lemma 13.16 for the execution439

β , for the above partial ordering on Π.440

Property P1: Consider two operations π and φ such that π completes before φ is invoked. We441

need to show that it cannot be the case that φ ≺ π . Let us first consider the case when both π and φ442

are writes. Let Tag(π) = tπ = (wπ ,zπ). Before π is complete, we know that at least k servers received443

put-tag request and executed commit-tag(tπ ,opnumπ), where opnumπ is the opnum corresponding444

to π . Clearly, each of these k servers also received the corresponding put-data request from w prior445

to receiving the put-tag request. This follows since we assume that point-to-point channels are446

ordered. This means that each of these k servers has a finalized tag that is at least as high as tπ at the447

point of execution when π completes. Next note that Tag(φ), which by definition is the commit tag448

corresponding to φ , is computed by the writer wφ after receiving the finalized tags from at least k449

servers. Recall that k > n/2, which implies that any two sets of k servers has at least one server in450

common. In this case, it is clear that tφ .z > tπ .z, and consequently, Tag(φ)> Tag(π). This proves451

that it is not true that φ ≺ π .452

Let us next consider the case when π and φ are WRITE and READ operations, respectively. If the453

READ operation returns in phase 1 itself, this means that the reader received k finalized tags all of454

which are same. Clearly, in this case it must be true that tφ ≥ tπ , since as noted above k is at least455

a majority, and we know from the above discussion that before π completes, some set of k servers456

updated its finalized tag to one that is at least as high as tπ . If the READ does not complete in one457

phase, then simply note that the treq computed by the reader is the maximum among the k received458

tags. Clearly, in this case treq ≥ tπ . Finally, note that the value returned by the reader corresponds a459

tag (which is Tag(φ)) that is at least as high as treq. This proves that Tag(φ)≥ Tag(π), and hence it460

K.M. Konwar et al. XX:13

is not true that φ ≺ π .461

Let us next consider the case when π and φ are READ and WRITE operations, respectively.462

Consider the tag tπ whose corresponding value was returned by the reader. We know that k servers463

sent coded elements to the reader, using which the reader decoded the value. From the algorithm, we464

know that a server only sends finalized tuples to a reader. Thus, it is clear that each of the k servers465

has its finalized tag at least as high as tπ before the READ completes. The rest of the proof for this466

case can be argued as in the case where π and φ are both WRITE operations.467

Finally, the case when π and φ are both READ operations can be handled using arguments used in468

the previous three cases.469

Property P2: This follows directly from the definitions of the Tag function and the partial order.470

Property P3: This also follows directly form the definitions of the Tag function and the partial471

order, and by noting a READ operation φ simply returns the value corresponding to Tag(φ). J472

Latency Analysis and Storage Cost. Although FLECKS is designed for asynchronous message473

passing settings, in the case of a reasonably well-behaved network we can bound the latency of an474

operation. Assume that any message sent on a point-to-point channel is delivered at the corresponding475

destination (if non-faulty) within a duration ∆ > 0, and local computations take negligible amount476

of time compared to ∆. Thus, latency in any operation is dominated by the time take taken for the477

delivery of all point-to-point messages involved. Under these assumptions, the latency bounds for478

successful WRITE and READ operations in FLECKS are as follows.479

I Theorem 3. The duration of a WRITE or a READ in FLECKS is at most 4∆ and 6∆, respectively.480

Recall that READ operations use the technique of relaying for completion, and a new relay to481

the reader potentially occurs due to every concurrent WRITE operation. While this may happen, the482

above result guarantees a bound on the READ completion time that is independent of the number of483

concurrent writes experienced by the read.484

Storage Costs. We now provide bounds on the total storage cost incurred by FLECKS under the485

bounded latency model. The storage cost at any point in the execution is the total amount of data that486

is stored in the servers. The cost at any server arises due to the storage of finalized coded-element487

as well as the storage of temporary coded-elements in the list - we account for both of these in our488

calculation. Costs contributed by meta-data are ignored while ascertaining either storage costs.489

Consider a system storing N key-value pairs, where each pair is implemented via an instance of490

