
MultiChord: A Resilient Namespace Management Protocol

Nancy Lynch Ion Stoica

MIT UC Berkeley

Abstract

MultiChord is a new variant of the Chord namespace management algorithm [7] that includes lightweight mech-

anisms for accommodating a limited rate of change, specifically, process joins and failures. This paper describes the

algorithm formally and evaluates its performance, using both simulation and analysis. Our main result is that lookups

are provably correct—that is, each lookup returns results that are consistent with a hypothetical ideal system that dif-

fers from the actual system only in entries corresponding to recent joins and failures—in the presence of a limited rate

of change. In particular, if the number of joins and failures that occur during a given time interval in a given region

of system are bounded, then all lookups are correct. A second result is a guaranteed upper bound for the latency of a

lookup operation in the absence of any other lookups in the system. Finally, we establish a relationship between the

deterministic assumptions of bounded joins and failures and the probabilistic assumptions (which are often used to

model large scale networks). In particular, we derive a lower bound for the mean time between two violations of the

deterministic assumptions in a steady state system where joins and failures are modeled by Poisson processes.

1

1 Introduction

This paper describes MultiChord, a new, more resilient variant of the Chord namespace management algorithm [7].

The main innovation is that MultiChord includes lightweight mechanisms for accommodating a limited rate of change,

specifically, process joins and failures.

The contributions of this paper include (a) techniques for improving the performance and resiliency of peer-to-peer

namespace management algorithms, and (b) methods of analyzing performance for such algorithms in the presence of

a bounded rate of change.

Building in resiliency: We improve the performance and resiliency of Chord by adding additional entries to processes’

routing (finger) tables, and by delaying a process from joining until its finger table is properly populated. This demon-

strates an approach to building peer-to-peer namespace management services in which resiliency to a bounded rate

of change is built in from the beginning. The method we use is to design the ideal communication infrastructure

with enough redundancy to accommodate a bounded rate of change without reducing latency, and to maintain this

redundant structure using gossiping. Newly-joining processes should not participate fully in the system until they

have been fully incorporated into the communication infrastructure. This general approach should extend to other

communication infrastructures such as those proposed in [1, 4, 5, 6, 7].

Formal modeling and analysis: We present the algorithm precisely, using high-level, nondeterministic timed I/O

automata pseudocode. We analyze its performance conditionally, assuming a limited rate of change. This demonstrates

how peer-to-peer namespace management algorithms can be modeled using state machines and subjected to proofs

and analysis. In particular, it demonstrates that interesting performance results can be obtained for such algorithms

using conditional analysis, conditioned on the “normal case” assumption that changes happen at a bounded rate. This

kind of analysis should be useful in comparing different namespace management algorithms.

Our method of analysis is quite different from the probabilistic style used by Liben-Nowell et al [2]. Our claims

are not probabilistic, but rather, worst-case bounds under restricted circumstances. Our assumptions about the rate of

change are rather strong. However, as we discuss in Section 3, we can relax these assumptions by adding probabilistic

assumptions, while still obtaining our stronger latency bounds.

1.1 Overview

The original Chord protocol [7] assumes a circular identifier space (called the Chord ring) of size N = 2

n. With each

process i is associated a unique logical identifier in this space. Each process i maintains a routing table (known as a

finger table). The k-th entry in this table, called the k-th finger of process i, contains a reference to the first process

whose logical identifier follows process i’s logical identifier by at least 2k in the clockwise direction on the Chord

ring, where 0 � k < n. In the remainder of this paper we refer to these fingers as the power-of-two fingers of i.

The successor of a logical identifier id represents the first process whose logical identifier follows id in the clockwise

direction on the Chord ring, or the process with logical identifier id if such a process exists. We redefine the notion of

successor in the context of MultiChord in Section 1.2.

In MultiChord, process i maintains, in addition to the finger table like that used in Chord, information about its

“b-block” (i.e., its own b successors and b predecessors) and all b-blocks of its power-of-two fingers. The value of b

is chosen based on an assumed upper bound on the “normal” rate of change. When the algorithm is in an ideal state,

each process’ finger table contains its b-block, as well as a b-block for each of its power-of-two fingers. However, this

information can degrade from an ideal state as a result of process joins and failures.

MultiChord includes lightweight mechanisms, based on periodic background gossiping, for maintaining the system

in a nearly ideal state in the face of limited change, i.e., limited joins and failures. Each process i continually sends

its own b-block to its b successors and b predecessors, which allows them to update their finger tables. In addition,

process i continually “pings” its power-of-two fingers, who respond by returning their own b-blocks. These periodic

exchanges of information between a process and the processes in its finger table allow the system to gravitate back

toward an ideal state in the face of changes. Like Chord, MultiChord does not differentiate between a process failure

and departure. When a process i fails or leaves, processes who maintain process i in their finger tables will remove it

when it expires.

When a new process i joins the system, it first populates its finger table with its b-block, and the b-blocks of its

power-of-two fingers. Like in Chord, a process i uses the lookup operation to find its power-of-two fingers. There

1

are two other instances when a process i invokes a lookup: (i) when a client at location i explicitly invokes a lookup

operation for a specified target, and (iii) when it decides to refresh its finger table.

Like Chord, MultiChord implements the lookup operation in an iterative fashion. Consider a process i that per-

forms a lookup on value x. At every iteration (stage), process i sends a query to the best known predecessor for x. Let

process k be this predecessor. Upon receiving the query, process k checks whether it knows the process responsible

for x–that is, whether its immediate successor is responsible for x—, and if yes, it sends the answer back to process i.

Otherwise process k sends its best known predecessor for x to i. MultiChord generalizes this procedure: at every stage

process i sends
 > 1 queries to the best known
 predecessors for x. In turn, process k responds with its best known

 predecessors of x. As we will show this redundancy increases the resilience of the lookup in the face of changes.

The value of
 is chosen to be larger than the number of changes that “normally” occur in a “small” interval of time,

in a limited region of the ring. The length of this small interval of time is assumed to be sufficient for the system to

recover from a limited number of changes in the relevant region of the ring. The admissible rate of change is quantified

in Section 3.

1.2 Notations

Notation Comments

PId the set of physical process identifiers (e.g., IP address and port number)

XId the set of logical identifiers; 0 � i

k

< N , for any i

k

2 XId

GId the set of general identifiers of the form g

k

= (i

k

; x

k

), where i
k

2 PId ; x

k

2 XId

XtoP ; PtoX one-to-one correspondence from XId to PId , and its inverse.

su

(x; k; R) the kth successor of x in ring R

pred (x; k; R) the kth predecessor of x in R

su

set (x; k; R) successor set of x; su

set(x; k; R) = fsu

(x; `; R) : 0 � ` � kg

psu

set(x; k; R) proper successor set of x; psu

set(x; k; R) = fsu

(x; `; R) : 1 � ` � kg

predset (x; k; R) predecessor set of x; predset (x; k; R) = fpred (x; `; R) : 0 � ` � kg

ppredset (x; k; R) proper predecessor set of x; predset (x; k; R) = fpred (x; `; R) : 1 � ` � kg

blo
k (x; k; R) block of x; blo
k (x; k; R) = su

set(x; k; R) [predset(x; k; R)

Table 1: Notations used in this paper.

Table 1 shows the main notations used in this paper. Each process is identified by a physical identifier (e.g., IP

address and port number), and a logical identifier in identifier space 0::2n�1, where N = 2

n. A ring R is a nonempty

subset of logical identifiers (XId), ordered in a clockwise direction.

The kth successor of x in R is denoted by su

(x; k;R). For k = 0, su

(x; 0; R) = x if x 2 R, and is otherwise

undefined. If k � 1 then su

(x; k;R) is the kth value encountered when moving clockwise in R�x starting from the

position of x, if jR� xj � k, and is otherwise undefined. The kth predecessor of x is defined similarly (see Table 1).

2 The MultiChord Protocol

In this section we present the details of the MultiChord protocol.

2.1 Process Automaton: Signature

For the rest of this section, we fix a physical address i 2 PId , and describe the process automaton for location i,

MultiChord

i

. Throughout this section, we use me as an abbreviation for the general identifier GId g with g:phys = i

and g:log = PtoX (i), where g:phys and g:log denote the physical identifier, and the logical identifier of g, respec-

tively. Formally, MultiChord

i

is a timed I/O automaton, as defined in Chapter 23 of [3].

The signature of MultiChord

i

is given in Figure 1. The external signature describes the inputs and outputs (primar-

ily, client invocations and responses) by which the MultiChord service interacts with its environment. The external

signature includes join, lookup and re
eive inputs and corresponding acknowledgments. We do not include special

“leave” requests and responses in this paper; instead, we treat leaves as failures. We do not consider rejoining after a

2

failure. The internal signature consists of transitions that implement join and lookup protocols, and maintain the finger

tables in the face of a limited rate of change.

Input:

join(J)

i

, J a finite subset of PId � fig

lookup(x)

i

, x 2 XId

re
eive(m)

j;i

, m 2Msg , j 2 PId

Output:

join-a
k

i

lookup-a
k(H)

i

, H � GId

send(m)

i;j

, m 2 Msg , j 2 PId

Internal:

join-ping

i

neighbor-refresh

i

hord-ping

i

stabilize(x)

i

, x 2 XId

garbage-
olle
t(f)

i

, f 2 Finger

Time-passage:

time-passage(t), t 2 R

+

Figure 1: MultiChord

i

: Signature

2.2 Process Automaton: Data Types and Constants

Table 2 shows the data structures and the message formats used by the MultiChord protocol. In addition we define two

operations on sets of fingers:

1. update(F; F

0

), which computes F [F

0; if a finger f belongs to both sets of fingers F and F

0 then f inherits

the highest expiration time, exptime, that it has in the two sets.

2. trun
ate(F; t), which bounds the exptime of each finger f 2 F to t, i.e., f:exptime := max(f:exptime; t).

Notation Comments

Finger finger data structure; consists of fields: (gid 2 GId ; exptime 2 R

�0

[f1g)

ReqId request identifier set, partitioned into subsets ReqId (i), i 2 PId ; used to identify lookup instances

Request used to implement one lookup stage; consists of fields: (id 2 ReqId ; stage 2 N

+

; target 2 XId)

JoinRe
ord used to keep track of progress in a process’ attempt to join the system; consists of

fields: (reqids � ReqId ;
omp � ReqId ; a
ktime 2 R

�0

[f1g)

ClientRe
ord used to keep track of client-initiated lookup requests at a particular location; consists of fields:

(reqids � ReqId ;
omp � ReqId ; a
ked � ReqId(i))

LookupMsg lookup message; consists of fields: (tag = lookup; id 2 ReqId ; stage 2 N

+

; target 2 XId)

LookupRespMsg lookup response message, (tag = lookup-resp; id 2 ReqId ; stage 2 N

+

; preds 2 Set [Finger ℄)

LookupCompMsg lookup completion msg., (tag = lookup-
ompletion; id 2 ReqId ; stage 2 N

+

; blo
k 2 Set [Finger ℄)

PingMsg ping message used to refresh finger information, (tag = ping; ping)

Blo
kMsg message used to send a block to another message, (tag = blo
k; blo
k 2 Set [Finger ℄)

T

e

the timeout value for expiration of entries in the finger table

T

g

the time between scheduling gossiping messages, i.e., PingMsg and Blo
kMsg messages

T

j

the time from when a joining process has received all its responses until it responds to its client

b number of proper predecessors and successors that a process maintains about itself

and its power-of-two fingers

 number of responses that a client returns in response to a lookup request;
 < b

Table 2: Data structures and message formats used in MultiChord.

MultiChord uses only five types of messages: Lookup, LookupRespMsg and LookupRespCompletion to imple-

ment join and lookup operations, and PingMsg and Blo
kMsg to maintain the finger tables in the face of changes.

In addition, MultiChord uses the following time constants: (1) T
g

, the time between scheduled gossiping messages,

(2) T
e

, the timeout value for expiration of entries in the finger table, and (3) T
j

, the time from when a joining process

has completed its systematic collection of responses until it responds to its client.

Finally, MultiChord uses two constants b and
. Constant b represents the level of redundancy used by a process to

maintain routing information. In particular, each process maintains its b proper successors and b proper predecessors,

and b proper successors and b proper predecessors of each of its power-of-two fingers. Constant
 represents the level

of redundancy used to perform lookups, the basic operations in MultiChord. During lookup operations, each process

issues
 concurrent queries, which makes it highly likely that at least one process will respond. The value of
 is chosen

3

to be larger than the number of changes that are likely to occur in an arc of the ring, in intervals of some reasonable

length. The length of this interval should be sufficiently long to allow recovery from recent changes. The value of b is

usually larger than
;
 must be large enough to ensure a response under “normal” conditions (with bounded changes),

while b must be large enough to support the infrastructure maintenance protocol.

2.3 Process Automaton: State

The state of MultiChord

i

consists of the state variables listed in Figure 2. Note that our initializations of these

variables assign tuples to record-valued variables. We use the convention that the order of the components in the

tuples is the same as the order presented in the definitions of the record types.

State variables:

status 2 fidle; joining; a
tiveg, initially idle

join 2 JoinRe
ord , initially (;; ;;1)

lient 2 ClientRe
ord , initially (;; ;; ;)

used-reqids � ReqId(i), initially ;

requests 2 Set [Request ℄, initially ;

�ngers 2 Set[Finger ℄, initially f(me;1)g

out-queue , a sequence of Msg � PId , initially empty

ping-time 2 R

�0

[1, initially 1

nbr-refresh-time 2 R

�0

[1, initially 1

failed , a Boolean, initially false

Derived variables:

lo
al-ring = fx 2 XId : 9f 2 �ngers[f:log = x℄g

For x 2 XId , k � 0:

f-su

set(x; k) = ff 2 �ngers : f:log 2 su

set(x; k; lo
al-ring)g

f-psu

set(x; k) = ff 2 �ngers : f:log 2 psu

set(x; k; lo
al-ring)g

f-predset(x; k) = ff 2 �ngers : f:log 2 predset(x; k; lo
al-ring)g

f-ppredset(x; k) = ff 2 �ngers : f:log 2 ppredset(x; k; lo
al-ring)g

f-blo
k(x; k) = ff 2 �ngers : f:log 2 blo
k(x; k; lo
al-ring)g

Figure 2: MultiChord

i

: State

The status variable keeps track of the state of process i. The join variable keeps track of the progress of the joining

protocol for process i, and the
lient variable keeps track of the progress of all client-initiated lookups at location i.

