
The Theory of
Timed I/O Automata
Second Edition

Synthesis Lectures on
Distributed Computing Theory

Editor
Nancy Lynch, Massachusetts Institute of Technology

Synthesis Lectures on Distributed Computing Theory is edited by Nancy Lynch of the Massachusetts
Institute of Technology. The series will publish 50- to 150 page publications on topics pertaining to
distributed computing theory. The scope will largely follow the purview of premier information and
computer science conferences, such as ACM PODC, DISC, SPAA, OPODIS, CONCUR,
DialM-POMC, ICDCS, SODA, Sirocco, SSS, and related conferences. Potential topics include, but
not are limited to: distributed algorithms and lower bounds, algorithm design methods, formal
modeling and verification of distributed algorithms, and concurrent data structures.

The Theory of Timed I/O Automata - Second Edition
Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager
2010

Principles of Transactional Memory
Rachid Guerraoui and Michal Kapalka
2010

Fault-tolerant Agreement in Synchronous Message-passing Systems
Michel Raynal
2010

Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed
Systems
Michel Raynal
2010

The Mobile Agent Rendezvous Problem in the Ring
Evangelos Kranakis, Danny Krizanc, and Euripides Markou
2010

Copyright © 2011 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

The Theory of Timed I/O Automata - Second Edition

Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager

www.morganclaypool.com

ISBN: 9781608450022 paperback
ISBN: 9781608450039 ebook

DOI 10.2200/S00310ED1V01Y201011DCT005

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DISTRIBUTED COMPUTING THEORY

Lecture #5
Series Editor: Nancy Lynch, Massachusetts Institute of Technology

Series ISSN
Synthesis Lectures on Distributed Computing Theory
Print 2155-1626 Electronic 2155-1634

www.morganclaypool.com

The Theory of
Timed I/O Automata
Second Edition

Dilsun K. Kaynar
CyLab, Carnegie Mellon University

Nancy Lynch
MIT Computer Science and Artificial Intelligence Laboratory

Roberto Segala
Dipartimento di Informatica, Università di Verona

Frits Vaandrager
Institute for Computing and Information Sciences, Radboud University Nijmegen

SYNTHESIS LECTURES ON DISTRIBUTED COMPUTING THEORY #5

CM& cLaypoolMorgan publishers&

ABSTRACT
This monograph presents the Timed Input/Output Automaton (TIOA) modeling framework, a basic
mathematical framework to support description and analysis of timed (computing) systems. Timed
systems are systems in which desirable correctness or performance properties of the system depend
on the timing of events, not just on the order of their occurrence. Timed systems are employed in a
wide range of domains including communications, embedded systems, real-time operating systems,
and automated control. Many applications involving timed systems have strong safety, reliability,
and predictability requirements, which make it important to have methods for systematic design of
systems and rigorous analysis of timing-dependent behavior.

The TIOA framework also supports description and analysis of timed distributed
algorithms—distributed algorithms whose correctness and performance depend on the relative
speeds of processors, accuracy of local clocks, or communication delay bounds. Such algorithms
arise, for example, in traditional and wireless communications, networks of mobile devices, and
shared-memory multiprocessors. The need to prove rigorous theoretical results about timed dis-
tributed algorithms makes it important to have a suitable mathematical foundation.

An important feature of the TIOA framework is its support for decomposing timed system
descriptions. In particular, the framework includes a notion of external behavior for a timed I/O
automaton, which captures its discrete interactions with its environment.The framework also defines
what it means for one TIOA to implement another, based on an inclusion relationship between their
external behavior sets, and defines notions of simulations, which provide sufficient conditions for
demonstrating implementation relationships. The framework includes a composition operation for
TIOAs, which respects external behavior, and a notion of receptiveness, which implies that a TIOA
does not block the passage of time.

The TIOA framework also defines the notion of a property and what it means for a property
to be a safety or a liveness property. It includes results that capture common proof methods for
showing that automata satisfy properties.

KEYWORDS
timed computing systems, distributed algorithms, formal modeling and verification,
I/O automata

vii

Contents

Acknowledgments . xi

Notations . xiii

1 Introduction .1

1.1 Overview . 1
1.2 Evolution of the TIOA framework . 3
1.3 Related work . 5
1.4 Organization of the Book . 7

2 Mathematical Preliminaries .9

2.1 Functions and Relations . 9
2.2 Sequences . 10
2.3 Partial Orders . 10
2.4 A Basic Graph Lemma . 11

3 Describing Timed System Behavior . 13

3.1 Time . 13
3.2 Static and Dynamic Types . 13
3.3 Trajectories . 15

3.3.1 Basic Definitions . 15
3.3.2 Prefix Ordering . 16
3.3.3 Concatenation . 16

3.4 Hybrid Sequences . 17
3.4.1 Basic Definitions . 18
3.4.2 Prefix Ordering . 19
3.4.3 Concatenation . 20
3.4.4 Restriction . 20

4 Timed Automata . 23

4.1 Definition of Timed Automata . 23
4.2 Executions and Traces . 31

viii

4.3 Invariants . 36
4.4 Special Kinds of Timed Automata . 38
4.5 Implementation Relationships . 40
4.6 Simulation Relations . 41

4.6.1 Forward Simulations . 42
4.6.2 Refinements . 45
4.6.3 Backward Simulations . 47
4.6.4 History Relations . 50
4.6.5 Prophecy Relations . 54

5 Operations on Timed Automata . 57

5.1 Composition . 57
5.1.1 Definitions and Basic Results . 57
5.1.2 Substitutivity Results . 63

5.2 Hiding . 67
5.3 Extending Timed Automata with Bounds . 68

6 Properties for Timed Automata . 77

6.1 Properties for Hybrid Sequences . 77
6.2 Properties for Timed Automata . 81
6.3 Implementation . 82
6.4 Operations . 83

7 Timed I/O Automata . 85

7.1 Definition of Timed I/O Automata . 85
7.2 Executions and Traces . 86
7.3 Special Kinds of Timed I/O Automata . 86

7.3.1 Feasible and I/O Feasible TIOAs . 86
7.3.2 Progressive TIOAs . 87
7.3.3 Receptive Timed I/O Automata . 88

7.4 Implementation Relationships . 90
7.5 Simulation Relations . 90

8 Operations on Timed I/O Automata . 91

8.1 Composition . 91
8.1.1 Definitions and Basic Results . 91
8.1.2 Substitutivity Results . 93

ix

8.1.3 Composition of Special Kinds of TIOAs . 100
8.2 Hiding . 102

9 Conclusions and Future Work . 103

Bibliography . 105

Authors’ Biographies . 119

Index . 121

Acknowledgments
The authors thank Sayan Mitra for his extensive collaborations with us on developing language

support for TIOA, carrying out numerous case studies, developing proof methods, and extending
TIOA to include probabilistic behavior. We also thank Shinya Umeno for his work on case studies
and proof methods for TIOA.

We thank the many members of the Tempo tool development project, including Alex Shvarts-
man, Laurent Michel, Steve Garland, Scott Smolka, Radu Grosu, Myla Archer, Nancy Griffeth,
Paul Attie, and their students, for their extensive TIOA-related work. This tool development work
certainly helped to exercise and evaluate the TIOA model. Among the Tempo participants, Nancy
Griffeth was especially helpful in applying TIOA and Tempo extensively to practical communication
protocols. She provided great feedback on the tools and the model.

We thank Rui Fan, Seth Gilbert, Tina Nolte, and Matt Brown for using TIOA as the math-
ematical foundation for their theses and related papers. All four carried out extremely thorough
algorithms studies, using the TIOA definitions and results in a deep way. We are glad to see that
TIOA provided them with an adequate foundation for their work. In particular, Seth and Tina
developed new results for TIOAs, some of which have found their way into this edition of the book.

We thank Sayan Mitra and Nancy Griffeth for reviewing the manuscript.
Dilsun Kaynar and Nancy Lynch were supported by DARPA/AFOSR MURI Contract

F49620-02-1-0325, DARPA SEC contract F33615-01-C-1850, NSF ITR grant CCR-0121277,
and Air Force Aerospace Research-OSR Contract F49620-00-1-0097.

Dilsun Kaynar was also supported by the US Army Research Office contract on Perpetually
Available and Secure Information Systems (DAAD19-02-0389) to CMU’s CyLab.

Nancy Lynch was also supported by AFOSR contract FA9550-08-1-0159 and NSF grants
CCF-0702670, CNS-0614414, and CNS-0715397.

Frits Vaandrager was supported by EU IST project IST-2001-35304 (Advanced Methods
for Timed Systems, AMETIST), PROGRESS project TES4999 (Verification of Hard and Softly
Timed Systems, HaaST), NWO/EW project 612.000.103 (Fault-tolerant Real-time Algorithms
Analyzed Incrementally, FRAAI), and EU FP7 project 214755 (Quantitative System Properties in
Model-Driven-Design of Embedded Systems, QUASIMODO).

Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager
November 2010

Notations
a, b action
f, g, h function
i, j index
l locally controlled action
t time point
v, x variable
A set of actions
C task
E set of external actions
F set of functions
H set of internal (hidden) actions
I set of input actions, invariants
J interval
K set of time points
L set of locally controlled actions
O set of output actions
P set of elements in cpo, properties
Q set of automaton states
R (simulation) relation
S set
T set of trajectories
V set of variables
X set of internal variables
x state
v valuation
A,B, C timed (I/O) automaton
D set of discrete transitions
T set of trajectories
N the natural numbers
R the real numbers
T the time axis
Z the integers
V the universe of variables

xiv NOTATIONS

α, β, δ (A, V)-sequence
γ sequence
λ the empty sequence
π projection function
σ, ρ sequence
τ , υ trajectory
� set of start states

1

C H A P T E R 1

Introduction

1.1 OVERVIEW
This book presents the Timed Input/Output Automaton (TIOA) modeling framework, a basic math-
ematical framework to support description and analysis of timed computing systems and timed
distributed algorithms.

Timed systems and timed algorithms: Timed computing systems are systems in which desirable
correctness or performance properties of the system depend on the timing of events, not just on the
order of their occurrence. A typical timed system consists of computer components, which operate
in discrete steps, and timing-related components such as physical or logical clocks, whose behavior
involve continuous transformation over time. Timed systems are employed in a wide range of do-
mains including communications, embedded systems, real-time operating systems, and automated
control. Many applications involving timed systems have strong safety, reliability and predictability
requirements, which makes it important to have methods for systematic design of systems and rigor-
ous analysis of timing-dependent behavior.Timed distributed algorithms are distributed algorithms
whose correctness and performance depend on factors related to timing, such as the relative speeds
of processors, the accuracy of local clocks, or communication delay bounds. Such algorithms arise,
for example, in traditional and wireless communications, networks of mobile devices, and shared-
memory multiprocessors. The need to prove rigorous theoretical results about timed distributed
algorithms makes it important to have a suitable mathematical foundation.

Modeling plays a key role in all stages in the design and analysis of systems. Models represent
system designs at a level of abstraction that is suitable for isolating and focusing on their most
crucial aspects.They can be modified and experimented with more easily than real implementations.
Moreover, if the modeling is performed using the concepts provided by a formal framework, the
modeling can be done more precisely, and analysis and verification methods supported by that
framework can be applied. Timed systems, which combine discrete steps with continuous evolution
of state over time, exhibit complex behaviors that are typically hard to describe and analyze in the
absence of a carefully developed modeling framework [34, 108, 109].

Modeling is equally important for distributed algorithms.To be meaningful, rigorous theoret-
ical results about algorithm behavior must rest on some type of mathematical model. Many, perhaps
most, papers about distributed algorithms define special-purpose models from scratch; a general
modeling framework can be used as a foundation for defining special-purpose models, making
it unnecessary to redefine general concepts and reprove general results. For timed distributed algo-
rithms, defining models is especially challenging; a general framework can make the job much easier.

2 1. INTRODUCTION

A good modeling framework can support algorithm description at different levels of abstraction. It
can serve as the basis for algorithm simulation, and can support formal analysis.

A modeling framework must support designing systems and algorithms in structured ways,
viewing them at multiple levels of abstraction and as compositions of interacting components.
If a framework is to provide flexibility and generality, it must also support nondeterminism. A
system or algorithm designer might wish to allow several potential behaviors at certain points in the
computation of a system, for example, to avoid making assumptions about how the environment will
behave, or to allow several correct implementations for the same design. Such liberty in specification
would not be possible to accommodate without nondeterminism. In addition to supporting all of
these features, modeling frameworks for timed systems and algorithms must provide mechanisms
for representing continuously evolving components such as clocks and timers.

An interesting complication that arises in modeling timed systems and algorithms is that
time can progress in ways that conflict with our intuition about physical time. For example, we may
force time to stop entirely to “urge” some discrete action to happen, or schedule infinitely many
discrete actions to happen in a finite amount of time. A framework needs to provide concepts that
identify the conditions under which a timed system behaves according to our intuitions, that is, the
conditions under which time diverges as the system continues to run.

Timed I/O Automata: In this work, we introduce a basic mathematical framework – the Timed
Input/Output Automaton modeling framework – to support description and analysis of timed systems.
In this framework, a system is represented as a Timed I/O Automaton (TIOA), which is a kind of
nondeterministic, possibly infinite-state, state machine. The state of a TIOA is described by a
valuation of state variables that are internal to the automaton. The state of a TIOA can change in
two ways: instantaneously by the occurrence of a discrete transition, which is labeled by a discrete
action, or according to a trajectory, which is a function that describes the evolution of the state
variables over intervals of time. Trajectories may be continuous or discontinuous functions.

The TIOA framework supports decomposition of system description and analysis. A key to
this decomposition is the rigorously-defined notion of external behavior for timed I/O automata.The
external behavior of each TIOA is defined by a simple mathematical object called a trace–essentially,
a sequence of actions interspersed with time-passage steps. Abstraction and parallel composition are
other important notions for decomposition of system description and analysis.

For abstraction, the framework includes notions of implementation and simulation, which
can be used to view timed systems and algorithms at multiple levels of abstraction, starting from
a high-level version that describes required properties, and ending with a low-level version that
describes a detailed design or implementation. In particular, the TIOA framework defines what it
means for one TIOA, A, to implement another TIOA, B, namely, any trace that can be exhibited
by A is also allowed by B. In this case, A might be more deterministic than B, in terms of either
discrete transitions or trajectories. For instance,B might be allowed to perform an output action at an
arbitrary time before noon, whereas A produces the same output sometime between 10 and 11 AM.
The notion of a simulation relation from A to B provides a sufficient condition for demonstrating

1.2. EVOLUTION OF THE TIOA FRAMEWORK 3

that A implements B. A simulation relation is defined to satisfy three conditions, one relating start
states, one relating discrete transitions, and one relating trajectories of A and B.

For parallel composition, the framework provides a composition operation, by which TIOAs
modeling individual timed system components can be combined to produce a model for a larger
timed system.The model for the composed system can describe interactions among the components,
which involves joint participation in discrete transitions. Composition requires certain “compatibil-
ity” conditions, namely, that each output action be controlled by at most one automaton, and that
internal actions of one automaton cannot be shared with any other automaton. The composition
operation respects traces, for example, if A1 implements A2 then the composition of A1 and B
implements the composition of A2 and B. Composition also satisfies projection and pasting results,
which are fundamental for compositional design and verification of systems: a trace of a composition
of TIOAs “projects” to give traces of the individual TIOAs, and traces of components are “pastable”
to give behaviors of the composition.

If aTIOA approaches a finite point in time without quite reaching it,or by scheduling infinitely
many discrete actions to happen in a finite amount of time, it is said to exhibit Zeno behavior , in
reference to Zeno’s paradox [76]. The TIOA framework includes a notion of receptiveness, which is
used to classify automata that do not contribute to producing Zeno behavior, and which is preserved
by composition. Receptiveness of a TIOA, A, in the TIOA framework is defined in terms of the
existence of a strategy, which is defined as a subautomaton of A that chooses some of the evolutions
from each state of A.

The TIOA framework also supports a notion of a property, which is defined for sequences of
alternating actions and trajectories, and includes a definition of what it means for an automaton to
satisfy a property. The framework also includes basic results about the classification of properties as
safety and liveness properties and common proof methods for showing automata satisfy the stated
properties.

The TIOA framework presented in this work is purely mathematical. However, it constitutes
a natural basis for computer support tools [57]. A preliminary version of a toolset is available at
http://www.veromodo.com.

1.2 EVOLUTION OF THE TIOA FRAMEWORK

The TIOA modeling framework presented in this book evolved from the Hybrid Input/Output Au-
tomaton (HIOA) modeling framework for hybrid systems [79] by Lynch, Segala and Vaandrager.
The HIOA framework, in turn, evolved from the I/O automata of [83, 84, 76, 53, 54], a fundamental
modeling framework for (untimed) asynchronous systems. Our approach is based on the assumption
that a timed system can be viewed as a special kind of a hybrid system where the continuous trans-
formation is limited to internal system components that determine the timing of events. Therefore,
we define a TIOA as a restricted HIOA where the only essential difference between an HIOA and
a TIOA is that an HIOA may have external variables to model the continuous information flowing
into and out of the system, in addition to state variables. A major consequence of this definition

4 1. INTRODUCTION

is that the communication between TIOAs is restricted to shared-action communication only. The
TIOA model does not impose any further restrictions on the expressive power of the HIOA model.

We developed this new modeling framework even though there are several timed automaton
models that extend the basic I/O automaton model [91, 107, 87, 86], because we have observed
that the new HIOA modeling framework offered a way of improving and simplifying previous work
on timed I/O automaton models [107, 87, 86]. For example, the use of trajectories as first-class
objects to represent the external behavior of a timed automaton, the definition of a strategy as an
automaton rather than a two-player game, and the variable structure on states are all new features
that were motivated by what we learned in developing the HIOA framework and that gave rise to
more elegant definitions and simpler proofs for timed automata.

We intend theTIOA model to serve as a general semantic framework in which previous results
for timed I/O automata [87, 91, 107, 86] and other related models [7, 88, 100, 23] can be re-cast
in a style that is upwardly compatible with the new HIOA model. Limiting the communication
to discrete interactions is an apt choice since the previous timed I/O automaton models also adopt
this type of communication. On the other hand, by avoiding any further restrictions on the general
hybrid model, we obtain an expressive model suitable for specifying complex timing behavior. For
example, our model does not require variables to be either discrete or to evolve at the same rate as
real time as in some other models [7, 100]. Consequently, algorithms such as clock synchronization
algorithms that use local clocks evolving at different and varying rates can be formalized naturally in
our framework. The TIOA model can also naturally describe systems undergoing dynamic changes
and reconfigurations through component failures, joins, recoveries, etc.

The fact that HIOAs subsume TIOAs as a special case does not eliminate the need for a
separate modeling framework for timed systems. Having no external variables in the TIOA model
gives rise to considerable simplifications in the theory. For example, proving that the composition
of two timed automata is a well-defined automaton becomes simpler in the absence of external
variables; no extra compatibility conditions as in the general HIOA framework are needed to obtain
the desirable composition theorems for TIOAs.

In the past few years, we and others have developed the Tempo formal language for describing
TIOAs, along with a collection of basic tools for analyzing Tempo programs. The syntax of the
language corresponds closely to the pseudocode style used in this book. The tools consist of: (a) a
front-end processor for Tempo, incorporating syntax and static semantic checking; (b) a simulation
tool allowing simulation of Tempo specifications; (c) a model-checking link through an interface to
the model-checker UPPAAL [100, 66]; and (d) a theorem-proving link through an interface to the
theorem-prover PVS [98]. We refer to [57, 56, 32, 33] for more information on the TIOA toolset,
and to the Tempo project web site [51]. The web site includes a user manual for Tempo, which
contains comprehensive information about the language and several detailed examples. The Tempo
project builds upon our prior work on the IOA language [35].

TIOAs have been used to specify and analyze many timed systems, from a variety of domains
including vehicle and air-traffic control systems [44, 120, 119, 68, 117, 27, 74, 72, 70, 43, 77],

1.3. RELATED WORK 5

communications [111, 112, 71, 73, 69, 29, 62, 116], and mobile robotics [78, 39, 40]. The TIOA
framework has also been used as the foundation for describing and analyzing many timed dis-
tributed algorithms, including algorithms for implementing atomic memory [82, 38, 41, 20], for
synchronizing clocks [28, 30, 63, 61], and for implementing applications in mobile wireless net-
works [26, 25, 96, 97, 16, 19]. Some of this work has involved development of new application-
dependent structure in terms of TIOA; for instance, Nolte [96] defined concepts related to self-
stabilization of wireless network algorithms.

1.3 RELATED WORK

There are several formalisms and tools for timed systems that are based on automata and state
transition models. In this section, we briefly introduce those lines of work that we think are most
closely related to ours. Note that we do not focus on the toolsets and their capabilities, but rather on
the underlying formal models and languages.

One of the widely used formal frameworks for timed systems is that of Alur-Dill timed
automata [7, 5]. An Alur-Dill automaton is a finite directed multigraph augmented with a finite set
of clock variables. The semantics of such a timed automaton are defined as a state transition system
in which each state consists of a location and a clock valuation. Clocks are assumed to change with
the same rate as real-time, that is, with rate 1. Timed automata accept timed languages consisting of
sequences of events tagged with their occurrence times.The main technical result for timed automata
is that emptiness and reachability are decidable. Decision problems such as universality and language
inclusion are undecidable for timed automata. A slight generalization of Alur-Dill timed automata
are the linear hybrid automata of [6]. In this model, apart from clocks that progress with rate 1, one
can also use continuous variables whose derivatives are contained in some arbitrary interval. The
reachability problem for linear hybrid automata is undecidable [6].

The aim of facilitating automated verification has motivated the restrictions on the expressive
power in the Alur-Dill and linear hybrid automata models. Over the two last decades, numerous
papers have refined the decidability boundary of [7, 5]; for instance, see [50, 64, 18, 13, 8, 118].
The timed automaton model presented in this book is much more expressive than the Alur-Dill and
linear hybrid automata models. In our model, there are no finiteness assumptions and no restrictions
imposed on the dynamic types of variables.Our focus has been to develop a general formal framework
with a well-defined notion of external behavior, parallel composition and abstraction that supports
reasoning with simulation relations.

Uppaal [100, 66] is a widely used modeling and verification tool for timed systems. It supports
the description of systems as a network of Alur-Dill timed automata and enhances that model with
CCS-style communication [92] along with other notions such as committed and urgent locations.
Uppaal also supports (synchronous) broadcast communication and communication via shared vari-
ables. Uppaal has a sophisticated model-checker that explores the whole state space of the modeled
system to verify timing properties. Therefore, finiteness assumptions are built into the model to

6 1. INTRODUCTION

make such verification possible and the operations on clocks are restricted. Uppaal can be used as a
model-checker for restricted TIOAs. We have done some preliminary work in this direction [104].

A compositional simulation-based verification method for Uppaal was presented in [11] and
is applied to the Zeroconf protocol in [10]. It would be interesting to work on an alternative com-
positional semantics for (a subset of) Uppaal based on some variation of our restricted hybrid I/O
automaton model.There are several small mismatches due to the style of communication and notions
such as committed locations. It remains to be seen to what extent we can use the communication
mechanisms of our automata to model these formally. We could, for example, allow a nonempty set
of external variables with restricted dynamic types and seek restrictions on the use of shared variables
in Uppaal, which would allow us to view these variables as external variables in the HIOA sense.
Recently, an extension of Uppaal with input and output actions, also called timed I/O automata, was
proposed in [21] aiming at compositional design using the concepts of timed games [17].

Kronos [121, 22] is another verification tool for timed systems that uses Alur-Dill automata.
This tool requires systems to be represented as timed automata and the correctness conditions to
be expressed in the real-time temporal logic TCTL [4]. Kronos, as Uppaal, can perform model-
checking using a symbolic representation of the infinite state space by sets of linear constraints.
Kronos can model-check full TCTL and implements the symbolic algorithm developed by [46]. It
would be possible to use Kronos as a model-checker for restricted TIOAs.

The IF notation, which is the intermediate representation used in the IF toolset [15], is based
on Alur-Dill automata extended with discrete data variables, communication primitives, dynamic
process creation and destruction.This notation has been designed such that it can serve as a target for
the translation of higher-level modeling languages, such as real-time extensions of SDL and UML.
The support for dynamic process creation and destruction appears to be a distinguishing feature of
the IF notation.

A well-known model checking tool for linear hybrid automata (based on a semi-decision
procedure) is HyTech [47]. The input language of HyTech can be translated into our TIOA model,
to apply TIOA verification methods. Likewise, TIOAs whose continuous variables conform to the
linearity conditions of HyTech could be verified using model-checking capabilities of HyTech. For
an overview of verification tools for hybrid systems we refer to [99].

The timed I/O automaton modeling framework presented in this monograph can be used to
express models that use lower and upper time bounds on tasks or actions [91, 88]. Our framework
includes an operation for adding time bounds on a subset of the actions of a timed automaton. As
a result of this operation, lower bounds are transformed to appropriate preconditions for transitions
and upper bounds are transformed to stopping conditions for trajectories.

An interesting timed automaton model called “Clock GTA ” was introduced in [23]. The
model was used for describing algorithms that behave in accordance with their timing constraints in
certain intervals but may exhibit timing failures for some other intervals.The possibility of expressing
such an ability turns out to be crucial for performance and fault-tolerance analysis for practical

1.4. ORGANIZATION OF THE BOOK 7

algorithms [23, 75]. We are interested in finding a systematic way of describing such behavior with
our timed I/O automaton model.

1.4 ORGANIZATION OF THE BOOK
The rest of this book is organized as follows. Chapter 2 contains mathematical preliminaries. Chap-
ter 3 defines notions that are useful for describing the behavior of timed systems, most importantly,
trajectories and timed sequences. Chapter 4 defines timed automata (TAs), which contain all of the
structure of TIOAs except for the classification of external actions as inputs or outputs. It also defines
external behavior for TAs and implementation and simulation relationships between TAs. Chap-
ter 5 presents composition and hiding operations for TAs, along with operations for adding bounds
that relate TAs to other timed automaton models. Chapter 6 presents definitions and results on
the classification of properties of TAs as safety and liveness properties. Chapter 7 defines timed I/O
automata (TIOAs) by adding an input/output classification to TAs, and extends the theory of TAs to
TIOAs. It also defines special kinds of TIOAs such as progressive and receptive TIOAs. Chapter 8
presents compositionality results for TIOAs in general, and for the special classes of progressive and
receptive TIOAs. Finally, Chapter 9 presents some conclusions and discusses future work. Examples
are included throughout.

An earlier edition of this book was published in 2006 [59]. In this second edition, some
minor errors in the first edition have been corrected and some clarifications and references have been
added. We have also included new material in Chapter 6 on properties, and several other results
about composition. A still earlier version of the work appeared in [58].

9

C H A P T E R 2

Mathematical Preliminaries
In this chapter, we give basic mathematical definitions and notation that will be used as a foundation
for our definitions of timed automata and timed I/O automata. These definitions involve functions,
sequences, partial orders, and untimed automata. Many readers might prefer to skip directly to
Chapter 4, referring back to Chapters 2 and 3 as needed.

2.1 FUNCTIONS AND RELATIONS

If f is a function, then we denote the domain and range of f by dom(f) and range(f), respectively.
If S is a set, then we write f � S for the restriction of f to S, that is, the function g with dom(g) =
dom(f) ∩ S such that g(c) = f (c) for each c ∈ dom(g).

We say that two functions, f and g, are compatible if f � dom(g) = g � dom(f). If f and g

are compatible functions then we write f ∪ g for the unique function h with dom(h) = dom(f) ∪
dom(g) satisfying the condition: for each c ∈ dom(h), if c ∈ dom(f) then h(c) = f (c) and if c ∈
dom(g) then h(c) = g(c). More generally, if F is a set of pairwise compatible functions then we
write

⋃
F for the unique function h with dom(h) = ⋃{dom(f) | f ∈ F } satisfying the condition:

for each f ∈ F and c ∈ dom(f), h(c) = f (c).
If f is a function whose range is a set of functions and S is a set, then we write f ↓ S for the

function g with dom(g) = dom(f) such that g(c) = f (c) � S for each c ∈ dom(g).
The restriction operation ↓ is extended to sets of functions by pointwise extension. Also, if

f is a function whose range is a set of functions, all of which have a particular element d in their
domain, then we write f ↓ d for the function g with dom(g) = dom(f) such that g(c) = f (c)(d)

for each c ∈ dom(g).
We say that two functions, f and g, whose ranges are sets of functions are pointwise compatible

if for each c ∈ dom(f) ∩ dom(g), f (c) and g(c) are compatible. If f and g have the same domain
and are pointwise compatible, then we denote by f ∪̇ g the function h with dom(h) = dom(f) such
that h(c) = f (c) ∪ g(c) for each c.

A relation over sets X and Y is defined to be any subset of X × Y . If R is a relation, then
we denote the domain and range of R by dom(R) and range(R), respectively. A relation over X

and Y is total over X if dom(R) = X. If R is a relation over X and Y , and x ∈ X, we define
R(x) = {y ∈ Y | (x, y) ∈ R}. We say that a relation R over X and Y is image-finite if for each
x ∈ X, R(x) is finite.

10 2. MATHEMATICAL PRELIMINARIES

2.2 SEQUENCES

Let S be any set. A sequence σ over S is a function from a downward-closed subset of Z>0 to S.
Thus, the domain of a sequence is either the set of all positive integers, or is of the form {1, . . . , k}
for some k. In the first case, we say that the sequence is infinite, and in the second case finite. We use
|σ | to denote the cardinality of dom(σ). The sets of finite and infinite sequences over S are denoted
by S∗ and Sω, respectively. Concatenation of a finite sequence ρ with a finite or infinite sequence σ

is denoted by ρ � σ . The empty sequence, that is the sequence with the empty domain, is denoted
by λ. The sequence containing one element c ∈ S is abbreviated as c. We say that a sequence σ is
a prefix of a sequence ρ, denoted by σ ≤ ρ, if σ = ρ � dom(σ). Thus, σ ≤ ρ if either σ = ρ, or σ

is finite and ρ = σ � σ ′ for some sequence σ ′. If σ is a nonempty sequence then head (σ) denotes
the first element of σ and tail (σ) denotes σ with its first element removed. Moreover, if σ is finite,
then last(σ) denotes the last element of σ and init(σ) denotes σ with its last element removed. Let
σ and σ ′ be sequences over S. Then σ ′ is a subsequence of σ provided that there exists a monotone
increasing function f : dom(σ ′) → dom(σ) such that σ ′(i) = σ(f (i)) and f (i + 1) = f (i) + 1
for all i ∈ dom(σ ′). If 1 ≤ j1 ≤ j2 ≤ |σ |, then we define σ(j1 . . . j2) to be the subsequence of σ

obtained by extracting the elements in positions j1, . . . , j2; that is, σ ′ is the subsequence obtained
from function f of length j2 − j1 + 1, where f (i) = i + j1 − 1 for all i ∈ dom(σ ′).

2.3 PARTIAL ORDERS

We recall some basic definitions and results regarding partial orders, and in particular, complete
partial orders (cpos) from [42, 45]. A partial order is a set S together with a binary relation � that is
reflexive, antisymmetric, and transitive. In the sequel, we usually denote posets by the set S without
explicit mention to the binary relation �.

A subset P ⊆ S is bounded (above) if there is a c ∈ S such that d � c for each d ∈ P ; in this
case, c is an upper bound for P . A least upper bound (lub) for a subset P ⊆ S is an upper bound c for
P such that c ≤ d for every upper bound d for P . If P has a lub, then it is necessarily unique, and
we denote it by

⊔
P . A subset P ⊆ S is directed if every finite subset Q of P has an upper bound

in P . A poset S is complete, and hence is a complete partial order (cpo) if every directed subset P of S

has a lub in S.
A finite or infinite sequence of elements, c0 c1 c2 . . ., of a partially ordered set (S, �) is called

a chain if ci � ci+1 for each nonfinal index i. We define the limit of the chain, limi→∞ ci , to be the
lub of the set {c0, c1, c2, . . .} if S contains such a bound; otherwise, the limit is undefined. Since a
chain is a special case of a directed set, each chain of a cpo has a limit.

A function f : S → S′ between posets S and S′ is monotone if f (c) � f (d) whenever c � d.
If f is monotone and P is a directed set, then the set f (P) = {f (c) | c ∈ P } is directed as well. If
f is monotone and f (

⊔
P) = ⊔

f (P) for every directed P , then f is said to be continuous.
An element c of a cpo S is compact if, for every directed set P such that c � ⊔

P , there is
some d ∈ P such that c � d. We define K(S) to be the set of compact elements of S. A cpo S is

2.4. A BASIC GRAPH LEMMA 11

algebraic if every c ∈ S is the lub of the set {d ∈ K(S) | d � c}. A simple example of an algebraic cpo
is the set of finite or infinite sequences over some given domain, equipped with the prefix ordering.
Here the compact elements are the finite sequences.

2.4 A BASIC GRAPH LEMMA
We require the following lemma, a slight generalization of König’s Lemma [60]. If G is a directed
graph, then a root of G is defined to be a node with no incoming edges.

Lemma 2.1 Let G be an infinite directed graph that satisfies the following properties.

1. G has finitely many roots.

2. Each node of G has finite outdegree.

3. Each node of G is reachable from some root of G.

Then, there is an infinite path in G starting from some root.

Proof. An extension of the usual proof of König’s Lemma [60]. �

13

C H A P T E R 3

Describing Timed System
Behavior

In this chapter, we give basic definitions that are useful for describing discrete and continuous
changes to the system’s state. The key notions are static and dynamic types for variables, trajectories,
and hybrid sequences. Most of the material in this chapter comes from the paper on the HIOA
modeling framework [79]. The reader is referred to [79] for the proofs that are not included here.
Again, the reader might prefer to skip directly to Chapter 4 and refer back to this chapter as needed.

3.1 TIME
Throughout this monograph, we fix a time axis T, which is a subgroup of (R, +), the real numbers
with addition. We assume that every infinite, monotone, bounded sequence of elements of T has
a limit in T. The reader may find it convenient to think of T as the set R of real numbers, but
the set Z of integers and the singleton set {0} are also examples of allowed time axes. We define
T≥0 �= {t ∈ T | t ≥ 0}.