FLECKS. We assume using an [n,k] MDS code for each of these instances. Further, every value is491

assumed to have the same size, and let us normalize it to 1 unit of space. Let ρ denote the average492

number of writes per second experienced by the system, where each WRITE can happen on any of493

the N objects allowing for concurrency. Further let θ denote the fraction of writes that fail (due to494

writer crashes). We know from the algorithm that the coded elements from such writes can potentially495

linger around in the temporary list until an external mechanism garbage collects them. Let τ denote496

the maximum duration for which any entry is retained in the list by a server - we assume that after497

τ seconds of adding an entry into the list, the server simply garbage collects the entry if it was not498

removed until then (automatically by the algorithm). The following theorem gives the average storage499

cost in the system in terms of the above parameters under the bounded latency model.500

I Theorem 4. The average storage cost per key-value pair incurred by a system running FLECKS501

under the bounded latency model is given by n
k

[
1+ (4∆+θτ)ρ

N

]
.502

Proof. Cost at server s is given by Cs =Cs,1 +Cs,2, where Cs,1 is the cost due to finalized entries,503

and Cs,2 is due to the entries in the list. The total storage cost C is then given by504

C = ∑
s

Cs,1 +∑
s

Cs,2 = N
n
k
+∑

s
Cs,2, (1)505

XX:14 Fast Lean Erasure-coded Atomic Memory Object

N/10000 N/1000 N/100 N/10 N

Average Writes per Second

2

3

4

5

6

A
v
e
ra

g
e
 S

to
ra

g
e
 C

o
s
t

p
e
r

k
e
y
-v

a
lu

e

FLECKS
REPLICATION

(a) Average storage cost per object. (b) Bandwidth consumed by reads (c) Delay due to encode or decode

Figure 3 (a) Average storage cost per object for ABD (5-way replication) and FLECKS using an [n =

5,k = 3] erasure code is plotted as a function of number of WRITEs per second with N = 104 objects. Even for
one WRITE per object per second, FLECKS significantly saves storage over ABD, for similar fault tolerance. (b)
The total bandwidth consumed by each reader after executing 50,000 reads. (c) The average latency to encode
or decode a value. The plots are for runs with frequency of READ and WRITE is 1.

where Nn/k is the total cost in the system due to the finalized entries. Note that the total number of506

servers in the system does not appear anywhere in our analysis. To estimate the second term, we507

note that any point T in the execution, the average number of active writes retained by the system is508

given by 4∆ρ . This follows because we know the from Theorem 3 that a WRITE completes within509

4∆ seconds, and on average there are 4∆ρ writes that started within the time interval [4∆−T,T] that510

remain active at time T . We also need to count the number of failed writes retained by the system at511

time T . The average number of failed writes retained by system at time T is given by τθρ , and the512

argument is similar to the one for active writes. Thus, if ∑s Cs,2 denotes the average cost due to the513

entries in the list across all servers, then this is given by ∑s Cs,2 =
(4∆ρ+θτρ)n

k . Now, the average cost514

per key-value pair in the system is given by C/N = n
k +

(4∆ρ+θτρ)n
Nk = n

k

[
1+ (4∆+θτ)ρ

N

]
. J515

An illustration of the storage cost bound is provided in Fig. 3 (a). In this example, we assume516

an [n = 5,k = 3] code for a system storing N = 104 key-value pairs, where 0.01% of writes fail, i.e.,517

θ = 10−4. We fix ∆ = 100 ms and τ = 100 s, and these two numbers are based on observations from518

our own experiments. The storage cost is plotted as a function of writes per second in the system. For519

comparison, we also plot the storage cost that would be incurred by a 5-way replicated system.520

5 Implementation and Experimental Validation521

Here we briefly describe our experimental evaluation of FLECKS against an optimized version of the522

ABD algorithm. The algorithms (FLECKS and ABD) are implemented in Golang version go 1.6.3523

with additional libraries for messaging (ZMQ [3]), erasure-coding (ISA-L [1]) and stats collection524