The �ngers variable contains a set of fingers, which represent process i’s best knowledge of the current members

of the ring (including their expiration times). The used-reqids variable keeps track of which request identifiers in

ReqId(i) have already been used; it is used to model the generation of unique identifiers. The requests variable keeps

track of the set of requests that have been initiated at location i; these may be generated on behalf of the local joining

protocol, local client lookup requests, or heavyweight stabilization. The out-queue variable is a buffer for messages

that process i has generated and has not yet sent.

The nbr-refresh-time and ping-time variables are used to schedule the gossip messages; nbr-refresh-time is

used by process i to schedule sending of its own block to its nearby neighbors, whereas ping-time is used by process

i to schedule “ping” messages to request block information from other processes. Finally, the failed variable is a flag

saying whether process i has failed.

Process i also maintains some derived variables, which also appear in Figure 2. The derived variable lo
al-ring is

defined to be the set of logical identifiers that appear in i’s �ngers variable, that is, lo
al-ring represents i’s current

local view of the global ring. Other derived variables are defined to give various successor and predecessor sets, with

respect to the lo
al-ring . For example, f-su

set(x; k) is defined to be the set of fingers in the current �nger set whose

logical identifiers are among the k successors of x in the current lo
al-ring ; if x appears in lo
al-ring then this set

include x itself.

2.4 Process Automaton: Transitions

In this section we present the main transitions in MultiChord. Section 2.4.1 describes the basic transitions such as

message sending, garbage-collection, and time-passage transitions. Section 2.4.2 shows the transitions involved in the

joining protocol, and Section 2.4.3 presents the transitions involved in the stabilization protocol. Finally, Section 2.4.4

describes transitions involved in the client lookup protocol.

2.4.1 Basic Transitions

Figures 3(a)-(c) shows three basic transitions: sending, garbage-collection, and time-passage transitions.

A send transition simply removes the first Msg from out-queue and sends it to the indicated destination, using an

assumed point-to-point network. Process i can do this only if it has at least begun the protocol, and has not failed.

A garbage-
olle
t transition removes an entry from its �ngers set when the entry’s exptime has been reached. A

4

time-passage transitions advances the time until the next event, i.e., scheduling times of pinging, acknowledging

the client, or neighbor-refreshing, and the exptime of any finger in the �ngers set. Time may not pass at all if the

out-queue is nonempty; this implies that messages in the out-queue are sent out immediately, without any time

passage.

Output send(m)

(i;j)

Precondition:

:failed

status 6= idle

(m; j) = head(out-queue)

Effect:

remove head(out-queue)

(a)

Internal garbage-
olle
t(f)

i

Precondition:

:failed

status = a
tive

f 2 �ngers

f:exptime � now

Effect:

�ngers := �ngers � ffg

(b)

time-passage(t)

Precondition:

if :failed then

now + t � ping-time

now + t � join:a
k-time

now + t � nbr-refresh-time

8f 2 �ngers : now + t � f:exptime

out-queue is empty

Effect:

now := now + t

(c)

Figure 3: (a) Sending transitions; (b) Garbage-collection transition; (c) Time passage transitions.

2.4.2 Transitions Involved in the Joining Protocol

Like Chord, in MultiChord a process uses lookups to populate its finger table when it joins the system. Where the two

protocols differ is in the amount of state required to join the system. Whereas in Chord a process is required to know

only a set of successor processes, in MultiChord a process is required to know a set of processes (i.e., a b-block) for

each of its power-of-two fingers. As we will show in Section 3 this redundancy increases the resilience of the protocol

in the face of changes.

Next, we present the details of the transitions involved when process i joins the system. These include:

1. The join

i

transitions, by which the client at location i requests to join.

2. The re
eive transitions for lookup, lookup-resp, and lookup-
omp messages, which are involved in initially

populating process i’s �nger set.

3. The join-ping transitions and the re
eive transitions for ping messages; these are used to complete the �nger set

before process i responds to the client.

4. The join-a
k

i

transitions, by which process i responds to its client.

Figure 4 shows the join and join-a
k transitions. In a join(J)

i

transition, processor i initiates joining by submitting

a set J of PIds of other processes that should already be members of the system. Process i handles the join request

only if it has not failed and has not previously begun joining. To handle the join request, the process first sets its status

to joining and schedules its ping task. If J = ;, the process is already done and schedules its response to the client.

Otherwise, if J 6= ;, process i launches a set of lookup requests, one for itself and one for each of its power-of-two

successors.

When all these requests have completed, and when sufficient additional time has passed (as determined by a

scheduled a
k-time being reached), process i can report back to the client with a join-a
k

i

transition. When it does

so, it converts its status to a
tive and schedules its nbr-refresh task.

As in Chord, MultiChord implements an iterative lookup protocol. The processing of a lookup request involves

three types of transitions, which appear in Figure 5. When process i receives a lookup message, it handles this message

only if it is already active, that is, if it has completed its joining protocol. In order to handle the lookup message, it

sends either a lookup-resp or a lookup-
omp message, depending on whether it thinks that the search has reached its

goal. The test for completion is that, according to i’s current information, target x is among the
 proper predecessors

of the target. In the case of a lookup-
omp message, process i sends back its best information about the target’s block

of radius b. In the case of a lookup-resp message, process i sends back its
 best proper predecessors for the target.1

When process i receives a lookup-resp message for the current stage of a current request, it updates its �nger

table with the information contained in the preds field of the incoming message. Then because the request is not

completed, process i generates a new batch of lookup messages for the next stage of the same request. This next stage

1In either case, process i first truncates all fingers’ exptimes to now plus the maximum timeout value T
e

; this is because i’s entry for itself has

exptime =1, but we do not want others to record exptime =1 for i.

5

Input join(J)

i

Effect:

if :failed then

if status = idle then

status := joining

ping-time := now

if J = ; then join:a
ktime := now

else

for x 2 fme:logg [fme:log + 2

k

: 0 � k � n� 1g do

choose rid 2 ReqId(i) � used-reqids

used-reqids := used-reqids � fridg

join:reqids := join:reqids [fridg

requests := requests [f(rid ; 1; x)g

for j 2 J do

add ((lookup; rid ; 1; x); j) to out-queue

Output join-a
k

i

Precondition:

:failed

status = joining

join:reqids � join:
omp

join:a
ktime = now

Effect:

status := a
tive

nbr-refresh-time := now

Figure 4: Client-level transitions related to joining

Input re
eive(lookup; r; s; x)

j;i

Effect:

if :failed then

if status = a
tive then

if me:log 2 ppredset(x;
; lo
al-ring) then

blo
k := trun
ate(f-blo
k(me:log ; b);now + T

e

)

add ((lookup-
omp; r; s; blo
k); j) to out-queue

else

preds := trun
ate(f-ppredset(x;
);now + T

e

)

add ((lookup-resp; r; s; preds); j) to out-queue

Input re
eive(lookup-resp; r; s; F)

j;i

Effect:

if :failed then

new-�ngers := ff 2 F : f:exptime � nowg)

�ngers := update(�ngers;new-�ngers)

if 9x[(r; s; x) 2 requests)℄ then

choose x where (r; s; x) 2 requests

requests := requests � f(r; s; x)g [f(r; s+ 1; x)g

for f 2 f-ppredset(x;
) do

add ((lookup; r; s+ 1; x); f:gid:phys) to out-queue

Input re
eive(lookup-
omp; r; F)

j;i

Effect:

if :failed then

new-�ngers := ff 2 F : f:exptime � nowg)

�ngers := update(�ngers;new-�ngers)

if r 2 join:reqids then

join:
omp := join:
omp [frg

if join:reqids � join:
omp and join:a
ktime =1 then

join:a
ktime := now + T

j

if r 2
lient:reqids then

lient:
omp :=
lient:
omp [frg

Figure 5: Transitions of the lookup protocol

has the next-higher stage number, which is recorded in the request record. The messages for the new stage are sent

to the
 currently-known best proper predecessors of the target. Note that the number of messages does not increase

exponentially at each stage; the protocol limits the the number of messages to
.

When process i receives a lookup-
ompmessage for the current stage of a current request, it updates its �nger table

with the information in the blo
k field of the incoming message. As in the lookup-resp case, process i increments the

request’s stage number, to register the fact that some response for this stage has arrived. If the current request is part of

i’s joining protocol, then the completion of this request is recorded in the join record; if this represents the completion

of the last request, then process i also schedules the client acknowledgment. On the other hand, if the request is being

done on behalf of a client-initiated lookup, the completion is recorded in the
lient record (see Appendix A).

During the joining protocol, process i periodically pings its power-of-two �ngers for their b-blocks. The relevant

transitions are the join-ping transitions and the re
eive transitions for ping messages and their responses (see Figure 6).

Process i performs a join-ping transition while it is joining, whenever ping-time is reached. When it does so,

it sends ping messages to the
-blocks of all targets for which lookup requests have already completed. This allows

process i to augment and refresh its information about completed requests while finishing the joining protocol. When

process i receives a ping message, it responds by sending back its b-block, in a blo
k message. When process i receives

a blo
k message, it updates its �nger table with the new information.

6

Internal join-ping

i

Precondition:

:failed

status = joining

ping-time = now

Effect:

for r 2 requests where r:id 2 join:
omp do

for f 2 f-blo
k(r:target;
) do

add ((ping); f:gid:phys) to out-queue

ping-time := now + T

g

Input re
eive(ping)

j;i

Effect:

if :failed then

if status = a
tive then

blo
k := trun
ate(f-blo
k(me:log ; b);now + T

e

)

add ((blo
k; blo
k); j) to out-queue

Input re
eive(blo
k; F)

j;i

Effect:

if :failed then

if status = a
tive then

new-�ngers := ff 2 F : f:exptime � nowg

�ngers := update(�ngers;new-�ngers)

Figure 6: Transitions related to pinging during the join protocol

2.4.3 Transitions Involved in Stabilization

Once process i is active, it performs several types of transitions to maintain its finger table. The protocol includes two

kinds of stabilization: normal case, lightweight stabilization, and a heavier-weight stabilization.

In the lightweight stabilization protocol, process i periodically sends its b-block to its nearby neighbors (the mem-

bers of its b-block), and periodically pings processes in the vicinity of its power-of-two successors, so that they send

i their current b-blocks. The transitions involved in this lightweight stabilization protocol are the neighbor-refresh

transitions, the
hord-ping transitions, and the re
eive transitions for ping and blo
k messages. Note that the pseu-

docode for ping and blo
k transitions has already been presented in Figure 6, while the pseudocode neighbor-refresh

and
hord-ping transitions appears in Figure 7(a)-(b).

Internal neighbor-refresh

i

Precondition:

:failed

status = a
tive

nbr-refresh-time = now

Effect:

for f 2 f-blo
k(me:log ; b) do

add ((blo
k; f-blo
k(me:log ; b));

f:gid :phys) to out-queue

nbr-refresh-time := now + T

g

(a)

Internal
hord-ping

i

Precondition:

:failed

status = a
tive

ping-time = now

Effect:

for k 2 f0; : : : ; n� 1g do

for f 2 f-blo
k(me:log + 2

k

;
) do

add ((ping); f:gid:phys) to out-queue

ping-time := now + T

g

(b)

Internal stabilize(x)

i

Precondition:

:failed

status = a
tive

Effect:

choose rid 2 ReqId(i)� used-reqids

used-reqids := used-reqids � fridg

requests := requests [f(rid ; 1; x)g

for f 2 f-ppredset(x;
) do

add ((lookup; rid ; 1; x); f:gid :phys)

to out-queue

(c)

Figure 7: Transition related to stabilization.

In the heavyweight stabilization protocol is similar to the Chord stabilization protocol (see Figure 7(c)). Process i

(for any reason, unspecified here) may try to obtain new information about any target x. Most commonly, such a target

will be one of its power-of-two successors. For example, process i might execute stabilize(x)

i

for each x of the form

PtoX (i) + 2

k, at regular intervals, or when it suspects that its information is out-of-date.

2.4.4 Transitions Related to Client Lookups

The transitions related to client-initiated lookup operations include the re
eive transitions already described, plus the

lookup and lookup-a
k transitions. These last two appear in Figure 8.

When process i receives a client-initiated lookup request, it handles it in much the same way it handles a request

in the joining protocol. Namely, it chooses and records a request identifier, and sends a lookup message to each of

the
 best proper predecessors it knows for the target identifier. An exception: If process i believes it is one of the

best predecessors, it does not bother sending out any lookup messages, but simply records the fact that the lookup is

done. A lookup-a
k can occur when a request is done but not yet acknowledged to the client. In this case, the response

includes information about process i’s current
 best predecessors for the target.

7

Input lookup(x)

i

Effect:

if :failed then

if status = a
tive then

choose rid 2 ReqId(i) � used-reqids

used-reqids := used-reqids � fridg

if me:log 2 ppredset(x;
; lo
al-ring) then

lient:
omp :=
lient:
omp [fridg

else

lient:reqids :=
lient:reqids [fridg

requests := requests [f(rid ; 1; x)g

for f 2 f-ppredset(x;
) do

add ((lookup; rid ; 1; x); f:gid :phys) to out-queue

Output lookup-a
k(H)

i

Precondition:

:failed

r 2 requests

r:id 2
lient:
omp �
lient:a
ked

H = ff:gid : f 2 f-ppredset(r:target;
)g

Effect:

lient:a
ked :=
lient:a
ked [fr:idg

Figure 8: Transitions for client lookup

3 Summary of Analysis Results

In this section we give a short and informal summary of our analysis results. Appendix A presents the proofs of these

results.

We make the following assumptions about the environment: (1) all processes are time-synchronized, (2) the mes-

sage delay is bounded above by d, and there is no message loss, (3) during an interval of time T
g

+ 2d, the number of

join-a
k events among processes in an “arc” of the ring containing at most b+ 1 processes is at most joinbd , and (4)

during an interval of time T
e

, the number of failed processes in an “arc” of the ring containing at most b+1 processes

is at most failbd .

Then we show that if these assumptions hold, and furthermore, if the following constraints are satisfied:

1. T

j

> T

g

+ 2d and T
e

> 5(T

g

+ 2d)

2.
 > 7joinbd+ 4failbd

3. b � 2
+ 3joinbd+max(2joinbd; failbd)

we prove that all lookup operations are correct. In particular we prove the following result:

Theorem 3.1. Every good execution � satisfies 2T
g

+ 6d-lookup-correctness.