An interval J is a nonempty, convex subset of T. We denote intervals as usual: [t1, t2] = {t ∈
T | t1 ≤ t ≤ t2}, [t1, t2) = {t ∈ T | t1 ≤ t < t2}, etc. An interval J is left-closed (right-closed) if it has
a minimum (resp., maximum) element, and left-open (right-open) otherwise. It is closed if it is both
left-closed and right-closed.We write min(J) and max(J) for the minimum and maximum elements,
respectively, of an interval J (if they exist), and inf(J) and sup(J) for the infimum and supremum,
respectively, of J in R ∪ {−∞, ∞}. For K ⊆ T and t ∈ T, we define K + t

�= {t ′ + t | t ′ ∈ K}.
Similarly, for a function f with domain K , we define f + t to be the function with domain K + t

satisfying, for each t ′ ∈ K + t , (f + t) (t ′) = f (t ′ − t).
In some definitions and theorems in the monograph where we use R as the time domain, we

assume that the relation ≤ on R extends to a relation on R ∪ {∞} such that ∞ ≤ ∞ and for all
t ∈ R, t < ∞.

3.2 STATIC AND DYNAMIC TYPES
We assume a universal set V of variables. A variable represents a location within the state of a system.
For each variable v, we assume both a (static) type, which gives the set of values it may take on, and
a dynamic type, which gives the set of trajectories it may follow. Formally, for each variable v we
assume the following:

14 3. DESCRIBING TIMED SYSTEM BEHAVIOR

• type(v), the (static) type of v. This is a nonempty set of values.

• dtype(v), the dynamic type of v. This is a set of functions from left-closed intervals of T to
type(v) that satisfies the following properties:

1. (Closure under time shift)
For each f ∈ dtype(v) and t ∈ T, f + t ∈ dtype(v).

2. (Closure under subinterval)
For each f ∈ dtype(v) and each left-closed interval J ⊆ dom(f), f � J ∈ dtype(v).

3. (Closure under pasting)
Let f0 f1 f2, . . . be a sequence of functions in dtype(v) such that, for each nonfinal index
i, dom(fi) is right-closed and max(dom(fi)) = min(dom(fi+1)). Then the function f

defined by f (t)
�= fi(t),where i is the smallest index such that t ∈ dom(fi), is in dtype(v).

Example 3.1 (Discrete variables). Let v be any variable and let Constant be the set of constant
functions from a left-closed interval of T to type(v). Then Constant is closed under time shift and
subinterval. If the dynamic type of v is obtained by closing Constant under the pasting operation,
then v is called a discrete variable. This is essentially the same as the definition of a discrete variable
in [88].

Example 3.2 (Analog variables). Assume that T = R. Let v be any variable whose static type is
an interval of R and Continuous be the set of continuous functions from a left-closed interval of
T to type(v). Then Continuous is closed under time shift and subinterval. If the dynamic type of v

is obtained by closing Continuous under the pasting operation, then v is called an analog variable.
Figure 3.1 shows an example of a function f in the dynamic type of an analog variable. Function f is
defined on the interval [0, 4) and is obtained by pasting together four pieces. At the boundary points
between these pieces, f takes the value specified by the leftmost piece, which makes f continuous
from the left. Note that f is undefined at time 4. Also note that, in a setting with T = R, a real-valued
discrete variable is a special kind of analog variable as constant functions are also continuous.

Example 3.3 (Standard real-valued function classes). If we take T = R and type(v) = R, then other
examples of dynamic types can be obtained by taking the pasting closure of standard function classes
from real analysis, the set of differentiable functions, the set of functions that are differentiable k times
(for any k), the set of smooth functions, the set of integrable functions, the set of Lp functions (for
any p), the set of measurable locally essentially bounded functions [113], or the set of all functions.

Standard function classes are closed under time shift and subinterval, but not under pasting.
A natural way of defining a dynamic type is as the pasting closure of a class of functions that is closed
under time shift and subinterval. In such a case, it follows that the new class is closed under all three
operations.

3.3. TRAJECTORIES 15

0 4

Figure 3.1: Example of a function in the dynamic type of an analog variable.

3.3 TRAJECTORIES

In this section, we define the notion of a trajectory, define operations on trajectories, and prove
simple properties of trajectories and their operations. A trajectory is used to model the evolution of
a collection of variables over an interval of time.

3.3.1 BASIC DEFINITIONS
Let V be a set of variables, that is, a subset of V. A valuation v for V is a function that associates
with each variable v ∈ V a value in type(v). We write val (V) for the set of valuations for V . Let J

be a left-closed interval of T with left endpoint equal to 0. Then a J -trajectory for V is a function
τ : J → val (V), such that for each v ∈ V , τ ↓ v ∈ dtype(v). A trajectory for V is a J -trajectory for
V , for any J . We write trajs(V) for the set of all trajectories for V . If Q is a set of valuations for
some set V of variables, we write trajs(Q) for the set of all trajectories whose range is a subset of Q.

A trajectory for V where V = ∅ is simply a function from a time interval to the special function
with the empty domain. Thus, the only interesting information represented by such a trajectory is
the length of the time interval that constitutes the domain of the trajectory. We use trajectories over
the empty set of variables when we wish to capture the amount of time-passage but abstract away
the evolution of variables.

16 3. DESCRIBING TIMED SYSTEM BEHAVIOR

A trajectory for V with domain [0, 0] is called a point trajectory for V . If v is a valuation for
V then ℘(v) denotes the point trajectory for V that maps 0 to v. We say that a J -trajectory is finite
if J is a finite interval, closed if J is a (finite) closed interval, open if J is a right-open interval, and
full if J = T≥0. If T is a set of trajectories, then finite(T), closed (T), open(T), and full (T) denote
the subsets of T consisting of all the finite, closed, open, and full trajectories in T , respectively.

If τ is a trajectory then τ.ltime, the limit time of τ , is the supremum of dom(τ). We define
τ.fval , the first valuation of τ , to be τ(0), and if τ is closed, we define τ.lval , the last valuation of τ ,
to be τ(τ.ltime). For τ a trajectory and t ∈ T≥0, we define

τ � t
�= τ �[0, t],

τ � t
�= τ �[0, t),

τ � t
�= (τ �[t, ∞)) − t.

Note that, since dynamic types are closed under time shift and subintervals, the result of applying the
above operations is always a trajectory, except when the result is a function with an empty domain.
By convention, we also write τ � ∞ �= τ and τ � ∞ �= τ .

3.3.2 PREFIX ORDERING
Trajectory τ is a prefix of trajectory υ, denoted by τ ≤ υ, if τ can be obtained by restricting υ to
a subset of its domain. Formally, if τ and υ are trajectories for V , then τ ≤ υ iff τ = υ � dom(τ).
Alternatively, τ ≤ υ iff there exists a t ∈ T≥0 ∪ {∞} such that τ = υ � t or τ = υ � t . If τ ≤ υ

then clearly dom(τ) ⊆ dom(υ). If T is a set of trajectories for V , then pref (T) denotes the prefix
closure of T , defined by:

pref (T)
�= {τ ∈ trajs(V) | ∃υ ∈ T : τ ≤ υ}.

We say that T is prefix closed if T = pref (T).
The following lemma gives a simple domain-theoretic characterization of the set of trajectories

over a given set V of variables.

Lemma 3.4 Let V be a set of variables. The set trajs(V) of trajectories for V , together with the prefix
ordering ≤, is an algebraic cpo. Its compact elements are the closed trajectories. In fact, each element of the
cpo is the limit of a chain of compact elements.

We say that a set P of trajectories is closed under limits if the limit of each chain of elements
of P is contained in P .

3.3.3 CONCATENATION
The concatenation of two trajectories is obtained by taking the union of the first trajectory and the
function obtained by shifting the domain of the second trajectory until the start time agrees with the

3.4. HYBRID SEQUENCES 17

limit time of the first trajectory; the last valuation of the first trajectory, which may not be the same
as the first valuation of the second trajectory, is the one that appears in the concatenation. Formally,
suppose τ and τ ′ are trajectories for V , with τ closed. Then the concatenation τ � τ ′ is the function
given by

τ � τ ′ �= τ ∪ (τ ′ �(0, ∞) + τ.ltime).

Because dynamic types are closed under time shift and pasting, it follows that τ � τ ′ is a trajectory
for V . Observe that τ � τ ′ is finite (resp., closed, full) if and only if τ ′ is finite (resp., closed, full).
Observe also that concatenation is associative.

The following lemma, which is easy to prove, shows the close connection between concate-
nation and the prefix ordering.

Lemma 3.5 Let τ and υ be trajectories for V with τ closed. Then

τ ≤ υ ⇔ ∃τ ′ : υ = τ � τ ′.

Note that if τ ≤ υ, then the trajectory τ ′ such that υ = τ � τ ′ has an arbitrary value for τ ′.fval
and the remainder of the trajectory is unique. Note also that the “⇐” implication in Lemma 3.5
would not hold if the first valuation of the second argument, rather than the last valuation of the
first argument, were used in the concatenation.

We extend the definition of concatenation to any (finite or countably infinite) number of
arguments. Let τ0 τ1 τ2 . . . be a (finite or infinite) sequence of trajectories such that τi is closed for
each nonfinal index i. Define trajectories τ ′

0, τ
′
1, τ

′
2, . . . inductively by

τ ′
0

�= τ0,

τ ′
i+1

�= τ ′
i

� τi+1 for nonfinal i.

Lemma 3.5 implies that for each nonfinal i, τ ′
i ≤ τ ′

i+1. We define the concatenation τ0
� τ1

� τ2 · · ·
to be the limit of the chain τ ′

0, τ
′
1, τ

′
2, . . .; existence of this limit follows from Lemma 3.4.

3.4 HYBRID SEQUENCES

In this section, we introduce the notion of a hybrid sequence, which is used to model a combination of
changes that occur instantaneously and changes that occur over intervals of time. Our definition is
parameterized by a set A of actions, which are used to model instantaneous changes and instantaneous
synchronizations with the environment, and a set V of variables, which are used to model changes
over intervals of time. We also define some special kinds of hybrid sequences and some operations
on hybrid sequences, and give basic properties.

18 3. DESCRIBING TIMED SYSTEM BEHAVIOR

3.4.1 BASIC DEFINITIONS
Fix a set A of actions and a set V of variables. An (A, V)-sequence is a finite or infinite alternating
sequence α = τ0 a1 τ1 a2 τ2 . . ., where:

1. each τi is a trajectory in trajs(V);

2. each ai is an action in A;

3. if α is a finite sequence then it ends with a trajectory; and

4. if τi is not the last trajectory in α then τi is closed.

We write S(A, V) to denote the set of (A, V)-sequences. A hybrid sequence is an (A, V)-sequence
for some A and V .

Since the trajectories, in a hybrid sequence can be point trajectories, our notion of hybrid
sequence allows a sequence of discrete actions to occur at the same real time, with corresponding
changes of variable values. An alternative approach is described in [102], where state changes at a
single real time are modeled using a notion of “superdense time”. Specifically, hybrid behavior is
modeled in [102] using functions from an extended time domain, which includes countably many
elements for each real time, to states.

If α is a hybrid sequence, with notation as above, then we define the limit time of α, α.ltime,
to be

∑
i τi .ltime. A hybrid sequence α is defined to be:

• time-bounded if α.ltime is finite.

• admissible if α.ltime = ∞.

• closed if α is a finite sequence and its final trajectory is closed.

• open if α is a finite sequence and its final trajectory is open.

• Zeno if α is neither closed nor admissible, that is, if α is time-bounded and is either open or
an infinite sequence.

• nonZeno if α is not Zeno.

We write A(A, V) and C(A, V) to denote the sets of admissible and closed (A, V)-sequences,
respectively.Figure 3.2 illustrates the classification of hybrid sequences.Observe that finite admissible
hybrid sequences are always open,and infinite time-bounded sequences are always Zeno.Finite time-
bounded sequences can be either closed or Zeno and open. For any hybrid sequence α, we define
the first valuation of α, α.fval , to be head (α).fval . Also, if α is closed, we define the last valuation of
α, α.lval , to be last(α).lval , that is, the last valuation in the final trajectory of α.

If α is a closed (A, V)-sequence, where V = ∅ and β ∈ trajs(∅), we call α � β a time-extension
of α.

3.4. HYBRID SEQUENCES 19

admissibletime−bounded

open

closed

Zeno

open

infinite

finite

Zeno

Figure 3.2: Classification of hybrid sequences.

3.4.2 PREFIX ORDERING
We say that (A, V)-sequence α = τ0 a1 τ1 . . . is a prefix of (A, V)-sequence β = υ0 b1 υ1 . . ., de-
noted by α ≤ β, provided that (at least) one of the following holds:

1. α = β.

2. α is a finite sequence ending in some τk ; τi = υi and ai+1 = bi+1 for every i, 0 ≤ i < k; and
τk ≤ υk .

Like the set of trajectories over V , the set of (A, V)-sequences is an algebraic cpo:

Lemma 3.6 Let V be a set of variables and A a set of actions. The set of (A, V)-sequences, together with
the prefix ordering ≤, is an algebraic cpo. Its compact elements are the closed (A, V)-sequences. In fact, each
element of the cpo is the limit of a chain of compact elements.

We say that a set P of (A, V)-sequences is closed under limits if the limit of each chain of
elements of P is contained in P . Set P is closed under time-bounded limits if, for each chain of elements
of P with a limit α that is time-bounded, α is contained in P . In a similar way, we define closure
under admissible limits, finite limits, Zeno limits, etc.

20 3. DESCRIBING TIMED SYSTEM BEHAVIOR

3.4.3 CONCATENATION
Suppose α and α′ are (A, V)-sequences with α closed. Then the concatenation α � α′ is the (A, V)-
sequence given by

α � α′ �= init(α) (last(α) � head (α′)) tail (α′).

(Here, init, last, head, and tail are ordinary sequence operations.)

Lemma 3.7 Let α and β be (A, V)-sequences with α closed. Then

α ≤ β ⇔ ∃α′ : β = α � α′.

Note that if α ≤ β, then the (A, V)-sequence α′ such that β = α � α′ is unique except that it has

an arbitrary value in val (V) for α′.fval .
As we did for trajectories, we extend the concatenation definition for (A, V)-sequences to

any finite or infinite number of arguments. Let α0 α1 . . . be a finite or infinite sequence of (A, V)-
sequences such that αi is closed for each nonfinal index i. Define (A, V)-sequences α′

0, α
′
1, . . .

inductively by

α′
0

�= α0,

α′
i+1

�= α′
i

� αi+1 for nonfinal i.

Lemma 3.7 implies that for each nonfinal i, α′
i ≤ α′

i+1. We define the concatenation α0
� α1 · · · to

be the limit of the chain α′
0, α

′
1, . . .; existence of this limit is ensured by Lemma 3.6.

3.4.4 RESTRICTION
Let A and A′ be sets of actions and let V and V ′ be sets of variables. The (A′, V ′)-restriction of
an (A, V)-sequence α, denoted by α �(A′, V ′), is obtained by first projecting all trajectories of α

on the variables in V ′, then removing the actions not in A′, and finally concatenating all adjacent
trajectories. Formally, we define the (A′, V ′)-restriction first for closed (A, V)-sequences and then
extend the definition to arbitrary (A, V)-sequences using a limit construction. The definition for
closed (A, V)-sequences is by induction on the length of those sequences:

τ �(A′, V ′) = τ ↓ V ′ if τ is a single trajectory,

α a τ �(A′, V ′) =
{

(α �(A′, V ′)) a (τ ↓ V ′) if a ∈ A′,
(α �(A′, V ′)) � (τ ↓ V ′) otherwise.

It is easy to see that the restriction operator is monotone on the set of closed (A, V)-sequences.
Hence, if we apply this operation to a directed set, the result is again a directed set. Together with
Lemma 3.6, this allows us to extend the definition of restriction to arbitrary (A, V)-sequences by:

α �(A′, V ′) = �{β �(A′, V ′) | β is a closed prefix of α}.

3.4. HYBRID SEQUENCES 21

The next four lemmas state some basic properties of the restriction operation.

Lemma 3.8 (A′, V ′)-restriction is a continuous operation.

Lemma 3.9 (α0
� α1

� · · ·) �(A, V) = α0 �(A, V) � α1 �(A, V) �

Lemma 3.10 (α �(A, V)) �(A′, V ′) = α �(A ∩ A′, V ∩ V ′).

Lemma 3.11 Let α be a hybrid sequence, A a set of actions and V a set of variables.

1. α is time-bounded if and only if α �(A, V) is time-bounded.

2. α is admissible if and only if α �(A, V) is admissible.

3. If α is closed then α �(A, V) is closed.

4. If α is nonZeno then α �(A, V) is nonZeno.

Example 3.12 (A Zeno execution with a closed (A, V)-restriction). In order to understand why
in Lemma 3.11 we have an implication in only one direction in items 3 and 4, consider the Zeno
sequence α of the form ℘(v) a ℘ (v) a ℘ (v) Let A be a set such that a /∈ A and let V consist
of the variables in dom(v). Obviously, α �(A, V), which is ℘(v), is closed, and hence also nonZeno.
This shows that the fact that α �(A, V) is closed (resp., nonZeno) does not imply that α is closed
(resp., nonZeno).

23

C H A P T E R 4

Timed Automata
In this chapter, as a preliminary step toward defining timed I/O automata, we define a slightly more
general timed automaton model. In timed automata, actions are classified as external or internal, but
external actions are not further classified as input or output; the input/output distinction is added
in Chapter 7. We define how timed automata execute and define implementation and simulation
relations between timed automata.

4.1 DEFINITION OF TIMED AUTOMATA
A timed automaton is a state machine whose states are divided into variables, and that has a set of
discrete actions, some of which may be internal and some external. The state of a timed automaton
may change in two ways: by discrete transitions, which change the state atomically, and by trajectories,
which describe the evolution of the state over intervals of time. The discrete transitions are labeled
with actions; this will allow us to synchronize the transitions of different timed automata when we
compose them in parallel. The evolution described by a trajectory may be described by continuous
or discontinuous functions.

Formally, a timed automaton (TA) A = (X, Q, �, E, H,D,T) consists of:

• A set X of internal variables.

• A set Q ⊆ val (X) of states.

• A nonempty set � ⊆ Q of start states.

• A set E of external actions and a set H of internal actions, disjoint from each other.
We write A

�= E ∪ H .

• A set D ⊆ Q × A × Q of discrete transitions.
We use x

a→A x′ as shorthand for (x, a, x′) ∈ D. Here and elsewhere, we sometimes drop the
subscript and write x

a→ x′, when we think A should be clear from the context. We say that
a is enabled in x if x

a→ x′ for some x′. We say that a set C of actions is enabled in a state x if
some action in C is enabled in x.

• A set T ⊆ trajs(Q) of trajectories. Given a trajectory τ ∈ T we denote τ.fval by τ.fstate and, if
τ is closed, we denote τ.lval by τ.lstate.When τ.fstate = x and τ.lstate = x′, we write x

τ→A x′.
We require that the following axioms hold:

24 4. TIMED AUTOMATA

T0 (Existence of point trajectories)
If x ∈ Q then ℘(x) ∈ T .

T1 (Prefix closure)
For every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T .

T2 (Suffix closure)
For every τ ∈ T and every t ∈ dom(τ), τ � t ∈ T .

T3 (Concatenation closure)
Let τ0 τ1 τ2 . . . be a sequence of trajectories in T such that, for each nonfinal index i, τi

is closed and τi .lstate = τi+1.fstate. Then τ0
� τ1

� τ2 · · · ∈ T .

A timed automaton is essentially a hybrid automaton in the sense of [79] in which W , the set of
external variables, is empty. Apart from that, the only difference is the addition of Axiom T0, a small
restriction that does not affect any of the results of [79] but that we need to prove Theorem 8.8.
Axioms T1-3 express some natural further conditions on the set of trajectories that we need to
construct our theory. A key part of this theory is a parallel composition operation for timed automata.
In a composed system, any trajectory of any component automaton may be interrupted at any time
by a discrete transition of another (possibly independent) component automaton. Axiom T1 ensures
that the part of the trajectory up to the discrete transition is a trajectory, and Axiom T2 ensures that
the remainder is a trajectory. Axiom T3 is required because the environment of a timed automaton,
as a result of its own internal discrete transitions, may change its dynamics repeatedly, and the
automaton must be able to follow this behavior. Axiom T3 implies that the set T of trajectories is
closed under limits.

Our definition of a timed automaton differs from previous definitions of timed automata [86,
107] in two major respects. First, the states are structured using variables, which have dynamic
types with specific closure properties. The variable structure is convenient for writing specifications
and the dynamic types are useful in analyzing continuous evolution of the state. Second, the set of
trajectories is defined as an explicit component of an automaton. In the previous definitions, time-
passage was represented by special time-passage actions and trajectories were defined implicitly, as
auxiliary functions describing the effects of time-passage actions on states.

Notation: We often denote the components of a TA A by XA, QA, �A, EA, etc., and the compo-
nents of a TA Ai by Xi , Qi , �i , Ei , etc. We sometimes omit these subscripts, where no confusion
seems likely. For example, we typically specify sets of trajectories using differential and algebraic
equations and inclusions. Below, we explain a few notational conventions that help us in doing
this. Suppose the time domain T is R, τ is a (fixed) trajectory over some set of variables V , and
v ∈ V . With some abuse of notation, we use the variable name v to denote the function τ ↓ v

in dom(τ) → type(v), which gives the value of v at all times during trajectory τ . That is, for all
t ∈ dom(τ), we have v(t) = (τ ↓ v)(t) = τ(t)(v). Similarly, we view any expression e containing
variables from V as a function with domain dom(τ). Suppose that v is a variable and e is a real-
valued expression containing variables from V . Using these conventions we can say, for example,

4.1. DEFINITION OF TIMED AUTOMATA 25

that τ satisfies the algebraic equation

v = e

which means that, for every t ∈ dom(τ), v(t) = e(t), that is, the constraint on the variables expressed
by the equation v = e holds for each state on trajectory τ . Now suppose also that e, when viewed as
a function, is integrable. Then we say that τ satisfies

d(v) = e

if, for every t ∈ dom(τ), v(t) = v(0) + ∫ t

0 e(t ′)dt ′. Equivalently, for every t1, t2 ∈ dom(τ) such that
t1 ≤ t2, v(t2) = v(t1) + ∫ t2

t1
e(t ′)dt ′. Note that this interpretation of the differential equation makes

sense even at points where v is not differentiable. A similar interpretation of differential equations
is used by Polderman and Willems [103], who call functions defined in this way “weak solutions”.

We generalize this notation to handle inequalities as well as equalities. Suppose that v is a
variable and e is a real-valued expression containing variables from V . The inequality

e ≤ v

means that, for every t ∈ dom(τ), e(t) ≤ v(t). That is, the constraint expressed by the inequality
e ≤ v holds for each state of trajectory τ . Similarly, the inequality

v ≤ e

means that, for every t ∈ dom(τ), v(t) ≤ e(t). Now suppose that e is integrable when viewed as a
function. Then we say that τ satisfies

e ≤ d(v)

if, for every t1, t2 ∈ dom(τ) such that t1 ≤ t2, v(t1) + ∫ t2
t1

e(t ′)dt ′ ≤ v(t2), and τ satisfies

d(v) ≤ e

if, for every t1, t2 ∈ dom(τ) such that t1 ≤ t2, v(t2) ≤ v(t1) + ∫ t2
t1

e(t ′)dt ′.

Conventions for automata specifications: In all the examples of this monograph we assume the
time axis T to be R and specify timed automata by using a variant of the TIOA language presented
in [93, 56, 32, 33].

An automaton specification consists of four main parts: a signature, which lists the actions
along with their kinds (external or internal), and parameter types, a state variables list, which de-
clares the names and types of state variables, a collection of transition definitions and a trajectories
definition.

Unless specified otherwise, the set of states of an automaton equals the set of all valuations
of its state variables. Static types of variables are always declared explicitly in the state variables list.
For example, we write v:t for a variable v of static type t. Moreover, a variable can be initialized

26 4. TIMED AUTOMATA

to a specific value allowed by its type. For example, in order to initialize the variable v above to
the value val, we write v:t := val. If no initial value is specified it is assumed to be arbitrary.
The state variables list in an automaton specification can be followed by an initially clause, which
consists of a predicate that constrains the automaton parameters and initial values of state variables.
All of the static types used in the examples have standard interpretations, except possibly for the
type AugmentedReal, which denotes R ∪ {∞}.

The dynamic types of variables are specified implicitly. By default, variables of type Real
are assumed to be analog and variables of types other than Real are assumed to be discrete. The
definition of what it means for a variable to be discrete or analog is given in Examples 3.1 and 3.2.
The keyword discrete is used to qualify a discrete variable of type Real. Although timed automata
may contain variables that are neither discrete nor analog, none of our examples use such variables.

The transitions are specified in precondition-effect style. A pre clause specifies the enabling
condition for an action. An eff clause contains a list of statements that specify the effect of performing
that action on the state. All the statements in an effect clause are assumed to be executed sequentially
in a single indivisible step.The absence of a specified precondition for an action means that the action
is always enabled and the absence of a specified effect means that performing the action does not
change the state.

The trajectories are specified using a combination of algebraic and differential equations and
inequalities, and stopping conditions. A trajectory belongs to the set of legal trajectories of an
automaton if it satisfies the stopping condition expressed by the stop when clause, and the equations
or inequalities in the evolve clause. The stopping condition is satisfied by a trajectory if the only state
in which the condition holds (if any) is the last state of that trajectory. That is, time cannot advance
beyond the point where the stopping condition is true. The evolve clause specifies the algebraic and
differential equations that must be satisfied by the trajectories. We write d(v) = e for d(v) = e,
d(v) ≤ e for d(v) ≤ e and e ≤ d(v) for e ≤ d(v). We assume that the evolution of each variable
follows a continuous function throughout a trajectory.This implies that the value of a discrete variable
is constant throughout a trajectory: time-passage does not change the value of discrete variables.

Example 4.1 (Time-bounded channel). The automaton TimedChannel in Fig. 4.1 is the specifica-
tion of a reliable FIFO channel that delivers its messages within a certain time bound, represented
by the automaton parameter b of type Real which is nonnegative. The other automaton parameter
M is an arbitrary type parameter that represents the type of messages communicated by the channel.

The variable queue is used to hold a sequence of pairs consisting of a message that has
been sent and its delivery deadline. The variable now is used to describe real time. Every send(m)
transition adds to the queue a new pair whose first component is m and whose second component is
the deadline now + b. A receive(m) transition can occur only when m is the first message in the
queue and it results in the removal of the first message from the queue.

The trajectory specification shows that the variable now increases with rate 1, that is, at the
same rate as real time. The stopping condition implies that, within a trajectory, time cannot pass
beyond the point where now becomes equal to the delivery deadline of some message in the queue.

4.1. DEFINITION OF TIMED AUTOMATA 27

a u t o m a t o n TimedChannel(b: Real, M: Type) w h e r e b ≥ 0
t y p e Packet = t u p l e o f message : M, deadline : Real

s i g n a t u r e
e x t e r n a l send(m: M), receive(m: M)

s t a t e s
queue: Queue[Packet] := {},
now: Real := 0

t r a n s i t i o n s
e x t e r n a l send(m)

e f f
queue := append ([m,now+b],queue)

e x t e r n a l receive(m)
p r e

head(queue). message = m
e f f

queue := tail(queue)
t r a j e c t o r i e s

s t o p when
∃p: Packet p ∈ queue ∧ (now = p.deadline)

e v o l v e
d(now) = 1

Figure 4.1: Time-bounded channel.

Example 4.2 (Periodic sending process). The automaton PeriodicSend in Fig. 4.2 is the specifi-
cation of a process that sends messages periodically, every u time units, where u is an automaton
parameter of type Real which is nonnegative. The type parameter M represents the type of the
messages sent by the process.

The analog variable clock is a timer whose value records the amount of time that has elapsed
since it was last reset to 0. A send(m) transition can occur only when clock = u, and it causes
clock to be reset. The trajectory specification says that clock increases at the same rate as real time
and time cannot pass beyond the point where clock = u.

Example 4.3 (Periodic sending process with failures).The specification of the PeriodicSendprocess
from Example 4.2 does not model failures. We now consider a variant of PeriodicSend where the
process may fail and stop doing any discrete actions. The specification of this new automaton is
given in Fig. 4.3.

The discrete variable failed in automaton PeriodicSend2 is a boolean flag that records
whether the process is failed. It is initialized to false and is set to true when a fail action occurs.
The trajectory specification of PeriodicSend2 shows that time can advance without any bound when
the process is failed.

28 4. TIMED AUTOMATA

a u t o m a t o n PeriodicSend(u: Real, M: Type) w h e r e u ≥ 0
s i g n a t u r e

e x t e r n a l send(m: M)
s t a t e s

clock: Real := 0
t r a n s i t i o n s

e x t e r n a l send(m)
p r e

clock = u
e f f

clock := 0
t r a j e c t o r i e s

s t o p when
clock = u

e v o l v e
d(clock) = 1

Figure 4.2: Periodic sending process.

Example 4.4 (Timeout process).The automaton Timeout in Fig. 4.4 is the specification of a process
that awaits the receipt of a message from another process. If u time units elapse without such a
message arriving, Timeout performs a timeout action, thereby “suspecting” the other process. When
a message arrives it “unsuspects” the other process. Timeout may suspect and unsuspect repeatedly.

The discrete variable suspected is a flag that shows whether Timeout suspects that the other
process is failed. The variable clock is a timer that records the amount of time that has elapsed
since the receipt of the last message. A receive(m) transition can occur at any time; this causes the
variable clock to be reset and the flag suspected to be set to false. If clock reaches u before
the arrival of a message then the timeout action becomes enabled. The process sets suspected to
true as a result of a timeout.

The trajectory specification shows that clock increases at the same rate as real time and,
if suspected = false, then time cannot go beyond the point where clock = u. Note that if
suspected = true, there is no restriction on the amount of time that can elapse.

Example 4.5 (Fischer’s algorithm). The timed automaton FischerME presented in Figs. 4.5 and
4.6 is the specification of a shared memory mutual exclusion algorithm which uses a single shared
variable that can be read and written by all the participants. We fix here the number of participants
to be four, by defining Index to be an enumeration consisting of four elements. Note, however, that
this specification can be generalized to any finite number of participants.

The automaton parameters u_set and l_check represent upper and lower time bounds for
the set(i) and check(i) actions respectively. We assume that u_set < l_check.

4.1. DEFINITION OF TIMED AUTOMATA 29

a u t o m a t o n PeriodicSend2(u: Real, M: Type) w h e r e u ≥ 0
s i g n a t u r e

e x t e r n a l send(m: M), fail
s t a t e s

failed : Bool := false,
clock: Real := 0

t r a n s i t i o n s
e x t e r n a l send(m)

p r e
¬failed ∧ clock = u

e f f
clock := 0

e x t e r n a l fail
e f f

failed := true
t r a j e c t o r i e s

s t o p when
¬failed ∧ clock = u

e v o l v e
d(clock) = 1

Figure 4.3: Periodic sending process with failures.

The shared variable x can be assigned any value of type Index plus one additional special
value nil. If a process is in the critical region, then the variable x contains the index of that process.
If all users are in the remainder region, then the variable x contains the value nil. The array variable
pc records the program counters of all processes. The array variable lastset keeps track of the
deadlines by which the processes’ set actions must occur. Similarly, the array variable firstcheck
keeps track of the earliest time the processes’ check actions may occur. The analog variable now
models real time.

The transition definitions for external actions try(i), crit(i), exit(i), and rem(i) are
straightforward. When a process performs one of these actions, its program counter is updated to
record the region entered by the process. The most interesting transition definitions are test(i),
set(i), and check(i) since they are the ones that involve timing constraints of the algorithm.
When a process i performs a test action and observes x to be nil, it sets lastset[i] to now +
u_set. This sets the deadline for the performance of the set(i) action. Note that this deadline
is enforced through the stopping condition in the trajectory specification. The transition set(i)
sets firstcheck[i] to now + l_check.The value of firstcheck[i] determines the earliest time
check(i) may occur. The check(i) action is enabled only when the current time has at least this
value.

30 4. TIMED AUTOMATA

a u t o m a t o n Timeout(u: Real, M: Type) w h e r e u > 0
s i g n a t u r e

e x t e r n a l receive(m: M), timeout
s t a t e s

suspected : Bool := false,
clock: Real := 0

t r a n s i t i o n s
e x t e r n a l receive(m)

e f f
clock := 0;
suspected := false

e x t e r n a l timeout
p r e

¬suspected ∧ clock = u
e f f

suspected := true
t r a j e c t o r i e s

s t o p when
clock = u and ¬suspected

e v o l v e
d(clock) = 1

Figure 4.4: Timeout.

The stopping condition implies that if the value of now reaches the value of lastset[i] for
some process i at some point in time, then that point must be the limit time of the trajectory.

Example 4.6 (Clock synchronization).The automaton ClockSync(u,r:Real, i:Index) in Fig. 4.7
is the specification of a single process in a clock synchronization algorithm. Each process has a
physical clock and generates a logical clock. The goal of the algorithm is to achieve “agreement” and
“validity” among the logical clock values. Agreement means that the logical clocks are close to one
another. Validity means that the logical clocks are within the range of the physical clocks.

The algorithm is based on the exchange of physical clock values between different pro-
cesses in the system. The parameter u determines the frequency of sending messages. Processes
in the system are indexed by the elements of the type Index which we assume to be pre-defined.
ClockSync(u,r:Real, i:Index) has a physical clock physclock, which may drift from the real time
with a drift rate bounded by r. It uses the variable maxother to keep track of the largest physical
clock value of the other processes in the system. The variable nextsend records when it is sup-
posed to send its physical clock to the other processes. The logical clock, logclock, is defined to
be the maximum of maxother and physclock. Formally logclock is a derived variable, which is
a function whose value is defined in terms of the state variables.

4.2. EXECUTIONS AND TRACES 31

t y p e Index = e n u m e r a t i o n o f p1, p2, p3, p4

t y p e PcValue = e n u m e r a t i o n o f rem, test, set, check,
leavetry , crit, reset, leaveexit

a u t o m a t o n FischerME(u_set, l_check : Real)
w h e r e u_set ≥ 0 ∧ l_check ≥ 0 ∧ u_set < l_check
s i g n a t u r e

e x t e r n a l try(i:Index), crit(i:Index), exit(i:Index), rem(i:Index)
i n t e r n a l test(i:Index), set(i:Index),

check(i:Index), reset(i:Index)

s t a t e s
x: Null[Index] := nil,
pc: Array[Index,PcValue] := c o n s t a n t (rem),
lastset : Array[Index, d i s c r e t e AugmentedReal] := c o n s t a n t (infty),
firstcheck : Array[Index, d i s c r e t e AugmentedReal] := c o n s t a n t (0),
now: Real := 0

Figure 4.5: Fischer’s mutual exclusion algorithm: signature and states.