(libstatgrab [2]). The software is deployed via docker containers. For point to point communication525

among the processes, we use ZMQ 3.2.0 [3], which is a distributed (without a centralized broker)526

messaging library built on top of TCP/IP sockets. For the erasure-coding part of the implementation527

we use the open-source version of Intel’s ISA-L [1]. We use the Cauchy matrix based MDS codes.528

We chose Galois field of size 256, since GF(256) is fairly standard in the storage industry.529

System Setting. We deployed each server and client process on a separate virtual machine (VM)530

running Ubuntu Linux 16.04 LTS configured with 8 GB of RAM and a 4-core CPU. The VMs were531

part on an OpenStack cloud platform. The bisectional bandwidth of the platform is about 10 Gbps.532

K.M. Konwar et al. XX:15

In our experiments we stored up to 10000 atomic objects, where each object is implemented via533

an independent instance of FLECKS. Each server runs as a single threaded process handling all the534

objects associated with that server. A client process can access any of the objects. All data is stored535

in memory. For simulating crash failure of server process, we simply kill the process.536

Latency of read and write operations. In Fig. 1, we plot average latency for reads and writes537

while accessing multiple objects (1, 10, 100, 1000 and 10000 objects) in executions of FLECKS and538

ABD. For this scenario, we use 5 readers, 5 writers, and 5 servers. We compare 5-way replication539

ABD with FLECKS based on [5,3] erasure-code. We notice that FLECKS has substantially reduction540

in latency and this improvement is more prominent as the size of payload increases.541

Bandwidth cost for operations. Fig. 3(b) shows the total incoming and outgoing network542

bandwidth (BW) consumed by a single reader client in FLECKS and ABD. With 50000 operations543

and 5-way replication ABD, we expect incoming BW to be about 250 GB when object size is 1000544

kB. From Fig. 1, we see that about 27% of that READs have two phases in ABD, and thus outgoing545

BW, dominated by two phase READs, is around 0.27∗×250 = 67 GB. In FLECKS, the incoming546

BW is dominated by 1 phase READs, and is about 1/3× 250 = 83 GB. Unlike replication, the 2547

phase READs (roughly 3%) in FLECKS does not write-back actual data, and hence outgoing BW of548

FLECKS is negligible.549

Latency due to encoding and decoding. Fig. 3(c) also shows the contribution of erasure code550

encoding and decoding time during a WRITE or a READ in FLECKS. Clearly, latency is minimally551

affected by the erasure-coding operations, consistent with other recent works in literature [22].552

Server failures. To test the effect of server failures, we setup 1000 objects on 10 servers as in the553

experiment. After deployment, we kill two of the server processes (chosen at random). In agreement554

to our liveness guarantees the read and writes operations continue to complete. For a replicated555

system, increasing the number of replicas per object increases latency of operation.556

Effect of Increasing Number of Readers. For a practical system, one expects to see a near-linear557

scaling of overall READ throughput against the number of readers. While we see this behavior for both558

replication and FLECKS, we noted that FLECKS permits a significantly better throughput scaling.559

The advantage can be directly attributed to the lower READ latency of FLECKS.560

6 Conclusion561

We investigated the feasibility of erasure-codes in atomic memory algorithms to reduce storage cost,562

bandwidth costs and latency. With that in mind We designed FLECKS for asynchronous networks,563

that reduces, storage cost for the stored object and bandwidth cost for the operation. FLECKS564

completes the read operations in just one round in the absence of concurrent writes. FLECKS design565

is based on practical settings. FLECKS guarantees liveness of operations in the present of any client566

crash failures and up to n− k server crashes. We proved the atomicity and liveness properties of567

FLECKS. We implemented FLECKS according to our algorithmic specifications. We performed568

extensive experiments on an actual network environment. Future work will invoke extending FLECKS569

to allow repair of crashed servers.570

References571

1 Intel® Intelligent Storage Acceleration Library (Intel® ISA-L). https://software.intel.com/572

en-us/storage/ISA-L. [Online; accessed 23-August-2018].573

2 libstatgrab. https://www.i-scream.org/libstatgrab/. [Online; accessed 23-August-2018].574

3 ZeroMQ: Distributed Messaging. http://zeromq.org/. [Online; accessed 23-August-2018].575

4 ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly in message passing systems.576