The notion of e-Lookup-correctness is defined as follows: suppose that a lookup-a
k(H)

i

event occurs in � at time

t, in response to a prior lookup(x)

i

. Let �0 be the portion of � ending with the given lookup-a
k(H)

i

event. Then

there exists a ring R such that:

1. R � aug-ring(�

0

),

2. global-ring(�

0

)� fPToX (j) : join-a
k

j

occurs at a time � t� eg � R, and

3. H = ppredset(x;
; R).

Furthermore, we show that in the absence of any other events in the system the lookup latency is bounded. More

formally, we prove the following result:

Theorem 3.2. Suppose that � is a good execution, �0 a finite prefix of � containing at least 2
 + 1 join-a
k events.

Suppose that:

1. The final step of �0 is a lookup

i

step in which i initiates request r, with target x.

2. No other requests (on behalf of joins, client lookups, or stabilizes) are active at any time � `time(�

0

)� T

e

.

Then request r terminates with a re
eive(lookup-
omp) step, at a time that is � `time(�

0

) + 4(logN + 1)d.

In order to prove these results, in Appendix A we first prove a series of results asserting that the basic routing

infrastructure is maintained correctly by the joining and refresh protocols.

While the deterministic assumptions on the bounded number of joins (joinbd) and failures (failbd) allow us to

prove strong analytical results, these assumptions are not always realistic. We consider this issue in Appendix B,

8

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2

R
at

e
of

 lo
ok

up
 fa

ilu
re

Rate of join operations (per sec)

c=2; b=5
c=4; b=9

(a)

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

0 0.5 1 1.5 2

A
ve

ra
ge

 h
op

 le
ng

th

Rate of join operations (per sec)

c=2; b=5
c=4; b=9

(b)

Figure 9: (a) The lookup failure versus the rate of change; (b) the average path length and the 90-th percent confidence

interval as a function of change rate.

where we give bounds on the probability that these assumptions hold in a steady state system in which processes join

according to a Poisson process and have a lifetime drawn from an exponential distribution. In particular, we compute

the mean time between two violations of these assumptions as

T

f

>

T

j

N

e

(
=3��T

j

(b+1))

2

4�T

j

(b+1)

; (1)

where � represents the normalized rate of change (i.e., the rate of change in the entire system divided by the number

of processes N in the system),
=3 > �T

j

(b+ 1), and b � 13
=6.

4 Simulation Results

In this section we evaluate our algorithm by simulation. Our goal is twofold. First, we want to get a sense of how

much we can push the protocol in practice before it breaks, i.e., before we start to see lookup failures. Second, we

want to see how the protocol performs on the average case. We use the average number of stages in a lookup as the

metric to evaluate the performance of MultiChord.

We have developed an event driven simulator that accurately implements the protocol at the message level. In all

simulations, we use T
g

= 10 sec, T
j

= 11 sec, and T
e

= 55 sec. The message propagation delay is bounded by d = 50

ms. Note that these values satisfy the constraints presented in Section 3, i.e., T
j

> T

g

+ 2d and T

e

> 5(T

g

+ 2d).

Each process schedules heavy stabilization every 60 sec.

We consider a network with 1; 000 processes, in which processes join at a rate �
a

according to a Poisson process,

and have an exponentially distributed lifetime with the mean N=�

a

; thus, the number of processes in the system

remains roughly the same. In addition, we assume that the system receives lookups at a rate approximately 10 times

larger than the join and failure rate, r.

Figure 9(a) plots the lookup failure rate versus the arrival rate of new processes in the system (i.e., rate of join)

over 10; 000 lookups. During each simulation there are approximately 1000 new processes that join the system, and

1000 processes that fail. We consider two cases: (i)
 = 2, b = 5, and (ii)
 = 4, b = 9. As expected, the rate of

lookup failure increases as the join rate increases. However, increasing the level of redundancy (i.e., parameters b and

) makes a significant difference. While in case (i) we did not record any lookup failure for join rates less or equal to

0:1, in case (ii) we did not see any lookup failure for a join rate five time larger, i.e., 0:5. Furthermore, for a join rate

of 2:0 the rate of lookup failure in the first case is about 18 times larger than in the second case.

It is interesting to compare the simulation results with our upper bound on the mean time T
f

between two violations

of the deterministic constraints. Consider the first case where
 = 2 and b = 5. Using Eq. (1), for a join rate of 0:5

we obtain T

f

= 14 ms.2 This is a very small value given the fact that a lookup operation is generated every 50 ms

(i.e., there are roughly 10 lookups for every join operation). One explanation for this large discrepancy is that a single

constraint violation will hurt only a small fraction of lookups, if at all. Indeed, the lookups that do not use the region

of network where the constraints are violated will not be affected.

2Here we use
 = 2, b = 5, � = 1=1000 (there is one join and one failure every 0.5 sec on average and N = 1000), and T
j

= 11 sec.

9

Figure 9(b) plots the average number of stages (path length) of a lookup versus the rate of join for (i)
 = 2; b = 5,

and (ii)
 = 4; b = 9, respectively. There are two points worth noting. First, the average path length is significantly

smaller than in Chord; in Chord, the expected path length is logN=2, which in our case translates to 5 hops. This is

because in MultiChord every process maintains a much larger set of fingers than in Chord. This increases the chance

that a MultiChord process will know fingers closer to the target than an equivalent Chord process, which ultimately

will reduce the number of lookup stages. Second, as the join rate increases, the lookup path length decreases slightly.

To understand this recall that in steady state the average life time of a node is N=�

a

where �
a

is the join rate. However,

it takes a process at least T
g

time to join the system. Thus a node will be inactive for at least f = T

g

�

a

=N of its life

time, which means that at least fN processes in the system would be inactive on an average. As the join rate increases,

the fraction f of inactive nodes increases, which will lead to a corresponding reduction in the number of active nodes

in the system. A secondary reason is that as the join rate increases so does the failure rate. Since we do not report

failed lookups, and since the failed lookups tend to have more stages, the reported path length is an underestimation.

5 Conclusions and Future Work

In this paper we present MultiChord, a namespace management algorithm based on Chord [7]. MultiChord uses

redundancy and lightweight mechanisms to accommodate limited changes in time and space. We analyze MultiChord

and show that lookups are guaranteed to be successful and furthermore that the lookup latency is bounded.

It would be interesting to analyze the behavior of the algorithm in situations that are less well-behaved than what

we have described in this paper. In particular, we plan to consider what happens if the rate of change exceeds our

assumed bound for some part of the execution, but at some point “stabilizes” to obey the rate bound. In such cases,

we believe that our algorithm will eventually stabilize to a nearly-ideal state. It remains to determine if this is so and

determine bounds on how long this might take.

References

[1] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object location in a dynamic network. In Proceedings of

SPAA 2002, July 2002.
[2] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of peer-to-peer systems. In Proceedings of PODC

2002, July 2002.
[3] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publisher, Inc., 1996.
[4] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of the butterfly. In Proceedings of PODC

2002, July 2002.
[5] P. Maymounkov and D. Mazi�eres. Kademlia: A peer-to-peer information system based on the xor metric. In Proceedings of

IPTPS 2002, July 2002.
[6] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In

Proc. of Middleware 2001, 2001.
[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In Proc. ACM SIGCOMM’01, pages 149–160, San Diego, 2001.

10

6 Appendix A: Analysis

In this appendix we prove the results which were summarized in Section 3.

Let � by a finite sequence of external actions of MultiChord , according to the external signature just defined. Then

we define the global ring after �, global-ring(�), to be the set of XIds x such that a join-a
k

XtoP (x)

event occurs in �

and no fail

XtoP (x)

occurs in �. That is, the global ring after � consists of those processes that have completed joining

the system and have not failed. We extend this same definition to finite executions of untimed or timed automata that

have the given external signature.

If � is a finite timed sequence of actions in the MultiChord external signature, then we define the augmented ring

after �, aug-ring(�), to be global-ring(�) [X , where X is the set of XIds x such that fail
XToP(x)

occurs in � at a

time � `time(�)� T

e

. That is, aug-ring(�) augments global-ring(�) by adding in the logical identifiers of recently

failed processes. Again, we extend this definition to finite executions of timed automata that have the given external

signature.

6.1 Service Guarantees

We describe safety and latency guarantees. We do not present any liveness guarantees here, replacing them with

latency guarantees.

6.1.1 Safety

The following condition is simple a well-formedness condition, expressing basic conditions such as “the service re-

sponds only to invocations that were actually made”.

� Well-formedness: For each i, at most one join-a
k

i

occurs in �. Any join-a
k

i

in � is preceded by a join(�)

i

.

Any lookup-a
k

i

is preceded by a lookup(�)

i

with no intervening lookup-a
k(�)

i

. If fail

i

occurs in �, then no

following outputs occur.

We have not formulated any interesting safety guarantees related to joining. For client lookup, we require the

following property, parameterized by e 2 R

�0:

� e-Lookup-correctness: Suppose that a lookup-a
k(H)

i

event occurs in � at time t, in response to a prior

lookup(x)

i

. Let �0 be the portion of � ending with the given lookup-a
k(H)

i

event. Then there exists a

ring R such that:

1. R � aug-ring(�

0

),

2. global-ring(�

0

)� fPToX (j) : join-a
k

j

occurs at a time � t� eg � R, and

3. H = ppredset(x;
; R).

6.1.2 Latency

As noted above, we replace liveness claims by latency bounds:

� e-Join-latency: Suppose that a join(J)

i

event occurs in �, at time t.

1. If J = ; then a corresponding join-a
k

i

occurs at time t.

2. If there exists j 2 J such that join-a
k
j

occurs before the join(J)

i

, and neither i nor j fails in �, then a

corresponding join-a
k

i

occurs by time t+ e.

� e-Lookup-latency: If a lookup(x)

i

event occurs in � at time t and no fail

i

occurs in �, then a corresponding

lookup-a
k(�)

i

occurs by time t+ e.

6.2 Assumptions for Analysis

In this section we formalize the algorithm constraints and the assumptions about the environment, which we discussed

in Section 3

11

6.2.1 Restrictions on the algorithm

Constraints on values of the constants b,
, d, T
g

, T
e

, and T

j

:

� T

j

> T

g

+ 2d

� T

e

> 5(T

g

+ 2d)

Scheduling assumptions:

� The locally controlled actions that are enabled are performed without any intervening time-passage.

6.2.2 Restrictions on the environment

Constants:

For the purpose of analysis, we introduce two constants, joinbd and failbd . We assume:

�
 > 7joinbd + 4failbd

� b � 2
+ 5joinbd

� b � 2
+ 3joinbd + failbd

Restrictions on timing and failures:

� No message loss.

� No time passes while a locally-controlled action is enabled.

� Bounded local joins: An execution � satisfies bounded local joins provided that for any finite prefix �0 of �, the

following holds.

Let x; y 2 XId where jglobal-ring(�0) \ [x; y℄j � b+ 1. Then the number of join-a
k
k

events that occur in �

0

at times � `time(�

0

)� (T

g

+ 2d), where PToX (k) 2 [x; y℄, is � joinbd .

That is, at any point in the execution �, the number of recent join-a
k events among processes in an “arc” of the

ring containing at most b+ 1 processes is at most joinbd .

This assumption is not ideal because it is expressed in terms of the number of join-a
k events, which are under

the control of the algorithm (rather than the environment). We could justify this assumption in terms of a more

primitive assumption that bounds the rate of join events, which are controlled by the environment. To do this,

we might need to modify the algorithm so that it schedules the join-a
ks so that (in the normal case) they occur

a fixed amount of time after the joins. Alternatively, a probabilistic justification might be possible.

� Bounded local failures: An execution � satisfies bounded local failures provided that for any finite prefix �

0 of

�, the following holds.

Let x; y 2 XId where jglobal-ring(�0) \ [x; y℄j � b + 1. Then the number of fail

k

events that occur in �

0 at

times � `time(�

0

)� T

e

, where PToX (k) 2 [x; y℄, is � failbd .

That is, at any point in �, the number of recent fail events among processes in an arc of the ring containing at

most b+ 1 processes is at most failbd .

We also need a special assumption to ensure that there are “enough” processes in the ring.

� Enough-processes An execution � satisfies enough-processes provided that it has a finite prefix �0 such that:

1. At least 2b+ 1 join-a
k events occur in �

0.

2. No fail event occurs in �

0.

3. In any state of � after �0, the total number of live processes is always � 2b+ 1.

We call the shortest such prefix �0 the initialization prefix.

A good execution is one that observes all the timing and failure restrictions given in this section.

12

6.3 Basic Lemmas

The first lemma says that exptimes of fingers are always � now .

Lemma 6.1. The following is true in any state that is reachable in a good execution:

If f 2 �ngers

i

then f:exptime � now .

The next lemma says that every physical identifier i that appears in another process’ �ngers set, or in a message

in transit, must correspond to a process whose status is a
tive .

Lemma 6.2. The following is true in any state that is reachable in a good execution:

Suppose that f 2 Finger , f:phys = i, and any of the following holds:

1. f 2 �ngers

j

for some j 6= i.

2. f 2 m:blo
k for some m 2 Blo
kMsg that is in transit.

3. f 2 m:preds for some m 2 LookupResp in transit.

4. f 2 m:blo
k for some m 2 LookupComp in transit.

Then status

i

= a
tive.

The next lemma says that, if a process fails at a time t, then no expiration time for that process that is greater than

t+ T

e

ever appears anywhere in the state.

Lemma 6.3. Suppose that � is a finite execution, and fail

i

occurs at time t in �. Suppose that f 2 Finger and

f:phys = i. Suppose that, in `state(�), any of the following holds:

1. f 2 �ngers

j

for some j 6= i.

2. f 2 m:blo
k for some m 2 Blo
kMsg that is in transit.

3. f 2 m:preds for some m 2 LookupResp in transit.

4. f 2 m:blo
k for some m 2 LookupComp in transit.

Then f:exptime � t+ T

e

.

As a corollary to some of the previous lemmas, the following lemma says that a process that has failed more than

T

e

time ago does not appear in anyone’s �ngers set.

Lemma 6.4. Suppose that � is a finite execution, and fail

i

occurs strictly before time `time(�) � T

e

in �. Suppose

that f 2 Finger and f:phys = i. Then in `state(�), f does not appear in �ngers

j

for any j 6= i.

Proof. By contradiction. Suppose that in `state(�), f 2 �ngers

j

for a particular j 6= i. Then by Lemma 6.3, in

`state(�), f:exptime � t + T

e

, where t is the time at which fail

i

occurs. Lemma 6.1 implies that, in `state(�),

f:exptime � now , that is, f:exptime � `time(�). These two inequalities together imply that `time(�) � t + T

e

.