A send(m,i) transition is enabled when m = physclock and nextsend = physclock.
It causes the value of nextsend to be updated so that the next send can occur when physclock
has advanced by u time units. The transition definition for receive(m,j,i) specifies the effect of
receiving a message from another process j in the system. Upon the receipt of a message m from
j, i sets maxother to the maximum of m and the current value of maxother, thereby updating its
knowledge of the largest physical clock value of other processes in the system.

The trajectory specification is slightly different from that in the previous examples. In this
example, the analog variable physclock does not change at the same rate as real time but it drifts
with a rate that is bounded by r.The periodic sending of physical clocks to other processes is enforced
through the stopping condition in the trajectory specification. Time is not allowed to pass beyond
the point where physclock = nextsend.

4.2 EXECUTIONS AND TRACES

We now define execution fragments, executions, trace fragments, and traces, which are used to
describe automaton behavior. An execution fragment of a timed automaton A is an (A, V)-sequence
α = τ0 a1 τ1 a2 τ2 . . ., where (1) each τi is a trajectory in T , and (2) if τi is not the last trajectory in

α then τi .lstate
ai+1→ τi+1.fstate. An execution fragment records what happens during a particular run

32 4. TIMED AUTOMATA

t r a n s i t i o n s
e x t e r n a l try(i) e x t e r n a l crit(i)

p r e p r e
pc[i] = rem pc[i] = leavetry

e f f e f f
pc[i] := test pc[i] := crit

i n t e r n a l test(i) e x t e r n a l exit(i)
p r e p r e

pc[i] = test pc[i] = crit
e f f e f f

i f x = nil t h e n pc[i] := reset
pc[i] := set;
lastset[i] := now + u_set

i n t e r n a l set(i) i n t e r n a l reset(i)
p r e p r e

pc[i] = set pc[i] = reset
e f f e f f

x := embed(i); x := nil;
pc[i] := check; pc[i] := leaveexit
lastset[i] := infty;
firstcheck[i] := now + l_check

i n t e r n a l check(i) e x t e r n a l rem(i)
p r e p r e

pc[i] = check ∧ pc[i] = leaveexit
now ≥ firstcheck[i] e f f

e f f pc[i] := rem
i f x = embed(i) t h e n pc[i] := leavetry
e l s e pc[i] := test

t r a j e c t o r i e s
s t o p when

∃i: Index now = lastset[i]
e v o l v e

d(now) = 1

Figure 4.6: Fischer’s mutual exclusion algorithm: transitions and trajectory definitions.

of a system, including all the instantaneous, discrete state changes and all the changes to the state
that occur while time advances. We write fragsA for the set of all execution fragments of A.

If α is an execution fragment, with notation as above, then we define the first state of α,
α.fstate, to be α.fval . An execution fragment of a timed automaton A from a state x of A is an
execution fragment of A whose first state is x. We write fragsA(x) for the set of execution fragments
of A from x. An execution fragment α is defined to be an execution if α.fstate is a start state, that

4.2. EXECUTIONS AND TRACES 33

a u t o m a t o n ClockSync(u, r: Real, i: Index) w h e r e u > 0 ∧ (0 ≤ r < 1)
s i g n a t u r e

e x t e r n a l send(m: Real, c o n s t i: Index),
receive(m: Real, j: Index, c o n s t i: Index) w h e r e j �= i

s t a t e s
nextsend : d i s c r e t e Real := 0,
maxother : d i s c r e t e Real := 0,
physclock : Real := 0

d e r i v e d v a r i a b l e s
logclock = max(maxother , physclock)

t r a n s i t i o n s
e x t e r n a l send(m, i)

p r e
m = physclock ∧ physclock = nextsend

e f f
nextsend := nextsend + u

e x t e r n a l receive(m, j, i)
e f f

maxother := max(maxother , m)
t r a j e c t o r i e s

s t o p when
physclock = nextsend

e v o l v e
(1 - r) ≤ d(physclock) ≤ (1 + r)

Figure 4.7: Clock synchronization.

is, α.fstate ∈ �. We write execsA for the set of all executions of A. If α is a closed (A, V)-sequence
then we define the last state of α, α.lstate, to be α.lval .

Like trajectories also execution fragments are closed under countable concatenation.

Lemma 4.7 Let α0 α1 . . . be a finite or infinite sequence of execution fragments of A such that, for each
nonfinal index i, αi is closed and αi.lstate = αi+1.fstate. Then α0

� α1
� · · · is an execution fragment

of A.

Proof. Follows easily from the definitions, using Axiom T3. �

The characterization of the prefix ordering on (A, V)-sequences from Lemma 3.7 carries over
to execution fragments.

Lemma 4.8 Let α and β be execution fragments of A with α closed. Then

α ≤ β ⇔ ∃α′ ∈ fragsA : β = α � α′.

34 4. TIMED AUTOMATA

Proof. Implication “⇐” follows from the corresponding implication in Lemma 3.7. Implication “⇒”
follows from the definitions and T2. �

The external behavior of a timed automaton is captured by the set of “traces” of its execution
fragments, which record external actions and the trajectories that describe the intervening passage of
time. A trace consists of alternating external actions and trajectories over the empty set of variables,
∅; the only interesting information contained in these trajectories is the amount of time that elapses.

Formally, if α is an execution fragment, then the trace of α, denoted by trace(α), is the (E, ∅)-
restriction of α, α �(E, ∅). A trace fragment of a timed automaton A from a state x of A is the trace
of an execution fragment of A whose first state is x. We write tracefragsA(x) for the set of trace
fragments of A from x. Also, we define a trace of A to be a trace fragment from a start state, that is,
the trace of an execution of A, and write tracesA for the set of traces of A.

In the earlier timed automaton models [86, 107], execution fragments were defined in a similar
style to the one presented here, that is, as an alternating sequence of trajectories and actions.However,
the traces were not derived from execution fragments by a simple restriction to external actions and
the empty set of variables. Rather, a trace was defined as a sequence consisting of actions paired
with their time of occurrence together with a limit time. The new definition increases uniformity;
the definitions, results and proof techniques for hybrid sequences apply to both execution fragments
and traces.

We now revisit some of the automata presented earlier in this chapter and give sample exe-
cutions and traces for these automata.

Example 4.9 (Periodic sending process). Consider the automaton PeriodicSend from Example 4.2
where u is instantiated to the real number 3 and the message type parameter M is instantiated to the
set {m1, m2, . . .}. The following sequence is an execution of the automaton:

α = τ send(m1) τ send(m2) τ send(m3) τ . . .

where τ : [0, 3] → val ({clock}) is defined such that τ(t)(clock) = t for all t ∈ [0, 3]. The func-
tion τ is defined for closed intervals of length 3, starting at time 0. It describes the evolution of the
variable clock, which is 0 at the start of τ and increases with rate 1 for 3 time units. The discrete
send events occur periodically, every 3 time units and reset the clock variable to 0.

The trace of the above execution fragment, trace(α), is the sequence

α′ = τ ′ send(m1) τ ′ send(m2) τ ′ send(m3) τ ′ . . .

where τ ′ : [0, 3] → val (∅). Since the range of function τ ′ contains only the function with the empty
domain, trace(α) does not contain any information about what happens to the value of clock as
time progresses. Since the domains of τ and τ ′ are identical, α and α′ express the same information
about the amount of time that elapses between discrete steps.

4.2. EXECUTIONS AND TRACES 35

Example 4.10 (Timeout process). We now present an execution of the automaton Timeout from
Example 4.4 where the the maximum waiting time u for a message is 5 and the message alphabet M
is the set {m1, m2}. The following finite sequence is an execution of Timeout:

α = τ0 receive(m1) τ1 timeout τ2 receive(m2) τ3 timeout τ4

where Val = val ({suspected,clock}) and the functions τ0, τ1, τ2, τ3, τ4 are defined as follows:
τ0 : [0, 2] → Val where τ0(t)(suspected) = false and τ0(t)(clock) = t for all t ∈ [0, 2].
τ1 : [0, 5] → Val where τ1(t)(suspected) = false and τ1(t)(clock) = t for all t ∈ [0, 5].
τ2 : [0, 1] → Val where τ2(t)(suspected) = true and τ2(t)(clock) = 5 + t for all t ∈ [0, 1].
τ3 : [0, 5] → V al where τ3(t)(suspected) = false and τ3(t)(clock) = t for all t ∈ [0, 5].
τ4 : [0, ∞) → Val where τ4(t)(suspected) = true and τ4(t)(clock) = 5 + t for all t ∈ [0, ∞).
In this sample execution, the first awaited message arrives at time 2. Since no other message

arrives within the next 5 time units, the process performs a timeout. A new message arrives 1 time
unit after the timeout and the variable clock is reset to 0. Since no new message arrives in the next
5 time units the process performs another timeout. The time elapses forever after this timeout since
no further message arrives.

This example illustrates that the automaton Timeout can perform multiple timeout transitions.
Another point to note is that the sample execution consists of a finite (A, V)-sequence ending with
a trajectory, as opposed to an infinite sequence as in Example 4.9 . The final trajectory here is a
trajectory whose domain is right open and the execution is admissible and nonZeno. Replacing τ4

with a function on a closed interval would yield a nonZeno execution that is not admissible.
The trace of the execution α can be obtained by letting the range of τi be the set consisting

of the function with the empty domain, as we did in the previous example. That is, by hiding the
values of the internal variables clock and suspected during trajectories.

The following lemma states that some properties of executions carry over to their traces and
vice versa.

Lemma 4.11 If α is an execution of A then:

1. α is time-bounded if and only if trace(α) is time-bounded;

2. α is admissible if and only if trace(α) is admissible;

3. If α is closed then trace(α) is closed;

4. If α is nonZeno then trace(α) is nonZeno.

Proof. Follows directly from the corresponding properties for the restriction of (A,V)-sequences
(Lemma 3.11). �

Lemma 4.12 If β is a trace of A then:

36 4. TIMED AUTOMATA

1. If β is closed then there exists an execution α of A such that trace(α) = β and α is closed;

2. If β is nonZeno then there exists an execution α of A such that trace(α) = β and α is nonZeno.

Proof. For the first part of the lemma, let β = trace(α) be a closed trace of A. By definition of a
trace, we know that β.ltime = α.ltime. We also know that α is either closed or has a suffix which is an
infinite sequence of alternating point trajectories and internal actions. Now, let α′ be the least closed
prefix of α such that α′.ltime = β.ltime. Clearly, α′ is a closed execution of A and β = trace(α′).

For the second part of the lemma, observe that a nonZeno trace is either closed or admissible.
Let β = trace(α). For the case where β is closed, we have already shown how we can find a closed
execution. For the case where β = trace(α) is admissible, we know that α.ltime = ∞. Hence, α is
admissible, as needed. �

Example 4.13 (Constructing a closed execution from a closed trace). Consider the Zeno hybrid
sequence α = ℘(v) a ℘ (v) a ℘ (v) . . . given in Example 3.12. Suppose that α is an execution of A
and that a is an internal action of A. Then, trace(α) = ℘(v ′) where ℘(v ′) is a trajectory over the
empty set of variables. However, the fact that trace(α) is closed does not imply that α is closed.Thus,
we see why we have a one way implication in item 3 of Lemma 4.11. On the other hand, we can
construct a closed execution of A with trace ℘(v ′) as explained in the proof of Lemma 4.12. The
execution consisting of the point trajectory ℘(v) is a closed execution of A with trace ℘(v ′).

4.3 INVARIANTS
A state of a timed automaton A is reachable if it is the last state of some closed execution of A. If X

is the set of state variables of A and I is a set of valuations of X, then we say that I is an invariant of
A if I contains all reachable states of A. We often describe invariants by assertions, formulas that are
constructed by applying boolean connectives and quantifications to atomic formulas over the state
variables. Define the i-length of a finite (A, V)-sequence β to be equal to the length of β if β ends
with a point trajectory, and equal to the length of β plus 1 otherwise. Invariants can be proved by
induction on the i-length of executions. Sometimes we may also use the following simple lemma. In
order to state the lemma we use some terminology from [90]. A set of valuations I of A is stable if it
is preserved by discrete transitions and by trajectories, that is, for all states x, x′ ∈ Q and trajectories
τ ∈ T ,

x ∈ I ∧ x
a→A x′ ⇒ x′ ∈ I

τ.fstate ∈ I ∧ τ closed ⇒ τ.lstate ∈ I.

Set I is inductive if it is stable and moreover contains all the start states, that is � ⊆ I .

Lemma 4.14 Let I be a set of states of A that is inductive. Then I is an invariant.

4.3. INVARIANTS 37

Proof. We must establish that I contains all reachable states of A. Let x be a reachable state. Then
x is the final state of some closed execution α. We prove x ∈ I by induction on the i-length k of
execution α. If k = 1 then α consists of a point trajectory and hence x is an initial state. Because I

is inductive, � ⊆ I and hence x ∈ I . If k > 1 then we distinguish between two cases: either α ends
with a point trajectory or it does not.

1. In the first case, α has the form α′aτ where τ is a point trajectory containing state x and the
i-length of α′ is either k − 2 or k − 1 (depending on whether α′ ends with a point trajectory
or not). Let x′ be the last state of α′. Then by induction hypothesis x′ ∈ I . But since I is stable
and x′ a→ x, also x ∈ I .

2. In the second case, α can be written as α′ � τ where α′ ends with a point trajectory, τ is a
closed trajectory, α′.lstate = τ.fstate, and the i-length of α′ equals k − 1. Hence, by induction
hypothesis, α′.lstate = τ.fstate ∈ I . Since I is stable, also τ.lstate ∈ I . Hence, x ∈ I .

�

Example 4.15 (Time-bounded channel). Consider the time-bounded channel automaton from
Example 4.1. It is easy to observe that time cannot pass beyond any delivery deadline recorded in
the message queue and that each deadline in the queue is less than or equal to the sum of the current
time and the bound b. This property can be stated as an invariant assertion as follows.

Invariant 1 In any reachable state x of automaton TimedChannel, for all p ∈ x(queue), x(now) ≤
p.deadline ≤ x(now) + b.

We can prove this invariant using Lemma 4.14. Let I be the set of states that satisfy the assertion,
that is, the set of states x such that for all p ∈ x(queue), x(now) ≤ p.deadline ≤ x(now) + b. In
the (unique) initial state x, x(queue) is empty and so x ∈ I .

Discrete transitions do not modify variable now and either add or remove a single message from
queue. A send(m) transition from state x adds a single message p with p.deadline = x(now) + b.
A receive(m) transition removes a single message. Clearly, both types of actions preserve the
invariant.

Let τ be a closed trajectory with τ.fstate = x′ ∈ I and τ.lstate = x. Suppose that x �∈ I . This
means that there is some p ∈ x(queue) for which it does not hold that x(now) ≤ p.deadline ≤
x(now) + b. But since x(queue) = x′(queue), we know that x′(now) ≤ p.deadline ≤ x′(now) +
b. Since now increases along trajectories, x′(now) < x(now). It follows that p.deadline < x(now).
But since x′(now) ≤ p.deadline and now increases continuously along τ , there exists a nonfinal
state x′′ on τ with p.deadline = x′′(now). But this contradicts the stopping condition for the
time-bounded channel. Hence, x ∈ I .

We conclude that I is inductive and hence an invariant.

38 4. TIMED AUTOMATA

In practice, we often encounter invariants that are not inductive. In order to prove such
invariants we typically first need to establish some auxiliary invariants. This style of reasoning can
be formalized using a slight generalization of Lemma 4.14. Again, we use terminology from [90].
Let I1 and I2 be sets of states of A. Then I2 is stable relative to I1 if, for all states x, x′ ∈ Q and
trajectories τ ∈ T ,

x ∈ I1 ∩ I2 ∧ x
a→A x′ ⇒ x′ ∈ I2

τ.fstate ∈ I1 ∩ I2 ∧ τ closed ⇒ τ.lstate ∈ I2.

Set I2 is inductive relative to I1 if I2 is stable relative to I1 and contains all the start states, that is
� ⊆ I2.

Lemma 4.16 Let I1 and I2 be sets of states of A such that I1 is invariant and I2 is inductive relative to
I1. Then I2 is an invariant.

Proof. Similar to the proof of Lemma 4.14. �

Example 4.17 (Fischer’s mutual exclusion). The main safety property that needs to be satisfied
by the automaton FischerME from Example 4.5 is mutual exclusion. This safety property can be
expressed as an invariant assertion.

Invariant 2 In any reachable state x of FischerME, there do not exist i:Index and j:Index such that
i �= j, x(pc)[i] = crit and x(pc)[j] = crit.

Even though the invariant does not refer to time, its proof depends on the timing constraints
of the automaton. For example, the following auxiliary invariant can be used in proving Invariant 2.

Invariant 3 In any reachable state x of FischerME, if x(pc)[i] = check, x(x) = embed(i), and
x(pc)[j] = set, then x(firstcheck)[i]) > x(lastset)[j].

This invariant states that if the program counter of process i has the value check, the program
counter of process j has the value set, and the variable x has the value embed(i), then i will allow
enough time for j to set x to embed(j), before performing the check. If this timing constraint were
not satisfied, it would be possible for i to check that x = embed(i) before j sets x to embed(j).
Both of the processes would then observe x to contain their own index and enter the critical region.

4.4 SPECIAL KINDS OF TIMED AUTOMATA
This section describes several restricted forms of timed automata and gives definitions that are needed
for theorems that are presented later on in this monograph.

4.4. SPECIAL KINDS OF TIMED AUTOMATA 39

Timed Automata with Finite Internal Nondeterminism: We are sometimes interested in bounding
the amount of internal nondeterminism in a timed automaton.Thus, we say that a timed automaton
A has finite internal nondeterminism (FIN) provided that:

1. the set � of start states is finite, and

2. for every state x of A and every trace fragment β of A from x, the set {α.lstate | α ∈ fragsA(x) ∧
trace(α) = β} is finite.

Example 4.18 (Automata with FIN). It is not hard to see that the automata TimedChannel,
PeriodicSend, PeriodicSend2, and Timeout given in Section 4.1 all have FIN. The first property
of the definition of FIN is satisfied since each of these automata has a unique start state. The second
property follows from the fact that in each automaton, for every state x and every trace fragment β

from x, there is a unique execution fragment α such that trace(α) = β.

Example 4.19 (Automata without FIN). We show that automata FischerME and ClockSync(a,r:

Real, i:Index) from Section 4.1 do not have FIN. For each automaton, we specify a trace, describe
the set of all executions that have the specified trace, and argue that the second property in the
definition of FIN fails for the chosen trace.

Let x be the start state of FischerME and β = τ0 try(i) τ1 be a trace of the same automaton
where the domains of the functions τ0 and τ1 are, respectively, the single point interval [0, 0] and the
interval [0, u], and the range of both functions is the set consisting of the function with the empty
domain. For any execution α, trace(α) = β, if and only if α.ltime = u, try(i) occurs at time 0, and
all the actions in α that occur after try(i) are internal actions. There are infinitely many different
times that the internal actions may occur, and infinitely many values lastcheck and firstcheck
could have, by the time u. Therefore, the set {α.lstate | α ∈ fragsA(x) ∧ trace(α) = τ0 try(i) τ1} is
not finite and FischerME does not have FIN.

Now, let x be the start state of ClockSync(a,r:Real, i:Index) where x(physclock) =
x(nextsend) = x(maxother) = 0 and β = τ0 send(0) τ1 be a trace of ClockSync(a,r:Real,

i:Index) where the domains of functions τ0 and τ1 are, respectively, the interval [0, 0] and the
interval [0, u], and the range of both functions is the set consisting of the function with the empty
domain. For any α in which send(0) occurs at time 0 and is followed by a trajectory τ such
that τ.ltime = u, we have trace(α) = β. For any such α, α.lstate(physclock) can be any value in
the interval [u (1 - r), u (1 + r)]. Therefore, the set {α.lstate | α ∈ fragsA(x) ∧ trace(α) =
τ0 send(0) τ1} is not finite and ClockSync(a,r:Real, i:Index) does not have FIN.

The following lemma states that if a timed automaton has FIN, then its set of traces is
limit-closed.

Lemma 4.20 Suppose that timed automaton A has FIN and x ∈ Q. Suppose that β1, β2, . . . is a chain
of trace fragments of A from x. Then the hybrid sequence limi βi is a trace fragment of A from x.

40 4. TIMED AUTOMATA

Proof. This is analogous to the proof of Lemma 4.3 of [86].Suppose that A is a timed automaton that
has FIN, x is a state of A, and β1, β2, . . . is a chain of trace fragments of A from x.We define a relation
after between trace fragments from x and states of A: after = {(β, y) | ∃α ∈ fragsA(x). trace(α) =
β ∧ α.lstate = y}.

We construct a directed graph G whose nodes are pairs (βi, y) ∈ after where βi is an element
of the given chain. In G, there is an edge from (βi, y) to (βi+1, y′) exactly if βi+1 = βi

� γ such
that γ = trace(α) for some α ∈ fragsA(y), and α.lstate = y′. By the definition of property FIN, there
are finitely many roots of G of the form (β1, y). By the definition of FIN and the construction of
G, each node of G has finite outdegree.

We claim that each node (βi, y) of G is reachable from some root (β1, z) for some z. By
definition of the node set, there exists α ∈ fragsA(x) such that trace(α) = βi and α.lstate = y.Choose
α′ ∈ fragsA(x) to be a prefix of α such that trace(α′) = β1 and let z = α′.lstate. By definition of the
edge set of G, (βi, y) is reachable from (β1, z).

Hence, G satisfies the hypotheses of Lemma 2.1, which implies that there is an infinite
execution fragment starting from x whose trace is limi βi . Lemma 2.1 is an extension of Konig’s
lemma. �

There are two references to automata with FIN later in the monograph. The first one is in
Theorem 4.21, which lists some sufficient conditions for establishing an implementation relationship
between two automata. The second reference appears in the discussion about the kinds of automata
that satisfy the assumptions of Theorem 8.8.

Feasible Timed Automata: A timed automaton A is feasible provided that, for every state x of A,
there exists an admissible execution fragment of A from x.

Feasibility is a basic requirement that any “reasonable” timed automaton should satisfy. The-
orems 4.21 and 7.2 establish some results about feasible automata.

Timing-Independent Timed Automata: A timed automaton A is said to be timing-independent
provided that all its state variables are discrete variables, and its set of trajectories is exactly the set
of constant-valued functions over left-closed time intervals with left endpoint 0.

We refer to timing-independent automata later in Examples 5.14 and 8.10, and in our dis-
cussion about Theorem 8.8.

4.5 IMPLEMENTATION RELATIONSHIPS

Timed automata A1 and A2 are comparable if they have the same external interface, that is, if
E1 = E2. If A1 and A2 are comparable then we say that A1 implements A2, denoted by A1 ≤ A2,
if the traces of A1 are included among those of A2, that is, if tracesA1 ⊆ tracesA2 .1

1 In [86, 36, 80, 81], definitions of the set of traces of an automaton and of one automaton implementing another are based on
closed and admissible executions only. The results we obtain in this monograph using the newer, more inclusive definition imply
corresponding results for the earlier definition. For example, we have the following property: If A1 ≤ A2 then the set of traces

4.6. SIMULATION RELATIONS 41

Other preorders between timed automata could also be used as implementation relationships,
for example, if A1 and A2 are comparable timed automata, we could consider:

• Every closed trace of A1 is a trace of A2.

• Every admissible trace of A1 is a trace of A2.

• Every nonZeno trace of A1 is a trace of A2.

Theorem 4.21 Let A1 and A2 be comparable TAs.

1. If every closed trace of A1 is a trace of A2 and A2 has FIN, then A1 ≤ A2.

2. If every admissible trace of A1 is a trace of A2 and A1 is feasible, then every closed trace of A1 is a
trace of A2.

3. If every admissible trace of A1 is a trace of A2, A1 is feasible, and A2 has FIN, then A1 ≤ A2.

Proof. Part 1 follows from Lemma 4.20.
For Part 2, consider a closed trace β of A1. By feasibility of A1, we may extend β to an

admissible trace β ′ of A1. Then by assumption, β ′ is also a trace of A2. By prefix closure of the set
of traces, β is a trace of A2.

Part 3 follows from Parts 1 and 2. �

4.6 SIMULATION RELATIONS

In this section, we define simulation relations between timed automata. Simulation relations may
be used to show that one TA implements another, in the sense of inclusion of sets of traces. We
define two main types of simulation relations (forward and backward simulations) and three derived
notions (refinements, history relations and prophecy relations).

Forward simulations are more commonly used than backward simulations because they are
easier to think about and are general enough to cover most interesting situations that arise in practice.
Backward simulations are sometimes necessary, in particular, when nondeterministic choices are
resolved earlier in the specification than in the implementation. In proving implementation relations,
we prefer to use forward simulation relations whenever they exist, since backward simulations are
harder to think about.

that arise from closed or admissible executions of A1 is a subset of the set of traces that arise from closed or admissible executions
of A2. This follows from Lemmas 4.11 and 4.12.

42 4. TIMED AUTOMATA

4.6.1 FORWARD SIMULATIONS
Let A and B be comparable TAs. A forward simulation from A to B is a relation R ⊆ QA × QB
satisfying the following conditions, for all states xA and xB of A and B, respectively.

1. If xA ∈ �A then there exists a state xB ∈ �B such that xA R xB.

2. If xA R xB and α is an execution fragment of A consisting of one action surrounded by
two point trajectories, with α.fstate = xA, then B has a closed execution fragment β with
β.fstate = xB, trace(β) = trace(α), and α.lstate R β.lstate.

3. If xA R xB and α is an execution fragment of A consisting of a single closed trajectory,
with α.fstate = xA, then B has a closed execution fragment β with β.fstate = xB, trace(β) =
trace(α), and α.lstate R β.lstate.

The first condition states that for each start state of A there exists a related start state of B.The second
and third condition, which are referred to as transfer properties, assert that each discrete transition
resp. trajectory of A can be simulated by a corresponding execution fragment of B with the same
trace.

If both R and R−1 are forward simulations then we say that R is a bisimulation from A
to B. Bisimulation relations play an important role in the automated analysis of timed and hybrid
systems, see e.g. [6, 67, 122]. However, the bisimulations used for automated analysis are usually time
abstracted bisimulations, whereas in our definition a trajectory α of one automaton must be simulated
by a trajectory β of the other automaton with exactly the same duration (trace(β) = trace(α)), these
durations may be different in a time abstracted bisimulation.

Forward simulation relations induce a preorder between timed automata.

Theorem 4.22 Let A,B, and C be comparable TAs. If R1 is a forward simulation from A to B and R2

is a forward simulation from B to C, then R2 ◦ R1 is a forward simulation from A to C.

Even though the definition of a forward simulation only refers to closed trajectories it also
yields a correspondence for open trajectories.

Lemma 4.23 Let A and B be comparable TAs and let R be a forward simulation from A to B. Let xA
and xB be states of A and B, respectively, such that xA R xB. Let α be an execution fragment of A from
state xA consisting of a single open trajectory. Then B has an execution fragment β with β.fstate = xB
and trace(β) = trace(α).

Proof. Let τ be the single open trajectory in α. Using Axioms T1 and T2, we construct an infinite
sequence τ0 τ1 . . . of closed trajectories of A such that τ = τ0

� τ1
� · · · .Then, working recursively,

we construct a sequence β0 β1 . . . of closed execution fragments of B such that β0.fstate = xB and,
for each i, τi .lstate R βi.lstate, βi.lstate = βi+1.fstate, and trace(τi) = trace(βi). This construction

4.6. SIMULATION RELATIONS 43

uses induction on i, using Property 3 of the definition of a forward simulation in the induction step.
Now let β = β0

� β1
� · · · . By Lemma 4.7, β is an execution fragment of B. Clearly, β.fstate = xB.

By Lemma 3.9 applied to both α and β, trace(β) = trace(α). Thus, β has the required properties.
�

Theorem 4.24 Let A and B be comparable TAs and let R be a forward simulation from A to B. Let xA
and xB be states of A and B, respectively, such that xA R xB. Then tracefragsA(xA) ⊆ tracefragsB(xB).

Proof. Suppose that δ is the trace of an execution fragment of A that starts from xA; we prove that
δ is also a trace of an execution fragment of B that starts from xB. Let α = τ0 a1 τ1 a2 τ2 . . . be an
execution fragment of A such that α.fstate = xA and δ = trace(α). We consider the following cases.

1. α is an infinite sequence.

Using Axioms T1 and T2, we can write α as an infinite concatenation α0
� α1

� α2 · · · , in
which the execution fragments αi with i even consist of a trajectory only, and the execution
fragments αi with i odd consist of a single discrete step surrounded by two point trajectories.

We define inductively a sequence β0 β1 . . . of closed execution fragments of B, such that
β0.fstate = xB and, for all i, βi.lstate = βi+1.fstate, αi.lstate R βi.lstate, and trace(βi) =
trace(αi).We use Property 3 of the definition of a simulation for the construction of the βi ’s with
i even, and Property 2 for the construction of the βi ’s with i odd. Let β = β0

� β1
� β2 · · · .

By Lemma 4.7, β is an execution fragment of B. Clearly, β.fstate = xB. By Lemma 3.9,
trace(β) = trace(α). Thus, β has the required properties.

2. α is a finite sequence ending with a closed trajectory.

Similar to the first case.

3. α is a finite sequence ending with an open trajectory.

Similar to the first case, using Lemma 4.23.

�

The next corollary states that forward simulations constitute a sound technique for proving
trace inclusion between timed automata.

Corollary 4.25 Let A and B be comparable TAs and let R be a forward simulation from A to B. Then
A ≤ B.

Proof. Suppose β ∈ tracesA. Then β ∈ tracefragsA(xA) for some start state xA of A. Property 1
of the definition of simulation implies the existence of a start state xB of B such that xA R xB.
Then Theorem 4.24 implies that β ∈ tracefragsB(xB). Since xB is a start state of B, this implies that
β ∈ tracesB, as needed. �

44 4. TIMED AUTOMATA

Example 4.26 (Time-bounded channels). Consider two instances of the specification in Fig. 4.1,
TimedChannel(b1, M) and TimedChannel(b2, M) where b1 ≤ b2. We define a forward simulation R

from TimedChannel(b1, M) to TimedChannel(b2, M) below. If x is a state of TimedChannel(b1, M) and
y is a state of TimedChannel(b2, M), then x R y provided that the following conditions are satisfied:

1. x(now) = y(now);

2. |x(queue)| = |y(queue)|. We use |q| to denote the length of an object q of type queue;

3. ∀i. 1 ≤ i ≤ |x(queue)|, if x(queue)(i) = [m,u1] then y(queue)(i) = [m,u2], for some u2
with u1 ≤ u2.

We can prove that R is a forward simulation from the automaton TimedChannel(b1, M) to the
automaton TimedChannel(b2, M) by showing that R satisfies each of the three properties in the
definition of a forward simulation relation. In each automaton there is a unique initial state that
maps the variable now to 0 and queue to the empty sequence. It is obvious that the initial states,
which are identical, are related by R and so the first property is satisfied.

For the rest of the proof, we let x and y be, respectively, states of TimedChannel(b1, M) and
TimedChannel(b2, M) such that x R y. In order to show that the second property is satisfied, we need
to consider two cases, one for each discrete action that may be performed by TimedChannel(b1, M).

If TimedChannel(b1, M) performs a send(m) action, and the state changes from x to x′ then
we need to find an execution fragment β of TimedChannel(b2,M) from y ending in y′, such that
x′ R y′ and trace(β) is the same as the trace of ℘(x) send(m) ℘(x′). The execution fragment
β = ℘(y) send(m) ℘(y′) satisfies the required conditions. This follows from the hypothesis that
x R y and the definition of R, using the fact that the effect of a send(m) action of TimedChannel(b1,
M),TimedChannel(b2, M) are, respectively, adding the entry[m,now + b1] to x(queue), and[m,now
+ b2] to y(queue) where b1 ≤ b2.

If TimedChannel(b1, M)performs areceive(m) action,and the state changes from x to x′ then
we need to show that receive(m) is also enabled in y and that there is an execution fragment with
the required properties that ends in a state y′ such that x′ R y′. In order to show that receive(m) is
enabled in y, we use the hypothesis that x R y, which implies that the first element of y(queue) is of
the form [m,u] for some u.The execution fragment ℘(y) receive(m) ℘(y′) of TimedChannel(b1,
M) can be shown to satisfy the required conditions.

For the third property,we consider a closed trajectory τ of TimedChannel(b1, M)with τ.fstate =
x and show that there exists a closed execution fragment β of the automaton TimedChannel(b2, M)

with β.fstate = y, trace(β) = trace(τ), and τ.lstate = β.lstate . It is easy to check that the trajectory τ ′
of TimedChannel(b2, M) with τ ′.fstate = y and τ ′.ltime = τ.ltime satisfies the required conditions.

Example 4.27 (Time-bounded channel that keeps all messages). In this example we define a
variant of TimedChannel from Example 4.1 called TimedChannel2. The main difference between
TimedChannel and TimedChannel2 is that the message queue in TimedChannel2 is implemented using

4.6. SIMULATION RELATIONS 45

a finite sequence of (message, delivery deadline) pairs queue and a pointer ptr that points to the next
element that is to be delivered. Hence, the internal variables of TimedChannel2 consist of queue, now
and ptr.The variable ptr initially has value 1, which indicates that it is pointing to the first element
in the sequence. A send(m) action causes messages and deadlines to be added to the sequence as in
TimedChannel. A receive(m) causes ptr to be incremented to make it point to the next element in
the sequence instead of removing the first element.The stops when predicate tests if there is a packet
in the queue with index greater than or equal to ptr and deadline equal to now. The automaton
TimedChannel can be viewed as an optimized implementation of TimedChannel2.

We define below a forward simulation R from TimedChannel to TimedChannel2. If x is a state
of TimedChannel and y is a state of TimedChannel2, then x R y provided that the following conditions
are satisfied:

1. x(now) = y(now);

2. x(queue) = y(queue)(y(ptr) . . . |y(queue)|).
Here, we assume the sequence representation of queues and use the subsequence notation from
Chapter 2 to denote the part of the queue that starts with the index ptr and ends with the index
y(queue).

Example 4.28 (Clock synchronization). In this example, we define a forward simulation from
ClockSync(u,r:Real, i:Index) of Fig. 4.7 to an automaton that sends multiples of u. The specifi-
cation of this automaton, which is called SendVal is given in Fig. 4.8. We assume that the Index
types in both automata are identical. The variable counter keeps track of which multiple of u is to
be sent next, and variable now contains the current time. The automaton parameter r is used in the
precondition of the send and the stopping condition of the trajectory definition, to enforce bounds
on the times of occurrence of send.