Journal of the ACM 42(1) (1996), 124–142.577

https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/storage/ISA-L
https://www.i-scream.org/libstatgrab/
http://zeromq.org/

XX:16 Fast Lean Erasure-coded Atomic Memory Object

5 CACHIN, C., AND TESSARO, S. Optimal resilience for erasure-coded byzantine distributed storage.578

IEEE Computer Society, pp. 115–124.579

6 CADAMBE, V. R., LYNCH, N. A., MÉDARD, M., AND MUSIAL, P. M. A coded shared atomic memory580

algorithm for message passing architectures. Distributed Computing 30, 1 (2017), 49–73.581

7 CHEN, Y. L. C., MU, S., AND LI, J. Giza: Erasure coding objects across global data centers. In582

Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC ’17) (2017), pp. 539–551.583

8 DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,584

SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s highly available key-585

value store. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles586

(New York, NY, USA, 2007), SOSP ’07, ACM, pp. 205–220.587

9 DIMAKIS, A. G., RAMCHANDRAN, K., WU, Y., AND SUH, C. A survey on network codes for distributed588

storage. Proceedings of the IEEE 99, 3 (2011), 476–489.589

10 DUTTA, P., GUERRAOUI, R., AND LEVY, R. R. Optimistic erasure-coded distributed storage. In DISC590

’08: Proceedings of the 22nd international symposium on Distributed Computing (Berlin, Heidelberg,591

2008), Springer-Verlag, pp. 182–196.592

11 GOODSON, G., WYLIE, J., GANGER, G., AND REITER, M. Efficient byzantine-tolerant erasure-coded593

storage. In Dependable Systems and Networks, 2004 International Conference on (June-1 July 2004),594

pp. 135–144.595

12 HENDRICKS, J., GANGER, G. R., AND REITER, M. K. Low-overhead byzantine fault-tolerant storage.596

ACM SIGOPS Operating Systems Review 41, 6 (2007), 73–86.597

13 HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness condition for concurrent objects.598

ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–492.599

14 HUFFMAN, W. C., AND PLESS, V. Fundamentals of error-correcting codes. Cambridge university press,600

2003.601

15 KONWAR, K. M., PRAKASH, N., KANTOR, E., LYNCH, N., MÉDARD, M., AND SCHWARZMANN,602

A. A. Storage-optimized data-atomic algorithms for handling erasures and errors in distributed storage603

systems. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (May604

2016), pp. 720–729.605

16 KONWAR, K. M., PRAKASH, N., LYNCH, N., AND MÉDARD, M. Radon: Repairable atomic data object606

in networks. In The International Conference on Distributed Systems (OPODIS) (2016).607

17 LAMPORT, L. On interprocess communication, part I: Basic formalism. Distributed Computing 1, 2608

(1986), 77–85.609

18 LAMPORT, L. Fast paxos. Distributed Computing 19 (October 2006), 79–103.610

19 LYNCH, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.611

20 NICOLAOU, N., CADAMBE, V., PRAKASH, N., KONWAR, K., MEDARD, M., AND LYNCH, N. ARES:612

Adaptive, reconfigurable, erasure coded, atomic storage implementing a register in a dynamic distributed613

system. In International Conf. on Distributed Computing Systems (ICDCS) (2019).614

21 SPIEGELMAN, A., CASSUTO, Y., CHOCKLER, G., AND KEIDAR, I. Space Bounds for Reliable615

Storage: Fundamental Limits of Coding. In Proceedings of the International Conference on Principles of616

Distributed Systems (OPODIS2015) (2015).617

22 ZHANG, H., DONG, M., AND CHEN, H. Efficient and available in-memory kv-store with hybrid erasure618

coding and replication. In 14th USENIX Conference on File and Storage Technologies (FAST 16) (2016),619

pp. 167–180.620

	Introduction
	Comparison with Other Algorithms, and Related Work
	Other related works

	Model and Definitions
	The FLECKS algorithm
	Liveness and Atomicity of FLECKS
	Implementation and Experimental Validation
	Conclusion