This contradicts the hypothesis that fail
i

occurs strictly before time `time(�)� T

e

. �

6.4 Maintaining Neighbor Sets

In this section, we prove that the neighbor sets are properly maintained. We divide the work into three steps: First,

we consider what happens when there are no failures and only a bounded number of joins. Second, we consider the

general case, with unlimited failures and joins.

The results we prove express knowledge guarantees for live processes. Specifically, we show that all live processes

always know about all neighbors that joined more than time 2T
g

+5d ago. Moreover, after a process has been live for

sufficiently long, it knows about all neighbors that joined more than time d ago.

Breaking the proof up in some such way seems necessary in order to make the proof tractable. Each stage intro-

duces its own new difficulties: the first stage already includes many of the issues involving the timing of the flow of

13

information during and soon after the joining protocol. The second stage introduces issues of local knowledge—each

process maintains information about its local neighborhood only. The third stage introduces the complications of

failures, which mean that a process cannot rely on responses from any particular other process.

We expect this decomposition to be useful in constructing the general proof, because the ideas of the first stages

should be useful in the later stages. Also, the result for the first stage should be directly usable in proving the more

general results, in describing properties of the initial set-up phase.

6.4.1 Basic lemmas

The following lemma says that every blo
k message contains a high expiration time for the sender.

The mention of a deadline for a message in transit refers to a detailed state-machine model for a timed channel, in

which a deadline is explicitly kept for each message. This deadline is described in terms of absolute time.

Lemma 6.5. Let � be a good finite execution. If a blo
k message is in transit from i with deadline ` then it contains a

finger for i with exptime � `+ T

e

� d.

6.4.2 No failures, limited joins

In the case we consider in this subsection, no processes fail and at most 2
 + 1 join-a
ks occur. With this limited

number of join-a
ks, every process is in every other process’
-block, so we do not have to worry about issues of local

knowledge.

The following lemma says that everyone “always” has a finger for i
0

, with a “sufficiently high” expiration time.

The precise statement of this is rather complicated, because many different cases are covered.

Lemma 6.6. Let � be a good finite execution that contains no fail events, and contains at least one and at most 2
+1

join-a
k events. Let i
0

denote the process that performs the first join-a
k in �. Let i 2 PId .

Then in `state(�):

1. If status
i

= joining and � contains a re
eive(lookup-
omp)

�;i

event for target PToX (i), then there exists

f 2 �ngers

i

with f:phys = i

0

such that:

(a) One of the following holds:

i. f:exptime > ping-time

i

+ 2d.

ii. There is a ping message in out-queue

i

addressed to i

0

and f:exptime > now + 2d.

iii. There is a ping message in transit from i to i

0

with deadline ` and f:exptime > `+ d.

iv. There is a blo
k message in out-queue

i

0

addressed to i, and f:exptime > now + d.

v. There is a blo
k message in transit from i

0

to i with deadline `, and f:exptime > `.

(b) f:exptime > now .

2. If status
i

= joining and � contains a re
eive(blo
k)

i

0

;i

event, then there exists f 2 �ngers

i

with f:phys = i

0

such that:

(a) One of the following holds:

i. f:exptime > ping-time

i

+ 2T

g

+ 7d.

ii. There is a ping message in out-queue

i

addressed to i

0

and f:exptime > now + 2T

g

+ 7d.

iii. There is a ping message in transit from i to i

0

with deadline ` and f:exptime > `+ 2T

g

+ 6d.

iv. There is a blo
k message in out-queue

i

0

addressed to i, and f:exptime > now + 2T

g

+ 6d.

v. There is a blo
k message in transit from i

0

to i with deadline `, and f:exptime > `+ 2T

g

+ 5d.

(b) f:exptime > now + 2T

g

+ 5d.

3. If status
i

= live then there exists f 2 �ngers

i

with f:phys = i

0

such that:

(a) One of the following holds:

14

i. f:exptime > nbr-refresh-time

i

+ 2T

g

+ 5d.

ii. There is a blo
k message in out-queue

i

addressed to i

0

, and f:exptime > now + 2T

g

+ 5d.

iii. There is a blo
k message in transit from i to i

0

with deadline ` and f:exptime > `+ 2T

g

+ 4d.

iv. There is a finger for i in �ngers
i

0

with exptime > nbr-refresh-time

i

0

, and f:exptime > nbr-refresh-time

i

0

+

T

g

+ 4d.

v. There is a blo
k message in out-queue

i

0

addressed to i, and f:exptime > now + T

g

+ 4d.

vi. There is a blo
k message in transit from i

0

to i with deadline `, and f:exptime > `+ T

g

+ 3d.

(b) f:exptime > now + T

g

+ 3d.

4. If a blo
k or lookup-
omp message is in an out-queue then it contains a finger for i
0

with exptime > now +

T

g

+ 3d.

5. If a blo
k or lookup-
omp message is in transit with deadline ` then it contains a finger for i
0

with exptime >

`+ T

g

+ 2d.

Proof. We proceed by induction on the number of steps in � following the join-a
k

i

0

.

Base: 0 steps.

Then the last step of � is join-a
k

i

0

. All the conditions are easy to check.

Inductive step: The only actions that could falsify any of the claims are re
eive(lookup), send(lookup-
omp), re
eive(lookup-
omp),

join-ping, send(ping)
�;i

0

, re
eive(ping)
�;i

0

, send(blo
k), re
eive(blo
k), join-a
k, neighbor-refresh, �, and garbage-
olle
t.

We consider cases.

1. re
eive(lookup)

�;i

.

This has the potential to falsify Property 4, in the case where a lookup-
omp message is placed in out-queue

i

.

By inductive hypothesis, Property 3(b), in the pre-state of the final transition, there exists f 2 �ngers

i

such that

f:phys = i

0

and f:exptime > now + T

g

+ 3d. Therefore, if a lookup-
omp message is placed in out-queue

i

as a result of this transition, it contains a finger for i
0

with exptime > now + T

g

+ 3d. This shows Property 4.

2. send(lookup-
omp)

i;j

This could falsify Property 5. In the pre-state of the final transition, a lookup-
omp message is in out-queue

i

.

Therefore, by inductive hypothesis, Property 4, this message contains a finger for i
0

with exptime > now +

T

g

+ 3d. Since ` � now + d, we have exptime > `+ T

g

+ 2d, as needed for Property 5.

3. re
eive(lookup-
omp)

�;i

.

This could falsify Property 1. Before the step, a lookup-
omp message is in transit to i with deadline� now . By

inductive hypothesis, Property 5, this message contains a finger for i
0

with exptime > now +T

g

+2d. So after

the step, �ngers
i

contains a finger f for i
0

with f:exptime > now + T

g

+ 2d. Since ping-time

i

� now + T

g

,

we have that f:exptime > ping-time

i

+ 2d. This shows both parts of Property 1.

4. join-ping

i

.

This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that status
i

= joining and � contains a

re
eive(lookup-
omp)

�;i

event for target PToX (i). The interesting case is where 1a(i) is true just before the

step, that is, �ngers
i

contains a finger f for i
0

with f:exptime > ping-time

i

+ 2d. Since ping-time

i

� now ,

this implies that f:exptime > now + 2d. This inequality is true after the step as well.

We claim that the step results in a ping message addressed to i

0

being placed in out-queue

i

; this means that

1a(ii) is satisfied in the post-state, as needed. Since we have assumed that Property 1(a)i is true in the pre-state,

we know that �ngers
i

contains a finger for i
0

in the pre-state. Since a re
eive(lookup-
omp) occurs in � for

target PToX (i), we know that there exists r such that r:id 2 join:
omp

i

and r:target = PToX (i). Therefore,

the join-ping deposits ping messages addressed to its entire
-block, according to its local ring. This includes i
0

,

as needed.

For Property 2(a), the argument is similar to that for Property 1(a). This time, suppose that status
i

= joining

and � contains a re
eive(blo
k)

�;i

event. The interesting case is where 2a(i) is true just before the step, that is,

15

�ngers

i

contains a finger f for i
0

with f:exptime > ping-time

i

+ 2T

g

+ 7d. Since ping-time

i

� now , this

implies that f:exptime > now + 2T

g

+ 7d. This inequality is true after the step as well.

We claim that the step results in a ping message addressed to i

0

being placed in out-queue

i

; this means that

2(a)ii is satisfied in the post-state, as needed. Since we have assumed that Property 2(a)i is true in the pre-state,

we know that �ngers
i

contains a finger for i
0

in the pre-state. Since a re
eive(lookup-
omp) occurs in � for

target PToX (i), we know that there exists r such that r:id 2 join:
omp

i

and r:target = PToX (i). Therefore,

the join-ping deposits ping messages addressed to its entire
-block, according to its local ring. This includes i
0

,

as needed.

5. send(ping)

i;i

0

.

This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that status
i

= joining and � contains a

re
eive(lookup-
omp)

�;i

event for target PToX (i). The interesting case is where 1a(ii) is true just before the

step, that is, �ngers
i

contains a finger f for i
0

with f:exptime > now + 2d and there is a ping message in

out-queue

i

addressed to i
0

. After the step, there is a ping message in transit from i to i
0

with deadline now +d.

Taking ` = now + d, we see that 1c is true after the step.

For Property 2(a), the argument is similar: 2(a)ii before the step implies 2(a)iii after the step.

6. re
eive(ping)

i;i

0

.

This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that status
i

= joining and � contains a

re
eive(lookup-
omp)

�;i

event for target PToX (i). The interesting case is where 1a(iii) is true just before the

step, that is, �ngers
i

contains a finger f for i
0

with f:exptime > ` + d and there is a ping message in transit

from i to i

0

with deadline `. Since ` � now , we have that f:exptime > now + d. After the step, there is a

blo
k message in out-queue

i

0

addressed to i. Therefore, 1a(iv) is true just after the step.

For Property 2(a), the argument is similar: 2a(iii) before the step implies 2a(iv) after the step.

7. send(blo
k)

j;k

.

This could falsify Property 1(a), 2(a), 3(a), or 5. For Property 1(a), the interesting case is where j = i

0

, k = i,

and 1(a)iv is true before the step, that is, �ngers
i

contains a finger f for i
0

with f:exptime > now + d. Since

now + d � `, we have that f:exptime > `, so that 1a(v) holds after the step.

For Property 2(a), the interesting case is where j = i

0

, k = i, and 2(a)iv holds before the step. Then, arguing as

in the previous case, 2(a)v holds after the step.

For Property 3(a), there are two interesting cases. The first is where j = i, k = i

0

, and 3(a)ii holds before the

step; in this case 3(a)iii holds after the step. The second case is where j = i

0

, k = i, and 3(a)v holds before the

step; in this case 3(a)vi holds after the step.

For Property 5, we use Property 4 in the pre-state to show Property 5 in the post-state.

8. re
eive(blo
k)

j;k

This could falsify Property 1(a), 2(a), or 3(a).

For Property 1(a), the interesting case is where j = i

0

, k = i, and Property 1(a)v holds before the step. Then

by Lemma 6.5, the received message contains a finger for i
0

with exptime � now + T

e

� d. By assumptions

on the constants, the right-hand side is > 4T

g

+ 7d, so exptime � now + 4T

g

+ 7d. Therefore, after the step,

�ngers

i

contains a finger for i
0

with exptime > now + 4T

g

+ 7d > ping-time

i

+ 2d. Thus, 1(a)i is satisfied

after the step.

For Property 2(a), the interesting case is where j = i

0

, k = i, and Property 2(a)v holds before the step. Arguing

as in the previous case, we see that after the step, �ngers
i

contains a finger for i
0

with exptime > 4T

g

+ 7d �

ping-time

i

+ 2T

g

+ 7d. Thus, 2(a)i is satisfied after the step.

For Property 3(a), there are two interesting cases. The first is where j = i, k = i

0

, and 3(a)iii is satisfied before

the step; then we claim that 3(a)iv holds after the step. The argument for this uses Lemma 6.5, applied to i. The

second case is where j = i

0

, k = i, and 3a(vi) is satisfied before the step; in this case, 3(a)i holds after the step.

16

9. join-a
k

i

.

This could falsify Property 3(a). By inductive hypothesis, Property 2(b), in the pre-state, �ngers
i

contains a

finger for i
0

with exptime > now +2T

g

+5d. Since nbr-refresh-time

i

= now right after the step, 3(a)i holds

after the step.

10. neighbor-refresh

i

.

This could falsify Property 3(a). The interesting case is where Property 3a(i) holds in the pre-state. The step

puts a blo
k message in out-queue

i

addressed to i

0

. Then 3a(ii) holds in the post-state.

11. �(t)

This could falsify Property 1, 2, 3, or 4. For Property 1, there are two interesting cases. The first is where 1(a)iv

holds in the pre-state. But then time cannot pass, by our timing assumption (no time passes while an out-queue

is nonempty). The second possibility is that we might falsify 1(b). However, note that 1(b) follows from 1(a).

Similar arguments hold for Properties 2, 3, and 4.

12. garbage-
olle
t.

Since in every case, the finger whose existence is claimed has exptime > now , it cannot be garbage-collected.

Therefore, garbage-
olle
t cannot falsify any of the claims.

�

Next, we describe knowledge that i
0

acquires about the other processes.

Lemma 6.7. Let � be a good finite execution that contains no fail events, and contains at least one and at most 2
+1

join-a
k events. Let i
0

denote the process that performs the first join-a
k in �. Let i 2 PId be such that join-a
k
i

occurs in � at time t.

Then in `state(�), one of the following holds:

1. t = now and a blo
k message addressed to i

0

is in out-queue

i

.

2. A blo
k message is in transit from i to i

0

with deadline t+ d.

3. �ngers

i

0

contains a finger f for i such that one of the following holds:

(a) f:exptime � nbr-refresh-time

i

+ T

e

� T

g

.

(b) A blo
k message addressed to i

0

is in out-queue

i

and f:exptime � now + T

e

� T

g

.

(c) A blo
k message is in transit from i to i

0

with deadline ` and f:exptime � `+ T

e

� (T

g

+ d).

Proof. By induction on the number of steps in � following the join-a
k

i

.

Base: 0 steps.

Then the last step of � is join-a
k

i

. Then we claim that Property 1 holds in the post-state. This follows because in the

pre-state, i has a finger for i
0

, by Lemma 6.6, part 3(b).