The following predicate defines a forward simulation R from automaton ClockSync() to
automaton SendVal:

now ∗ (1 − r) ≤ physclock ≤ now ∗ (1 + r) ∧ counter ∗ u = nextsend ≥ physclock.

Whereas automaton ClockSync(u,r:Real, i:Index) is more intuitive as a specification, automaton
SendVal is easier for analysis purposes, since its continuous dynamics is simpler.

4.6.2 REFINEMENTS
A refinement is a simple, special case of a forward simulation, often used in practice (see, for instance,
[105, 110]), in which the relation between states of A and B is a partial function.

Let A and B be comparable TAs. A refinement from A to B is a partial function F from QA
to QB, satisfying the following conditions, for all states xA and xB of A and B, respectively.

46 4. TIMED AUTOMATA

a u t o m a t o n SendVal(u, r: Real, i: Index) w h e r e u > 0 ∧ (0 ≤ r < 1)
s i g n a t u r e

e x t e r n a l send(m: Real),
receive(m: Real, j: Index, c o n s t i: Index) w h e r e j �= i

s t a t e s
counter : d i s c r e t e Real := 0,
now: Real := 0

t r a n s i t i o n s
e x t e r n a l send(m, i)

p r e
m = counter * u ∧ counter * u / (1 + r) ≤ now

e f f
counter := counter + 1

e x t e r n a l receive(m, j, i)
t r a j e c t o r i e s

s t o p when
now = counter * u / (1 - r)

e v o l v e
d(now) = 1

Figure 4.8: Clock synchronization.

1. If xA ∈ �A then xA ∈ dom(F) and F(xA) ∈ �B.

2. If α is an execution fragment of A consisting of one action surrounded by two point trajectories
and α.fstate ∈ dom(F), then α.lstate ∈ dom(F) and B has a closed execution fragment β with
β.fstate = F(α.fstate), trace(β) = trace(α), and β.lstate = F(α.lstate).

3. If α is an execution fragment of A consisting of a single closed trajectory and α.fstate ∈ dom(F),
then α.lstate ∈ dom(F) and B has a closed execution fragment β with β.fstate = F(α.fstate),
trace(β) = trace(α), and β.lstate = F(α.lstate).

Note that, by a trivial inductive argument, the set of states for which F is defined contains all the
reachable states of A (and is thus an invariant of this automaton).

Theorem 4.29 Let A and B be two TAs and suppose R ⊆ QA × QB. Then R is a refinement from A
to B if and only if R is a forward simulation from A to B and R is a partial function.

The following theorem states a basic sanity property of refinements, namely closure under
composition.

Theorem 4.30 Let A,B, and C be comparable TAs. If R1 is a refinement from A to B and R2 is a
refinement from B to C, then R2 ◦ R1 is a refinement from A to C.

4.6. SIMULATION RELATIONS 47

A weak isomorphism from A to B is a refinement F from A to B such that F−1 is a refinement
from B to A.We say that two automata A and B are weakly isomorphic, if there exists an isomorphism
from A to B (or, equivalently from B to A).

Example 4.31 (Refinements). In Example 4.26 we established a forward simulation between two
instances of the TA in Fig. 4.1, TimedChannel(b1, M) and TimedChannel(b2, M) with b1 ≤ b2. It is
not hard see that there also exists a refinement from TimedChannel(b1, M) to TimedChannel(b2, M):
just add b2 − b1 to the deadline of each packet in the queue.

In Example 4.28 we defined a forward simulation from automaton ClockSync(u,r:Real,

i:Index) to automaton SendVal. In this case, however, there does not exist a refinement from
ClockSync(u,r:Real, i:Index) to SendVal if r > 0. The proof is by contradiction. Suppose that
F is a refinement from ClockSync(u,r:Real, i:Index) to SendVal. Then F maps the initial state of
ClockSync(u,r:Real, i:Index) to the initial state of SendVal. Since send actions can be simulated,
the state s0 of ClockSync(u,r:Real, i:Index) with nextsend = u and physclock = 0 is mapped
by F to the state of SendVal with counter = 1 and now = 0. Consider an outgoing trajectory of s0
with positive limit time to a state s1 in which the physical clock runs maximally fast, and a trajectory
with the same limit time to a state s2 in which the physical clock runs maximally slow. Since r > 0,
s1 and s2 are distinct. By the transfer property for trajectories, both s1 and s2 are mapped onto the
same state of SendVal. Now observe that there exists a trajectory with positive limit time from s2 to
s1. This trajectory can not be simulated in SendVal, since in this automaton there are no nontrivial
trajectories from a state to itself. Contradiction.

4.6.3 BACKWARD SIMULATIONS
LetA andB be comparableTAs.A backward simulation fromA toB is a total relationR ⊆ QA × QB
satisfying the following conditions, for all states xA and xB of A and B, respectively:

1. If xA ∈ �A and xA R xB then xB ∈ �B.

2. If xA R xB and α is an execution fragment of A with α.lstate = xA, consisting of one discrete
action surrounded by two point trajectories, then B has a closed execution fragment β with
β.lstate = xB, trace(β) = trace(α), and α.fstate R β.fstate.

3. If xA R xB and α is an execution fragment of A with α.lstate = xA, consisting of one trajec-
tory, then B has a closed execution fragment β with β.lstate = xB, trace(β) = trace(α), and
α.fstate R β.fstate.

Backward simulations are closed under relational composition, and hence induce a preorder
between timed automata.

Theorem 4.32 Let A,B, and C be comparable TAs. If R1 is a backward simulation from A to B and
R2 is a backward simulation B to C, then R2 ◦ R1 is a backward simulation from A to C.

48 4. TIMED AUTOMATA

Theorem 4.33 Let A and B be comparable TAs and let R be a backward simulation from A to B. Let
xA and xB be states of A and B, respectively, such that xA R xB. Let β be the trace of a closed execution
fragment of A from yA with last state xA. Then there exists yB such that β is also the trace of a closed
execution fragment of B from yB with last state xB and yA R yB.

Proof. Fix some R, xA, xB , and β satisfying the conditions in the statement of the theorem. Let
α ∈ fragsA(yA) for some state yA of A with trace(α) = β and α.lstate = xA. By using the Axioms
T1 and T2, we can write α as the concatenation of a sequence of closed execution fragments,
α = α0

� α1
� . . . αn, where each αi is either a closed trajectory or an action surrounded by two

point trajectories, αi.lstate = αi+1.fstate for 0 ≤ i ≤ n − 1, and αn.lstate = xA.
By using the definition of a backward simulation,working backwards fromαn,we can construct

an execution fragment α′ = α′
0

� α′
1

� . . . α′
n from a state yB of B such that (a) α′.lstate = xB,

(b) for all i, 0 ≤ i ≤ n, αi.fstate R α′
i .fstate and trace(α′

i) = trace(αi), (c) for all i, 0 ≤ i ≤ n − 1,
α′

i .lstate = α′
i+1.fstate. Using Lemma 4.7, we can see that α′ is an execution fragment of B. By

Lemma 3.9, trace(α) = trace(α′) as needed. �

The next corollary states that backward simulations constitute a sound technique for proving
inclusion of closed traces between timed automata.

Corollary 4.34 Let A and B be comparable TAs and let R be a backward simulation from A to B. Then
every closed trace of A is a trace of B.

Proof. Suppose R is a backward simulation from A to B and β is a closed trace of A. Then
β = trace(α) for some closed execution α of A. Let xA and yA be the first and last states of α

respectively. By the totality of relation R, there exists some state yB of B such that yA R yB. By
Theorem 4.33, there exists xB of B such that β is the trace of a closed execution fragment of B from
xB with last state yB and xA R xB. Property 1 of the definition of a backward simulation relation
implies that xB is a start state of B. It follows that β ∈ tracesB, as needed. �

Image-finite backward simulations constitute a sound technique for proving inclusion of (all)
traces between timed automata.

Theorem 4.35 Let A and B be comparable TAs and let R be an image-finite backward simulation from
A to B. Then tracesA ⊆ tracesB.

Proof. Let β ∈ tracesA. If β is closed then Corollary 4.34 implies that β is a trace of B. From now
on we assume β is not closed.

Let α ∈ execsA with trace(α) = β. Note that any such α is either an infinite sequence
τ0 a1 τ1 . . . or a finite sequence τ0 a1 τ1 . . . τn where the final trajectory τn is right open. In ei-
ther case, using the Axioms T1 and T2, we can construct an infinite sequence α0 α1 . . . of closed

4.6. SIMULATION RELATIONS 49

execution fragments such that α = α0
� α1

� . . . where α0 is a point trajectory, each αi is either a
closed trajectory or an action surrounded by two point trajectories, and αi.lstate = αi+1.fstate for
each i, 0 ≤ i.

We construct a directed graph G whose nodes are pairs (x, i) consisting of a state of B and an
index such that (αi.lstate, x) ∈R. In G, there is an edge from (x, i) to (x′, j) exactly if j = i + 1 and
there is an α′ ∈ fragsB(x) with trace(α′) = trace(αi+1) such that α′.lstate = x′. By image-finiteness
of R and the definition of the edge set, each node has finite outdegree. By using the definition of
a backward simulation and the edge set of G, we can show that each node (x, i) is reachable from
some root node (z, 0) for some start state z of B. Since R is image-finite there are finitely many
roots of G.

The directed graph G satisfies the hypotheses of Lemma 2.1, which implies that there is an
infinite path in G starting from a root. An edge from a node (x, i) to (x′, i + 1) along this infinite
path corresponds to a closed execution fragment γi+1 of B for i, 0 ≤ i such that γi+1.fstate = x,
γi+1.lstate = x′ and trace(γi+1) = trace(αi+1). By Lemma 4.7, γ = γ1

� γ2
� . . . is an execution of

B and by Lemma 3.9, trace(γ) = trace(γ1)
� trace(γ2) Since trace(γi+1) = trace(αi+1) for all i,

0 ≤ i, and α0 is a point trajectory, by Lemma 3.9, we get trace(γ) = trace(α) = β. �

Example 4.36 (A backward simulation relation). This example illustrates the difference between
forward and backward simulations. We consider two automata A and B and show that a forward
simulation from A to B does not exist while we exhibit a backward simulation from A to B.

Let A and B be two comparable automata specified below. The trajectories consist of a set
of point trajectories. This implies that the automaton does not allow time to pass — everything
happens at time 0.

• XA = {stateA} and XB = {stateB} where:
stateA is a discrete variable with type(stateA) = {xA, yA, qA, sA}, and
stateB is a discrete variable with type(stateB) = {xB, yB, y′

B, qB, sB}.
• QA = val (XA) and QB = val (XB). We write xA for the valuation that maps stateA to xA,

yA for the valuation that maps stateA to yA, etc. Similarly, we write xB for the valuation that
maps stateB to xB, yB for the valuation that maps stateB to yB, etc.

• �A = {xA} and �B = {xB}.
• EA = EB = {a, b, c} and HA = HB = ∅.

• DA = {(xA, a, yA), (yA, b, qA), (yA, c, sA)}, and
DB = {(xB, a, yB), (xB, a, y′

B), (yB, b, qB), (y′
B, c, sB)}.

• TA = {℘(v) | v ∈ QA}, and TB = {℘(v) | v ∈ QB}.

50 4. TIMED AUTOMATA

xB

A B

xA
a

c

b

sA

yA

qA

a

a yB

b

cy′
B

qB

sB

Figure 4.9: Difference between forward and backward simulations.

Figure 4.9 displays automata A and B as directed multigraphs. The nodes in the graph represent
states and the edges represent discrete transitions where a label on an edge stands for the action
involved in the transition.

An obvious candidate for a forward simulation from A to B is the relation

R = {(xA, xB), (yA, yB), (yA, y′
B), (qA, qB), (sA, sB)}.

However, observe that even though yA and yB are related by R, the execution fragment
℘(yA) c ℘ (sA) of A cannot be matched by any execution fragment of B starting with state yB.
Similarly, even though yA and y′

B are related by R, the execution fragment ℘(yA) b ℘ (qA) of A
cannot be matched by any execution fragment of B starting with y′

B. Therefore, R is not a forward
simulation. In fact, there is no forward simulation relation from A to B: there are finitely many possi-
bilities for forward simulations from A to B and we see that none of them is a forward simulation by
examining all the possibilities. The main reason for this is that while A makes the nondeterministic
choice between performing b or c after performing a, B makes its choice earlier at the same time it
performs a.

There is, however, a backward simulation from A to B: the relation R defined above is a
backward simulation.

4.6.4 HISTORY RELATIONS
A relation R ⊆ QA × QB is a history relation from A to B if R is a forward simulation from A to B
and R−1 is a refinement from B to A. History relations induce a preorder between timed automata.

An automaton B is obtained from an automaton A by adding history variables if there exists
a set of variables X such that:

1. XB = XA ∪ X and XA ∩ X = ∅;

2. QB � XA ⊆ QA; and

3. relation {(x, y) | y ∈ QB and y � XA = x} is a history relation from A to B.

4.6. SIMULATION RELATIONS 51

The method of adding history variables is typically used to make it possible to establish an
implementation relationship using a refinement. If a refinement does not exist from a low-level
automaton to a higher-level one, it can often be made to exist by adding history variables to the
low-level automaton.

Example 4.37 (Adding history variables to obtain a refinement). We cannot show that
TimedChannel is an implementation of TimedChannel2 from Example 4.27 by using a refinement.
This is because we have no way of specifying what the subsequence before the pointer should be in
TimedChannel2 when relating the states of the two automata. This example shows how we can add
history variables to TimedChannel (actually, we add just one variable) to obtain a new automaton that
is related to TimedChannel2 by a refinement.

Let log be a discrete variable whose static type is the same as the static type of queue in
TimedChannel and let the initial value of log be the empty sequence. We define a new automaton
TimedChannelH whose set of variables consists of the variables of TimedChannel and the variable log.
The rest of the definition of TimedChannelH is the same as TimedChannel except for the transition
definition for receive(m). A receive(m) event in TimedChannelH not only removes the first
message from the message queue but also appends this message to the sequence contained in log.

Let X1, X2 be the set of variables and Q1, Q2 be the set of states of TimedChannel and
TimedChannelH, respectively. It is easy to verify that the relation {(x, y) | y ∈ Q2 and y � X1 = x} is
a history relation from TimedChannel to TimedChannelH. This means that TimedChannelH is obtained
from TimedChannel by adding a history variable.

We now define a refinement F from TimedChannelH to TimedChannel2 as follows. In our
definition we assume the following conventions. Concatenation on the left corresponds to putting
an element on the front of a queue. Recall also that we use juxtaposition for concatenation of
sequences. If x is a state of TimedChannelH and y is a state of TimedChannel2, then F(x) = y where:

1. y(now) = x(now);

2. y(queue) = x(log) � x(queue);

3. y(ptr) = |x(log)| + 1.

Whenever an automaton B is obtained from A by adding history variables, then there exists
a history relation from A to B by definition. Theorem 4.38 states that the converse also holds, if
weakly isomorphic automata are considered.

Theorem 4.38 Let A and B be two comparable TAs. Suppose that there is a history relation from A
to B. Then, there exists a TA C that is weakly isomorphic to B and is obtained from A by adding history
variables.

52 4. TIMED AUTOMATA

Proof. Assume, without loss of generality, that XA and XB are disjoint. Let R be a history relation
from A to B. Define automaton C as follows:

• XC = XA ∪ XB.

• QC = {x ∈ val (XC) | (x � XA, x � XB) ∈ R}.
• �C = {x ∈ QC | x � XB ∈ �B}.
• EC = EB and HC = HB.

• x
a→C y if and only if x � XB

a→B y � XB.

• TC = {τ ∈ trajs(QC) | τ � XB ∈ TB}.
Let F : QC → QB be the projection function such that F(x) = x � XB for all x ∈ QC . It is

easy to check that F is a weak isomorphism from C to B. We verify that C is obtained from A by
adding history variables. Let XB be the variable set X required in the definition of a history variable
and let R′= {(x, y) | y ∈ QC ∧ y � XA = x}. We need to show that R′ is a history relation from A
to C.

1. R′ is a forward simulation from A to C.
By definitions of the relations F , R′ and the automaton C, R′ = F−1 ◦ R. Since F−1 is a
refinement from B to C, by Theorem 4.29, we know that it is a forward simulation from B to
C. Since R is a forward simulation from A to B, by Theorem 4.22 we have R′ is a forward
simulation from A to C, as needed.

2. R′−1 is a refinement from C to A.
We use that R′−1 = R−1 ◦ F . Since F is a refinement from C to B and R−1 is a refinement
from B to A, by Theorem 4.30, we have R′−1 is a refinement from C to A, as needed.

�

In the untimed case, forward simulations are essentially the same as history relations (or
variables) combined with refinements [85, Theorem 5.8]. Clearly, since history relations and refine-
ments are both special cases of forward simulations, and since forward simulations compose, forward
simulations are at least as powerful as arbitrary combinations of history relations and refinements.
Conversely, if there is a forward simulation from A to B then there exists an automaton C with
a history relation from A to C and a refinement from C to B. In [87], a corresponding result is
claimed for timed automata (Theorem 7.8), but the proof turns out to be flawed. Example 7.13 of
[87] constitutes a counterexample to Theorem 7.8 of [87]. Below, we have translated the example
to the setting of this monograph.

Example 4.39 (Forward simulations more powerful than combination history relations and re-
finements). Consider the automata A and B specified in Figure 4.10. The two automaton definitions

4.6. SIMULATION RELATIONS 53

a u t o m a t o n A a u t o m a t o n B
s i g n a t u r e s i g n a t u r e

e x t e r n a l a e x t e r n a l a
s t a t e s s t a t e s

init: Bool := true, init: Bool := true,
now: Real := 0 now: Real := 0

t r a n s i t i o n s t r a n s i t i o n s
e x t e r n a l a e x t e r n a l a

p r e p r e
init ∧ rational(now) init ∧ integer(now)

e f f e f f
init := false init := false

t r a j e c t o r i e s t r a j e c t o r i e s
e v o l v e e v o l v e

d(now) = 1 d(now) > 0

Figure 4.10: The power of forward simulations.

are very similar. Whereas in A an a-action is enabled when init = true and the value of now is a
rational number, in B an a-action is enabled when init = true and the value of now is an integer.
Whereas automaton A has a perfect clock with rate 1, automaton B measures time with a clock that
may run either too slow or too fast, in an arbitrary fashion.

It is easy to check that the predicate

natural(B.now) ∧ A.init = B.init

determines a forward simulation from A to B. However, there does not exists a timed automaton
C with a history relation from A to C and a refinement from C to B. The proof is by contradiction:
suppose C is such a timed automaton. Let x0 be a start state of C, let F be a history relation from A
to C, and let R be a refinement from C to B. Then, by the start condition of a history relation, the
start state (0, true) of A is related to x0 by F . By the start condition of a refinement, R maps x0

to the start state (0, true) of B. Since in A there is a trajectory with limit time 1 from (0, true) to
(1, true), the transfer property for F gives that in C there is a trajectory τ with limit time 1 from
x0 to some state x1 that is related by F to (1, true). Next, the transfer property for R gives that in
B there is a trajectory with limit time 1 from (0, true) to state R(x1) = (t, true), for some t > 0.
Since state (1, true) in A enables an a-action, x1 enables an execution fragment in which an a-action
takes place within 0 time. Since x1 is mapped by R to (t, true), it follows by the transfer property
for R that t in fact equals some natural number n > 0. By Axioms T1 and T2, we can write τ as the
concatenation τ0 τ1 · · · τn of n + 1 trajectories that all have limit time 1

n+1 . Using the fact that F

is a history relation and the limit times of the trajectories τi are rational, we may infer that the last
state of each trajectory τi enables an execution fragment in which an a-action takes place within 0

54 4. TIMED AUTOMATA

time. Using the fact that R is a refinement, we may infer that there is a trajectory in B from (0, true)
to (n, true) on which there are at least n + 2 states (including the first and last state) in which an
a-action is enabled. This contradicts the fact that in B actions a are only enabled at integer times,
which implies that there are only n + 1 such states on any trajectory from (0, true) to (n, true).

4.6.5 PROPHECY RELATIONS
A relation R ⊆ QA × QB is a prophecy relation from A to B if R is a backward simulation from A
to B and R−1 is a refinement from B to A. Prophecy relations induce a preorder between timed
automata.

An automaton B is obtained from an automaton A by adding prophecy variables if there exists
a set of variables X such that:

1. XB = XA ∪ X and XA ∩ X = ∅;

2. QB � XA ⊆ QA; and

3. relation {(x, y) | y ∈ QB and y � XA = x} is a prophecy relation from A to B.

Example 4.40 (Adding prophecy variables to obtain a refinement). We consider adding a prophecy
variable to the automaton A from Example 4.36. Let C be the automaton defined as follows.

• XC = XA ∪ {v} where v is a discrete variable with type(v) = {b, c}.
• QC = {xC, x′

C, yC, y′
C, qC, sC} such that

xC � XA = xA and xC(v) = b

x′
C � XA = xA and x′

C(v) = c

yC � XA = yA and yC(v) = b

y′
C � XA = yA and y′

C(v) = c

qC � XA = qA and qC(v) = b

sC � XA = sA and sC(v) = c

• �C = {xC, x′
C}.

• EC = {a, b, c} and HC = ∅.

• DC = {(xC, a, yC), (x′
C, a, y′

C), (yC, b, qC), (y′
C, c, sC)}.

• TC = {℘(v) | v ∈ QC}.
Figure 4.11 displays automata A and C as directed multipgraphs.

Relation R= {(xA, xC), (xA, x′
C), (yA, yC), (yA, y′

C), (qA, qC), (sA, sC)} is a backward simu-
lation from A to C and R−1 is a refinement. Therefore, C is obtained by adding a prophecy variable

4.6. SIMULATION RELATIONS 55

xC

x′
C

a

a

yC

y′
C

b

c

C

sC

qC

c

b
a

A

xA yA

qA

sA

Figure 4.11: A prophecy variable.

to A. Note that there is no refinement from A to B defined in Example 4.36. However, relation
F = {(xC, xB), (x′

C, xB), (yC, yB), (y′
C, y′

B), (qC, qB), (sC, sB)} is a refinement from C to B.

Theorem 4.41 Let A and B be two comparable TAs such that VA and VB are disjoint. Suppose that
there is a prophecy relation from A to B. Then, there exists an automaton C that is isomorphic to B and is
obtained from A by adding prophecy variables.

Proof. The proof is analogous to the proof of Theorem 4.38. We assume a backward simulation
relation R instead of a forward simulation relation.We construct the automaton C as inTheorem 4.38
and verify that it is obtained from A by adding a prophecy variable. �

57

C H A P T E R 5

Operations on Timed Automata
In this chapter we introduce three kinds of operations on timed automata: parallel composition,
hiding, and adding lower and upper bounds for tasks.

5.1 COMPOSITION
The composition operation for timed automata allows an automaton representing a complex system
to be constructed by composing automata representing individual system components. Our compo-
sition operation identifies external actions with the same name in different component automata.
When any component automaton performs a discrete step involving an action a, so do all component
automata that have a as an external action. The composition operator for timed automata is simpler
than it is for general hybrid automata since all the variables in a timed automaton are internal.1 All
the proofs of this section are as in [79], with simplifications due to the absence of external variables.

5.1.1 DEFINITIONS AND BASIC RESULTS
Formally, we say that timed automata A1 and A2 are compatible if H1 ∩ A2 = H2 ∩ A1 = ∅ and
X1 ∩ X2 = ∅. If A1 and A2 are compatible then their composition A1‖A2 is defined to be the
structure A = (X, Q, �, E, H,D,T) where

• X = X1 ∪ X2;

• Q = {x ∈ val (X) | x � Xi ∈ Qi , i ∈ {1, 2}};
• � = {x ∈ Q | x � Xi ∈ �i , i ∈ {1, 2}};
• E = E1 ∪ E2 and H = H1 ∪ H2;

• For each x, x′ ∈ Q and each a ∈ A, x
a→A x′ iff for i ∈ {1, 2}, either (1) a ∈ Ai and x � Xi

a→i

x′ � Xi , or (2) a �∈ Ai and x � Xi = x′ � Xi ;

• T ⊆ trajs(Q) is given by τ ∈ T ⇔ τ ↓ Xi ∈ Ti , i ∈ {1, 2}.

Theorem 5.1 If A1 and A2 are compatible timed automata then A1‖A2 is a timed automaton.

1The composition operation for general hybrid automata requires external variables to be identified as well as external actions.
When any component automaton follows a particular trajectory for an external variable v, then so do all component automata of
which v is an external variable.

58 5. OPERATIONS ON TIMED AUTOMATA

The following “projection lemma” says that execution fragments of a composition of timed au-
tomata project to give executions fragments of the component automata.Moreover, certain properties
of the fragments of the composition imply, or are implied by, similar properties for the component
fragments.

Lemma 5.2 Let A = A1‖A2 and let α be an execution fragment of A. Then α �(A1, X1) and
α �(A2, X2) are execution fragments of A1 and A2, respectively. Furthermore:

1. α is time-bounded iff both α �(A1, X1) and α �(A2, X2) are time-bounded;

2. α is admissible iff both α �(A1, X1) and α �(A2, X2) are admissible;

3. α is closed iff both α �(A1, X1) and α �(A2, X2) are closed;

4. α is nonZeno iff both α �(A1, X1) and α �(A2, X2) are nonZeno;

5. α is an execution iff both α �(A1, X1) and α �(A2, X2) are executions.

The following lemma says that we obtain the same result for an execution fragment α of a
composition if we first extract the trace and then restrict to one of the components, or if we first
restrict to the component and then take the trace.

Lemma 5.3 Let A = A1‖A2, and let α be an execution fragment of A. Then, for i ∈ {1, 2},
trace(α) �(Ei, ∅) = trace(α �(Ai, Xi)).

Proof. Straightforward, using the definition of trace() and Lemma 3.10. �

The following two theorems are fundamental results that relate the set of traces of a composed
automaton to the sets of traces of its components. Theorem 5.4 is due to Gilbert [37][Lemma
11.14.1]. The proof closely follows the proof of Theorem 5.7 in [79].

Theorem 5.4 Let A = A1‖A2. Let αi be an execution fragment of Ai , i ∈ {1, 2}.
Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose that β �(Ei, ∅) =
trace(αi), i ∈ {1, 2}. Then there exists an execution fragment α of A such that trace(α) = β and αi =
α �(Ai, Xi), i ∈ {1, 2}.

Theorem 5.5 Let A = A1‖A2 and let E be the set of external actions of A. Then tracesA is exactly the
set of (E, ∅)-sequences whose restrictions to A1 and A2 are traces of A1 and A2, respectively.
That is, tracesA = {β | β is an (E, ∅)-sequence and β �(Ei, ∅) ∈ tracesAi

, i ∈ {1, 2}}.

5.1. COMPOSITION 59

Proof. We prove both inclusions.
Suppose that β ∈ tracesA. Then by definition β is an (E, ∅)-sequence. Let α be an execution

of A with trace(α) = β.Then, by Lemma 5.2, α �(Ai, Xi) is an execution of Ai , and, by Lemma 5.3,
β �(Ei, ∅) = trace(α �(Ai, Xi)). Hence β �(Ei, ∅) ∈ tracesAi

.
For the other inclusion, suppose β is an (E, ∅)-sequence and β �(Ei, ∅) ∈ tracesAi

, i ∈ {1, 2}.
Then there exist execution fragments αi of Ai such that trace(αi) = β �(Ei, ∅). Hence, by Theo-
rem 5.4, there exists an execution fragment α of A with trace(α) = β. This implies β ∈ tracesA, as
required. �

These basic results about composition can be extended to arbitrary finite numbers of compo-
nents instead of just two.

Notation: The compatibility conditions for composition require the set of internal variables of
each automaton to be disjoint from the set of internal variables of all the other automata in the
composition. We use a general scheme to disambiguate the internal variables of components in
order to avoid possible name clashes that can violate the compatibility conditions. If A is the name
of an automaton and v is an internal variable of A, then we refer to this variable as A.v in the
composite automaton. But if no confusion is possible, we write v rather than A.v.

Example 5.6 (Periodic sending process with timeouts). Let C be the composition of three automata
from Examples 4.1, 4.2, and 4.4:

C = PeriodicSend ‖ TimedChannel ‖ Timeout

where M = {m1, . . . , mn} and b + u1 < u2. In a setting where b < u1, the following sequence is a
trace of C:

α = u1 send(m1) b receive(m1) u1 − b send(m2) b receive(m2) u1 − b . . .

where t denotes the trace with as domain [0, t] and as range the set consisting of the function with
the empty domain. The following invariant states that C never performs a timeout action.

Invariant 4 In any reachable state x of C, x(suspected) = false.

In order to prove this invariant we can use auxiliary invariants for the component automata,
such as the one established in Example 4.15, and an auxiliary global invariant such as the one below,
which establishes the fact that every message is delivered before the variable Timeout.clock reaches
the point at which a timeout action occurs.

Invariant 5 In any reachable state x of C:

1. if x(queue) is not empty then there is a packet p such that
p ∈ x(queue) and p.deadline − x(now) < u2 − x(Timeout.clock);

60 5. OPERATIONS ON TIMED AUTOMATA

2. if x(queue) is empty then
u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock).

Example 5.7 (Periodic sending process with failures and timeouts). In this example, we consider
a composite automaton defined exactly like the one in Example 5.6 except that the automaton
PeriodicSend is replaced with PeriodicSend2, the periodic sending process with failures. Let C =
PeriodicSend2 ‖ TimedChannel ‖ Timeout. The following sequence is a trace of C:

u1 send(m1) b receive(m1) b fail u2 − b timeout ∞.

According to this sample trace, the first message sent by the periodic sending process is received
exactly b time units after it is sent. The periodic sending process fails 2 × b time units after sending
its first message. The timeout process performs a timeout since no second message arrives within
the next u2 time units after the receipt of the first message.

The following invariant states that a timeout performed by C can be used to conclude that
the sender process has failed. We assume again that b + u1 < u2.

Invariant 6 In any reachable state x of C,

x(Timeout.suspected) ⇒ x(PeriodicSend2.failed).

The automaton C is guaranteed to perform a timeout to signal the failure of a process, within
a specified amount of time after the occurrence of a fail event. The following is a formal statement
of this property.

Let α be an admissible execution of C in which a fail event occurs. Let t be the point in
time at which the first fail event occurs in α. Then a timeout event occurs in α in the interval [t
+ u2 - u1, t + b + u2].

Example 5.8 (Clock synchronization). In this example, we consider the composition of three
clock synchronization automata with six time-bounded channel automata. A graphical represen-
tation of the composite automaton is given in Fig. 5.1. The abbreviation CSi represents the au-
tomaton ClockSync(u, r, i) from Example 4.6. The abbreviation TC i,j represents the automaton
TimedChannel from Example 4.1, the time-bounded channel with maximum delay b, but with the
send(m) and receive(m) actions renamed to send(m,i) and receive(m,i,j), respectively, to
enable communication of real-valued messages from ClockSync(u, r, i) to ClockSync(u, r, j).
Let

C = CS1 ‖ CS2 ‖ CS3 ‖ TC1,2 ‖ TC2,1 ‖ TC1,3 ‖ TC3,1 ‖ TC2,3 ‖ TC3,2.

A physical clock diverges from real time at the largest rate when it evolves with rate (1 + r) or (1
- r). For example, if a physical clock evolves with rate 1 + r, then at time t , its value is t × (1 +
r). Hence, the largest possible difference between a physical clock and the real time is (t × r). This
property is stated by the invariant below.

5.1. COMPOSITION 61

CS2

TC1,3

TC3,1

TC2,3

CS3

TC3,2

CS1 TC1,2

TC2,1

receive(m)
2,1

send(m)
2

send(m)
1

receive(m)
1,2

send(m)
1

send(m)
2

receive(m)
3,1

receive(m)
3,2

receive(m)
2,3

receive(m)
1,3

send(m)
3

send(m)
3

Figure 5.1: Clock synchronization network.

Invariant 7 In any reachable state x of C, at any time t ∈ T, for any i ∈ {1, 2, 3},
|x(CSi .physclock) − t | ≤ t × r.

Two physical clocks in C diverge at the largest rate when one evolves with rate (1 + r) and
the other with (1 - r). It follows from Invariant 7 that, at any time t the largest possible difference
between the physical clock values for two processes is 2 × t × r. This property is formalized by the
following invariant.

Invariant 8 In any reachable state x of C, at any time t ∈ T, for any i, j ∈ {1, 2, 3},
|x(CSi .physclock) − x(CSj .physclock)| ≤ 2 × t × r.

The following invariant states that in any reachable state there exists a process j such that the
logical clock of each other process in the system is smaller than or equal to the physical clock of j .
This follows from the definition of a logical clock and the fact that physical clocks always increase.

Invariant 9 In any reachable state x of C, there exists j ∈ {1, 2, 3} such that for all i ∈ {1, 2, 3},
x(CSi .logclock) ≤ x(CSj .physclock).

62 5. OPERATIONS ON TIMED AUTOMATA

The following invariant states that in any reachable state there exists a process j such that the
logical clock of each other process in the system is larger than or equal to the physical clock of j .
This follows from the definition of a logical clock.

Invariant 10 In any reachable state x of C, there exists j ∈ {1, 2, 3} such that for all i ∈ {1, 2, 3},
x(CSi .logclock) ≥ x(CSj .physclock).

Invariants 9 and 9 together are called validity properties. They express the condition that all
the logical clocks remain in an envelope bounded by the maximum and minimum physical clock
values in the system. The following invariant formalizes the property that all the logical clocks at a
given time lie within the envelope formed by the largest and the smallest physical clock values in
the system. It follows from Invariants 7, 9, and 10 that any point in this envelope can diverge from
real time t by at most t × r time units.

Invariant 11 In any reachable state x of C, at any time t ∈ T, for any i ∈ {1, 2, 3}, |x(CSi .logclock) −
t | ≤ t × r.

Finally, we state a property about the agreement of logical clocks in C. It says that the difference
between two logical clocks is always bounded by a constant (which depends on the message-sending
interval and the bounds on clock drift and message delay).

Invariant 12 In any reachable state x of C, for all i, j ∈ {1, 2, 3},
|x(CSi .logclock) − x(CSj .logclock)| ≤ u + (b × (1 + r)).