Inductive step: The only actions that could falsify the claim are send(blo
k)

i

, re
eive(blo
k)

i

0

, neighbor-refresh

i

,

time-passage, and garbage-
olle
t

i

0

.

1. send(blo
k)

i

This could falsify Property 1 or 3(b). However, if it does so, it makes Property 2 or 3(c) (respectively) true.

2. re
eive(blo
k)

i

0

Lemma 6.5 implies that after the step, �ngers
i

0

contains a finger for i with exptime � ` + T

e

� d, where `

is the deadline component of the received message. Since ` = nbr-refresh-time

i

� T

g

+ d, (the sending time

plus d), this implies that this finger has exptime � nbr-refresh-time

i

� T

g

+ d + T

e

� d, that is, exptime �

nbr-refresh-time

i

+ T

e

� T

g

, which shows that 3(a) is satisfied after the step.

3. neighbor-refresh

i

This could falsify Property 3(a); however, if it does so then Property 3(b) holds after the step.

17

4. �(i)

This could falsify Property 1 or 3(b). However, if 1 or 3(b) holds in the pre-state, then time cannot pass, by our

timing assumptions, because an out-queue is nonempty.

5. garbage-
olle
t

i

0

.

Because T
e

> T

g

+ d, the expiration times of the claimed fingers are all strictly greater than 0. Therefore, this

cannot falsify any of the statements.

�

The following corollary summarizes the conclusions of Lemma 6.7, saying that i
0

has a finger for any other process i

that has joined at least time d ago, with a high expiration time. Also, any blo
k message that is sent by i

0

sufficiently

long after i joins contains a finger for i with a high expiration time.

Corollary 6.8. Let � be a good finite execution that contains no fail events, and contains at least one and at most

2
 + 1 join-a
k events. Let i
0

denote the process that performs the first join-a
k in �. Let i 2 PId be such that

join-a
k

i

occurs in � at time t.

Then in `state(�), the following hold:

1. If t+ d < now then �ngers

i

0

contains a finger f for i such that f:exptime � now + T

e

� (T

g

+ d).

2. If t+ 2d < ` and a blo
k message is in transit from i

0

with deadline `, then the message contains a finger for i

such that f:exptime � `+ T

e

� (T

g

+ 2d).

The next lemma gives guarantees about what an arbitrary process i knows about another arbitrary process j. This

represents “second-order” information, because i may need to learn this information indirectly, through i
0

.

Lemma 6.9. Let � be a good finite execution that contains no fail events, and contains at least one and at most 2
+1

join-a
k events. Let i
0

denote the process that performs the first join-a
k in �. Let s = `state(�). Then:

1. Suppose that s:status
i

= joining and � contains a re
eive(blo
k)

i

0

;i

event. Suppose that join-a
k
j

occurs in �

at a time < `time(�) � (T

g

+ 3d).

Then s:�ngers
i

contains a finger f for j such that f:exptime � s:now + T

e

� (2T

g

+ 3d).

2. Suppose that s:status
i

= a
tive and join-a
k

i

occurs in � at a time � `time(�) � (T

g

+ 2d). Suppose that

join-a
k

j

occurs in � at a time < `time(�) � (2T

g

+ 5d). Then s:�ngers

i

contains a finger f for j such that

f:exptime � s:now + T

e

� (3T

g

+ 5d).

3. Suppose that s:status
i

= a
tive and join-a
k

i

occurs in � at a time < `time(�) � (T

g

+ 2d). Suppose that

join-a
k

j

occurs in � at a time < `time(�) � (T

g

+ 2d). Then s:�ngers

i

contains a finger f for j such that

f:exptime � s:now + T

e

� (2T

g

+ 2d).

The proofs are based on conveying information through i
0

. These proofs are not inductive; rather, they rest directly on

previously-proved lemmas.

Proof. 1. Assume that s:status
i

= joining and � contains a re
eive(blo
k)

i

0

;i

event. Also suppose that join-a
k
j

occurs in � at a time < `time(�)� (T

g

+ 3d).

Lemma 6.6, Part 1(b), implies that whenever i sends a ping message during its joining protocol, it has a finger

for i
0

. Thus, by the limitation on the number of join-a
k events, i
0

is included in the set of destinations of the

ping message.

We claim that, in �, process i receives a blo
k message from i

0

sent by i
0

in response to a ping message sent by

i at a time � s:now � (T

g

+2d). For if not, then the latest blo
k message received by i from i

0

is a response to

a ping sent by i at a time < s:now � (T

g

+ 2d). But then it must be that another ping message is sent by i at a

time < s:now � 2d, and this receives a response by the end of �, a contradiction.

Since the time of the join-a
k

j

is < s:now� (T

g

+3d), it must be < s

0

:now�d, where s0 is the state just before

i

0

sends this blo
k message. Therefore, by Corollary 6.8, Part 1, in state s

0, �ngers
i

0

contains a finger for j

with exptime � s

0

:now + T

e

� (T

g

+ d). Therefore, in state s, which is at most time T
g

+ 2d later, �ngers
i

contains a finger for j with exptime � s:now + T

e

� (2T

g

+ 3d), as needed.

18

2. Suppose that s:status
i

= a
tive and join-a
k

i

occurs in � at a time � `time(�)� (T

g

+2d). Also suppose that

join-a
k

j

occurs in � at a time < `time(�)� (2T

g

+ 5d).

By the inductive hypothesis, Part 1, we know that, just before the join-a
k

i

, �ngers
i

contains a finger for j with

exptime � now +T

e

� (2T

g

+3d). Therefore, in state s, which is at most time T
g

+2d later, �ngers
i

contains

a finger for j with exptime � s:now + T

e

� (3T

g

+ 5d), as needed.

3. Suppose that s:status
i

= a
tive and join-a
k

i

occurs in � at a time < `time(�) � (T

g

+ 2d). Suppose that

join-a
k

j

occurs in � at a time < `time(�)� (T

g

+ 2d).

Corollary 6.8, Part 1, implies that in any state s

0 of � with s

0

:now > t

0

+ d, �ngers
i

0

contains a finger for i

with exptime � s

0

:now + T

e

� (T

g

+ d). Since T
e

> T

g

+ d and because of the limitation on the number of

join-a
k events, i is included in the set of destinations of every blo
k message sent by i

0

in such a state s0.

We claim that, in �, process i receives a blo
k message from i

0

sent by i

0

at a time � s:now � (T

g

+ d). For

if not, then the latest blo
k message received by i from i

0

is sent by i

0

at a time < s:now � (T

g

+ d). But then

it must be that another blo
k message is sent by i

0

(as part of a neighbor-refresh

i

0

) at a time < s:now � d, and

this arrives at i by the end of �, a contradiction.

Now fix s

0 to be the state just before i
0

sends this blo
k message; thus, s0:now � s:now � (T

g

+ d). Putting

this inequality together with the assumption that the join-a
k

j

occurs at a time < s:now � (T

g

+ 2d), we may

conclude that the join-a
k

j

occurs at a time < s

0

:now � d. Therefore, by Corollary 6.8, Part 1, in state s

0,

�ngers

i

0

contains a finger for j with exptime � s

0

:now +T

e

� (T

g

+d). Therefore, in state s, which is at most

time T
g

+ d later, �ngers
i

contains a finger for j with exptime > s:now + T

e

� (2T

g

+ 2d), as needed.

�

The following lemma describes information that i is guaranteed to have after receiving a lookup-
omp message. It rep-

resents “third-order” information, because the lookup-
omp message could be conveying “second-order” information

from its sender.

Lemma 6.10. Let � be a good finite execution that contains no fail events, and contains at least one and at most 2
+1

join-a
k events. Let i; j 2 PId . Suppose that status
i

= joining and � contains a re
eive(lookup-
omp)

�;i

event for

target PToX (i). Suppose that join-a
k
j

occurs in �, at a time < `time(�)� (3T

g

+ 8d).

Then in `state(�), �ngers
i

contains a finger for j with exptime > now .

Proof. (Sketch:) If the time when process i receives the lookup-
omp message is < `time(�) � (T

g

+ 2d), then i

also receives a blo
k message from i

0

before the end of �. In this case the result follows from Lemma 6.9, Part 1.

On the other hand, if the time when process i receives the lookup-
omp message is � `time(�)� (T

g

+2d), then

the result follows from Lemma 6.9, part 2, applied to the sender of the message. In applying this lemma, we add time

T

g

+ 3d (d for the message delay and T

g

+ 2d for the time that might have elapsed from the re
eive(lookup-
omp))

to the age of the known processes and subtract this from the expiration time of the finger. This uses the fact that

T

e

> 4T

g

+ 9d. �

The next series of results bound how long it takes for a process i to become an “authority”, like i
0

. That is, it knows

about all processes that have joined more than time d ago. The first case is where another process j joins sufficiently

long after i so that j knows about i at the point where it joins.

Lemma 6.11. Let � be a good finite execution that contains no fail events, and contains at least one and at most

2
 + 1 join-a
k events. Suppose that join-a
k
i

and join-a
k

j

occur in � at times t and t

0, respectively, and where

t+ T

g

+ 3d < t

0

< now � d.

Then in `state(�), �ngers
i

contains a finger for j with exptime � now + T

e

� (T

g

+ d).

Proof. We first claim that, at any point in � after the join-a
k

j

, �ngers
j

contains a finger for i with exptime > now .

Lemma 6.9, Part 1, implies that, in the state immediately before the join-a
k

j

, �ngers
j

contains a finger for i with

exptime � now + T

e

� (2T

g

+ 4d). Thereafter in �, through time t0 + T

g

+ 2d, �ngers
j

contains a finger for i with

exptime > now +T

e

� (3T

g

+6d). Also, at any time after t0+T

g

+2d in �, Lemma 6.9, Part 2 implies that �ngers
j

contains a finger for i with exptime � now + T

e

� (3T

g

+ 6d). Combining these two facts, we conclude that, at any

time after the join-a
k

j

, �ngers
j

contains a finger for i with exptime � now + T

e

� (3T

g

+ 6d) > now .

19

Immediately after the join-a
k

j

, and at intervals of T
g

thereafter, process j performs a neighbor-refresh

j

, in which

it sends a blo
k message containing a finger for itself with exptime = T

e

. By the argument in the previous paragraph,

i is included in the destination set of each such blo
k message. At the end of �, some such message must have arrived

at i which was sent by j at a time � `time(�) � (T

g

+ d). Therefore, in `state(�), �ngers
i

contains a finger for j

with exptime � now + T

e

� (T

g

+ 2d), as needed. �

The second case is where i and j both join long enough before the end of the execution.

Lemma 6.12. Let � be a good finite execution that contains no fail events, and contains at least one and at most

2
 + 1 join-a
k events. Suppose that join-a
k
i

and join-a
k

j

occur in � at times t and t

0, respectively, where t; t0 <

`time(�)� (2T

g

+ 3d).

Then in `state(�), �ngers
i

contains a finger for j with exptime > now + T

e

� (T

g

+ d).

Proof. By Corollary 6.8, Part 1, by time strictly less than `time(�) � (2T

g

+ 2d), �ngers
i

0

contains fingers for

both i and j, each with exptime � now + T

e

� (T

g

+ 2d). Then by time strictly less than `time(�) � (T

g

+ d),

j receives a blo
k message from i

0

telling j about i, resulting in �ngers

j

containing a finger for i, with exptime �

now + T

e

� (2T

g

+ 3d). And then by time strictly less than `time(�), i receives a blo
k message directly from j

telling i about j, and producing the needed finger. �

The following corollary says that if process i has joined more than time 3T
g

+6d ago, it is an “authority”, in the sense

that it knows about all processes j that has joined more than time d ago.

Corollary 6.13. Let � be a good finite execution that contains no fail events, and contains at least one and at most

2
 + 1 join-a
k events. Suppose that join-a
k
i

and join-a
k

j

occur in � at times t and t

0, respectively, where t <

`time(�)� (3T

g

+ 6d) and t0 < `time(�)� d.

Then in `state(�), �ngers
i

contains a finger for j with exptime > now + T

e

� (T

g

+ d).

Proof. This follows from the two previous lemmas. �

6.4.3 Joins and failures

Now we use the ideas in the previous section to talk about what happens when we have unlimited joins and also

failures. Now, instead of relying on i
0

as an “authority”, processes rely on neighbors that happen to have been around

long enough. Because of the failures, we now consider the augmented ring as well as the actual global ring.

From now on, I am being slightly sloppy by writing just i instead of PToX (i) in many places. This is done for the

sake of readability. I hope it does not cause any confusion. The first lemma relates various neighborhoods in the same

ring.

Lemma 6.14. Let R be any ring, i; j; k 2 PId .

1. If j 2 blo
k (i; e

1

; R) and k 2 blo
k (i; e

2

; R), then j 2 blo
k (k; e

1

+ e

2

; R).

2. If j 2 su

set(i; e

1

; R), k 2 su

set(i; e

2

; R), and k =2 su

set(i; e

3

; R), then j 2 blo
k (k;max (e

1

� e

3

; e

2

); R).

Proof. Straightforward. �

The following lemma asserts the existence of neighbors that have joined a long time ago.

Lemma 6.15. Assume that
 > e

1

+ e

2

+ e

3

joinbd . Let � be a good finite execution, R = global-ring(�). Let

i 2 PId . Suppose that jRj �
+ 1. Then:

1. There exists k 2 PId such that

(a) k 2 su

set(i;
� e

1

; R).

(b) k =2 su

set(i; e

2

; R).

(c) join-a
k

k

occurs at a time < `time(�) � e

3

(T

g

+ 2d)

(d) fail

k

does not occur in �.

20

2. There exists k 2 PId such that

(a) k 2 predset(i;
� e

1

; R).

(b) k =2 predset(i; e

2

; R).

(c) join-a
k

k

occurs at a time < `time(�) � e

3

(T

g

+ 2d)

(d) fail

k

does not occur in �.

Proof. We prove Part 1; Part 2 is analogous. There are at least
 � (e

1

+ e

2

) processes in the set difference

su

set(i;
 � e

1

; R) � su

set(i; e

2

; R). Of these, at most e
3

joinbd perform a join-a
k at times � `time(�) �

e

3

(T

g

+2d). Since
 > e

1

+e

2

+e

3

joinbd , it must be that at least one of these processes, call it k, performs a join-a
k

at a time < `time(�) � e

3

(T

g

+ 2d). This k satisfies all the listed properties. �

The next lemma relates neighborhoods in the global ring to neighborhoods in the augmented ring.