To see why Invariant 12 holds, fix j to be a process with the largest physical clock in x, and
fix i to be any other process. Let vj , vi be the logical clock values of j and i, respectively, in state
x. Note that vj is also the physical clock value of j in x. By Invariant 9, we know that vi ≤ vj . To
show Invariant 12, it suffices to show that vj − vi ≤ u + (b × (1 + r)).

Let α be a finite execution that leads to state x. There are two cases to consider.

1. Some message sent by j arrives at i in α.
Consider the last such message and let v1 be the value that it contains. Let v2 be the newly
adjusted logical clock value of i immediately after the message arrives. We know that vi ≥
v2 ≥ v1.

If j sends a later message to i in α, then it sends the next later message when its physical clock
has value v1 + u. By assumption, this message does not arrive at i.Therefore, the real time that
elapses after sending it must be at most b. It follows that the physical clock increase of j since
sending this message is at most b × (1 + r) and so vj ≤ v1 + u + b × (1 + r). On the other
hand, if j does not send a later message to i in α, then vj ≤ v1 + u. In either case, we have
vj ≤ v1 + u + b × (1 + r). Since vi ≥ v1, we have vj − vi ≤ u + b × (1 + r), as needed for
Invariant 12.

2. No message sent by j arrives at i in α.
Since the first send occurs at time 0 and b is the largest possible communication delay, the

5.1. COMPOSITION 63

fact that i has not received the first message sent by j at time 0 implies that t ≤ b. Since both
clocks start at 0, we have vj ≤ b × (1 + r) and vi ≥ 0.Therefore, vj − vi ≤ u + b × (1 + r),
which suffices for Invariant 12.

5.1.2 SUBSTITUTIVITY RESULTS
Theorem 5.5,which relates the set of traces of a composed automaton to the set of traces of component
automata, is fundamental for compositional reasoning. We now introduce another important class
of results, substitutivity results, that are useful for decomposing verification of composite automata.
These results are best understood by viewing one of the components of a composition as the system
and the other as the environment with which the system interacts.

The following result states that if a TA A1 can be shown to implement another one A2,
with no assumptions about their environments, then A1 can be shown to implement A2 in a given
environment B.

Theorem 5.9 Suppose A1, A2, and B are TAs, A1 and A2 are comparable, and each of A1 and A2 is
compatible with B. If A1 ≤ A2 then A1‖B ≤ A2‖B.

Commutativity of the composition operation together with repeated application of Theo-
rem 5.9 gives the following corollary.

Corollary 5.10 Suppose A1, A2, B1, and B2 are TAs, A1 and A2 are comparable, B1 and B2 are
comparable, and each of A1 and A2 is compatible with each of B1 and B2. If A1 ≤ A2 and B1 ≤ B2

then A1‖B1 ≤ A2‖B2.

We can strengthen Corollary 5.10 slightly by the following corollary: if A1 implements A2 in
an environment B2, then A1 composed with an environment that is more restrictive than B2 (whose
set of external behaviors is smaller than that of B2), implements A2 composed with B2.

Corollary 5.11 Suppose A1, A2, B1, and B2 are TAs, A1 and A2 are comparable, B1 and B2 are
comparable, and each of A1 and A2 is compatible with each of B1 and B2. If A1‖B2 ≤ A2‖B2 and
B1 ≤ B2 then A1‖B1 ≤ A2‖B2.

Proof. Let β ∈ tracesA1‖B1 . By Theorem 5.5, β �(EA1, ∅) ∈ tracesA1 and β �(EB1, ∅) ∈ tracesB1 .
Since B1 ≤ B2, β �(EB1, ∅) ∈ tracesB2 . Since B1 and B2 have the same external actions, it follows
that β �(EB2, ∅) ∈ tracesB2 . We have β �(EA1, ∅) ∈ tracesA1 and β �(EB2, ∅) ∈ tracesB2 . By Theo-
rem 5.5, β ∈ tracesA1‖B2 . Since A1‖B2 ≤ A2‖B2 by assumption, β ∈ tracesA2‖B2 , as needed. �

64 5. OPERATIONS ON TIMED AUTOMATA

The following corollary assumes that A1 implements A2 in an auxiliary context B3 and
symmetrically, that B1 implements B2 in an auxiliary context A3. A3, and B3 might express weaker
constraints than A2 and B2, for instance, just their safety restrictions. The corollary further assumes
that A1‖B1 implements A3‖B3—a fact that might be easy to show if the constraints expressed by
A3 and B3 are sufficiently weak. The conclusion, as before, is that A1‖B1 implements A2‖B2.

Corollary 5.12 Suppose A1, A2, A3, B1, B2, and B3 are TAs such that A1, A2, and A3 have the
same external actions, B1, B2, and B3 have the same external actions, and Ai is compatible with Bj for
i, j ∈ {1, 2, 3}. Suppose further that:

1. A1‖B1 ≤ A3‖B3;

2. A1‖B3 ≤ A2‖B3 and A3‖B1 ≤ A3‖B2.

Then A1‖B1 ≤ A2‖B2.

Proof. Let β be a trace of A1‖B1. By projection using Theorem 5.5, β �(EA1, ∅) ∈ tracesA1

and β �(EB1, ∅) ∈ tracesB1 . Since A1‖B1 ≤ A3‖B3, we know that β ∈ tracesA3‖B3 . By projection
using Theorem 5.5, β �(EA3, ∅) ∈ tracesA3 and β �(EB3, ∅) ∈ tracesB3 . By pasting using Theo-
rem 5.5, we have β ∈ tracesA1‖B3 and β ∈ tracesA3‖B1 . By Assumption 2, we get β ∈ tracesA2‖B3 and
β ∈ tracesA3‖B2 . Then, by projection using Theorem 5.5, β �(EA2, ∅) ∈ tracesA2 and β �(EB2, ∅) ∈
tracesB2 . Finally, by pasting using Theorem 5.5, we have β ∈ tracesA2‖B2 , as needed. �

For other preorders, we also get substitutivity results, for example:

Theorem 5.13 Suppose A1, A2, and B are TAs, A1 and A2 have the same external actions, and each
of A1 and A2 is compatible with B.

1. If every closed trace of A1 is a trace of A2 then every closed trace of A1‖B is a trace of A2‖B.

2. If every admissible trace of A1 is a trace of A2 then every admissible trace of A1‖B is a trace of
A2‖B.

3. If every nonZeno trace of A1 is a trace of A2 then every nonZeno trace of A1‖B is a trace of A2‖B.

Example 5.14 (A counterexample for a desirable substitutivity theorem).
Suppose A1 and A2 have the same external actions, B1 and B2 have the same external

actions, and that each of A1 and A2 is compatible with each of B1 and B2. If we view A2 and B2 as
specifications and want to prove that A1‖B1 ≤ A2‖B2, it would be useful to have a theorem that
says if A1‖B2 ≤ A2‖B2 and A2‖B1 ≤ A2‖B2 then A1‖B1 ≤ A2‖B2. That is, if A1 implements
A2 in the context of B2 and B1 implements B2 in the context of A2, we would like to conclude that

5.1. COMPOSITION 65

a u t o m a t o n CatchUpA
s i g n a t u r e

e x t e r n a l a, b
s t a t e s

counta : Nat := 0, countb : Nat := 0,
now: Real := 0, next: d i s c r e t e Real := 0

t r a n s i t i o n s
e x t e r n a l a e x t e r n a l b

p r e e f f
(counta ≤ countb) countb := countb + 1;

∧ (now = next) next := now + 1
e f f

counta := counta + 1;
next := now + 1

t r a j e c t o r i e s
s t o p when

now = next
e v o l v e

d(now) = 1

a u t o m a t o n CatchUpB
s i g n a t u r e

e x t e r n a l a, b
s t a t e s

counta : Nat := 0, countb : Nat := 0,
now: Real := 0, next: d i s c r e t e Real := 0

t r a n s i t i o n s
e x t e r n a l a e x t e r n a l b

e f f p r e
counta := counta + 1 (countb + 1) ≤ counta
next := now + 1 ∧ now = next

e f f
countb := countb + 1;
next := now + 1

t r a j e c t o r i e s
s t o p when

now = next
e v o l v e

d(now) = 1

Figure 5.2: CatchUpA and CatchUpB.

66 5. OPERATIONS ON TIMED AUTOMATA

a u t o m a t o n BoundedAlternateA
s i g n a t u r e

e x t e r n a l a, b
s t a t e s

myturn : Bool := true,
maxout : Nat

t r a n s i t i o n s
e x t e r n a l a e x t e r n a l b

p r e e f f
myturn ∧ (maxout > 0) myturn := true

e f f
myturn := false;
maxout := maxout - 1

a u t o m a t o n BoundedAlternateB
s i g n a t u r e

e x t e r n a l a, b
s t a t e s

myturn : Bool := false,
maxout : Nat

t r a n s i t i o n s
e x t e r n a l a e x t e r n a l b

e f f p r e
myturn := true myturn ∧ (maxout > 0)

e f f
myturn := false;
maxout := maxout - 1

Figure 5.3: BoundedAlternateA and BoundedAlternateB.

A1‖B1 implements A2‖B2. We show by means of a counterexample that it is impossible to prove
such a theorem. The problem arises with the infinite behaviors of A1‖B2.

As examples for A1,B1,A2, and B2, consider, respectively, the automata CatchUpA, CatchUpB,
BoundedAlternateA, BoundedAlternateB in Figs. 5.2 and 5.3. All automata have the same set of
actions, consisting of the external actions a and b. CatchUpA can perform an arbitrary number of b
actions, and can perform an a provided that counta ≤ countb and one time unit has elapsed since
the occurrence of the last action. CatchUpA allows counta to increase to one more than countb.
CatchUpB can perform an arbitrary number of a actions, and can perform a b provided that counta
is at least one more than countb. CatchUpB allows countb to reach counta.

BoundedAlternateA has an infinite number of start states, each giving a different finite bound
on the number of a actions it can perform. Similarly, BoundedAlternateB has an infinite number of

5.2. HIDING 67

start states, each giving a different finite bound on the number of b actions it can perform. Note
that the absence of trajectory definitions in the specifications of these automata imply that they are
timing-independent. That is, there is no constraint on the timing of actions.

The automata CatchUpA and CatchUpB strictly alternate a’s and b’s until a maximum count is
reached, when put in the context of, respectively, BoundedAlternateA and BoundedAlternateB. Hence,
on the one hand

(CatchUpA‖BoundedAlternateB) ≤ (BoundedAlternateA‖BoundedAlternateB),
and

(BoundedAlternateA‖CatchUpB) ≤ (BoundedAlternateA‖BoundedAlternateB).
On the other hand, (CatchUpA‖CatchUpB) can perform an infinite sequence of alternating a
and b actions, which is not allowed allowed by (BoundedAlternateA‖BoundedAlternateB). Hence,
(CatchUpA‖CatchUpB) does not implement (BoundedAlternateA‖BoundedAlternateB).

In Chapter 8,we revisit the substitutivity issue and proveTheorem 8.8,a variant of the desirable
theorem considered in the above example, by assuming certain conditions on the environments A2

and B2.

5.2 HIDING
We now define an operation that “hides” external actions of a timed automaton by reclassifying them
as internal actions. This prevents them from being used for further communication and means that
they are no longer included in traces. The operation is parametrized by a set of external actions:

If A is a timed automaton and E ⊆ EA, then ActHide(E,A) is the structure B that is equal
to A except that EB = EA − E and HB = HA ∪ E. It is immediate from the definitions that hiding
is a well-defined operation on TAs.

Lemma 5.15 If E ⊆ EA then ActHide(E,A) is a TA.

The following lemma characterizes the traces of the automaton that results from applying a
hiding operation.

Lemma 5.16 If A is a TA and E ⊆ EA then tracesActHide(E,A) = {β �(EA − E, ∅) | β ∈ tracesA}.

Using Lemma 5.16, it is straightforward to establish that the hiding operation respects the
implementation relation.

Theorem 5.17 Suppose A and B areTAs with A ≤ B, and suppose E ⊆ EA.Then ActHide(E,A) ≤
ActHide(E,B).

68 5. OPERATIONS ON TIMED AUTOMATA

Example 5.18 (Clock and manager). Consider a simple system consisting of a “clock” and a
“manager”. The clock ticks once every [c1, c2] time units and the manager issues a “grant” within b
time units after counting k > 0 ticks. We assume 0 ≤ b < c1 ≤ c2. The problem is to prove upper
and lower bounds on the time between successive grant actions.

Figure 5.4 gives a formal specification of the clock in terms of the TA Clock(c1, c2) and the
manager in terms of the TA Manager(k, b). The full system with the tick actions hidden can be
defined by

System = ActHide({tick}, Clock‖Manager).
Consider the automaton Specification displayed in Fig. 5.5. This automaton is equal to Clock,
except for some renamings. We claim that the manager issues a grant once every [c1 ∗ k − b, c2 ∗
k + b] time units. An equivalent formulation of this claim is:

System ≤ Specification(c1 ∗ k − b, c2 ∗ k + b).

In order to prove the claim, one may first establish that the predicate

Inv
�= 0 ≤ x ≤ c2 ∧ (count = 0 ⇒ x = y ≤ b) ∧ 0 ≤ count ≤ k

defines an invariant of System, and use this to verify that the conjunction of Inv and

c1 ∗ (k − count) − b ≤ z − x ≤ c2 ∗ (k − count)

defines a forward simulation from System to Specification(c1 ∗ k − b, c2 ∗ k + b).

5.3 EXTENDING TIMED AUTOMATA WITH BOUNDS
In this section, we define a new class of automata, “TA with bounds” where the basic definition
of a timed automaton is extended with the notion of a task and a pair of bounds (a lower and an
upper bound) for each task. We then define an operation that transforms a given TA with bounds to
another TA. This operation supports specifying a system by thinking in terms of tasks and bounds
as in the timed automata of Merritt et al. [91] and the phase transition systems of Maler et al. [88].

In defining the operation for extending timed automata with bounds, we restrict attention to
a class of automata where the enabling and disabling of actions during trajectories follow certain
rules. Specifically, our operation is defined on automata in which each action is enabled or disabled
throughout an entire trajectory, or becomes enabled once during a trajectory and remains so until
the end of that trajectory. The given restrictions ensure that the result of applying the operation to
a TA is another TA and that the resulting TA satisfies the restrictions.

Let A be a TA, C a set of actions of A, and T the set of trajectories of A. We say that T
is well-formed with respect to C if for each τ ∈ T and for each t ∈ dom(τ) both of the following
conditions hold:

5.3. EXTENDING TIMED AUTOMATA WITH BOUNDS 69

a u t o m a t o n Clock(c1, c2: Real) w h e r e 0 < c1 ∧ c1 ≤ c2
s i g n a t u r e

e x t e r n a l tick
s t a t e s

x: Real := 0
t r a n s i t i o n s

e x t e r n a l tick
p r e

x ≥ c1
e f f

x := 0
t r a j e c t o r i e s

s t o p when
x = c2

e v o l v e
d(x) = 1

a u t o m a t o n Manager(k: Int, b: Real) w h e r e b > 0 ∧ k > 0
s i g n a t u r e

e x t e r n a l tick, grant
s t a t e s

y: Real := 0,
count : Int := k

t r a n s i t i o n s
e x t e r n a l tick

e f f
count := count - 1;
i f count = 0 t h e n y := 0

e x t e r n a l grant
p r e

count = 0
e f f

count := k
t r a j e c t o r i e s

s t o p when
count = 0 ∧ y = b

e v o l v e
d(y) = 1

Figure 5.4: Automata Clock and Manager.

1. (Stability) If C is enabled in τ(t) then for all t ′ ∈ dom(τ) with t < t ′, C is enabled in τ(t ′).

2. (Left-closedness) If C is not enabled in τ(t) then there exists a t ′ ∈ dom(τ) with t < t ′ such
that C is not enabled in τ(t ′).

70 5. OPERATIONS ON TIMED AUTOMATA

a u t o m a t o n Specification(lb, ub: Real) w h e r e 0 < lb ∧ lb ≤ ub
s i g n a t u r e

e x t e r n a l grant
s t a t e s

z: Real := 0
t r a n s i t i o n s

e x t e r n a l grant
p r e

z ≥ lb
e f f

z := 0
t r a j e c t o r i e s

s t o p when
z = ub

e v o l v e
d(z) = 1

Figure 5.5: Automaton Specification.

A TA with bounds, A = (B, C, l, u) consists of:

• A timed automaton B = (X, Q, �, E, H,D,T).

• A set C ⊆ E ∪ H of actions called a task; we assume that T is well-formed with respect to C.

• A lower time bound l ∈ R≥0 and an upper time bound u ∈ R≥0 ∪ {∞} with l ≤ u.

Lower and upper bounds are used to specify how much time is allowed to pass between the
enabling and the performance of an action. If l is the lower bound for a task C, then an action in C

must remain enabled at least for l time units before being performed. If u is the upper bound for a
task C, then an action in C can remain enabled at most u time units without being performed: it
must either be performed or become disabled within u time units.

We now define an operation Extend, which transforms a TA A with bounds to another TA
A′ that incorporates the new bounds, in addition to the timing constraints already present in A.
Let A = (B, C, l, u) be a TA with bounds where B = (X, Q, �, E, H,D,T). Then Extend(A)

is the TA A′ = (X′, Q′, �′, E′, H ′,D′,T ′) where

• X′ = X ∪ {now, first, last} where:

1. now, first , and last are new variables that do not appear in X.

2. now is an analog variable such that type(now) = R.

3. first and last are discrete variables where type(first) = R and type(last) = R ∪ {∞}.
• Q′ = {x ∈ val (X′) | x � X ∈ Q}.

5.3. EXTENDING TIMED AUTOMATA WITH BOUNDS 71

• �′ consists of all the states x ∈ Q′ that satisfy the following conditions:

1. x � X ∈ �.

2. x(now) = 0.

3. x(first) =
{

l if C is enabled in x � X,

0 otherwise.

x(last) =
{

u if C is enabled in x � X,

∞ otherwise.

• E′ = E and H ′ = H . We write A′ �= E′ ∪ H ′.

• If a ∈ A′ then (x, a, x′) ∈ D′ exactly if all of the following conditions hold:

1. (x � X)
a→A (x′ � X).

2. x′(now) = x(now).

3. (a) If a ∈ C, then x(first) ≤ x(now).
(b) If C is enabled both in x � X and x′ � X and a /∈ C, then x(first) = x′(first) and

x(last) = x′(last).
(c) If C is enabled in x′ � X and either C is not enabled in x � X or a ∈ C, then x′(first) =

x(now) + l and x′(last) = x(now) + u.
(d) If C is not enabled in x′ � X, then x′(first) = 0 and x′(last) = ∞.

• T ′ is a set that consists of all τ ∈ trajs(Q′) that satisfy the following conditions:

1. (τ ↓ X) ∈ T .

2. d(now) = 1.

3. (a) If for all t ∈ dom(τ),C is enabled in τ ↓ X(t) then first and last are constant through-
out τ .

(b) If for all t ∈ dom(τ), C is disabled in τ ↓ X(t) then first and last are constant
throughout τ .

(c) If for all t ′ ∈ [0, t),C is disabled in τ(t ′) and for all t ′ ∈ dom(τ) − [0, t),C is enabled
in τ(t ′) then

i. first and last are constant in [0, t).
ii. τ(t)(first) = τ(t)(now) + l and τ(t)(last) = τ(t)(now) + u.

iii. first and last are constant in dom(τ) − [0, t).
(d) now ≤ last .

The transformation is based on the idea of augmenting the state of the original automaton
with a variable to represent current time (now) and the earliest time (first) and the latest time (last)

72 5. OPERATIONS ON TIMED AUTOMATA

a task can be performed. All these variables represent time in absolute terms. Item 3(a) in the
definition of D′ expresses the new lower bound constraint and Item 3(d) in the definition of T ′ the
new upper bound constraint.

Let A be a TA with bounds (B, C, l, u). In a start state x of Extend(A), the variables first
and last are initialized to l and u, respectively, if C is enabled in x. If C is not enabled in x, then
first is set to 0 and last is set to ∞. Items 3(c) in the definition of D′ and 3(c) in the definition of
T ′ show how the variables first and last are updated. When C becomes newly enabled by a discrete
transition or when a C action leads to a state in which C is enabled, first is set to now + l and last
is set to now + u. The variables first and last are updated similarly when C becomes newly enabled
in the course of a trajectory.

Theorem 5.19 Suppose that A = (B, C, l, u) is a TA with bounds. Then Extend(A) is a TA with a
set of trajectories that is well formed with respect to C.

Proof. The proof follows from the definitions of TA and the operation Extend. Step 3(a) in the
definition of D′ adds a new lower bound constraint, which makes enabling start at some particular
time. Step 3(b) in the definition of T ′, adds a new upper bound constraint, which stops trajectories
at a particular time and which does not add any enabling or disabling to trajectories. �

In the rest of this section, we sometimes speak of variables, states and traces of a TA with
bounds. If A = (B, C, l, u) is aTA with bounds, variables, states and traces of A refer to, respectively,
the states and the traces of the underlying automaton B.

Theorem 5.20 Suppose A is a TA with bounds. Then tracesExtend(A) ⊆ tracesA.

Proof. Let F : Q′ → Q be defined as follows: F(x) = x � X where X is the set of internal variables
of A. It is easy to check that F is a refinement from Extend(A) to A. By Theorem 4.29 and
Corollary 4.25, we conclude that tracesExtend(A) ⊆ tracesA. �

Lemma 5.21 Suppose that A = (B, C, l, u) is a TA with bounds. For any reachable state x of
Extend(A), if C is enabled in x � X in A, then x(last) ≤ x(now) + u.

Proof. Consider a closed execution α of Extend(A). Using Axioms T1 and T2 for trajectories,
we can write α as a concatenation of closed execution fragments α0

� α1
� . . . αk where α0 is a

point trajectory, and each αi for i ≥ 1 is either a trajectory or a discrete action surrounded by two
point trajectories such that for all 0 ≤ i ≤ k − 1, αi.lstate = αi+1.fstate. We prove the invariant by
induction on the length k of the sequence of execution fragments.

For the base case, suppose that C is enabled in α0.fstate � X. Since α is an execution, we know
that α0.fstate is a start state of Extend(A). By definition of Extend(A), α0.fstate(last) = u. Since
α0.fstate(now) = 0, α0.fstate(last) ≤ α0.fstate(now) + u, as required.

5.3. EXTENDING TIMED AUTOMATA WITH BOUNDS 73

For the inductive step, we assume that the property is true for the sequence α0
� α1

� . . . αk

and show that it is true in the sequence αk+1 in α0
� α1

� . . . αk
� αk+1. There are two cases to

consider depending on whether αk+1 is a discrete action surrounded by two point trajectories or a
trajectory.

1. αk+1 is an action a surrounded by two point trajectories ℘(y) and ℘(y′). Suppose that C is
enabled in y′ � X in A. There are two subcases to consider:

(a) C is enabled in y � X and a /∈ C.
Then, y′(last) = y(last) and y′(now) = y(now). By inductive hypothesis, y(last) ≤
y(now) + u. Therefore, y′(last) ≤ y′(now) + u, as needed.

(b) C is disabled in y � X or a ∈ C.
Then, by definition of Extend(A), y′(last) = y′(now) + u, which suffices.

2. αk+1 is a trajectory.
Suppose that C is enabled in αk+1.lstate � X in A. There are two subcases to consider:

(a) C is enabled in αk+1.fstate � X in A.
By inductive hypothesis αk+1.fstate(last) ≤ αk+1.fstate(now) + u. By the well-
formedness assumption, we know that C must be enabled throughout αk+1 and by defi-
nition of Extend(A) last is constant throughout αk+1. Since the value of now increases,
it is easy to see that αk+1.lstate(last) ≤ αk+1.lstate(now) + u.

(b) C is disabled in αk+1.fstate � X in A.
Then, since it is enabled in αk+1.lstate � X by the well-formedness assumption, it becomes
enabled at some point t in the domain of αk+1 and remains enabled thereafter.Therefore,
αk+1(t)(last) = αk+1(t)(now) + u, by definition of Extend(A). Since last remains con-
stant after it is set and the value of now increases,αk+1.lstate(last) ≤ αk+1.lstate(now) + u

holds.

�

The theorem below shows that the executions of an automaton obtained by applying the
transformation Extend to a TA with bounds respect the time bounds specified by the lower bound l

and the upper bound u.

Theorem 5.22 Let A = (B, C, l, u) be a TA with bounds. Then:

1. There does not exist a closed execution fragment α of Extend(A) from a reachable state, where
α.ltime > u, C is enabled in A in all the states of α �(A, X) and no action in C occurs in α.

2. There does not exist a closed execution fragment α of Extend(A) from a reachable state, where
α.ltime < l, such that C is not enabled in A in the first state of α �(A, X) and an action in C occurs
in α.

74 5. OPERATIONS ON TIMED AUTOMATA

Proof. 1. Suppose, for the sake of contradiction, that there exists a closed execution fragment
α = τ0 a1τ1 a2 . . . τn of Extend(A) from a reachable state, where α.ltime > u, C is enabled
in A in all the states of α �(A, X) and none of the ai in α is in C. By definition of trajectories
for Extend(A) it must be the case that α.lstate(now) ≤ α.lstate(last).

Since C is enabled in A in all states in α, by Lemma 5.21 we have α.fstate(last) ≤
α.fstate(now) + u. By definition of Extend(A), last remains constant throughout α;
therefore, α.lstate(last) = α.fstate(last). Since α.fstate(last) ≤ α.fstate(now) + u, it follows
that α.lstate(last) ≤ α.fstate(now) + u. By definition of α, we have α.lstate(now) =
α.fstate(now) + α.ltime. It follows that α.fstate(now) + α.ltime ≤ α.fstate(now) + u.This im-
plies α.ltime ≤ u. But this gives us the needed contradiction since α.ltime > u.

2. We assume that α is a closed execution fragment of Extend(A) from a reachable state where
α.ltime < l, such that C is not enabled in A in the first state of α and an action in C occurs in
α. Let (x, a, x′) be the first discrete transition of Extend(A) in α such that a ∈ C. We show
that the condition x(first) ≤ x(now), which has to hold for the discrete transition to occur,
cannot be true, hence arrive at a contradiction.

By Theorem 5.19, the set of trajectories of Extend(A) is well formed with respect to C.
Therefore, C can become enabled by either a discrete transition or during a trajectory, and
remains enabled until the occurrence of (x, a, x′).

(a) C becomes enabled by a discrete transition and remains enabled in A until the occurrence
of (x, a, x′).
Let (y, b, y′) be the discrete transition of A that enables C. By item 3(c) in the definition
of D′ we know that first is set to y(now) + l when C becomes enabled. By item 3(b) in
the definition of D′ and 3(a) in the definition of T ′, we know that it remains constant
so that x(first) = y(now) + l. Since (x, a, x′) is a discrete transition of Extend(A), it
must be the case that x(first) ≤ x(now). Since x(now) ≤ y(now) + α.ltime and x(first) =
y(now) + l it follows that y(now) + l ≤ y(now) + α.ltime. But we know by assumption
that α.ltime < l which gives the needed contradiction.

(b) C becomes enabled at some point in the course of a trajectory τ and remains enabled in
A until the occurrence of (x, a, x′).
Let y be a state in the range of τ where C becomes enabled. By item 3(c) in the definition
of T ′ we know that first is set to y(now) + l when C becomes enabled and it remains
constant in τ so that x(first) = y(now) + l. By item 3(b) in the definition of D′ and
3(a) in the definition of T ′, we know that first remains constant until the occurrence of
(x, a, x′). Since (x, a, x′) is a discrete transition of Extend(A), it must be the case that
x(first) ≤ x(now).Since x(now) ≤ y(now) + α.ltime and x(first) = y(now) + l it follows
that y(now) + l ≤ y(now) + α.ltime. But we know by assumption that α.ltime < l which
gives the needed contradiction.

5.3. EXTENDING TIMED AUTOMATA WITH BOUNDS 75

�

Example 5.23 (Fischer’s algorithm specified using tasks and bounds). In Example 4.5 we pre-
sented the specification of Fischer’s mutual exclusion algorithm as a TA. This example illustrates an
alternative way of specifying the same algorithm by using a TA with bounds.

Recall that, formally, we define a TA with bounds as a TA augmented with a single task along
with lower and upper bounds for that task. The automaton in Fig. 5.6 is, however, augmented with
a set of tasks and bounds (we omit from the figure those transition definitions that are the same
as in Example 4.5). This is for notational convenience and the automaton in Fig. 5.6 should be
viewed as the automaton representing the cumulative result of adding in successive steps two tasks
for each index. We assume that Extend is applied once for each task. That is, we start with the
timing-independent version of FischerME, apply Extend to the automaton augmented with the task
{set(i)} to add the lower bound 0 and the upper bound u_set, then apply Extend to the resulting
automaton augmented with {check(i)} to add the lower bound l_check and the upper bound
∞. Such two successive applications are allowed since the result of the first application of Extend
satisfies the the well-formedness conditions for the set of trajectories.

The result of these successive applications yields an automaton similar to the one in Exam-
ple 4.5. The only difference is that the mechanical application of the transformation would reset the
value offirstcheck[i] to 0 as an effect ofcheck(i)while we do not resetfirstcheck[i] explic-
itly in Example 4.5, when it becomes disabled.This is because we make use of the facts that the value
of firstcheck[i] is used only in determining whether check(i) is enabled and that check(i)
becomes enabled only in the poststate of set(i) which also sets the value of firstcheck[i]. Note
that this discrepancy does not give rise to any difference in the behaviors of the two automata.

76 5. OPERATIONS ON TIMED AUTOMATA

t y p e Index = e n u m e r a t i o n o f p1, p2, p3, p4

t y p e PcValue = e n u m e r a t i o n o f rem, test, set, check,
leavetry , crit, reset, leaveexit

a u t o m a t o n FischerME(u_set, l_check : Real)
w h e r e u_set ≥ 0 ∧ l_check ≥0 ∧ u_set < l_check
s i g n a t u r e

e x t e r n a l try(i:Index), crit(i:Index), exit(i:Index), rem(i:Index)
i n t e r n a l test(i:Index), set(i:Index),

check(i:Index), reset(i:Index)
s t a t e s

x: Null[Index] := nil,
pc: Array[Index, PcValue] := c o n s t a n t (rem)

t r a n s i t i o n s
i n t e r n a l test(i)

p r e
pc[i] = test

e f f
i f x = nil t h e n

pc[i] := set
i n t e r n a l set(i)

p r e
pc[i] = set

e f f
x := embed(i);
pc[i] := check

i n t e r n a l check(i)
p r e

pc[i] = check
e f f

i f x = embed(i) t h e n pc[i] := leavetry
e l s e pc[i] := test

t a s k s
set = {set(i)} f o r i: Index; check = {check(i)} f o r i: Index

bounds
set = [0, u_set]; check = [l_check , infty]

Figure 5.6: Fischer’s mutual exclusion algorithm with bounds.

77

C H A P T E R 6

Properties for Timed Automata
In this chapter, we define the notion of a property for hybrid sequences and define some common
types of properties, in particular, safety and liveness properties. We define what it means for a timed
automaton to satisfy a property, and present results that capture common proof methods for showing
that automata satisfy properties.

6.1 PROPERTIES FOR HYBRID SEQUENCES
Common types of properties considered for systems include safety properties and liveness properties
[3, 9]. These notions are usually defined in a setting in which the behavior of a system consists of a
set of infinite sequences. A property is then a set of infinite sequences. However, the behavior of a
TA, that is, its executions and traces, encompasses both finite and infinite sequences. It is natural to
say that a TA satisfies a certain property if all its executions (or traces) are contained in the property.
Therefore, we consider properties that may contain both finite and infinite sequences, and adjust the
definitions of safety and liveness accordingly.

For any set A of actions and set V of variables, we define an (A, V)-property P to be any
set of (A, V)-sequences. We define an (A, V)-property P to be a safety property provided that it
is closed under prefix and limits of hybrid sequences. In other words, if a hybrid sequence satisfies
a safety property P , then so do all its prefixes, and if all the executions in a chain of successive
extensions satisfy P , then so does the limit of the chain. Safety properties are generally used to
represent requirements that should be maintained by a system throughout its execution.

Example 6.1 (Safety property). For any A and V , the set of all (A, V)-sequences in which all
valuations are equal is a safety property.

Example 6.2 (Always properties). Any set (property) of valuations can be used to define a safety
property, as follows. Let I be any set of valuations of a set V of variables, and let A be any set of
actions. Then define always(I, A) to be the (A, V)-property consisting of all (A, V)-sequences in
which all valuations are in I . It is immediate that always(I, A) is a safety property. In this way,
invariants that are formulated in terms of automaton states can be regarded as safety properties.

Example 6.3 (Timed automata executions and traces). For any TA A, its set of executions, execsA,
is a safety property. However, the set of traces tracesA need not be a safety property. For example, A

78 6. PROPERTIES FOR TIMED AUTOMATA

could be defined to choose an integer k nondeterministically, and then perform an external action
beep at integer times 0, 1, 2, . . . , k. The limiting sequence in which beep is performed infinitely
many times, at all nonnegative integer times, is not in tracesA.

Any (A, V)-property P can be weakened to a safety property. Define safe(P) to be the (A, V)-
property that is obtained by taking the limit-closure of the prefix-closure of P . Then we can prove
the following two lemmas.

Lemma 6.4 Let P be an (A, V)-property and let α be a closed (A, V)-sequence in safe(P). Then α is
a prefix of some element of P .

Proof. Let Q be the prefix closure of P , and let R be the limit-closure of Q. Since α ∈ R, there
exists a chain α0, α1, α2, · · · of elements of Q with limit α. By Lemma 3.6, α is compact, and thus
there is some αj such that α ≤ αj . Since αj ∈ Q, there exists some β ∈ P such that αj ≤ β. Hence,
α is a prefix of element β of P . �

Lemma 6.5 For any (A, V)-property P , safe(P) is a safety property.

Proof. Let Q be the prefix closure of P , and let R be the limit-closure of Q. We prove that R =
safe(P) is a safety property.

First, we show that R is closed under prefixes. Let α ∈ R and let β ≤ α. We must prove
β ∈ R. Since α ∈ R, there exists a chain α0, α1, α2, · · · of elements of Q with limit α. There exists
a chain β0, β1, β2, · · · of closed (A, V)-sequences with limit β. Fix an index i. Since βi ≤ β and
β ≤ α, we have βi ≤ α. By Lemma 3.6, βi is compact, and thus there is some αj such that βi ≤ αj .
Since αj ∈ Q and Q is (trivially) prefix-closed, βi ∈ Q. Since i was chosen arbitrarily, this implies
β ∈ R.

Next, we show that R is limit-closed. Suppose that α is the limit of a chain α0, α1, α2, · · ·
of elements of R. We must prove that α ∈ R. There exists a chain β0, β1, β2, · · · of closed (A, V)-
sequences with limit α. Fix an index i. By Lemma 3.6, βi is compact, and thus there is some αj

such that βi ≤ αj . Since αj ∈ R and R is closed under prefixes, βi ∈ R. Hence, by Lemma 6.4, βi

is a prefix of an element of P , that is, βi ∈ Q. Since i was chosen arbitrarily, this implies α ∈ R, as
required. �

We now turn to liveness properties. We define an (A, V)-property P to be a liveness property
if, for every closed (A, V)-sequence α, P contains both α and an admissible extension of α, that is,
C(A, V) ⊆ P , and ∀α ∈ C(A, V) ∃β ∈ P : α ≤ β ∧ β ∈ A(A, V).

Liveness properties are commonly used to represent system requirements that should hold
“eventually”, or “infinitely often”. In order for liveness properties to exist, we need a nontriviality
assumption on the dynamic types of variables. If, for instance, the dynamic type of some variable
only contains point trajectories, then there is no way in which we can extend closed hybrid sequences

6.1. PROPERTIES FOR HYBRID SEQUENCES 79

to admissible hybrid sequences. Therefore, we assume, in the rest of this section, that for any v ∈ V
and for any value c ∈ type(v), there exists a function f ∈ dtype(v) whose domain is [0, ∞) and with
f (0) = c. Observe that, in combination with the fact that dynamic types are closed under time
shift and concatenation, the nontriviality assumption implies that any closed hybrid sequence has
an admissible extension.

Example 6.6 (Liveness properties). Fix a set of actions A containing action a, and a variable set
V . Then the union of the set C(A, V) with the set of all (A, V)-sequences that contain at least
one occurrence of a is a liveness property. The set of all (A, V)-sequences that do not contain any
occurrence of a is not a liveness property, because this set does not include C(A, V). The union of
C(A, V) with the set of (A, V)-sequences that contain infinitely many occurrences of a is a liveness
property.The set of all (A, V)-sequences that contain finitely many occurrences of a is also a liveness
property, since any closed (A, V)-sequence contains only finitely many occurrences of a, and has an
admissible extension with only finitely many occurrences of a. Note that we need the dynamic type
nontriviality assumption to assert the existence of the required admissible executions, in all three
cases above.

Our definitions yield the following results, stated formally, as Theorems 6.7 and 6.8: (1) the
classes of safety and liveness properties are (essentially) disjoint; and (2) every property satisfying
certain basic closure conditions can be expressed as the intersection of a safety and a liveness property.
The first theorem says that the only property that can be both a safety and a liveness property is the
set of all (A, V)-sequences.

Theorem 6.7 Let P be an (A, V)-property. If P is both a safety property and a liveness property, then
P is the set of all (A, V)-sequences.

Proof. Suppose that P is both a safety and a liveness property. Let α be any (A, V)-sequence; we
show α ∈ P . By Lemma 3.6, α can be expressed as the limit of a chain of closed (A, V)-sequences
α0, α1, α2, Since P is a liveness property, it follows that for every i ≥ 0, αi ∈ P . But since P is
a safety property, the limit of this chain, which is α, must also be in P . �

The second theorem says that any property that satisfies certain basic closure conditions can
be expressed as the intersection of a safety property and a liveness property.This means that one can,
in principle, specify any such property by listing a collection of safety and liveness requirements. In
other frameworks, for instance those of [3, 9], any property can be expressed as the intersection of
a safety and a liveness property, whereas we require two closure conditions. This is due to the fact
that in our setting properties may also contain finite sequences.The closure conditions constrain the
finite behaviors within a property.

Theorem 6.8 Let P be a prefix-closed (A, V)-property such that any closed sequence in P has an
admissible extension in P . Then there exist a safety property S and a liveness property L such that
P = S ∩ L.

80 6. PROPERTIES FOR TIMED AUTOMATA

Proof. Let S = safe(P) and let

L = P ∪ C(A, V) ∪ {β ∈ A(A, V) | ∃α ∈ C(A, V) − P : α ≤ β}

Lemma 6.5 implies that S is a safety property. We claim that L is a liveness property. L contains
all closed sequences, by construction. Now fix any closed sequence β, and argue that L contains
an admissible extension of β. If β ∈ P then, by the closure conditions on P , it has an admissible
extension in P , and hence in L. If β �∈ P then, by definition of L, an admissible extension of β is
included in L. Note that the existence of this extension depends on the dynamic type nontriviality
assumption.

From the definitions it is obvious that P ⊆ S ∩ L. We claim that S ∩ L ⊆ P . For contradic-
tion, consider α ∈ (S ∩ L) − P . If α is closed then, since α ∈ safe(P), Lemma 6.4 and the fact that
P is prefix-closed imply α ∈ P , and we are done. So assume that α is not closed. Since α ∈ L − P ,
α is an admissible extension of some β ∈ C(A, V) − P . But since α ∈ S and P is prefix-closed, α

is also the limit of a chain α0, α1, . . . of sequences in P . This implies that there exists some index j

such that β ≤ αj . But then, by prefix closure of P , β ∈ P . Contradiction. �

Example 6.9 (Expressing a property as an intersection of safety and liveness properties). Let P

be the set of ({a, b}, ∅)-sequences whose action subsequences are strictly alternating as and bs, and
are either finite and time-bounded, or else infinite and admissible (that is, admissible with infinitely
many action occurrences). Thus, we are ruling out both infinite time-bounded sequences and finite
admissible sequences (admissible sequences with finitely many action occurrences). It is easy to check
that P is prefix-closed and that any closed sequence in P has an admissible extension in P .

Let S be the set of ({a, b}, ∅)-sequences whose action subsequences are strictly alternating as
and bs. This includes all the sequences in P , plus the alternating infinite time-bounded sequences
and the alternating finite admissible sequences. Clearly,S is closed under prefix and limits, and hence
a safety property.

Let L′ be the prefix closure of the set of all infinite and admissible ({a, b}, ∅)-sequences.
Then, clearly, L′ is a liveness property and P = S ∩ L′.

The decomposition of a property into a safety and a liveness property is not unique. Since
S = safe(P), the definition of S is in agreement with the construction in the proof of Theorem 6.8.
The set L′, however, is larger than the liveness property L constructed in the proof of Theorem 6.8.
This construction defines L to be the union of P and C(A, V) and the set of admissible ({a, b}, ∅)-
sequences with an alternation error. Observe that L ⊂ L′ since L′ also contains the open and
time-bounded ({a, b}, ∅)-sequences with an alternation error. Nevertheless, according to the proof
of Theorem 6.8, also L is a liveness property and P = S ∩ L.

6.2. PROPERTIES FOR TIMED AUTOMATA 81

6.2 PROPERTIES FOR TIMED AUTOMATA
Now we define what it means for an automaton to satisfy a property. Consider a TA A and an
(A, X)-property P , where A and X are the actions and variables of A. Then we say that A satisfies
P provided that execsA ⊆ P , that is, every execution of A is in P .

Sometimes we are interested in showing that an automaton satisfies a property of its traces,
rather than of its executions. Thus, consider an (E, ∅) property P , where E is the set of external
actions of A. Then we say that A trace-satisfies P provided that tracesA ⊆ P .

For safety properties, we have the following three-way equivalence. The second and third
conditions can be regarded as sufficient conditions for showing that A satisfies S. Lemma 6.10
assumes that A is feasible, the definition of which is given in Section 4.4.

Lemma 6.10 Suppose that A is a feasible TA, and S is an (A, X)-safety property, where A and X are
the actions and variables of A. The following three statements are equivalent.

1. A satisfies S.

2. Every admissible execution of A is in S.

3. Every closed execution of A is in S.

Proof. Obviously, Condition 1 implies both Conditions 2 and 3. We show that Condition 2 implies
Condition 3 and Condition 3 implies Condition 1.

• 2 implies 3: Fix any closed execution α. Since A is feasible, α can be extended to an admissible
execution α′, which must be in S by Condition 2. Since S is prefix-closed, α ∈ S, as needed.

• 3 implies 1: Fix any execution α. Then α is the limit of a sequence of closed executions, each
of which must be in S by Condition 3. Since S is limit-closed, α ∈ S, as needed.

�

A consequence of Lemma 6.10 is that, in order to prove that a TA A satisfies an (A, X)-
safety-property S, it is enough to prove S for all closed executions of A. This is typically done
by induction on the i-length of the closed execution sequences (after strengthening the inductive
hypothesis as needed). Such inductions have two types of inductive steps: for discrete transitions
and for trajectories. A similar result to Lemma 6.10 holds for trace-satisfaction.

Lemma 6.11 Suppose that A is a feasible TA, and S is an (E, ∅)-safety property, where E is the set of
external actions of A. The following three statements are equivalent.

1. A trace-satisfies S.

82 6. PROPERTIES FOR TIMED AUTOMATA

2. Every admissible trace of A is in S.

3. Every closed trace of A is in S.

Now we consider the relationship between safety properties and invariants, as defined in
Section 4.3. It follows directly from the definitions that I is an invariant of automaton A exactly if
A satisfies the corresponding property always(I, A), as defined in Example 6.2.

Lemma 6.12 Let A be a TA with variable set X, and let I be a set of valuations of X. Then I is an
invariant of A if and only if A satisfies the safety property always(I, A).

Lemma 6.12 is of little use when one has to prove an invariant. For proving invariants it is
better to use the methods described in Section 4.3. Methods for proving liveness properties for timed
automata are less standardized than those for proving safety properties. In untimed settings, formal
temporal logic methods are often used [65]. In timed settings, “eventual” properties and “infinitely
often” properties are more commonly sharpened into time bound properties, which are expressed as
safety properties and proved using safety proof techniques [49].

Example 6.13 (Formulating an eventual property as a safety property). Consider the liveness
property L consisting of sequences α such that either α is finite and time-bounded, or α contains
at least one occurrence of a. Also, consider the safety property S consisting of all sequences α such
that either α.ltime ≤ t or α contains at least one occurrence of a by time t .

Note that S does not quite imply L, because S allows the case where α is an infinite sequence
with α.ltime ≤ t that contains no a, whereas L does not. However, we can say that, if α is in S and α

is not an infinite sequence with α.ltime ≤ t , then α ∈ L. So, for example, for an automaton A having
no infinite, time-bounded executions (executions with finite ltime), if we show that all executions of
A satisfy S, then we know that they all satisfy L.

6.3 IMPLEMENTATION

The following theorem relating implementation and properties is immediate.

Theorem 6.14 Let A and B be TAs with the same set E of external actions, and let P be any (E, ∅)-
property. If A ≤ B (that is, if tracesA ⊆ tracesB) and B trace-satisfies P , then A trace-satisfies P .

Theorem 6.14 provides a simple proof method for showing that an automaton A trace-satisfies
a property P : show that A implements some other automaton B and show that B satisfies P .

6.4. OPERATIONS 83

6.4 OPERATIONS
In this section, we define composition of properties and give some basic results about when a
composition of automata satisfies a composition of properties.Suppose Pi is an (Ai, Vi)-property, i ∈
{1, 2}.Then define P1‖P2 to be the (A1 ∪ A2, V1 ∪ V2)-property containing exactly those sequences
α such that α �(Ai, Vi) ∈ Pi , i ∈ {1, 2}.

Theorem 6.15 Let Pi be an (Ai, Vi)-property, i ∈ {1, 2}. If P1 and P2 are safety properties, then
P1‖P2 is a safety property.

The following theorem gives a simple sufficient condition for a composition of TA to imple-
ment a composition of properties.

Theorem 6.16 Let A1 and A2 be compatible TAs and let Pi be an (Ai, Xi)-property, i ∈ {1, 2}, where
Ai and Xi are the sets of actions and states of Ai . Suppose Ai satisfies Pi , i ∈ {1, 2}. Then A1‖A2 satisfies
P1‖P2.

Proof. Let α ∈ execsA1‖A2 . By Lemma 5.2, α �(Ai, Xi) ∈ execsAi
, i ∈ {1, 2}. Since Ai satisfies Pi ,

we have that α �(Ai, Xi) ∈ Pi , for i ∈ {1, 2}. Therefore, α ∈ P1‖P2. �

A similar result holds for traces.

Theorem 6.17 Let A1 and A2 be compatible TAs and let Pi be an (Ei, ∅)-property, i ∈ {1, 2}, where
Ei is the set of external actions of Ai . Suppose Ai trace-satisfies Pi , i ∈ {1, 2}. Then A1‖A2 trace-satisfies
P1‖P2.

Theorems 6.16 and 6.17 provide basic proof methods for showing that a composed system
satisfies composed properties. We can also obtain slightly stronger results, such as the following two
trace-satisfaction theorems, which are analogous to Corollaries 5.11 and 5.12. The first theorem
says that A1‖A2 trace-satisfies P1‖P2 provided that A2 trace-satisfies P2, and every trace of A1

consistent with property P2 also has property P1.

Theorem 6.18 Let A1 and A2 be compatible TAs and let Pi be an (Ei, ∅)-property, i ∈ {1, 2}. Suppose
A2 trace-satisfies P2. Suppose that every trace β of A1 such that β �(E2, ∅) ∈ P2 is in P1. Then A1‖A2

trace-satisfies P1‖P2.

Example 6.19 (Compositional proof of property satisfaction). Let A2 be a TA with one external
action a. A2 is allowed to perform a only at integer times, and at most once at each integer time.
It does not force any a events to occur, and lets time pass without constraint. Let P2 be the set of
({a}, ∅)-sequences in which, by any finite time, there are only finitely many occurrences of a. Clearly,
A2 trace-satisfies P2.

84 6. PROPERTIES FOR TIMED AUTOMATA

Let A1 be a timed automaton with two external actions,a and b. A1 is allowed to perform any
number of a events, at any time. It can perform b at any time, but only if it has previously performed
a at the same time with no intervening b. A1 also lets time pass unconstrained. Let P1 be the set
of ({a, b}, ∅)-sequences in which, by any finite time, there are only finitely many occurrences of b.
Then every trace β of A1 such that β �(E2, ∅) ∈ P2 is in P1.

It follows fromTheorem 6.18 that A1‖A2 trace-satisfies P1‖P2,which means that the compo-
sition of the two automata guarantees that, by any finite time, there are only finitely many occurrences
of a and only finitely many occurrences of b.

The second theorem incorporates auxiliary properties. It says that A1‖A2 trace-satisfies P1‖P2

provided that, for some auxiliary properties Q1 and Q2, A1‖A2 trace-satisfies Q1‖Q2, every trace of
A1 consistent with property Q2 also has property P1, and every trace of A2 consistent with property
Q1 also has property P2.

Theorem 6.20 Let A1 and A2 be compatible TAs and let Pi and Qi be (Ei, ∅)-properties, i ∈ {1, 2}.
Suppose that:

1. A1‖A2 trace-satisfies Q1‖Q2.

2. Every trace β of A1 such that β �(E1, ∅) ∈ Q2 is in P1, and every trace β of A2 such that
β �(E2, ∅) ∈ Q1 is in P2.

Then, A1‖A2 trace-satisfies P1‖P2.

We close this chapter with a trace-satisfaction result for hiding.

Theorem 6.21 Let A be a TA, let P be an (EA, ∅)-property, and let E ⊆ EA. Suppose that A trace-
satisfies P . Then ActHide(E,A) trace-satisfies the property P �(EA − E, ∅) = {β �(EA − E, ∅) |
β ∈ P }.

85

C H A P T E R 7

Timed I/O Automata
In this chapter we refine the timed automaton model of Chapter 4 by distinguishing between input
and output actions. Typically, an interaction between a system and its environment is modeled by
using output and input actions to represent, respectively, the external events under the control of the
system and the environment. We extend the results on simulation relations and composition from
Chapters 4 and 5 to this new setting. We also introduce special kinds of timed I/O automata: I/O
feasible, progressive, and receptive TIOAs.

7.1 DEFINITION OF TIMED I/O AUTOMATA

A timed I/O automaton (TIOA) A is a tuple (B, I, O) where:

• B = (X, Q, �, E, H,D,T) is a TA.

• I and O partition E into input and output actions, respectively. Actions in L
�= H ∪ O are

called locally controlled ; as before, we write A
�= E ∪ H .

• The following additional axioms are satisfied:

E1 (Input action enabling)
For every x ∈ Q and every a ∈ I , there exists x′ ∈ Q such that x

a→ x′.

E2 (Time-passage enabling)
For every x ∈ Q, there exists τ ∈ T such that τ.fstate = x and either

1. τ.ltime = ∞, or

2. τ is closed and some l ∈ L is enabled in τ.lstate.

Input action enabling is the input enabling condition of ordinary I/O automata [84, 83, 76, 53, 54]; it
says that a TIOA is able to perform an input action at any time.The time-passage enabling condition
says that a TIOA either allows time to advance forever, or it allows time to advance for a while, up
to a point where it is prepared to react with some locally controlled action. The condition ensures
what is called time reactivity in [12] and timelock freedom in [14], that is, whenever time progress
stops there exists at least one enabled transition. Because TIOAs have no external variables, E1 and
E2 are slightly simpler than the corresponding axioms for HIOAs in [79].

86 7. TIMED I/O AUTOMATA

Notation: As we did for TAs, we often denote the components of a TIOA A by BA, IA, OA, XA,
QA, �A, etc., and those of a TIOA Ai by Hi , Ii , Oi , Xi , Qi , �i , etc. We sometimes omit these
subscripts, where no confusion is likely. We abuse notation slightly by referring to a TIOA A as a
TA when we intend to refer to BA.

Example 7.1 (TAs viewed as TIOAs). The automaton TimedChannel described in Example 4.1
can be turned into a TIOA by classifying the send actions as inputs, and the receive actions as
outputs. Since there is no precondition for send actions, they are enabled in each state, so clearly the
input enabling condition E1 holds. It is also easy to see that Axiom E2 holds: in each state either
queue is nonempty, in which case a receive output action is enabled after a point trajectory, or
queue is empty, in which case time can advance forever.

The automaton ClockSync(u,r,i) of Example 4.6 can be turned into a TIOA by classifying
the send actions as outputs, and the receive actions as inputs. Axiom E1 then holds trivially.
Axiom E2 holds since from each state either time can advance forever, or we have an outgoing
trajectory (possibly of length 0) to a state in which physclock = nextsend, and from there a send
output action is enabled.

7.2 EXECUTIONS AND TRACES
An execution fragment , execution, trace fragment , or trace of a TIOA A is defined to be an execution
fragment, execution, trace fragment, or trace of the underlying TA BA, respectively.

We say that an execution fragment of aTIOA is locally-Zeno if it is Zeno and contains infinitely
many locally controlled actions, or equivalently, if it has finite limit time and contains infinitely many
locally controlled actions.

7.3 SPECIAL KINDS OF TIMED I/O AUTOMATA
7.3.1 FEASIBLE AND I/O FEASIBLE TIOAS
A TIOA A = (B, I, O) is defined to be feasible provided that its underlying TA B is feasible
according to the definition given in Section 4.4: for every state x of B, there exists an admissible
execution fragment of B from x. As noted in Section 4.4, feasibility is a basic requirement that any
TA (or TIOA) should satisfy. I/O feasibility is a strengthened version of feasibility that take inputs
into account. It says that the automaton is capable of providing some response from any state, for any
sequence of input actions and any amount of intervening time-passage. In particular, it should allow
time to pass to infinity if the environment does not submit any input actions. Formally, we define
a TIOA to be I/O feasible provided that, for each state x and each (I, ∅)-sequence β, there is some
execution fragment α from x such that α �(I, ∅) = β. That is, an I/O feasible TIOA accommodates
arbitrary input actions occurring at arbitrary times.The given (I, ∅)-sequence β describes the inputs
and the amounts of intervening times.

7.3. SPECIAL KINDS OF TIMED I/O AUTOMATA 87

7.3.2 PROGRESSIVE TIOAS
A progressiveTIOA never generates infinitely many locally controlled actions in finite time.Formally,
a TIOA A is progressive if it has no locally-Zeno execution fragments. For reasons that will become
clear later on in this section (see Theorem 7.6), we define progressiveness for execution fragments
rather than for executions.

The following lemma says that any progressive TIOA is capable of advancing time forever.

Lemma 7.2 Every progressive TIOA is feasible.

Proof. Let A be a progressive TIOA and let x be a state of A. Since A is a TIOA it satisfies Axiom
E2. We construct an admissible execution fragment α = α0

� α1
� α2 · · · from x as follows.

1. α0 = ℘(x).

2. For each i > 0,

(a) If there exists a trajectory τ from αi−1.lstate such that τ.ltime = ∞ then αi is the final
execution fragment in the sequence and αi = τ .

(b) Otherwise, let τi be a closed trajectory from αi−1.lstate such that l ∈ L is enabled in

τi .lstate. Define αi = τi l τi+1 where τi+1 = ℘(y) and τi .lstate
l→ y.

The above construction either ends after finitely many stages such that the last trajectory of α is
admissible, or goes through infinitely many stages such that α contains infinitely many local actions.
In the former case, we know that α is admissible since it ends with an admissible trajectory. In the
latter case, since A is progressive, the fact that α has infinitely many local actions implies that α is
admissible, as needed. �

The following lemma says that a progressive TIOA is capable of allowing any amount of time
to pass from any state.

Lemma 7.3 Let A be a progressive TIOA, let x be a state of A, and let τ ∈ trajs(∅). Then there exists
an execution fragment α of A such that α.fstate = x and α �(I, ∅) = τ .

Proof. The result follows from the construction used in the proof of Lemma 7.2. Let α be an
admissible execution fragment from x constructed as in the proof of Lemma 7.2. Let α′ be a prefix
of α such that α′ �(∅, ∅) = τ . Since our construction uses no actions from I , we have α′ �(I, ∅) =
α′ �(∅, ∅) = τ , as needed. �

The following theorem says that a progressive TIOA is capable not just of allowing arbitrary
amounts of time to pass, but of allowing arbitrary input actions at arbitrary times.

Theorem 7.4 Every progressive TIOA is I/O feasible.

88 7. TIMED I/O AUTOMATA

Proof. Let A be a progressive TIOA, let x be a state of A, and let β = τ0 a1 τ1 a2 τ2 . . . be an
(I, ∅)-sequence. We construct a finite or infinite sequence α0 α1 . . . of execution fragments such
that:

1. α0.fstate = x.

2. For each nonfinal index i, αi.lstate = αi+1.fstate.

3. For each i, (α0
� α1

� · · · � αi) �(I, ∅) = τ0 a1 τ1 . . . τi .

The construction is carried out recursively. To define α0, we start with x and use Lemma 7.3 to
“span” the time interval of τ0. For i > 0, we define αi by starting with αi−1.lstate, using Axiom E1
to perform the input action ai and move to a new state and then using Lemma 7.3 to span τi .

Let α = α0
� α1

� · · · . By Lemma 3.8, α is an execution fragment of A from x such that
α �(I, ∅) = β, as needed. �

7.3.3 RECEPTIVE TIMED I/O AUTOMATA
In this section,we define the notion of receptiveness forTIOAs. ATIOA will be defined to be receptive
provided that it admits a strategy for resolving its nondeterministic choices that never generates
infinitely many locally controlled actions in finite time. This notion has an important consequence:
A receptive TIOA provides some response from any state, for any sequence of discrete input actions
at any times. This implies that the automaton has a nontrivial set of execution fragments, in fact, it
has execution fragments that accommodate any inputs from the environment.The automaton cannot
simply stop at some point and refuse to allow time to elapse; it must allow time to pass to infinity
if the environment does so. Previous studies of receptiveness properties include [24, 1, 107, 81].
The notion of receptiveness for TIOAs as discussed here is a special case of the same notion for
HIOAs [79].

We build our definition of receptiveness on our earlier definition of progressive TIOAs.
Namely, we define a strategy for resolving nondeterministic choices, and define receptiveness in
terms of the existence of a progressive strategy.

We define a strategy for a TIOA A to be a TIOA A′ that differs from A only in that D′ ⊆ D
and T ′ ⊆ T . That is, we require:

• D′ ⊆ D,

• T ′ ⊆ T ,

• X = X′, Q = Q′, � = �′, H = H ′, I = I ′, and O = O ′.

Our strategies are nondeterministic and memoryless. They provide a way of choosing some of the
evolutions that are possible from each state x of A. The fact that the state set Q′ of A′ is the same
as the state set Q of A implies that A′ chooses evolutions from every state of A.

7.3. SPECIAL KINDS OF TIMED I/O AUTOMATA 89

Our notion of strategy is very similar to the winning strategies defined by Maler, Pnueli, and
Sifakis for certain games defined on Alur-Dill style timed automata [89]. The motivation for this
work is the automatic synthesis of real-time controllers. Efficient algorithms for computing these
strategies have recently been implemented in the tool Uppaal Tiga [17]. Notions of strategy have
been used also in previous studies of receptiveness [24, 1, 107, 81]. However, in these earlier works,
strategies are functions which, based on the full history, specify the next system move. Defining
strategies using automata allows us to avoid introducing extra mathematical machinery.

Lemma 7.5 If A′ is a strategy for A, then every execution fragment of A′ is also an execution fragment
of A.

We define a TIOA to be receptive if it has a progressive strategy. The following theorem says
that any receptive TIOA can respond to any inputs from the environment.

Theorem 7.6 Every receptive TIOA is I/O feasible.

Proof. Immediate from the definitions, Theorem 7.4 and Lemma 7.5. �

Note that for this theorem to hold it is crucial that the progressive strategy A′ for a receptive
TIOA A is defined for all states of A′, not just for the reachable ones. Even though A and A′
have the same states, they may differ in their sets of reachable states. Thus, if we only have figured
out what to do in the reachable states of A′, there may be some reachable states of A for which no
“strategy” has been defined.

Example 7.7 (Progressive and receptive TIOAs).The time-bounded channel automaton described
in Example 4.1 is not progressive since it allows for an infinite execution in which send and receive
actions alternate without any passage of time in between. The time-bounded channel automa-
ton is receptive, however, as we may construct a progressive strategy for it by adding a condition
head(queue).deadline = now to the precondition of the receive action. In this way we enforce
that the channel operates maximally slow and messages are only delivered at their delivery deadline.
The clock synchronization automaton of Example 4.6 is progressive (and therefore receptive) since
it can only generate a locally controlled action each time its physical clock advances by u time units
and the real time that elapses between two locally produced actions is at least u × (1-r) time units.

90 7. TIMED I/O AUTOMATA

7.4 IMPLEMENTATION RELATIONSHIPS
Two TIOAs A1 and A2 are comparable if their inputs and outputs coincide, that is, if I1 = I2 and
O1 = O2. If A1 and A2 are comparable, then A1 ≤ A2 is defined to mean that the traces of A1 are
included among those of A2: A1 ≤ A2

�= tracesA1 ⊆ tracesA2 .

Lemma 7.8 Let A1, A2 be two comparable TIOAs and let B1, B2 be, respectively, the underlying TAs
for A1 and A2. Then B1 and B2 are comparable and A1 ≤ A2 iff B1 ≤ B2.

Proof. Immediate from the definitions. �

7.5 SIMULATION RELATIONS
The definition of forward simulation for TIOAs is the same as for TAs. Formally, if A1 =
(B1, I1, O1) and A2 = (B2, I2, O2) are two comparable TIOAs, then a forward simulation from
A1 to A2 is a forward simulation from B1 to B2.

Theorem 7.9 If A1 and A2 are comparable TIOAs and there is a forward simulation from A1 to A2,
then A1 ≤ A2.

The definitions and results about backward simulations, history and prophecy relations for
timed automata from Chapter 4 carry over to timed automata with input and output distinction in
a similar fashion.

91

C H A P T E R 8

Operations on Timed I/O
Automata

In this chapter, we define the operations of composition and hiding and present projection, pasting
and substitutivity results for TIOAs. We revisit the special kinds of TIOAs introduced in Chapter 7
and show that the classes of progressive and receptive TIOAs closed under composition, while this
is not true for the class of I/O feasible automata.

8.1 COMPOSITION
8.1.1 DEFINITIONS AND BASIC RESULTS
The definition of composition for TIOAs is based on the corresponding definition for TAs, but
also takes the input/output structure into account. We require that precisely one component should
“control” any given internal or output action. We say that TIOAs A1 and A2 are compatible if, for
i �= j ,Xi ∩ Xj = Hi ∩ Aj = Oi ∩ Oj = ∅. It is immediate that if two TIOAs are compatible, their
underlying TAs are also compatible.

Lemma 8.1 If A1 = (B1, I1, O1) and A2 = (B2, I2, O2) are compatible TIOAs, then B1 and B2 are
compatible TAs.

If A1 and A2 are compatible TIOAs then their composition A1‖A2 is defined to be the tuple
A = (B, I, O) where:

• B = B1‖B2,

• I = (I1 ∪ I2) − (O1 ∪ O2), and

• O = O1 ∪ O2.

Thus, an external action of the composition is classified as an output if it is an output of one of
the component automata, and otherwise it is classified as an input. The composition of compatible
TIOAs is guaranteed to be a TIOA:

Theorem 8.2 If A1 and A2 are compatible TIOAs then A1‖A2 is a TIOA.

92 8. OPERATIONS ON TIMED I/O AUTOMATA

Proof. The proof is straightforward except for showing that Axiom E2 is satisfied by the composition.
Let x be a state of A1‖A2. We need to show the existence of a trajectory from x that satisfies E2.

By definition of A1‖A2, x � X1 is a state of A1 and x � X2 is a state of A2. We know that both
A1 and A2 satisfy E2. Let τ1 be a trajectory of A1 with τ1.fstate = x � X1 that satisfies E2, let τ2 be
a trajectory of A2 with τ2.fstate = x � X2 that satisfies E2, and consider the following cases.

1. τ1.ltime = ∞ and τ2.ltime = ∞.
Then, define τ such that τ ↓ X1 = τ1 and τ ↓ X2 = τ2.

2. τ1.ltime = ∞ and τ2 is closed where some l ∈ L2 is enabled in τ2.lstate.
Then, define τ such that τ ↓ X1 = τ1 � dom(τ2) and τ ↓ X2 = τ2.

3. τ1 is closed where some l ∈ L1 is enabled in τ1.lstate and τ2.ltime = ∞.
Then, define τ such that τ ↓ X1 = τ1 and τ ↓ X2 = τ2 � dom(τ1).

4. τ1 is closed where some l ∈ L1 is enabled in τ1.lstate and τ2 is closed where some l ∈ L2 is
enabled in τ2.lstate.
If dom(τ1) ⊆ dom(τ2), then define τ such that τ ↓ X1 = τ1 and τ ↓ X2 = τ2 � dom(τ1). Oth-
erwise, define τ such that τ ↓ X1 = τ1 � dom(τ2) and τ ↓ X2 = τ2.

In all the cases, τ is a trajectory of A1‖A2 from x, and either τ.ltime = ∞ or τ is closed. Moreover,
if τ is closed then in the last state one of the automata, say Ai , enables a locally controlled action
l. Since A1 and A2 are compatible, either l is not in the signature of the other automaton Aj , or l

is an input action of Aj which is enabled within any state of Aj by Axiom E1. In both cases, the
last state of τ enables l in the composition A1‖A2. This completes the proof that A1‖A2 satisfies
Axiom E2. �

Note that this theorem is stronger than the corresponding theorem [79, Theorem 6.12] for
general HIOAs. Two HIOAs A1 and A2 are required to be “strongly compatible” for their compo-
sition to be a hybrid I/O automaton. This extra condition is needed to rule out dependencies among
external variables that may prevent the component automata from evolving together. The absence
of external variables in TIOA eliminates this kind of problematic behavior. Thus, for the timed case,
we do not require the notion of strong compatibility that was needed for the hybrid case.

Composition of TIOAs satisfies the following projection and pasting results, which follow
from the corresponding results for TAs (Theorems 5.4 and 5.5).

Theorem 8.3 Let A1 and A2 be compatible TIOAs, and let A = A1‖A2. Let αi be an execution
fragment of Ai , i ∈ {1, 2}.
Let β be an (E, ∅)-sequence, where E is the set of external actions of A. Suppose that β �(Ei, ∅) =
trace(αi), i ∈ {1, 2}. Then there exists an execution fragment α of A such that trace(α) = β and αi =
α �(Ai, Xi), i ∈ {1, 2}.

8.1. COMPOSITION 93

Theorem 8.4 Let A1 and A2 be compatible TIOAs, let A = A1‖A2, and let E be the set of external
acions of A. Then tracesA is exactly the set of (E, ∅)-sequences whose restrictions to A1 and A2 are traces
of A1 and A2, respectively.
That is, tracesA = {β | β is an (E, ∅)-sequence and β �(Ei, ∅) ∈ tracesAi

, i ∈ {1, 2}}.

8.1.2 SUBSTITUTIVITY RESULTS
The following theorem is analogous to Theorem 5.9 for TAs. It shows that the introduction of this
distinction does not cause any changes to the substitutivity results we obtained for general TAs.

Theorem 8.5 Suppose A1 and A2 are comparable TIOAs with A1 ≤ A2. Suppose that B is a TIOA
that is compatible with each of A1 and A2. Then A1‖B ≤ A2‖B.

The corollaries are analogous to Corollaries 5.10 and 5.11 of Theorem 5.9.

Corollary 8.6 Suppose A1, A2, B1, and B2 are TIOAs, A1 and A2 are comparable, B1 and B2 are
comparable, and each of A1 and A2 is compatible with each of B1 and B2. If A1 ≤ A2 and B1 ≤ B2

then A1‖B1 ≤ A2‖B2.

Corollary 8.7 Suppose A1, A2, B1, and B2 are TIOAs, A1 and A2 are comparable, B1 and B2 are
comparable, and each of A1 and A2 is compatible with each of B1 and B2. If A1‖B2 ≤ A2‖B2 and
B1 ≤ B2 then A1‖B1 ≤ A2‖B2.