Lemma 6.16. Let � be a good finite execution, e 2 N, i; j 2 PId .

1. If j 2 psu

set(i; e; global-ring(�)) then j 2 psu

set(i; e+ failbd ; aug-ring(�)).

2. If j 2 ppredset(i; e; global-ring(�)) then j 2 ppredset(i; e+ failbd ; aug-ring(�)).

3. If j 2 su

set(i; e; global-ring(�)) then j 2 su

set(i; e+ failbd ; aug-ring(�)).

4. If j 2 predset(i; e; global-ring(�)) then j 2 predset(i; e+ failbd ; aug-ring(�)).

5. If j 2 blo
k (i; e; global-ring(�)) then j 2 blo
k (i; e+ failbd ; aug-ring(�)).

Proof. (Sketch) These follow because at most failbd processes in the given region appear in aug-ring(�) but not in

global-ring(�). �

The next lemma says that neighbors in the augmented ring are also neighbors in the local ring.

Lemma 6.17. Let � be a good finite execution, s = `state(�).

1. If j 2 su

set(i; e; aug-ring(�)) and �ngers

i

contains a finger for j, then j 2 su

set(i; e; s:lo
al-ring

i

).

2. If j 2 predset(i; e; aug-ring(�)) and �ngers

i

contains a finger for j, then j 2 predset(i; e; s:lo
al-ring

i

).

3. If j 2 blo
k (i; e; aug-ring(�)) and �ngers

i

contains a finger for j, then j 2 blo
k (i; e; s:lo
al-ring

i

).

Proof. We show Part 1; the rest are similar. If j =2 su

set(i; e; s:lo
al-ring

i

), then it must be that there are at least

e elements of s:lo
al-ring
i

) in the interval (i; j). But each of these is an element of aug-ring(�)), which contradicts

the assumption that j 2 su

set(i; e; aug-ring(�)). �

The next lemma relates the augmented ring at some point to the global ring at a point not too far in the past.

Lemma 6.18. Let � be a good finite execution,�0 a prefix of�with `time(�

0

) � `time(�)�T

e

. If i 2 global-ring(�

0

),

then i 2 aug-ring(�).

Proof. By the definition of aug-ring . �

The next lemma says that a neighbor in the augmented ring at a particular time is a neighbor in the global ring at a

point not too far in the past.

Lemma 6.19. Let � be a good finite execution, �0 a prefix of � with `time(�

0

) � `time(�) � T

e

. Let e 2 N and

i; j 2 PId . Suppose j 2 global-ring(�

0

). Then:

1. If j 2 psu

set(i; e; aug-ring(�)) then j 2 psu

set(i; e; global-ring(�

0

)).

2. If j 2 ppredset(i; e; aug-ring(�)) then j 2 ppredset(i; e; global-ring(�

0

)).

21

3. If j 2 su

set(i; e; aug-ring(�)) then j 2 predset(i; e; global-ring(�

0

)).

4. If j 2 predset(i; e; aug-ring(�)) then j 2 predset(i; e; global-ring(�

0

)).

5. If j 2 blo
k (i; e; aug-ring(�)) then j 2 blo
k (i; e; global-ring(�

0

)).

Proof. For Part 1, suppose for the sake of contradiction that j =2 psu

set(i; e; global-ring(�

0

)). Then jglobal-ring(�0)\

(i; j)j > e, that is, there are more than e elements of global-ring(�0) in the interval properly between i and j,

moving in the clockwise direction. By Lemma 6.18, every such element is also in aug-ring(�

0

). Therefore, j =2

psu

set(i; e; aug-ring(�)). This is a contradiction.

The proof of Part 2 is analogous. For Part 3, suppose that j 2 su

set(i; e; aug-ring(�)). If j 2 psu

set(i; e; aug-ring(�))

then the conclusion follows from Part 1. The only remaining case is where j = i, but this case follows trivially from

the fact that j 2 global-ring(�

0

).

Part 4 is analogous. Part 5 follows from Parts 3 and 4. �

The following lemma summarizes facts about the knowledge of a new process at various points during and soon after

its joining protocol.

Lemma 6.20. Let � be a good finite execution, s = `state(�). Let i be a process that does not fail in �. Then:

1. Suppose that s:status
i

= joining and a re
eive(lookup-
omp)

�;i

event for target i occurs in � at a time �

`time(�)�(T

g

+2d). Suppose that j 2 blo
k (i;
; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)�

(3T

g

+ 8d), and fail

j

does not occur in �.

Then �ngers

i

contains a finger for j with exptime > now .

2. Suppose that status
i

= joining and a re
eive(lookup-
omp)

�;i

event for target i occurs in � at a time <

`time(�)�(T

g

+2d). Suppose that j 2 blo
k(i; b; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)�

(T

g

+ 3d), and fail

j

does not occur in �.

Then �ngers

i

contains a finger for j with exptime > now + T

e

� (2T

g

+ 3d).

3. Suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time � `time(�) � (T

g

+ 2d). Suppose that

j 2 blo
k (i; b; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)� (2T

g

+5d), and fail

j

does not occur

in �.

Then s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (3T

g

+ 6d).

4. Suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time < `time(�) � (T

g

+ 2d). Suppose that

j 2 blo
k (i; b; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)� (T

g

+2d), and fail

j

does not occur

in �.

Then s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (2T

g

+ 2d).

5. Suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time < `time(�) � (3T

g

+ 6d). Suppose that

j 2 blo
k (i; b� failbd ; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)� d, and fail

j

does not occur

in �.

Then s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (T

g

+ d).

Proof. Let R denote global-ring(�). The proof is by strong induction on the number of steps in �.

Base: The total number of join-a
k events in � is at most 2
+ 1.

If there are no join-a
k events in � then the statements are all vacuously true. If there are between one and 2
+ 1

join-a
k events in � then the five claims follow from Lemma 6.10, Lemma 6.9, Parts 1, 2, and 3, and Corollary 6.13,

respectively. (This uses the fact that, in the absence of failures, aug-ring is the same as global-ring .)

Inductive step: We assume that � contains more than 2
+ 1 join-a
k events. We assume that the result is true for all

proper prefixes of � and show it for �. We show the five properties in turn.

1. For Part 1, suppose that s:status
i

= joining, a re
eive(lookup-
omp)

�;i

event for target i occurs in � at a time

� `time(�) � (T

g

+ 2d), and fail

k

does not occur in �. Also suppose that j 2 blo
k (i;
; aug-ring(�)) and

join-a
k

j

occurs at a time < `time(�)� (3T

g

+ 8d). We must show that s:�ngers
i

contains a finger for j with

positive exptime.

22

Consider the first lookup-
omp message for target i that is received by i, and let k be the sender of this message.

Let �0 be the prefix of � ending just before the re
eive(response) step in which k sends this message, let

s

0

= `state(�

0

) and let R0

= global-ring(�

0

).

By inductive hypothesis, Parts 3 and 4, s0:�ngers
k

contains a finger for every process in su

set(k; b; aug-ring(�0))

whose join-a
k event occurs at a time < `time(�

0

) � (2T

g

+ 5d) and that does not fail in �

0. Therefore, by

Lemma 6.16, s0:�ngers
k

contains a finger for every process in su

set(k; b� failbd ; R

0

) whose join-a
k event

occurs at a time < `time(�

0

) � (2T

g

+ 5d). In particular, s0:�ngers
k

contains a finger for every process in

su

set(k;min (jR

0

\ [k; i)j; b� failbd); R

0

) whose join-a
k event occurs at a time < `time(�

0

)� (2T

g

+5d).

By our assumption on the join rate, at most 3joinbd processes in su

set(k; b � failbd ; R

0

) perform join-a
k

events at times� `time(�

0

)�(2T

g

+5d). It follows that s0:�ngers
k

contains at least min (jR

0

\ [k; i)j; b� failbd)�

3joinbd fingers for processes in R

0

\ [k; i).

Now we claim that k 2 ppredset(i;
 + 3joinbd ; R

0

). If not, then jR

0

\ [k; i)j >
 + 3joinbd . Then,

since b >
 + 3joinbd + failbd , we have that min (jR

0

\ [k; i)j; b� failbd) � 3joinbd >
, which im-

plies that s0:�ngers
k

contains strictly more than
 fingers for processes in R

0

\ [k; i). This implies that

k =2 ppredset(i;
; s

0

:lo
al-ring

i

), However, the definition of the re
eive(response) transitions implies that

k 2 ppredset(i;
; s

0

:lo
al-ring

i

), which yields a contradiction. Therefore, k 2 ppredset(i;
+3joinbd ; R

0

), as

claimed.

Since j 2 blo
k (i;
; aug-ring(�)), Lemma 6.19 implies that j 2 blo
k (i;
; R

0

). Since j 2 blo
k (i;
; R

0

) and

k 2 predset(i;
+3joinbd ; R

0

), Lemma 6.14 implies that j 2 blo
k (k; 2
+3joinbd ; R

0

). Since (by assumption

on constants) b � 2
+3joinbd + failbd , we have that j 2 blo
k (k; b� failbd ; R

0

). Therefore, by Lemma 6.16,

j 2 blo
k (k; b; aug-ring(�

0

)).

Now we use the inductive hypothesis, Parts 3 and 4, again, to conclude that s0:�ngers
k

contains a finger for j

with exptime � s

0

:now + T

e

� (3T

g

+ 6d). To apply the inductive hypothesis, we need the fact that join-a
k
j

occurs at a time < `time(�

0

) � (2T

g

+ 5d); this follows from our assumption that join-a
k
j

occurs at a time

< `time(�) � (3T

g

+ 8d) and the fact that `time(�

0

) � `time(�) � (T

g

+ 3d).

Since j 2 blo
k (k; b; aug-ring(�

0

)) and s

0

:�ngers

k

contains a finger for j, Lemma 6.17 implies that j 2

blo
k(k; b; s

0

:lo
al-ring

k

). Therefore, this finger for j gets included in the block sent by k in the lookup-
omp

message.

Upon receipt of this message, �ngers
i

contains a finger for j with exptime � now +T

e

� (3T

g

+7d). Then at

the end of �, at most time T
g

+2d later, �ngers
i

contains a finger for j with exptime � s:now+T

e

�(4T

g

+9d).

Since T
e

> 4T

g

+ 9d, this implies exptime > s:now , as needed.

2. For Part 2, suppose that status
i

= joining and a re
eive(lookup-
omp)

�;i

event for target i occurs in � at a

time < `time(�) � (T

g

+ 2d). Suppose that j 2 blo
k (i; b; aug-ring(�)), join-a
k

j

occurs in � at a time

< `time(�)� (T

g

+3d), and fail

j

does not occur in �. We must show that �ngers
i

contains a finger for j with

exptime > now + T

e

� (2T

g

+ 3d). Without loss of generality, assume that j 2 su

set(i; b; aug-ring(�)).

We first claim that there exists k 2 PId such that k 2 su

set(i;
 � 2failbd ; R) � su

set(i; 2failbd ; R),

join-a
k

k

occurs at a time < `time(�) � (4T

g

+ 10d), and fail

k

does not occur in �. This follows from

Lemma 6.15, applied with e

1

= e

2

= 2joinbd and e
3

= 5, using the assumption that
 > 5joinbd + 4failbd .

Now we claim that j 2 blo
k (k; b�2failbd ; aug-ring(�)). We know that k 2 su

set(i;
�failbd ; aug-ring(�))).

Also, since k =2 su

set(i; 2failbd ; R), we have that k =2 su

set(i; 2failbd ; aug-ring(�)). Also, by assump-

tion, j 2 su

set(i; b; aug-ring(�)). Lemma 6.14, Part 2, applied with e
1

=
�failbd , e
2

= b and e
3

= 2failbd ,

then implies that j 2 blo
k (k; b� 2failbd ; aug-ring(�)), as claimed.

Process i performs a join-ping at some time in the left-closed, right-open interval [`time(�)�(T

g

+2d); `time(�)�

2d), and i receives responses for all ping messages generated by that join-ping whose destinations do not fail.

Let �0 be the prefix of � ending just before the join-ping

i

, s0 = `state(�

0

), and R0

= global-ring(�

0

).

We claim that s0:�ngers
i

contains a finger for k. Since the time of the join-a
k

k

is < `time(�)� (4T

g

+ 10d),

it is also < `time(�

0

) � (3T

g

+ 8d). Since k 2 su

set(i;
 � 2failbd ; R), Lemma 6.16 implies that k 2

su

set(i;
 � failbd ; aug-ring(�). Therefore, by Lemma 6.19, k 2 su

set(i;
 � failbd ; R

0

). Therefore, by

Lemma 6.16, k 2 su

set(i;
; aug-ring(�

0

)). Then the inductive hypothesis, Part 1, implies that s0:�ngers
i

contains a finger for k.

23

Since k 2 su

set(i;
; aug-ring(�

0

)) and s

0

:�ngers

i

contains a finger for k, Lemma 6.17 implies that k 2

blo
k(i;
; s

0

:lo
al-ring

i

). Therefore, during the join-ping, i sends a ping message to k. Since k does not fail in

�, k responds to the ping message with a blo
k message. Let �00 be the prefix of � ending just before k sends

the blo
k message, let s00 = `state(�

00

), and let R00 denote global-ring(�00).

Since j 2 blo
k (k; b � 2failbd ; aug-ring(�)), Lemma 6.19 implies that j 2 blo
k (k; b � 2failbd ; R

00

). Then

Lemma 6.16 implies that j 2 blo
k (k; b � failbd ; aug-ring(�

00

)). Then by inductive hypothesis, Part 5, we

know that s00:�ngers
k

contains a finger for j with exptime � s

00

:now + T

e

� (T

g

+ d).

Since j 2 blo
k (k; b; aug-ring(�

00

)) and s

00

:�ngers

k

contains a finger for j, Lemma 6.17 implies that j 2

blo
k(k; b; s

00

:lo
al-ring

k

). Therefore, the finger for j is included in the block sent by k in its blo
k message to

i. At most T
g

+2d time elapses from this send until the end of �, which means that s:�ngers
i

contains a finger

for j with exptime � s:now + T

e

� (2T

g

+ 3d), as needed.

3. For Part 3, suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time t � `time(�) � (T

g

+ 2d).

Suppose also that j 2 blo
k (i; b; aug-ring(�)), join-a
k
j

occurs at a time < `time(�) � (2T

g

+ 5d), and fail

j

does not occur in �. We must show that s:�ngers
i

contains a finger for j with exptime � s:now +T

e

� (3T

g

+

6d). Without loss of generality, assume that j 2 su

set(i; b; aug-ring(�)).