The basic substitutivity theorem, Theorem 8.5, is desirable for any formalism for interacting
processes. For design purposes, it enables one to refine individual components without violating the
correctness of the system as a whole. For verification purposes, it enables one to prove that a compos-
ite system satisfies its specification by proving that each component satisfies its specification, thereby
breaking down the verification task into more manageable pieces. However, it might not always be
possible or easy to show that each component A1 (resp. B1) satisfies its specification A2 (resp. B2)
without using any assumptions about the environment of the component. Assume-guarantee style
results [1, 2, 31, 48, 52, 101, 114, 115] are special kinds of substitutivity results that state what
guarantees are expected from each component in an environment constrained by certain assump-
tions. Since the environment of each component consists of the other components in the system,
assume-guarantee style results need to break the circular dependencies between the assumptions
and guarantees for components. Below, we present two assume-guarantee style theorems, Theo-
rem 8.8 and Corollary 8.9 taken from [55], which can be used for proving that a system specified as
a composite automaton A1‖B1 implements a specification represented by a composite automaton
A2‖B2.

The main idea behind Theorem 8.8 is to assume that A1 implements A2 in a context repre-
sented by B2, and symmetrically that B1 implements B2 in a context represented by A2 where A2

94 8. OPERATIONS ON TIMED I/O AUTOMATA

and B2 are automata whose trace sets are closed under limits. The requirement about limit-closure
implies that A2 and B2 specify trace safety properties. Moreover, we assume that the trace sets of A2

and B2 are closed under time-extension. That is, the automata allow arbitrary time-passage. This
is the most general assumption one could make to ensure that A2‖B2 does not impose stronger
constraints on time-passage than A1‖B1. Recall that the definition of time extension of a hybrid
sequence can be found in Section 3.4.1.

Theorem 8.8 Suppose A1, A2, B1, B2 are TIOAs such that A1 and A2 are comparable, B1 and B2 are
comparable, and each of A1 and A2 is compatible with each of B1 and B2. Suppose further that:

1. the sets tracesA2 and tracesB2 are closed under limits;

2. the sets tracesA2 and tracesB2 are closed under time-extension;

3. A1‖B2 ≤ A2‖B2 and A2‖B1 ≤ A2‖B2.

Then, A1‖B1 ≤ A2‖B2.

Proof. Let β be a closed trace of A1‖B1. We first prove by induction on the i-length of β that β is
also a trace of A2‖B2.

For the base case, assume that β has i-length 1. Then β consists of a single point trajectory
over the empty set of variables. Axiom T0 in the definition of a TA implies that β is a trace of
A2‖B2, as needed.

For the inductive step we consider the following cases.

1. β = β ′ a τ , where a is an output action of A1 and τ is a point trajectory.

Then β �(EA1, ∅) ∈ tracesA1 by projection using Theorem 8.4. By inductive hypothesis, β ′ ∈
tracesA2‖B2 . So β ′ �(EB2, ∅) ∈ tracesB2 , by projection usingTheorem 8.4.Let α be an execution
of B2 such that trace(α) = β ′ �(EB2, ∅). Since A1 and B2 are compatible TIOAs and a is an
output action of A1, we know that either a is an input action of B2 or the action set of B2 does
not contain a. In the former case, by the input-enabling axiom (E1) we know that there exists
x′ such that (α.lstate, a, x′) is a discrete transition of B2. It follows that β �(EB2, ∅) ∈ tracesB2 .
In the latter case, since β �(EB2, ∅) = β ′ �(EB2, ∅) and β ′ �(EB2, ∅) ∈ tracesB2 we also get
β �(EB2, ∅) ∈ tracesB2 . By pasting using Theorem 8.4, β ∈ tracesA1‖B2 . Then by Assumption
3, β ∈ tracesA2‖B2 .

2. β = β ′ b τ , where b is an output action of B1 and τ is a point trajectory.

This case is symmetric with the previous one.

3. β = β ′ c τ , where c is an input action of both A1 and B1 and τ is a point trajectory.

By inductive hypothesis, β ′ ∈ tracesA2‖B2 . By projection using Theorem 8.4 we get
β ′ �(EA2, ∅) ∈ tracesA2 and β ′ �(EB2, ∅) ∈ tracesB2 . Let α be an execution of A2 such that

8.1. COMPOSITION 95

trace(α) = β ′ �(EA2, ∅). Since A1 and A2 are comparable and a is an input action of A1 we
know that a is an input action of A2. By the input-enabling axiom (E1) we know that there
exists x′ such that (α′.lstate, a, x′) is a discrete transition of A2. It follows that β �(EA2, ∅) ∈
tracesA2 . Similarly, let α′ be an execution of B2 such that trace(α′) = β ′ �(EB2, ∅). Since B1

and B2 are comparable and a is an input action of B1 we know that a is an input action of B2.
By the input-enabling axiom (E1) we know that there exists y′ such that (α′.lstate, a, y′) is a
discrete transition of B2. It follows that β �(EB2, ∅) ∈ tracesB2 . By pasting using Theorem 8.4,
we get β ∈ tracesA2‖B2 .

4. β = β ′ d τ , where d is an input action of A1 but not an action of B1 and τ is a point trajectory.

By inductive hypothesis, β ′ ∈ tracesA2‖B2 . By projection using Theorem 8.4, we have
β ′ �(EA2, ∅) ∈ tracesA2 and β ′ �(EB2, ∅) ∈ tracesB2 . Let α be an execution of A2 such that
trace(α) = β ′ �(EA2, ∅). Since A1 and A2 are comparable TIOAs and a is an input ac-
tion of A1, a must be an input action of A2. By the input-enabling axiom (E1) we
know that there exists x′ such that (α.lstate, a, x′) is a discrete transition of A2. It fol-
lows that β �(EA2, ∅) ∈ tracesA2 . Since B1 and B2 are comparable and a is not an action
of B1, a cannot be an external action of B2. Therefore, β �(EB2, ∅) = β ′ �(EB2, ∅). Since
β ′ �(EB2, ∅) ∈ tracesB2 we get β �(EB2, ∅) ∈ tracesB2 . By pasting using Theorem 8.4, we get
β ∈ tracesA2‖B2 .

5. β = β ′eτ , where e is an input action of B1 but not an action of A1 and τ is a point trajectory.

This case is symmetric with the previous one.

6. β = β ′ � β ′′, where β ′ ends with a point trajectory and β ′′ is a hybrid sequence consisting of
a single trajectory τ .

By inductive hypothesis, β ′ ∈ tracesA2‖B2 . By projection using Theorem 8.4, we
get β ′ �(EA2, ∅) ∈ tracesA2 and β ′ �(EB2, ∅) ∈ tracesB2 . By Assumption 2, we have
β ′ �(EA2, ∅) � β ′′ �(EA2, ∅) ∈ tracesA2 and β ′ �(EB2, ∅) � β ′′ �(EB2, ∅) ∈ tracesB2 . Then by
pasting using Theorem 8.4, β ∈ tracesA2‖B2 , as needed.

We have thus shown that every closed trace of A1‖B1 is a trace of A2‖B2. Now consider any
nonclosed trace β of A1‖B1. This β can be written as the limit of a sequence β1 β2 · · · of closed
traces of A1‖B1. By the first part of the proof we know that each βi ∈ tracesA2‖B2 , and by projection
using Theorem 8.4 each βi �(EA2, ∅) is a closed trace of A2, and βi �(EB2, ∅) is a closed trace of B2.
Since restriction is a continuous operation (Lemma 3.8), we know that β �(EA2, ∅) is the limit of
the βi �(EA2, ∅) and similarly β �(EB2, ∅) is the limit of the βi �(EB2, ∅). Since the sets tracesA2 and
tracesB2 are limit-closed by Assumption 1, we get β �(EA2, ∅) ∈ tracesA2 and β �(EB2, ∅) ∈ tracesB2 .
Finally, by pasting using Theorem 8.4, we get β ∈ tracesA2‖B2 . �

Note that automata with FIN and timing-independence (see Section 4.4 for definitions)
constitute examples for context automata A2 and B2 that satisfy Assumptions 1 and 2.The property
FIN implies Assumption 1 (Lemma 4.20) and timing-independence implies Assumption 2.

96 8. OPERATIONS ON TIMED I/O AUTOMATA

Theorem 8.8 has a corollary, Corollary 8.9 below, which can be used in the decomposition of
proofs even when A2 and B2 neither admit arbitrary time-passage nor have limit-closed trace sets.
The main idea behind this corollary is to assume that A1 implements A2 in a context B3 that is a
variant of B2, and symmetrically that B1 implements B2 in a context A3 that is a variant of A2.That
is, the correctness of implementation relationship between A1 and A2 does not depend on all the
environment constraints, just on those expressed by B3 (symmetrically for B1, B2, and A3). In order
to use this corollary to prove A1‖B1 ≤ A2‖B2, one needs to be able to find appropriate variants
of A2 and B2 that meet the required closure properties. This corollary prompts one to pin down
what is essential about the behavior of the environment in proving the intended implementation
relationship, and also allows one to avoid the unnecessary details of the environment in proofs.

Corollary 8.9 Suppose A1, A2, A3, B1, B2, B3 are TIOAs such that A1, A2, and A3 are comparable,
B1, B2, and B3 are comparable, and Ai is compatible with Bj for i, j ∈ {1, 2, 3}. Suppose further that:

1. the sets tracesA3 and tracesB3 are closed under limits;

2. the sets tracesA3 and tracesB3 are closed under time-extension;

3. A2‖B3 ≤ A3‖B3 and A3‖B2 ≤ A3‖B3;

4. A1‖B3 ≤ A2‖B3 and A3‖B1 ≤ A3‖B2.

Then, A1‖B1 ≤ A2‖B2.

Proof. Since A1‖B3 ≤ A2‖B3 by Assumption 4, and A2‖B3 ≤ A3‖B3 by Assumption 3, we
get A1‖B3 ≤ A3‖B3. Similarly, we have A3‖B1 ≤ A3‖B2 ≤ A3‖B3. Since A1‖B3 ≤ A3‖B3 and
A3‖B1 ≤ A3‖B3, by using Assumptions 1 and 2, and Theorem 8.8 we have A1‖B1 ≤ A3‖B3. The
result then follows from Corollary 5.12. �

Example 8.10 (Using environment assumptions to prove safety). This example illustrates that,
in cases where specifications A2 and B2 satisfy certain closure properties, it is possible to decompose
the proof of A1‖B1 ≤ A2‖B2 by using Theorem 8.8, even if it is not the case that A1 ≤ A2 or
B1 ≤ B2.

The automata AlternateA and AlternateB in Figure 8.1 are timing-independent automata
in which no consecutive outputs occur without inputs happening in between. AlternateA and
AlternateB perform a handshake, outputting an alternating sequence of a and b actions when they
are composed. The automata CatchUpA and CatchUpB in Figure 5.2 are timing-dependent automata
that do not necessarily alternate inputs and outputs as AlternateA and AlternateB. CatchUpA can
perform an arbitrary number of b actions, and can perform an a provided that counta ≤ countb.
It allows counta to increase to one more than countb. CatchUpB can perform an arbitrary number
of a actions, and can perform a b provided that counta ≥ countb + 1. It allows countb to reach
counta. Timing constraints require each output to occur exactly one time unit after the last action.

8.1. COMPOSITION 97

a u t o m a t o n AlternateA
s i g n a t u r e

o u t p u t a, i n p u t b
s t a t e s

myturn : Bool := true
t r a n s i t i o n s

o u t p u t a i n p u t b
p r e e f f

myturn myturn := true
e f f

myturn := false

a u t o m a t o n AlternateB
s i g n a t u r e

i n p u t a, o u t p u t b
s t a t e s

myturn : Bool := false
t r a n s i t i o n s

i n p u t a o u t p u t b
e f f p r e

myturn := true myturn
e f f

myturn := false

Figure 8.1: AlternateA and AlternateB.

CatchUpA and CatchUpB perform an alternating sequence of a actions and b actions when they are
composed.

Suppose that we want to prove that CatchUpA ‖ CatchUpB ≤ AlternateA ‖ AlternateB. We
cannot apply the basic substituvity theorem Theorem 8.5, in particular Corollary 8.6, since the
assertions CatchUpA ≤ AlternateA and CatchUpB ≤ AlternateB are not true. Consider the trace
1 b 1 a 1 a 1 of CatchUpA. After having performed one b and one a, CatchUpA can perform another
a. But, this is impossible for AlternateA which needs an input to enable the second a. AlternateA
and CatchUpA behave similarly only when put in a context that imposes alternation.

It is easy to check that AlternateA and AlternateB satisfy the closure properties required by
Assumptions 1 and 2 of Theorem 8.8 and, hence can be substituted for A2 and B2 respectively.
Similarly, we can easily check that Assumption 3 is satisfied if we substitute CatchUpA for A1 and
CatchUpB for B1.

98 8. OPERATIONS ON TIMED I/O AUTOMATA

Example 8.11 (Extracting essential environment assumptions with auxiliary automata). This ex-
ample illustrates that it may be possible to decompose verification, using Corollary 8.9, in cases
where Theorem 8.8 is not applicable. If the aim is to show A1‖B1 ≤ A2‖B2 where A2 and B2 do
not satisfy the assumptions of Theorem 8.8, then we find appropriate context automata A3 and B3

that abstract from those details of A2 and B2 that are not essential in proving A1‖B1 ≤ A2‖B2.

s i g n a t u r e
o u t p u t a, i n p u t b

s t a t e s
maxout : Nat, now: Real := 0, next: AugmentedReal := 0

t r a n s i t i o n s
o u t p u t a i n p u t b

p r e e f f
(maxout > 0) ∧ (now = next) i f next = infty

e f f t h e n next := now + 1
maxout := maxout - 1;
next := infty

t r a j e c t o r i e s
s t o p when

now = next
e v o l v e

d(now) = 1

s i g n a t u r e
i n p u t a, o u t p u t b

s t a t e s
maxout : Nat, now: Real := 0, next: AugmentedReal := infty

t r a n s i t i o n s
i n p u t a o u t p u t b

e f f p r e
i f next = infty (maxout > 0) ∧ (now = next)

t h e n next := now + 1 e f f
maxout := maxout - 1;
next := infty

t r a j e c t o r i e s
s t o p when

now = next
e v o l v e

d(now) = 1

Figure 8.2: UseOldInputA and UseOldInputB.

8.1. COMPOSITION 99

s i g n a t u r e
o u t p u t a, i n p u t b

s t a t e s
maxout : Nat, now: Real := 0, next: AugmentedReal := 0

t r a n s i t i o n s
o u t p u t a i n p u t b

p r e e f f
(maxout > 0) ∧ (now = next) next := now + 1

e f f
maxout := maxout - 1;
next := infty

t r a j e c t o r i e s
s t o p when

now = next
e v o l v e

d(now) = 1

s i g n a t u r e
i n p u t a, o u t p u t b

s t a t e s
maxout : Nat, now: Real := 0, next: AugmentedReal := infty

t r a n s i t i o n s
i n p u t a o u t p u t b

e f f p r e
next := now + 1 (maxout > 0) ∧ (now = next)

e f f
maxout := maxout - 1;
next := infty

t r a j e c t o r i e s
s t o p when

now = next
e v o l v e

d(now) = 1

Figure 8.3: UseNewInputA and UseNewInputB.

Consider the automata UseOldInputA and UseOldInputB in Figure 8.2. UseOldInputA keeps
track of the next time it is supposed to perform an output, which may be never (infty). The
number of outputs that UseOldInputA can perform is bounded by a natural number. In the case
of repeated b inputs, it is the oldest input that determines when the next output will occur. The
automaton UseOldInputB is the same as UseOldInputA (inputs and outputs reversed) except that the
next variable of UseOldInputB is set to infty initially. Note that UseOldInputA and UseOldInputA

100 8. OPERATIONS ON TIMED I/O AUTOMATA

are not timing-independent and their trace sets are not limit-closed. For each automaton, there are
infinitely many start states, one for each natural number. We can build an infinite chain of traces,
where each element in the chain corresponds to an execution starting from a distinct start state. The
limit of such a chain, which contains infinitely many outputs, cannot be a trace of UseOldInputA or
UseOldInputB since the number of outputs they can perform is bounded by a natural number. The
automaton UseNewInputA in Figure 8.3 behaves similarly to UseOldInputA except for the handling of
inputs. In the case of repeated b inputs, it is the most recent input that determines when the next
output will occur. The automaton UseNewInputB in Figure 8.3 is the same as UseNewInputA (inputs
and outputs reversed) except that the next variable of UseNewInputB is set to infty initially. Suppose
that we want to prove that:

UseNewInputA‖UseNewInputB ≤ UseOldInputA‖UseOldInputB.
Theorem 8.8 is not applicable here because the high-level automata UseOldInputA and UseOldInputB

do not satisfy the required closure properties. However, we can use Corollary 8.9 to decompose
verification. It requires us to find auxiliary automata that are less restrictive than UseOldInputA and
UseOldInputB but that are restrictive enough to express the constraints that should be satisfied by
the environment, for UseNewInputA to implement UseOldInputA and for UseNewInputB to implement
UseOldInputB.

The automata AlternateA and AlternateB in Figure 8.1 can be used as auxiliary automata in
this example. They satisfy the closure properties required by Corollary 8.9 and impose alternation,
which is the only additional condition to ensure the needed trace inclusion.

We can define a forward simulation relation from UseNewInputA ‖ UseNewInputB to
UseOldInputA ‖ UseOldInputB, which is based on the equality of the next = infty predicate of
the implementation and the specification automata. The fact that this simulation relation only
uses the predicate next = infty reinforces the idea that the auxiliary contexts, which only keep
track of their turn, capture exactly what is needed for the proof of UseNewInputA ‖ UseNewInputB ≤
UseOldInputA ‖ UseOldInputB. We can observe that a direct proof of this assertion would require
one to deal with state variables such as maxout and next of both UseOldInputA and UseOldInputB

which do not play any essential role in the proof. On the other hand, by decomposing the proof
along the lines of Corollary 8.9 some of the unnecessary details can be avoided. Even though, this
is a toy example with an easy proof it should not be hard to observe how this simplification would
scale to large proofs.

8.1.3 COMPOSITION OF SPECIAL KINDS OF TIOAS
The following example illustrates that the set of I/O feasible TIOAs is not closed under composition:

Example 8.12 (Two I/O feasible TIOAs whose composition is not I/O feasible). Consider two
I/O feasible TIOAs A and B, where OA = IB = {a} and OB = IA = {b}. Suppose that A performs

8.1. COMPOSITION 101

its output a at time 0 and then waits, allowing time to pass, until it receives input b. If and when
it receives b, it responds with output a without allowing any time to pass (and ignoring any inputs
that occur before it has a chance to perform its output). On the other hand, B starts out waiting,
allowing time to pass, until it receives input a. If and when it receives a, it responds with output b

without allowing time to pass.
It is not difficult to see that A and B are individually I/O feasible. We claim that the com-

position A‖B is not I/O feasible. To see this, consider the start state of A‖B and the unique input
sequence β with β.ltime = ∞; β simply allows time to pass to infinity. The composition A‖B has
no way of accommodating this input, since it will never allow time to pass beyond 0.

In contrast to this, the classes of progressive and receptive TIOAs are closed under composi-
tion:

Theorem 8.13 If A1 and A2 are compatible progressiveTIOAs, then their composition is also progressive.

Proof. The proof is similar to the proof of Theorem 7.4 in [79]. The main idea behind the proof is
that a Zeno execution of A1‖A2 with infinitely many locally controlled actions contains infinitely
many locally controlled actions of either A1 or A2. Suppose without loss of generality that the
automaton that contributes infinitely many locally controlled actions is A1. Then the projection
onto A1 violates progressiveness for A1. �

Theorem 8.14 Let A1 and A2 be two compatible TIOAs with strategies A′
1 and A′

2, respectively. Then
A′

1‖A′
2 is a strategy for A1‖A2.

Proof. The proof is similar to the proof of Theorem 7.7 in [79]. Since A1 and A2 are compatible
and a strategy for a TIOA has the same signature as this TIOA, A′

1 and A′
2 are also compatible.

Hence, by Theorem 8.2, A′
1‖A′

2 is a TIOA. Let A denote A1‖A2 and let A′ denote A′
1‖A′

2. From
the definition of composition and strategy, A′ differs from A only in that D′ ⊆ D and T ′ ⊆ T .
Then the definition of strategy implies that A′ is a strategy for A. �

Now, we can state the main result of this section, which follows easily from the previous two
theorems. It shows that the class of receptive TIOAs is closed under composition.

Theorem 8.15 Let A1 and A2 be compatible receptive TIOAs with progressive strategies A′
1 and A′

2,
respectively. Then A1‖A2 is a receptive TIOA with progressive strategy A′

1‖A′
2.

Example 8.16 (Composition of receptive TIOAs). Theorem 8.15 implies that the composition of
clock synchronization automata with channel automata described in Example 5.8 (viewed as TIOAs

102 8. OPERATIONS ON TIMED I/O AUTOMATA

as explained in Example 7.1) is receptive. Since by Theorem 7.6 any receptive TIOA is I/O feasible,
we also have that it is I/O feasible.

Actually, the fact that the set of I/O feasible TIOAs is not closed under composition motivated
the definition of the more restrictive class of receptive TIOAs. That is, receptiveness is a reasonable
sufficient condition that implies I/O feasibility, and that also is preserved by composition.

The special case of the HIOA model, represented by theTIOA model,has simpler and stronger
composition theorems than the general HIOA model. In particular, the main compositionality result
for receptive HIOAs (Theorem 7.12 in [79]) has a more intricate proof than ours. It makes an
assumption about the existence of strongly compatible strategies (discussed briefly at the end of
Section 8.1.1) and needs an additional lemma that shows that if two HIOAs A1 and A2 have
strongly compatible strategies A′

1 and A′
2, then A1 and A2 are also strongly compatible.

8.2 HIDING
We extend the definition of action hiding to any TIOA A. For TIOAs, we consider hiding outputs
only (but not inputs), by converting them to internal actions. Namely, if A = (B, I, O) is a TIOA
and O ′ ⊆ O, then

ActHide(O ′,A) = (ActHide(O ′,B), I, O − O ′).

It is immediate from the definitions that hiding is a well-defined operation on TIOAs.

Lemma 8.17 If A = (B, I, O) is a TIOA and O ′ ⊆ O then ActHide(O ′,A) is a TIOA.

Using the corresponding result for TAs (Theorem 5.17), it is straightforward to establish that
the hiding operation on TIOAs respects the implementation relation.

Theorem 8.18 Suppose A1 and A2 are comparable TIOAs with A1 ≤ A2, and suppose O ⊆ O1.Then
ActHide(O,A1) ≤ ActHide(O,A2).

103

C H A P T E R 9

Conclusions and Future Work
In this book, we presented the TIOA mathematical framework for describing and analyzing the
behavior of timed systems and timed distributed algorithms. The TIOA framework is a special case
of the Hybrid I/O Automaton modeling framework [79].

Designers of real-time systems or timing-based algorithms can use the TIOA framework to
describe their systems and to decompose them into manageable pieces. In particular, they can de-
scribe their systems at multiple levels of abstraction, establish implementation relationships among
these levels, and decompose their systems into more primitive, interacting components. Many timed
systems and timed distributed algorithms have already been modeled and analyzed using TIOA,
including systems for vehicle and air-traffic control, communication, and mobile robotics, and al-
gorithms for implementing atomic memory, synchronizing clocks, and implementing applications
in mobile wireless networks.

Although the framework presented here provides only conceptual tools for modeling, and
manual proof methods, it also is a natural basis for building computerized modeling and analysis
tools. The Tempo language and toolset [51] provides basic tool support for TIOA.

The TIOA framework does not include any facilities for modeling probabilistic behavior. A
probabilistic extension of TIOA, PTIOA, was recently developed by Mitra and co-workers [94, 95].
In PTIOA, randomness appears in the form of random choices of the target states of discrete
transitions. As in other probabilistic models, subtleties arise because of the interplay between non-
deterministic and probabilistic choice: in order to define probability distributions on executions
and traces, some mechanism is needed for resolving the nondeterministic choices. PTIOA uses an
oblivious scheduler mechanism. PTIOA includes facilities for composition and abstraction based
on those in TIOA. The PTIOA framework borrows many ideas from an earlier Probabilistic Timed
Automaton modeling framework of Segala [106].

The earliest version of this work [58] included additional material, such as: (a) notions of
fairness for timed I/O automata, and results that state conditions under which the “fair” traces of
one TIOA must be included among the fair traces of another; (b) a TIOA version of a region
construction that is sometimes used for model-checking other types of timed automata models.
We have not included this material here, since it has not yet been tested adequately on interesting
examples.

A great deal of interesting future work remains. First, on the theoretical side, we would like
to have a general, unified input/output automaton modeling framework, extending the TIOA Au-
tomaton framework, which incorporates timed, hybrid, and probabilistic behavior. The probabilistic
behavior might include continuous random choice during trajectories, rather than just probabilistic

104 9. CONCLUSIONS AND FUTURE WORK

choice during discrete transitions. Such a unified framework would allow system and algorithm
designers to model systems with a combination of timing-dependent, hybrid, and probabilistic be-
havior. An example of an application domain that could benefit from such a general framework is
robot motion coordination.

Second, and also theoretically, work remains in relating our framework formally to others that
are comparable, such as [91, 107, 87, 86, 7, 88].

Third, many more systems and algorithms can be modeled and analyzed using TIOAs. Es-
pecially promising application domains include wireless networks, embedded systems, and mobile
robotics. TIOAs are particularly useful for modeling mobile systems, because they provide natural
facilities for modeling the behavior of physical system components (e.g., the motion of vehicles or
robots), as well as that of the software.

Fourth, and finally, more and better tools for analyzing TIOA descriptions would be most
welcome. The Tempo system uses a programmer-friendly plug-in architecture that should make it
easy for a tool developer to integrate new analysis tools, with new capabilities, into the current basic
system.

105

Bibliography

[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming
Languages and Systems, 1(15):73–132, 1993. DOI: 10.1145/151646.151649 88, 89, 93

[2] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming
Languages and Systems, 17(3):507–534, 1995. DOI: 10.1145/203095.201069 93

[3] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21:181–185,
1985. DOI: 10.1016/0020-0190(85)90056-0 77, 79

[4] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis, Stanford
University, 1991. 6

[5] R. Alur. Timed automata. In Proceedings of 11th International Conference on Computer-Aided
Verification (CAV), volume 1633 of Lecture Notes in Computer Science, pages 8–22. Springer-
Verlag, 1999. An earlier and longer version appears in NATO-ASI Summer School on
Verification of Digital and Hybrid Systems, 1998. DOI: 10.1007/3-540-48683-6_3 5

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicolin, A. Olivero,
J. Sifakis, and Yovine S. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3–34, 1995. DOI: 10.1016/0304-3975(94)00202-T 5, 42

[7] R.Alur and D.L.Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,
1994. DOI: 10.1016/0304-3975(94)90010-8 4, 5, 104

[8] R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In Proceedings of the
Eighth International Workshop on Hybrid Systems: Computation and Control (HSCC), Zurich,
Zwitserland, volume 3414 of Lecture Notes in Computer Science, pages 70–85. Springer-Verlag,
2005. 5

[9] C.Baier and J.-P.Katoen. Principles of Model Checking. MIT Press,Cambridge,Massachusetts,
2008. 77, 79

[10] J. Berendsen, B. Gebremichael, F.W. Vaandrager, and M. Zhang. Formal specification and
analysis of zeroconf using Uppaal. ACM Transactions on Embedded Computing Systems, 10(3),
2011. To appear. 6

[11] J. Berendsen and F.W. Vaandrager. Compositional abstraction in real-time model check-
ing. In Proceedings Sixth International Conference on Formal Modeling and Analysis of Timed

http://dx.doi.org/10.1145/151646.151649
http://dx.doi.org/10.1145/203095.201069
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1016/0304-3975(94)90010-8

106 BIBLIOGRAPHY

Systems (FORMATS 2008), September 15-17, 2008, Saint-Malo, France, volume 5215 of
Lecture Notes in Computer Science, pages 233–249. Springer Berlin / Heidelberg, 2008. Full
version available as Technical Report ICIS–R07027, Radboud University Nijmegen, 2007.
DOI: 10.1007/978-3-540-85778-5_17 6

[12] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and Computation,
163:172–202, 2000. DOI: 10.1006/inco.2000.2999 85

[13] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theor. Comput.
Sci., 321(2-3):291–345, 2004. DOI: 10.1016/j.tcs.2004.04.003 5

[14] H. Bowman. Modelling timeouts without timelocks. In J.-P. Katoen, Ed., ARTS’99, 5th
International AMAST Workshop on Real-time and Probabilistic Systems, volume 1601 of Lecture
Notes in Computer Science, pages 334–353. Springer, May 1999. 85

[15] M. Bozga, S. Graf, Il. Ober, Iul. Ober, and J. Sifakis. The IF toolset. In Proceedings of Formal
Methods for the Design of Real-Time Systems, volume 3185 of Lecture Notes in Computer Science,
pages 237–267. Springer-Verlag, September 2004. DOI: 10.1007/978-3-540-30080-9_8 6

[16] M.Brown. Air traffic control using virtual stationary automata. Master of EngineeringThesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, September 2007. 5

[17] F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly algorithms
for the analysis of timed games. In Martín Abadi and Luca de Alfaro, Eds., CONCUR 2005
- Concurrency Theory, 16th International Conference, CONCUR 2005, San Francisco, CA, USA,
August 23-26, 2005, Proceedings, volume 3653 of Lecture Notes in Computer Science, pages
66–80. Springer, 2005. 6, 89

[18] F. Cassez and K.G. Larsen. The impressive power of stopwatches. In C. Palamidessi, Ed.,
CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park, PA, USA,
August 22-25, 2000, Proceedings, volume 1877 of Lecture Notes in Computer Science, pages 138–
152. Springer, 2000. 5

[19] Gregory Chockler, Seth Gilbert, and Nancy Lynch. Virtual infrastructure for collision-
prone wireless networks. In Proceedings of the 27th Symposium on Principles of Dis-
tributed Computing (PODC 2008), pages 233–242, Toronto, Canada, August 2008.
DOI: 10.1145/1400751.1400783 5

[20] Gregory Chockler, Nancy Lynch, Sayan Mitra, and Joshua Tauber. Proving atomicity: An
assertional approach. In Pierre Fraigniaud, Ed., Distributed Computing, 19th International
Conference (DISC 2006), Cracow, Poland, September 2005, volume 3724 of Lecture Notes in
Computer Science, pages 152–168. Springer, 2005. 5

http://dx.doi.org/10.1007/978-3-540-85778-5_17
http://dx.doi.org/10.1006/inco.2000.2999
http://dx.doi.org/10.1016/j.tcs.2004.04.003
http://dx.doi.org/10.1007/978-3-540-30080-9_8
http://dx.doi.org/10.1145/1400751.1400783

BIBLIOGRAPHY 107

[21] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Timed
I/O automata: a complete specification theory for real-time systems. In Karl Henrik Johansson
and Wang Yi, Eds., Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 91–100.
ACM, 2010. DOI: 10.1145/1755952 6

[22] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Proceedings of Hybrid
Systems III, Verification and Control, volume 1066 of Lecture Notes in Computer Science, pages
208–219. Springer-Verlag, 1996. DOI: 10.1007/BFb0020947 6

[23] R. DePrisco, B. Lampson, and Nancy Lynch. Revisiting the Paxos algorithm. In M. Mavron-
icolas and P.Tsigas, Eds., Distributed Algorithms Proceedings of the 11th International Work-
shop, WDAG’97, Saarbrücken, Germany, September 1997, volume 1320 of Lecture Notes in
Computer Science, pages 111–125. Springer-Verlag, 1997. 4, 6, 7

[24] D.Dill. TraceTheory for Automatic Hierarchical Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, Cambridge, MA, 1988. 88, 89

[25] Shlomi Dolev, Seth Gilbert, Limor Lahiani, Nancy Lynch, and Tina Nolte. Brief announce-
ment: Virtual stationary automata for mobile networks. In Proceedings of the 24th Annual
ACM Symposium on Principles of Distributed Computing (PODC 2005), Las Vegas, NV, July
2005. DOI: 10.1145/1073814.1073876 5

[26] Shlomi Dolev, Limor Lahiani, Nancy Lynch, and Tina Nolte. Self-stabilizing mobile node
location management and message routing. In Sebastien Tixeuil Ted Herman, Ed., Self-
Stabilizing Systems: Seventh International Symposium on Self-Stabilizing Systems (SSS 2005),
Barcelona, Spain, October 26-27, volume 3764 of Lecture Notes in Computer Science, pages 96–
112. Springer, 2005. Also, Technical Report MIT-LCS-TR-999, MIT Computer Science
and Artificial Intelligence Laboratory, Cambridge, MA, August 2005. 5

[27] Ekaterina Dolginova and Nancy Lynch. Safety verification for automated platoon maneuvers:
A case study. In Oded Maler, Ed., Hybrid and Real-Time Systems: International Workshop,
(HART 1997), Grenoble, France, March 1997, volume 1201 of Lecture Notes in Computer Science,
pages 154–170. Springer-Verlag, 1997. 4

[28] Rui Fan, Indraneel Chakraborty, and Nancy Lynch. Clock synchronization for wireless net-
works. In Teruo Higashino, Ed., Principles of Distributed Systems: 8th International Conference
on Principles of Distributed Systems (OPODIS 2004), Grenoble, France, December 15-17, 2004,
volume 3544 of Lecture Notes in Computer Science, pages 400–414. Springer, 2005. 5

[29] Rui Fan, Ralph Droms, Nancy Griffeth, and Nancy Lynch. The DHCP failover proto-
col: A formal perspective. In 27th IFIP WG 6.1 International Conference on Formal Meth-
ods for Networked and Distributed Systems (FORTE 2007), Tallinn, Estonia, June 26-29,

http://dx.doi.org/10.1145/1755952
http://dx.doi.org/10.1007/BFb0020947
http://dx.doi.org/10.1145/1073814.1073876

108 BIBLIOGRAPHY

2007, volume 4574 of Lecture Notes in Computer Science, pages 211–226. Springer, 2007.
DOI: 10.1007/978-3-540-73196-2_14 5

[30] Rui Fan and Nancy Lynch. Gradient clock synchronization. Distributed Computing,
18(4):255–266, November 2006. DOI: 10.1007/s00446-005-0135-6 5

[31] Goran Frehse. Compositional Verification of Hybrid Systems using Simulation Relations. PhD
thesis, Radboud University Nijmegen, October 2005. 93

[32] S. Garland. TIOA user guide and reference manual, September 2005. Available through
URL http://theory.csail.mit.edu/tds/reflist.html. 4, 25

[33] S. Garland, D. Kaynar, N. A. Lynch, J. Tauber, and M. Vaziri. TIOA tutorial, May 2005.
Available through URL http://theory.csail.mit.edu/tds/reflist.html. 4, 25

[34] S. Garland and N. A. Lynch. Using I/O automata for developing distributed systems. In
Gary T. Leavens and Murali Sitaraman, Ed., Foundations of Component-Based Systems, chap-
ter 13, pages 285–312. Cambridge University Press, New York, 2000. 1

[35] S. Garland, Nancy Lynch, and M. Vaziri. IOA: A Language for Specifying, Programming, and
Validating Distributed Systems. MIT Laboratory for Computer Science, Cambridge, MA,
2001. URL http://theory.lcs.mit.edu/tds/ioa.html. 4

[36] R. Gawlick, R. Segala, J. F. Søgaard-Andersen, and Nancy Lynch. Liveness in timed and
untimed systems. In S. Abiteboul and E. Shamir, Eds., Proceedings 21th ICALP, Jerusalem,
volume 820 of Lecture Notes in Computer Science. Springer-Verlag, 1994. A full version appears
as MIT Technical Report number MIT/LCS/TR-587. 40

[37] Seth Gilbert. Virtual Infrastructure for Wireless Ad Hoc Networks. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, 2007. 58

[38] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM Sigact News, 33(2):48–51, June 2002.
DOI: 10.1145/564585.564601 5

[39] Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. Self-stabilizing mobile robot
formations with virtual nodes. In Sandeep S. Kulkarni and Andre Schiper, Eds., Stabilization,
Safety and Security of Distributed Systems, 10th International Symposium (SSS 2008), Detroit,
Michigan, November 2008, volume 5340 of Lecture Notes in Computer Science, pages 188–202.
Springer, 2008. DOI: 10.1007/978-3-540-89335-6 5

[40] Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. Self-stabilizing robot formations
over unreliable networks. ACM Transactions on Autonomous and Adaptive Systems, 4(3), 2009.
DOI: 10.1145/1552297.1552300 5

http://dx.doi.org/10.1007/978-3-540-73196-2_14
http://dx.doi.org/10.1007/s00446-005-0135-6
http://theory.csail.mit.edu/tds/reflist.html
http://theory.csail.mit.edu/tds/reflist.html
http://theory.lcs.mit.edu/tds/ioa.html
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1007/978-3-540-89335-6
http://dx.doi.org/10.1145/1552297.1552300

BIBLIOGRAPHY 109

[41] Seth Gilbert, Nancy Lynch, and Alex Shvartsman. RAMBO II: Rapidly reconfig-
urable atomic memory for dynamic networks. In International Conference on Depend-
able Systems and Networks (DSN 2003), pages 259–268, San Francisco, CA, June 2003.
DOI: 10.1109/DSN.2003.1209936 5

[42] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press,
Cambridge, MA, 1992. 10

[43] Vida Uyen Ha. Verification of an attitude control system. Bachelor of Science and Master of
Engineering, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, May 2003. 4

[44] C. Heitmeyer and Nancy Lynch. The generalized railroad crossing: A case study in for-
mal verification of a real-time system. In Proceedings of the 15th IEEE Real-Time Systems
Symposium, pages 120–131, 1994. DOI: 10.1109/REAL.1994.342724 4

[45] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, MA, 1988. 10

[46] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for real-time
systems. Information and Computation, 111(2):193–244, 1994. DOI: 10.1006/inco.1994.1045
6

[47] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hybrid
Systems. In O. Grumberg, Ed., em Proceedings of the 9th International Conference on
Computer Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 460–
463. Springer-Verlag, 1997. 6

[48] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decomposing refinement proofs
using assume-guarantee reasoning. In Proceedings of the International Conference on
Computer-Aided Design (ICCAD), pages 245–252. IEEE Computer Society Press, 2000.
DOI: 10.1109/ICCAD.2000.896481 93

[49] T.A. Henzinger. Sooner is safer than later. Information Processing Letters, 43:135–141, 1992.
DOI: 10.1016/0020-0190(92)90005-G 82

[50] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? J. Comput. Syst. Sci., 57(1):94–124, 1998.
DOI: 10.1006/jcss.1998.1581 5

[51] VeroModo Inc. http://www.veromodo.com. 4, 103

[52] C. B. Jones. Specification and design of parallel programs. In R. E. A. Mason, Ed., Information
Processing 83: Proceedings of the IFIP 9th World Congress, pages 321–332.North-Holland,1983.
93

http://dx.doi.org/10.1109/DSN.2003.1209936
http://dx.doi.org/10.1109/REAL.1994.342724
http://dx.doi.org/10.1006/inco.1994.1045
http://dx.doi.org/10.1109/ICCAD.2000.896481
http://dx.doi.org/10.1016/0020-0190(92)90005-G
http://dx.doi.org/10.1006/jcss.1998.1581
http://www.veromodo.com

110 BIBLIOGRAPHY

[53] B. Jonsson. Modular verification of asynchronous networks. In Proceedings of the 6th An-
nual ACM Symposium on Principles of Distributed Computing, pages 152–166, August 1987.
DOI: 10.1145/41840.41853 3, 85

[54] Bengt Jonsson. Compositional specification and verification of distributed systems. ACM
Trans. Program. Lang. Syst., 16(2):259–303, 1994. DOI: 10.1145/174662.174665 3, 85

[55] D.Kaynar and N.A.Lynch. Decomposing verification of timed I/O automata. In Y.Lakhnech
and S.Yovine,Eds.,Proceedings Joint International Conferences on Formal Modelling and Analysis
of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant
Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, volume 3253 of Lecture
Notes in Computer Science, pages 84–101. Springer, 2004. 93

[56] D. Kaynar, N. A. Lynch, S. Mitra, and S. Garland. The TIOA language, May 2005. Available
through URL http://theory.csail.mit.edu/tds/reflist.html. 4, 25

[57] Dilsun K. Kaynar, Nancy Lynch, and Sayan Mitra. Specifying and proving timing properties
with TIOA tools. In Proceedings of the 5th IEEE International Real-Time Systems Symposium,
Work in Progress Session (RTSS WIP), pages 96–99, Lisbon, Portugal, December 2004. 3, 4

[58] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory of timed
I/O automata. Technical Report MIT-LCS-TR-917a, MIT Laboratory for Computer Sci-
ence, 2004. Available online at http://theory.csail.mit.edu/tds/reflist.html. 7,
103

[59] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory
of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan-Claypool
Publishers, May 2006. Also, revised and shortened version of Technical Report MIT-
LCS-TR-917a (from 2004), MIT Laboratory for Computer Science, Cambridge, MA.
DOI: 10.2200/S00006ED1V01Y200508CSL001 7

[60] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.
Addision-Wesley, Reading, MA, second edition, 1973. 11

[61] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient clock synchronization
in dynamic networks. In Proceedings of the ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), Calgary, Alberta, Canada, August 2009. To appear.
DOI: 10.1145/1583991.1584059 5

[62] Fabian Kuhn, Nancy Lynch, and Calvin Newport. The abstract MAC layer. Technical Report
MIT-CSAIL-TR-2009-021, MIT CSAIL, Cambridge, MA, May 2009. Earlier version as
Technical Report MIT-CSAIL-TR-2009-009, MIT CSAIL, Cambridge, MA, February
2009. 5

http://dx.doi.org/10.1145/41840.41853
http://dx.doi.org/10.1145/174662.174665
http://theory.csail.mit.edu/tds/reflist.html
http://theory.csail.mit.edu/tds/reflist.html
http://dx.doi.org/10.2200/S00006ED1V01Y200508CSL001
http://dx.doi.org/10.1145/1583991.1584059

BIBLIOGRAPHY 111

[63] Fabian Kuhn and Rotem Oshman. Gradient clock synchronization using reference broadcasts.
Submitted for publication. DOI: 10.1007/978-3-642-10877-8_17 5

[64] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. A new class of decidable hybrid
systems. In Frits W. Vaandrager and Jan H. van Schuppen, Eds., Hybrid Systems: Computation
and Control, Second International Workshop, HSCC’99, Berg en Dal, The Netherlands, March
29-31, 1999, Proceedings, volume 1569 of Lecture Notes in Computer Science, pages 137–151.
Springer, 1999. 5

[65] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994. DOI: 10.1145/177492.177726 82

[66] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Journal of Software Tools for
Technology Transfer, 1–2:134–152, 1997. DOI: 10.1007/s100090050010 4, 5

[67] K. G. Larsen and W. Yi. Time abstracted bisimulation: Implicit specifications and decid-
ability. In S.D. Brookes, M.G. Main, A. Melton, M.W. Mislove, and D.A. Schmidt, Eds.,
Mathematical Foundations of Programming Semantics, 9th International Conference, New Or-
leans, LA, USA, April 7-10, 1993, Proceedings, volume 802 of Lecture Notes in Computer Science,
pages 160–176. Springer, 1993. 42

[68] C. Livadas, J. Lygeros, and N. A. Lynch. High-level modeling and analysis of TCAS.
In Proceedings of the 20th IEEE Real-Time Systems Symposium, pages 115–125, 1999.
DOI: 10.1109/REAL.1999.818833 4

[69] Carl Livadas and Idit Keidar. Caching-enhanced scalable reliable multicast. In International
Conference on Dependable Systems and Networks (DSN), pages 253–264, Florence, Italy, June-
July 2004. DOI: 10.1109/DSN.2004.1311895 5

[70] Carl Livadas, John Lygeros, and Nancy Lynch. High-level modeling and analysis of the
traffic alert and collision avoidance system (TCAS). Proceedings of IEEE, Special Issue on
Hybrid Systems: Theory and Applications, 88(7):926–948, July 2000. DOI: 10.1109/5.871302
4

[71] Carolos Livadas, Idit Keidar, and Nancy A. Lynch. Designing a caching-based reliable
multicast protocol. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN 2001) Fast Abstracts Supplement, pages B44–B45, Gothenburg, Sweden, July
2001. 5

[72] Carolos Livadas and Nancy A. Lynch. Formal verification of safety-critical hybrid systems.
In S. Sastry and T.A. Henzinger, Eds., Hybrid Systems: Computation and Control. First Inter-
national Workshop (HSCC 1998), Berkeley, CA, USA, April, 1998, volume 1386 of Lecture Notes
in Computer Science, pages 253–272. Springer Verlag, 1998. 4

http://dx.doi.org/10.1007/978-3-642-10877-8_17
http://dx.doi.org/10.1145/177492.177726
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/REAL.1999.818833
http://dx.doi.org/10.1109/DSN.2004.1311895
http://dx.doi.org/10.1109/5.871302

112 BIBLIOGRAPHY

[73] Carolos Livadas and Nancy A. Lynch. A formal venture into reliable multicast territory. In
Moshe Y. Vardi Doron Peled, Ed., em Formal Techniques for Networked and Distributed
Systems: Proceedings of the 22nd IFIP WG 6.1 International Conference (FORTE 2002),
Houston, Texas, USA, November 11-14, 2002, volume 2529 of Lecture Notes in Computer
Science, pages 146–161. Springer, 2002. Also, Technical Report MIT-LCS-TR-868, MIT
Laboratory for Computer Science, Cambridge, MA, November 2002. 5

[74] John Lygeros and Nancy Lynch. Strings of vehicles: Modeling and safety conditions. In
S. Sastry and T.A. Henzinger, Eds., Hybrid Systems: Computation and Control. First Interna-
tional Workshop (HSCC 1998), Berkeley, CA, USA, April, 1998, volume 1386 of Lecture Notes
in Computer Science, pages 273–288. Springer Verlag, 1998. 4

[75] N. A. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic memory service for
dynamic networks. In D. Malkhi, Ed., Distributed Computing, Proceedings of the 16th Inter-
national Symposium on DIStributed Computing (DISC),Toulouse, France, October 2002, volume
2508 of Lecture Notes in Computer Science, pages 173–190. Springer-Verlag, 2002. Also, Tech-
nical Report MIT-LCS-TR-856. 7

[76] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Fransisco,
CA, 1996. 3, 85

[77] Nancy Lynch. A three-level analysis of a simple acceleration maneuver, with uncertainties.
In Real-Time Systems: Modeling, Design, and Applications, volume 8 of AMAST Series in Com-
puting. World Scientific Publishing Company, 2005. DOI: 10.1142/9789812708472_0016
4

[78] Nancy Lynch, Sayan Mitra, and Tina Nolte. Motion coordination using virtual nodes. In
Forty-Fourth IEEE Conference on Decision and Control and European Control Conference (CDC-
ECC 2005), Seville, Spain, December 2005. DOI: 10.1109/CDC.2005.1582591 5

[79] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata. Information and
Computation, 185(1):105–157, 2003. DOI: 10.1016/S0890-5401(03)00067-1 3, 13, 24, 57,
58, 85, 88, 92, 101, 102, 103

[80] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O automata.
In R. Alur, T. A. Henzinger, and E. D. Sontag, Eds., Hybrid Systems III, volume 1066 of
Lecture Notes in Computer Science, pages 496–510. Springer-Verlag, 1996. 40

[81] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O au-
tomata. Report CSI-R9907, Computing Science Institute, University of Nijmegen, April
1999. DOI: 10.1007/BFb0020971 40, 88, 89

[82] Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic memory service
for dynamic networks. In D. Malkhi, Ed., Distributed Computing: Proceedings of the 16th

http://dx.doi.org/10.1142/9789812708472_0016
http://dx.doi.org/10.1109/CDC.2005.1582591
http://dx.doi.org/10.1016/S0890-5401(03)00067-1
http://dx.doi.org/10.1007/BFb0020971

BIBLIOGRAPHY 113

International Symposium on DIStributed Computing (DISC 2002), Toulouse, France, October
2002, volume 2508 of Lecture Notes in Computer Science, pages 173–190. Springer-Verlag,
2002. Also, Technical Report MIT-LCS-TR-856, MIT Laboratory for Computer Science,
Cambridge, MA. 5

[83] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, pages
137–151, August 1987. A full version is available as MIT Technical Report MIT/LCS/TR-
387. DOI: 10.1145/41840.41852 3, 85

[84] Nancy Lynch and Mark Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219–246, September 1989. 3, 85

[85] Nancy Lynch and Frits Vaandrager. Forward and backward simulations, I: Un-
timed systems. Information and Computation, 121(2):214–233, September 1995.
DOI: 10.1006/inco.1995.1134 52

[86] Nancy Lynch and Frits Vaandrager. Action transducers and timed automata. Formal Aspects
of Computing, 8(5):499–538, 1996. DOI: 10.1007/BF01211907 4, 24, 34, 40, 104

[87] Nancy Lynch and Frits Vaandrager. Forward and backward simulations — Part
II: Timing-based systems. Information and Computation, 128(1):1–25, July 1996.
DOI: 10.1006/inco.1996.0060 4, 52, 104

[88] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J. W. de Bakker,
C. Huizing, W. P. de Roever, and G. Rozenberg, Ed., Proceedings REX Workshop on Real-
Time: Theory in Practice, Mook, The Netherlands, June 1991, volume 600 of Lecture Notes in
Computer Science, pages 447–484. Springer-Verlag, 1992. 4, 6, 14, 68, 104

[89] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In E.W. Mayr and C. Puech, Eds., Proceedings STACS’95, volume 900 of Lecture Notes in
Computer Science, pages 229–242. Springer-Verlag, 1995. 89

[90] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag,
1995. 36, 38

[91] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In J. C. M. Baeten
and J. F. Groote, Eds., Proceedings CONCUR 91, Amsterdam, volume 527 of Lecture Notes in
Computer Science, pages 408–423. Springer-Verlag, 1991. 4, 6, 68, 104

[92] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, 1980. 5

http://dx.doi.org/10.1145/41840.41852
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1007/BF01211907
http://dx.doi.org/10.1006/inco.1996.0060

114 BIBLIOGRAPHY

[93] S. Mitra, Y. Wang, N. A. Lynch, and E. Feron. Safety verification of model helicopter
controller using hybrid input/output automata. In O. Maler and A. Pnueli, Eds., Proceedings of
Hybrid Systems: Computation and Control, Prague, the Czech Republic April 3-5, volume 2623
of Lecture Notes in Computer Science, pages 343–358, 2003. DOI: 10.1007/3-540-36580-X 25

[94] Sayan Mitra. A Verification Framework for Ordinary and Probabilistic Hybrid Systems. PhD
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, 2007. 103

[95] Sayan Mitra and Nancy Lynch. Trace-based semantics of probabilistic timed I/O automata.
In Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo, Eds., Hybrid Systems: Com-
putation and Control (HSCC 2007), Pisa, Italy, April 3-5, 2007, volume 4416 of Lecture Notes
in Computer Science, pages 718–722. Springer, 2007. 103

[96] Tina Nolte and Nancy Lynch. Self-stabilization and virtual node layer emulations. InToshim-
itsu Masuzawa and Sebastien Tixeuil, Eds., Stabilization, Safety, and Security of Distributed
Systems: Proceedings of Ninth International Symposium (SSS 2007), Paris, France, November
2007, volume 4838 of Lecture Notes in Computer Science, pages 394–408. Springer, 2007.
DOI: 10.1007/978-3-540-76627-8 5

[97] Tina Nolte and Nancy Lynch. A virtual node-based tracking algorithm for mobile networks.
In International Conference on Distributed Computing Systems (ICDCS 2007),Toronto,Canada,
June 2007. DOI: 10.1109/ICDCS.2007.82 5

[98] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-tolerant
architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering,
21(2):107–125, February 1995. DOI: 10.1109/32.345827 4

[99] George J. Pappas. Hybrid systems tools wiki, 2010. URL http://wiki.grasp.upenn.
edu/hst/index.php?n=Main.HomePage. 6

[100] P. Petterson. Modelling and Verification of Real-Time Systems UsingTimed Automata:Theory and
Practice. PhD thesis, Department of Computer Systems, Uppsala University, 1999. Technical
Report DoCs 99/101. 4, 5

[101] A. Pnueli. In transition from global to modular temporal reasoning about programs. In K. R.
Apt, Ed., Logics and Models of Concurrent Systems, NATO ASI, pages 123–144. Springer-
Verlag, 1984. 93

[102] A. Pnueli. Development of hybrid systems. In H. Langmaack,W.-P. de Roever, and J.Vytopil,
Eds., Proceedings of the Third International School and Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’94), Lübeck, Germany, September 1994, volume
863 of Lecture Notes in Computer Science, pages 77–85. Springer-Verlag, 1994. 18

http://dx.doi.org/10.1007/3-540-36580-X
http://dx.doi.org/10.1007/978-3-540-76627-8
http://dx.doi.org/10.1109/ICDCS.2007.82
http://dx.doi.org/10.1109/32.345827
http://wiki.grasp.upenn.edu/hst/index.php?n=Main.HomePage
http://wiki.grasp.upenn.edu/hst/index.php?n=Main.HomePage

BIBLIOGRAPHY 115

[103] J.W. Polderman and J. C.Willems. Introduction to Mathematical Systems Theory: A Behavioural
Approach, volume 26 of Texts in Applied Mathematics. Springer-Verlag, 1998. 25

[104] C.Robson.TIOA and UPPAAL. Master’s thesis,MIT Department of Electrical Engineering
and Computer Science, 2004. 6

[105] J.M.T Romijn. A timed verification of the IEEE 1394 leader election protocol. For-
mal Methods in System Design, 19(2):165–194, 2001. Special issue on FMICS’99.
DOI: 10.1023/A:1011284000753 45

[106] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Department of Electrical Engineering and Computer Science, MIT, May 1995. Also,
MIT/LCS/TR-676. 103

[107] R. Segala, R. Gawlick, J. F. Søgaard-Andersen, and N. A. Lynch. Liveness in timed
and untimed systems. Information and Computation, 141(2):119–171, March 1998.
DOI: 10.1006/inco.1997.2671 4, 24, 34, 88, 89, 104

[108] J. Sifakis. Modeling real-time systems – challenges and work directions. In Pro-
ceedings of Embedded Software, First International Workshop (EMSOFT ’01), Tahoe City,
CA, volume 2211 of Lecture Notes in Computer Science, pages 373–389, October 2001.
DOI: 10.1007/3-540-45449-7_26 1

[109] J. Sifakis. Modeling real-time systems. In Proceedings of the 25th IEEE Real-Time Sys-
tems Symposium (RTSS ’04), pages 5–6. IEEE Computer Society, 2004. Invited Talk.
DOI: 10.1109/REAL.2004.34 1

[110] D.P.L. Simons and M.I.A. Stoelinga. Mechanical verification of the IEEE 1394a root con-
tention protocol using Uppaal2k. International Journal on SoftwareTools forTechnologyTransfer
(STTT), 3(4):469–485, September 2001. DOI: 10.1007/s100090100059 45

[111] Mark Smith. Formal verification of communication protocols. In Reinhard Gotzhein
and Jan Bredereke, Eds., Formal Description Techniques IX: Theory, Applications, and Tools
(FORTE/PSTV’96: Joint International Conference on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols, and Protocol Specification, Testing, and Verifi-
cation, Kaiserslautern, Germany, October 1996), pages 129–144. Chapman & Hall, London,
1996. 5

[112] Mark Smith. Reliable message delivery and conditionally-fast transactions are not possible
without accurate clocks. In Proceedings of the 17th Annual ACM Symposium on the Principles
of Distributed Computing (PODC 1998), pages 163–171, Puerta Vallarta, Mexico, June 1998.
DOI: 10.1145/277697.277728 5

http://dx.doi.org/10.1023/A:1011284000753
http://dx.doi.org/10.1006/inco.1997.2671
http://dx.doi.org/10.1007/3-540-45449-7_26
http://dx.doi.org/10.1109/REAL.2004.34
http://dx.doi.org/10.1007/s100090100059
http://dx.doi.org/10.1145/277697.277728

116 BIBLIOGRAPHY

[113] E. D. Sontag. Mathematical Control Theory — Deterministic Finite Dimensional Systems,
volume 6 of Texts in Applied Mathematics. Springer-Verlag, 1990. 14

[114] E. W. Stark. A proof technique for rely/guarantee properties. In S. N. Maheshwari, Ed.,
Foundations of Software Technology and Theoretical Computer Science, volume 206 of Lecture
Notes in Computer Science, pages 369–391. Springer-Verlag, 1985. 93

[115] S.Tasiran, R. Alur, R. P. Kurshan, and R. K. Brayton. Verifying abstractions of timed systems.
In Proceedings of the Seventh Conference on Concurrency Theory (CONCUR), volume 1119 of
Lecture Notes in Computer Science, 1996. DOI: 10.1007/3-540-61604-7_75 93

[116] Shinya Umeno. Machine-assisted parameter synthesis of the biphase mark protocol using
event order abstraction. In J. Ouaknine and F. W. Vaandrager, Eds., 7th International Con-
ference on Formal Modelling and Analysis of Timed Systems (FORMATS 2009), volume 5813 of
Lecture Notes in Computer Science, pages 258–274, Springer, Budapest, Hungary, 2009. 5

[117] Shinya Umeno and Nancy Lynch. Safety verification of an aircraft landing protocol: A
refinement approach. In Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo, Eds.,
Hybrid Systems: Computation and Control (HSCC 2007), Pisa, Italy, April 3-5, 2007, volume
4416 of Lecture Notes in Computer Science, pages 557–572. Springer, 2007. 4

[118] Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan, and Geir E. Dullerud.
STORMED hybrid systems. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Mag-
nús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, Eds., Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track
C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science,
pages 136–147. Springer, 2008. 5

[119] H. B. Weinberg and N. A. Lynch. Correctness of vehicle control systems - a
case study. In Proceedings of the 17th IEEE Real-Time Systems, pages 62–72, 1996.
DOI: 10.1109/REAL.1996.563701 4

[120] H. B. Weinberg, Nancy Lynch, and Norman Delisle. Verification of automated vehicle pro-
tection systems. In R. Alur,T. Henzinger, and E. Sontag, Eds., Hybrid Systems III: Verification
and Control (DIMACS/SYCON Workshop on Verification and Control of Hybrid Systems, New
Brunswick, New Jersey, October 1995), volume 1066 of Lecture Notes in Computer Science, pages
101–113. Springer-Verlag, 1996. 4

[121] S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Software
Tools for Technology Transfer, 1(1/2):123–133, October 1997. DOI: 10.1007/s100090050009
6

http://dx.doi.org/10.1007/3-540-61604-7_75
http://dx.doi.org/10.1109/REAL.1996.563701
http://dx.doi.org/10.1007/s100090050009

BIBLIOGRAPHY 117

[122] S. Yovine. Model checking timed automata. In G. Rozenberg and F.W. Vaandrager, Eds.,
Lectures on Embedded Systems, volume 1494 of Lecture Notes in Computer Science, pages 114–
152. Springer-Verlag, October 1998. 42

119

Authors’ Biographies

DILSUN KAYNAR

Dilsun Kaynar is a postdoctoral researcher at CyLab, Carnegie Mellon University. Previously,
she was a postdoctoral research associate in the Theory of Distributed Systems Group at MIT’s
Computer Science and Artificial Intelligence Laboratory. She received her PhD degree from the
University of Edinburgh at the Laboratory for Foundations of Computer Science and her BSc in
Computer Engineering from METU in Turkey. The broad area of her research is the specification,
programming, and verification of distributed computing systems. Her PhD work focused on the
design of functional programming languages that support mobile computation. She investigated
the application of type-based analysis in this context, in particular to improve safety and security
of systems. In her postdoctoral research at MIT, she worked on the development of I/O automata-
based formal modeling frameworks for distributed systems, with collaborators including Nancy
Lynch, Roberto Segala, and Frits Vaandrager. She is currently pursuing research at CMU CyLab,
developing methods for analyzing security guarantees offered by contemporary secure systems and
establishing foundations for data privacy, based on specializations of general formal frameworks for
distributed computing such as I/O automata.

NANCY LYNCH

Nancy Lynch is a Professor in the Department of Electrical Engineering and Computer Science
at MIT and heads the Theory of Distributed Systems research group in MIT’s Computer Science
and Artificial Intelligence Laboratory. Prior to joining MIT in 1981, she served on the faculty
at Tufts University, the University of Southern California, Florida International University, and
Georgia Tech. She received her B.S. degree in mathematics from Brooklyn College, and her PhD in
mathematics from MIT. She has written numerous research articles about distributed algorithms and
impossibility results, and about formal modeling and verification of distributed systems. Her notable
research contributions include the well-known “FLP” impossibility result for distributed consensus
in the presence of process failures (with Fischer and Paterson), the “DLS” algorithms for stabilizing
fault-tolerant consensus (with Dwork and Stockmeyer), and the I/O automata mathematical mod-
eling frameworks (with Tuttle, Vaandrager, Segala, and Kaynar). Prior to this monograph, she wrote
two books: on “Atomic Transactions” (with Merritt, Weihl, and Fekete) and on “Distributed Algo-
rithms”. She is a member of the National Academy of Engineering and the American Academy of
Arts and Sciences, and is an ACM Fellow. She is a winner of several prizes for her work in distributed

120 AUTHORS’ BIOGRAPHIES

computing theory, including the Dijkstra Prize (2001 and 2007), the van Wijngaarden Prize (2006),
the Knuth Prize (2007), and the IEEE Piore Prize (2010).

ROBERTO SEGALA
Roberto Segala is a Professor at the University of Verona, Italy, and heads the Formal Models and
Verification group at the Department of Computer Science. Prior to joining the University of Verona
in 2001, he was research associate at the University of Bologna. He received his Laurea in Computer
Science from the University of Pisa as a student of the Scuola Normale Superiore, and his Masters
and PhD in Computer Science from MIT. As part of his PhD work, he made contributions to the
theory of liveness and receptiveness for real-time systems and he designed the model of Probabilistic
Automata for the formal analysis of randomized distributed algorithms. After that, he worked with
Lynch, Kaynar, Vaandrager and others on the hybrid extension of the I/O automata framework.
He also worked on model checking of probabilistic real-time systems, contributing to the design of
some of the algorithms used in the PRISM model checker. One of his long-term goals is to design a
general mathematical model that can be used for the description and analysis of systems that exhibit
stochastic hybrid behavior.

FRITS VAANDRAGER
Frits Vaandrager is a Professor at the Radboud University Nijmegen, the Netherlands, within the
Institute of Computing and Information Sciences. Prior to joining the Radboud University in 1995,
he was group leader at the CWI in Amsterdam and held postdoctoral positions at MIT in the group
of Nancy Lynch, and in the group of Gérard Berry at the École Nationale Supérieure des Mines
in Sophia-Antipolis. He received his M.S. degree in Mathematics from the University of Leiden,
and his PhD in Computer Science from the University of Amsterdam. As part of his PhD work, he
made major contributions to the general theory of structural operational semantics. After that he
worked with Lynch, Segala, Kaynar, and others on the theory and applications of the I/O automata
framework. He has been and is involved in a large number of projects in which formal verification
and model checking technology is applied to tackle practical problems from industrial partners. His
group has been and is closely involved in the use and development of the timed automata model
checker Uppaal. In part due to these efforts, Uppaal is now routinely used for industrial case studies
and has thousands of users, both in academia and industry.

121

Index

(A, V)-restriction, 20
(A, V)-sequence, 18

abstraction, 2
admissible, 18, 21
algebraic cpo, 11
AlternateA, 96
AlternateB, 96
Alur-Dill timed automaton, 5
analog variable, 14, 26
assertions, 36
assume-guarantee, 93

backward simulation, see simulation relation
bisimulation relation, 42
BoundedAlternateA, 64
BoundedAlternateB, 64

CatchUpA, 64, 96
CatchUpB, 64, 96
chain, 10
Clock, 68
Clock and manager problem, 68
clock synchronization, 30, 45
ClockSync(u,r:Real, i:Index), 30, 60, 86
compact element of a cpo, 10
comparable, 40, 90
compatible, 57, 91
complete partial order (cpo), 10

algebraic cpo, 11
compact element, 10

composition, 3, 57, 91

continuous, 10
cpo, see complete partial order

discrete action, 23
discrete transition, 23
discrete variable, 14, 26
dynamic type, 13

effect, 26
enabled, 23
execution, 32, 86

PeriodicSend, 34
Timeout, 35

execution fragment, 31, 34, 86

feasible, 40, 86
FIN, see finite internal nondeterminism
finite internal nondeterminism (FIN), 39, 95
Fischer’s mutual exclusion, 28, 38, 75
FischerME, 28
FischerME, 75
forward simulation, see simulation relation

clock synchronization, 45
time-bounded channels, 44

hiding, 67
HIOA, 3, 92
history relation, 50, 51, 90
history variable, 50, 51

time-bounded channels, 51
hybrid automaton, 24, 57

122 INDEX

Hybrid I/O Automaton modeling framework,
3, 103

hybrid sequence, 17, 18
admissible, 18
closed, 18
concatenation, 20
limit time, 18
open, 18
prefix, 19
time-bounded, 18
Zeno, 18

HyTech, 6

i-length, 36
I/O feasibility, 102
I/O feasible, 86, 100
implementation, 2, 40
inductive, 36
inductive relative to, 38
invariant, 36, 37

clock agreement, 62
clock validity, 61, 62
ClockSync(u,r:Real, i:Index), 61, 62
failure and timeout, 60
FischerME, 38
TimedChannel, 37
timeout, 59

Kronos, 6

limit of a chain, 10
linear hybrid automaton, 5
locally Zeno, 86

Manager, 68
monotone, 10

nonZeno, 18, 21

parallel composition, see composition

partial order, 10
complete partial order, 10

periodic sending process, 27, 34
periodic sending process with failures, 27
PeriodicSend, 27, 59
PeriodicSend2, 27, 60
point trajectory, see trajectory
precondition, 26
prefix, 10
progressive, 87, 89
prophecy relation, 54, 90
prophecy variable, 54

reachable, 36
receptive, 89, 101
receptiveness, 3, 88, 102
refinement, 45

sequence, 10
simulation relation, 2, 41

backward simulation, 41, 47, 49, 90
forward simulation, 42, 90
refinement, 45

Specification, 68
stable, 36
stable relative to, 38
static type, 13
strategy, 88, 88
substitutivity, 63, 64, 93
System, 68

TA, see timed automaton
TA with bounds, 68, 70
task, 68, 70

lower bound, 70
upper bound, 70

time axis, 13
time interval, 13

closed, 13
left-closed, 13

INDEX 123

right-closed, 13
time-bounded channel, 26, 37, 44, 51
timed automaton (TA), 23
timed automaton model, 23
Timed I/O automaton (TIOA), 2, 85
Timed Input/Output Automaton modeling

framework, 2
TimedChannel, 26, 59, 60, 86
Timeout, 60
Timeout, 28, 59
timeout process, 28, 35
timing-independent, 40, 95
TIOA, see Timed I/O automaton
trace, 2, 34, 86

PeriodicSend, 34
Timeout, 35

trace fragment, 34, 86
trajectory, 15, 23

closed, 16
concatenation, 17

full, 16
limit time, 16
open, 16
point trajectory, 16, 18
prefix, 16

Uppaal, 5
UseNewInputA, 98
UseNewInputB, 98
UseOldInputA, 98
UseOldInputB, 98

variables, 13, 15, 23
analog, 14
discrete, 14
dynamic types, 13
static type, 13

weak isomorphism, 47

Zeno, 3, 18, 36

	Acknowledgments
	Notations
	Introduction
	Overview
	Evolution of the TIOA framework
	Related work
	Organization of the Book

	Mathematical Preliminaries
	Functions and Relations
	Sequences
	Partial Orders
	A Basic Graph Lemma

	Describing Timed System Behavior
	Time
	Static and Dynamic Types
	Trajectories
	Basic Definitions
	Prefix Ordering
	Concatenation

	Hybrid Sequences
	Basic Definitions
	Prefix Ordering
	Concatenation
	Restriction

	Timed Automata
	Definition of Timed Automata
	Executions and Traces
	Invariants
	Special Kinds of Timed Automata
	Implementation Relationships
	Simulation Relations
	Forward Simulations
	Refinements
	Backward Simulations
	History Relations
	Prophecy Relations

	Operations on Timed Automata
	Composition
	Definitions and Basic Results
	Substitutivity Results

	Hiding
	Extending Timed Automata with Bounds

	Properties for Timed Automata
	Properties for Hybrid Sequences
	Properties for Timed Automata
	Implementation
	Operations

	Timed I/O Automata
	Definition of Timed I/O Automata
	Executions and Traces
	Special Kinds of Timed I/O Automata
	Feasible and I/O Feasible TIOAs
	Progressive TIOAs
	Receptive Timed I/O Automata

	Implementation Relationships
	Simulation Relations

	Operations on Timed I/O Automata
	Composition
	Definitions and Basic Results
	Substitutivity Results
	Composition of Special Kinds of TIOAs

	Hiding

	Conclusions and Future Work
	Bibliography
	Authors' Biographies
	Index