The argument is similar to that for the previous case, because we argue with respect to pings and blo
k re-

sponses near the end of the joining protocol. By Lemma 6.15, there exists k 2 PId such that k 2 su

set(i;
�

2failbd ; R) � su

set(i; 2failbd ; R), join-a
k

k

occurs at a time < `time(�) � (5T

g

+ 12d), and fail

k

does

not occur in �. This uses the assumption that
 > 6joinbd + 4failbd . Then, since k 2 su

set(i;
 �

failbd ; aug-ring(�)), k =2 su

set(i; 2failbd ; aug-ring(�)), and j 2 su

set(i; b; aug-ring(�))), Lemma 6.14,

Part 2, implies that j 2 blo
k (k; b� 2failbd ; aug-ring(�)).

Process i performs a join-ping at some time in the interval [t � (T

g

+ 2d); t � 2d), and i receives responses

for all ping messages generated by that join-ping whose destinations do not fail in �. Let �0 be the prefix of �

ending just before the join-ping

i

, s0 = `state(�

0

), and R0

= global-ring(�

0

).

We claim that s0:�ngers
i

contains a finger for k. Since the time of the join-a
k

k

is < `time(�)� (5T

g

+ 12d),

it is also < `time(�

0

) � (3T

g

+ 8d). Since k is in su

set(i;
 � 2failbd ; R), Lemma 6.16 implies that k 2

su

set(i;
 � failbd ; aug-ring(�). Therefore, by Lemma 6.19, k 2 su

set(i;
 � failbd ; R

0

). (This uses

the assumption that T
e

> 2T

g

+ 4d.) Therefore, by Lemma 6.16, k 2 su

set(i;
; aug-ring(�

0

)). Then the

inductive hypothesis, Parts 1 and 2, imply that s0:�ngers
i

contains a finger for k.

Since k 2 su

set(i;
; aug-ring(�

0

)) and s

0

:�ngers

i

contains a finger for k, Lemma 6.17 implies that k 2

blo
k(i;
; s

0

:lo
al-ring

i

). Therefore, during the join-ping, i sends a ping message to k. Since k does not fail in

�, k responds to the ping message with a blo
k message. Let �00 be the prefix of � ending just before k sends

the blo
k message, let s00 = `state(�

00

), and let R00 denote global-ring(�00).

Since j 2 blo
k (k; b � 2failbd ; aug-ring(�)), Lemma 6.19 implies that j 2 blo
k (k; b � 2failbd ; R

00

). Then

Lemma 6.16 implies that j 2 blo
k (k; b � failbd ; aug-ring(�

00

)). Then by inductive hypothesis, Part 5, we

know that s00:�ngers
k

contains a finger for j with exptime � s

00

:now +T

e

� (T

g

+ d). (Here, we need the fact

that the time of the join-a
k

k

is < `time(�

00

)� (3T

g

+6d), and the time of the join-a
k

j

is < `time(�

00

)� d.)

Since j 2 blo
k (k; b; aug-ring(�

00

)) and s

00

:�ngers

k

contains a finger for j, Lemma 6.17 implies that j 2

blo
k(k; b; s

00

:lo
al-ring

i

). Therefore, the finger for j is included in the block sent by k in its blo
k message

to i. At most 2T
g

+ 4d time elapses from this send until the end of �, which means that s:�ngers
i

contains a

finger for j with exptime � s:now + T

e

� (3T

g

+ 5d), which suffices.

4. For Part 4, suppose that s:status
i

= a
tive and a join-a
k

i

occurs in� at a time< `time(�)�(T

g

+2d). Suppose

that j 2 blo
k (i; b; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�) � (T

g

+ 2d), and fail

j

does not

occur in �. We must show that s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (2T

g

+ 2d).

Without loss of generality, assume that j 2 su

set(i; b; aug-ring(�)).

Lemma 6.15 implies that there exists k 2 PId such that k 2 su

set(i;
�2failbd ; R)� su

set(i; 2failbd ; R),

join-a
k

k

occurs at a time < `time(�) � (4T

g

+ 10d), and fail

k

does not occur in �. This uses the assumption

that
 > 5joinbd + 4failbd .

24

At some time in the interval [`time(�) � (T

g

+ d); `time(�) � T

g

), k performs a neighbor-refresh

k

whose

messages all arrive by the end of �. Let �0 be the prefix of � ending just before this neighbor-refresh

k

,

s

0

= `state(�

0

), and R0

= global-ring(�

0

).

Since k 2 su

set(i;
� 2failbd ; R), Lemma 6.16 implies that k 2 su

set(i;
 � failbd ; aug-ring(�)), Also,

since i 2 R, we know that i 2 predset(k;
 � 2failbd ; R) and so, by Lemma 6.16, i 2 predset(k;
 �

failbd ; aug-ring(�)). By Lemma 6.19, i 2 predset(k;
 � failbd ; R

0

). Therefore, by Lemma 6.16, i 2

predset(k;
; aug-ring(�

0

)). Then by inductive hypothesis, Part 5, s0:�ngers
k

contains a finger for i with

exptime � `time(�

0

) + T

e

� (T

g

+ d).

Next, we claim that j 2 blo
k (k; b�2failbd ; aug-ring(�)). We know that k 2 su

set(i;
�failbd ; aug-ring(�)).

Also, since k =2 su

set(i; 2failbd ; R), we know that k =2 su

set(i; 2failbd ; aug-ring(�)). Then, since

j 2 su

set(i; b; aug-ring(�)), Lemma 6.14 implies that j 2 blo
k (k; b� 2failbd ; aug-ring(�)), as claimed.

Therefore, by Lemma 6.19, j 2 blo
k (k; b�2failbd ; R

0

). So by Lemma 6.16, j 2 blo
k (k; b�failbd ; aug-ring(�

0

)).

Then by inductive hypothesis, Part 5, s0:�ngers
k

contains a finger for j with exptime � `time(�

0

)+T

e

�(T

g

+

d). Thus, s0:�ngers
k

contains fingers for i and j, both with exptime � `time(�

0

) + T

e

� (T

g

+ d).

Since i 2 blo
k (k; b; aug-ring(�

0

)) and s

0

:�ngers

k

contains a finger for i, Lemma 6.17 implies that i 2

blo
k(k; b; s

0

:lo
al-ring

k

). Therefore, i is among the targets of the blo
k message sent by k during the neighbor-refresh
k

.

Also, since j 2 blo
k (k; b; aug-ring(�

0

)) and s

0

:�ngers

k

contains a finger for j, Lemma 6.17 implies that

j 2 blo
k (k; b; s

0

:lo
al-ring

k

). Therefore, the finger for j is included in the block sent by k in its blo
k message

to i. When the finger is sent, it has exptime � s

0

:now + T

e

� (T

g

+ d). Therefore, at the end of �, which is at

most time T
g

+ d later, s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (2T

g

+2d), as needed.

5. For Part 5, suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time < `time(�)� (3T

g

+6d). Also

suppose that j 2 blo
k (i; b � failbd ; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�) � d, and fail

j

does not occur in �. We must show that s:�ngers
i

contains a finger for j with exptime � s:now+T

e

�(T

g

+d).

Without loss of generality, assume that j 2 su

set(i; b � failbd ; aug-ring(�)). Let t denote the time of the

join-a
k

j

. We consider two cases:

(a) t < `time(�)� (2T

g

+ 3d).

Lemma 6.15 implies that there exists k 2 PId such that k 2 su

set(i;
�2failbd ; R)�su

set(i; 2failbd ; R),

join-a
k

k

occurs at a time < `time(�) � (5T

g

+ 8d), and fail

k

occurs in �. Then (as in the argu-

ment for Part 2), Lemma 6.14, Part 2, implies that j 2 blo
k (k; b � 2failbd ; aug-ring(�)). Therefore,

k 2 blo
k(j; b� 2failbd ; aug-ring(�)).

Then we claim that k performs a neighbor-refresh sometime in the interval [`time(�)�(2T

g

+2d); `time(�)�

(T

g

+ 2d)). Let �0 be the prefix of � ending just before this neighbor-refresh
k

, let s0 = `state(�

0

), and

let R0

= global-ring(�

0

).

Since j 2 blo
k (k; b � 2failbd ; aug-ring(�)), Lemma 6.19 implies that j 2 blo
k (k; b � 2failbd ; R

0

),

and so by Lemma 6.16, j 2 blo
k(k; b� failbd ; aug-ring(�

0

)). Also, since k 2 blo
k (i;
� 2failbd ; R),

we have that i 2 blo
k (k;
 � 2failbd ; R), so by Lemma 6.16, i 2 blo
k (k;
 � failbd ; aug-ring(�)), so

by Lemma 6.19, i 2 blo
k (k;
� failbd ; R

0

), so again by Lemma 6.16, i 2 blo
k (k;
; aug-ring(�

0

)), so

i 2 blo
k (k; b� failbd ; aug-ring(�

0

)).

Then by inductive hypothesis, Part 5, s0:�ngers
k

contains a finger for each of i and j, both with exptime �

s

0

:now + T

e

� (T

g

+ d). Since j 2 blo
k (k; b; aug-ring(�

0

)) and s

0

:�ngers

k

contains a finger for

j, Lemma 6.17 implies that j 2 blo
k(k; b; s

0

:lo
al-ring

k

). Therefore, j is among the targets of the

blo
k message sent by k during the neighbor-refresh

k

. Also, since i 2 blo
k (k; b; aug-ring(�

0

)) and

s

0

:�ngers

k

contains a finger for i, Lemma 6.17 implies that i 2 blo
k (k; b; s

0

:lo
al-ring

k

). Therefore, the

finger for i is included in the block sent by k in its blo
k message to j. When the finger is sent, it has

exptime � s

0

:now + T

e

� (T

g

+ d).

This blo
k message arrives at j at a time< `time(�)�(T

g

+d). Then sometime in the interval [`time(�)�

(T

g

+ d); `time(�) � T

g

), j performs a neighbor-refresh

j

. Let �00 be the prefix of � ending just before

this neighbor-refresh
j

, let s00 = `state(�

00

), and let R00

= global-ring(�

00

).

Since j 2 blo
k (i; b�failbd ; aug-ring(�)), we have, by Lemma 6.19, that i 2 blo
k (j; b�failbd ; global-ring(�

00

)).

So by Lemma 6.16, i 2 blo
k (j; b; aug-ring(�

00

)). Also, s00:�ngers
j

contains a finger for i, because the

25

finger for j that arrives in the blo
k message from k has not had time to expire. Then Lemma 6.17 implies

that i 2 blo
k (j; b; s

00

:lo
al-ring

j

). Therefore, i is among the targets of the blo
k message sent by j during

this neighbor-refresh

j

.

This blo
k message contains a finger for j, with exptime = s

00

:now + T

e

. Therefore, at the end of �,

at most time T
g

+ d later, s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (T

g

+ d), as

needed.

(b) t � `time(�)� (2T

g

+ 3d).

Then the time between the join-a
k

i

and join-a
k

j

is > T

g

+ 3d.

Lemma 6.15 implies that there exists k 2 PId such that k 2 predset(j;
�2failbd ; R)�predset(j; 2failbd ; R),

join-a
k

k

occurs at a time < `time(�)� (6T

g

+13d), and fail

k

occurs in �. This uses the assumption that

 > 7joinbd + 4failbd .

Now we claim that i 2 blo
k (k; b � 3failbd ; aug-ring(�)). Since k 2 predset(j;
 � 2failbd ; R),

Lemma 6.16 implies that k 2 predset(j;
 � failbd ; aug-ring(�)). Since k =2 predset(j; 2failbd ; R), we

have that k =2 predset(j; 2failbd ; aug-ring(�)). Since j 2 blo
k (i; b�failbd ; aug-ring(�)), Lemma 6.14,

Part 2, implies that i 2 blo
k (k; b� 3failbd ; aug-ring(�)), as claimed.

Process j performs a join-ping at some time in the interval [t� (T

g

+2d); t�T

g

), and j receives responses

for all ping messages generated by that join-ping whose destinations do not fail, strictly before time t. Let

�

0 be the prefix of � ending just before this join-ping

j

, s0 = `state(�

0

), and R0

= global-ring(�

0

).

We claim that s0:�ngers
j

contains a finger for k. Since k 2 blo
k (j;
�failbd ; aug-ring(�)), Lemma 6.19

implies that k 2 blo
k (j;
 � failbd ; R

0

), and so by Lemma 6.16, k 2 blo
k(j;
; aug-ring(�

0

)). Then by

inductive hypothesis, Parts 1 and 2, s0:�ngers
j

contains a finger for k.

Since k 2 blo
k (j;
; aug-ring(�

0

)) and s

0

:�ngers

j

contains a finger for k, Lemma 6.17 implies that

k 2 blo
k(j;
; s

0

:lo
al-ring

j

). Therefore, during the join-ping, j sends a ping message to k. Since k does

not fail, it responds with a blo
k message. Let �00 be the prefix of � ending just before k sends this blo
k

message, let s00 = `state(�

00

), and R

00

= global-ring(�

00

)).

Since i 2 blo
k (k; b � 2failbd ; aug-ring(�)), Lemma 6.19 implies that i 2 blo
k (k; b � 2failbd ; R

00

).

Then Lemma 6.16 implies that i 2 blo
k (k; b� failbd ; aug-ring(�

00

)). Then by inductive hypothesis, Part

5, we know that s00:�ngers
k

contains a finger for i with exptime � now + T

e

� (T

g

+ d).

Since i 2 blo
k (k; b; aug-ring(�

00

)) and s

00

:�ngers

k

contains a finger for i, Lemma 6.17 implies that

i 2 blo
k(k; b; s

00

:lo
al-ring

k

). Therefore, the finger for i is included in the block sent by k in its blo
k

message to j. This finger is recorded by j, and persists until the end of �.

Immediately after the join-a
k

j

, and at intervals of T
g

thereafter, process j performs a neighbor-refresh

j

,

in which it sends a blo
k message containing a finger for itself with exptime = T

e

.

We claim that i is included in the set of targets of each such blo
k message. This is because i 2 blo
k (j; b�

failbd ; aug-ring(�)), so by Lemma 6.16, i 2 blo
k (j; b; aug-ring) at each point after the join-a
k

j

. Then

Lemma 6.17 implies that i 2 blo
k (j; b; lo
al-ring

j

) at each point after the join-a
k

j

, which implies that i

is included in the set of targets of each such blo
k message.

Some such message must arrive at i that is sent by j at a time� `time(�)�(T

g

+d). Therefore, s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (T

g

+ d), as needed.

�

6.5 Maintaining the Chords

We state a lemma analogous to the main lemma of the previous section, Lemma 6.20, but for neighbors of each

particular chord position x rather than neighbors of the node i itself.

The statements of Part 1, 2, and 3 are entirely analogous to those in Lemma 6.20. However, in Part 4, the fact

that i uses chord-pings instead of neighbor-refreshes to keep up-to-date with respect to x after the join-a
k

i

changes

the bound slightly. Part 5, which describes situations where i obtains first-hand knowledge of j directly from j, gets

weakened considerably. This is because we have no phenomenon analogous to that of the prior case 5(b), where j

informs i directly about its existence immediately after the join. So, the new Part 5 talks only about those j that are so

26

close to the chord position that i pings j directly during its chord-pings. Since i pings only the apparent
-block of x,

this involves only those j that are in this tiny neighborhood.

The proof is also different in some interesting ways. Rather than relying on the inductive hypotheses as before, we

rely on the earlier lemma about neighborhoods, Lemma 6.20. That is because the relevant information arrives from

neighbors of the chord position x.

Lemma 6.21. Let � be a good finite execution, s = `state(�). Let i be a process that does not fail in �. Let

k 2 N; 0 � k � n� 1, and x = PToX (i) + 2

k. Then:

1. Suppose that s:status
i

= joining and a re
eive(lookup-
omp)

�;i

event for target x occurs in � at a time

� `time(�) � (T

g

+ 2d). Suppose that j 2 blo
k (x;
; aug-ring(�)), join-a
k

j

occurs in � at a time <

`time(�)� (3T

g

+ 8d), and fail

j

does not occur in �.

Then �ngers

i

contains a finger for j with exptime > now .

2. Suppose that status
i

= joining and a re
eive(lookup-
omp)

�;i

event for target x occurs in � at a time <

`time(�)�(T

g

+2d). Suppose that j 2 blo
k (x; b; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)�

(T

g

+ 3d), and fail

j

does not occur in �.

Then �ngers

i

contains a finger for j with exptime > now + T

e

� (2T

g

+ 3d).

3. Suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time � `time(�) � (T

g

+ 2d). Suppose that

j 2 blo
k(x; b; aug-ring(�)), join-a
k

j

occurs in � at a time < `time(�) � (2T

g

+ 5d), and fail

j

does not

occur in �.

Then s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (3T

g

+ 6d).

4. Suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time < `time(�) � (T

g

+ 2d). Suppose that

j 2 blo
k (x; b; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)� (T

g

+3d), and fail

j

does not occur

in �.

Then s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (2T

g

+ 3d).

5. Suppose that s:status
i

= a
tive and a join-a
k

i

occurs in � at a time < `time(�) � (2T

g

+ 4d). Suppose that

j 2 blo
k (x;
� failbd ; aug-ring(�)), join-a
k
j

occurs in � at a time < `time(�)� (2T

g

+5d), and fail

j

does

not occur in �.

Then s:�ngers
i

contains a finger for j with exptime � s:now + T

e

� (T

g

+ 2d).

Proof. Parts 1, 2, and 3, are proved similarly to before, but instead of inductive hypotheses, they use the relevant

parts of Lemma 6.20.

For Part 4, we rely on the chord-ping mechanism. And again, the relevant parts of Lemma 6.20 rather than

inductive hypotheses.

For Part 5, we use Part 4 to conclude that i learns about j by time `time(�) � (T

g

+ 2d), and then rely on the

chord-ping mechanism. The key is that in this last chord-ping, i communicates directly with (pings) j.

�

6.6 Correctness of Lookup Results

Theorem 6.22. Every good execution � satisfies 2T
g

+ 6d-lookup-correctness.

Proof. (Sketch:) Let �0 be a prefix of � ending just before a lookup-a
k(H)

i

event, which is a response to a prior

lookup(x)

i

. Let s0 = `state(�

0

) and R0

= global-ring(�

0

).

It suffices to produce a ring R such that R � aug-ring(�

0

), R contains every XId in R

0 except possibly for those

j such that join-a
k
j

occurs in �

0 at a time � `time(�

0

)� (2T

g

+ 6d), and H = ppredset(x;
; R).

Define the ring R to be the union S [T , where:

� S is the set of all PToX (j) 2 R

0 such that join-a
k
j

occurs at a time < `time(�

0

)� (2T

g

+ 6d).

� T is that set of all XIds in s

0

:�ngers

i

.

27

We show that R satisfies the three properties.

The first property is immediate, because all XIds in s

0

:�ngers

i

are in aug-ring(�

0

). The second property is also

immediate, becauseS � R. For the third property, the code for lookup-a
k(H)

i

implies thatH = ppredset(x;
; s

0

:lo
al-ring

i

).

We need to show that H = ppredset(x;
; R). Since lo
al-ring
i

is the set of XIds in �ngers

i

, and that set is a subset

of R, it is enough to show that every j 2 ppredset(x;
; R) is also in s

0

:�ngers

i

.

So, fix j 2 ppredset(x;
; R). If j 2 T then we are done so assume that j 2 S. Thus, j 2 R

0 and join-a
k

j

occurs

at a time < t� (2T

g

+ 6d). Since j 2 ppredset(x;
; R), we have that j 2 ppredset(x;
+ 3joinbd ; R

0

).

The lookup-a
k(H)

i

event follows the receipt by i of a lookup-
omp message, with no intervening time passage.

Let k be the sender of this lookup-
omp message. Then k sent this message at some time � `time(�

0

)� d. Let �00 be

the prefix of � ending just before k composed this message, s00 = `state(�

00

), and R

00

= global-ring(�

00

).

We claim that k 2 ppredset(x;
+ 3joinbd ; R

00

); the argument is like one in Lemma 6.20, Part 1.

Since j 2 ppredset(x;
 + 3joinbd ; R

0

), it follows that j 2 ppredset(x;
 + 3joinbd + failbd ; R

00

). Since j 2

ppredset(x;
 + 3joinbd + failbd ; R

00

) and k 2 ppredset(x;
 + 3joinbd ; R

00

), it follows that j 2 blo
k (k;
 +

3joinbd + failbd ; R

00

). Since b �
 + 3joinbd + 2failbd , we have that j 2 blo
k (k; b � failbd ; R

00

). Therefore,

j 2 blo
k (k; b; aug-ring(�

00

)).

By Lemma 6.20, Parts 3 and 4, s00:�ngers
k

contains a finger for j with exptime � s

00

:now + T

e

� (3T

g

+ 6d).

This finger for j gets included in the block sent by k in the lookup-
omp message. After i receives this message,

�ngers

i

contains a finger for j with exptime � now + T

e

� (3T

g

+ 7d). Then, since T
e

> 3T

g

+ 7d, s0:�ngers
i

contains a finger for j. This is what we needed to show. �

6.7 Latency Bounds

6.7.1 Latency of a request

Theorem 6.23. Suppose that � is a good execution, �0 a finite prefix of � containing at least 2
+ 1 join-a
k events.

Suppose that:

1. The final step of �0 is a lookup

i

step in which i initiates request r, with target x.

2. No other requests (on behalf of joins, client lookups, or stabilizes) are active at any time � `time(�

0

)� T

e

.

Then request r terminates with a re
eive(lookup-
omp) step, at a time that is � `time(�

0

) + 4(logN + 1)d.

Proof. (Sketch:) We first claim that, at any point during the lookup, for any process 6= i in the ring, the known

predecessors of the target x are “bunched together” in at most two
-blocks in the actual global ring. One of these is

the block of actual predecessors of x in the ring, and the other may be anywhere else.

Claim 6.24. At any point in � after �0, and for any j 6= i, all processes in ppredset(x;
; lo
al-ring

j

) that have

not failed lie within two
-blocks of consecutive processes in global-ring : ppredset(x;
; global-ring) and one other

-block.

Proof. Everyone except i keeps only its neighborhood and chord fingers, as specified by the underlying infrastruc-

ture. These have the needed property. (Two blocks can arise if the target x is in the middle of one of j’s blocks.)

�

Claim 6.25. At any point in � after�0, and before a a
tre
eive(lookup-
omp)

i

event, all processes in ppredset(x;
�

4failbd ; lo
al-ring

i

) that have not failed lie within two
-blocks of consecutive processes in global-ring: ppredset(x;
; global-ring)

and one other
-block.

Proof. (Sketch:) This is more complicated than the previous claim, because process i acquires fingers from other

nodes’ tables in the course of the lookup.

The ways in which process i acquires new fingers are somewhat constrained: by normal neighborhood and chord

refreshing, by receiving a lookup-resp message or by receiving a lookup-
omp message. We rule out the last case by

assumption—we are considering only what happens before the first re
eive(lookup-
omp)

i

happens.

Thus, whenever i acquires new fingers, it acquires an entire block of size at least
 from some other node, which

by the previous claim is included in only two
-blocks in the actual global ring at the time the block was sent, one of

these blocks being ppredset(x;
; global-ring).

28

Since at most failbd of each of these blocks could have failed before the block was sent, and at most another failbd

from each of these blocks could fail after the send and up to the point of reference, it must be that at least
� 4failbd

of the newly-arrived fingers do not fail by the point of reference and lie within two
 blocks in global-ring , with one

of these blocks being ppredset(x;
; global-ring).

But this doesn’t quite tell us that all processes in ppredset(x;
�4failbd ; lo
al-ring

i

) that have not failed lie within

these two
-blocks of consecutive processes in global-ring . For this, we have to use the fact that the blocks in �ngers

i

that are closest to x don’t “degrade” by having too many processes fail. The reason this doesn’t happen is that i keeps

moving the algorithm along—pinging “enough” nodes among its closest predecessors for x, and receiving responses

from many of them, which provide information about blocks that are still closer to x. �

Now the key claim describes how the “distance” to the destination x is halved every time 4d, until near the end of

the lookup:

Claim 6.26. Let e be a power of two, e � N .

Suppose that, at some point during the lookup, the clockwise distance from pred (x;
 � 4failbd ; lo
al-ring

i

) to x (in

the identifier space) is � e.

Then by time 4d later, at least one of the following holds:

1. The lookup ends (with the receipt of a lookup-
omp message).

2. �ngers

i

contains at least
� 2failbd of the members of ppredset(x;
; global-ring).

3. The clockwise distance from pred(x;
� 4failbd ; lo
al-ring

i

) to x is � e=2.

Proof. (of Claim:) Assume that the lookup doesn’t end within time 4d, that is, Case 1 doesn’t hold. Then within

time 2d, process i performs a new join-ping, which results, within an additional time 2d, in a response from one of the

processes corresponding to the XIds in the assumed ppredset(x;
�4failbd ; lo
al-ring

i

). (The fact that one responds

depends on the fact that not all of these processes can have failed recently or fail during the ping-response exchange.

This in turn relies on our assumed bound on failure rate, and the assumption that they are all within two
-blocks in

the global ring.)

Let j be such a responding process. If PToX (j) + 1 = x, that is, x is the immediate successor of j in the XId

space, then j sends a lookup-
omp message, contradicting the fact that Case 1 doesn’t hold. So, we may assume that

x is not the immediate successor of j in the XId space.

Then choose k to be the largest natural number such that PToX (j) + 2

k

2 (PToX (j); x), that is, the largest

power-of-two successor of j that does not reach x.

The response from j to i contains a set F of fingers representing j’s
 best predecessors for x at the time j sends

its response. There are two cases:

1. F contains only elements in the open interval (PToX (j) + 2

k

; x). That is, only elements after the given largest

power-of-two successor of j.

In this case, after i receives the message, the clockwise distance from pred(x;
 � 2failbd ; lo
al-ring

i

) to x is

� e=2, which suffices to satisfy Case 3.

2. F contains at least one element that is not in the open interval (PToX (j) + 2

k

; x).

Lemma 6.21 implies that, when j sends the lookup-response message, �ngers
j

contains entries for all elements

of blo
k(j + 2

k

; b; augmented-ring) that have not failed. Since the set F contains at least one element that

is not in the open interval (j + 2

k

; x), we claim that F contains actual predecessors of x in the global ring,

specifically, F contains at least
� failbd of the members of ppredset(x;
; global-ring) at the time j sends the

message. (Up to failbd of the fingers in F could have already failed at the time of the send.) Just after i receives

the message, �ngers
i

contains at least
 � 2failbd of the members of ppredset(x;
; global-ring). This yields

Case 2.

�

To complete the proof, we use the last claim repeatedly, as long as Case 3 holds. Since we cannot keep halving

forever, eventually, either Case 1 or Case 2 arises. If Case 1 arises first, then we are done. On the other hand, if Case

2 arises first, then within only one more ping round, i receives a lookup-
omp message, so again we are done.

29

7 Appendix B: Using Nondeterministic Assumptions

As described in Section 3) and Appendix B our analysis in this paper is based on deterministic assumptions. In general,

we assume that there are at most v relevant events that occur in an “arc” of the ring containing at most r processes

during a time interval �.

These assumptions however are not realistic for many distributed environments. In practice join and failure events

are modeled by probability distribution functions (e.g, Poisson) which makes it impossible to put a deterministic bound

of the number of such events during an interval of time �.

To establish a relationship between the more realistic probabilistic assumptions and the deterministic assumptions

next we compute the mean time T

f

between two violations of the deterministic bounds under the probabilistic as-

sumptions. In other words, T
f

represents the expected time for which a MultiChord will remain in the quasi-ideal

state.

For tractability, we assume a system in which processes join according to a Poisson process with arrival rate �
a

and that the process lifetimes are exponentially distributed with a mean of l. Assuming that the MultiChord ring is in

steady state we have l = N=�

a

, i.e., the rate of joins is equal to the rate of failures or leaves. Thus, the rate of changes

is � = 2�

a

.

Next, we bound the probability that the deterministic assumption–that no more than v relevant events occur during

a time interval � in an arc of the ring of r processes—is violated.

The average number of events that occur in a given arc of the ring consisting of r processes during an interval of

time � is

� = � � �(r=N); (2)

where � � � represents the average number of events that occur in the entire system during a time interval �, and

(r=N) represents the fraction of these events that occur during that portion of the ring.

Because events are generated from a Poisson distribution we can apply the Chernoff bound:

Pr(X > (1 + Æ)�) < e

��Æ

2

=4

; (3)

where Pr(X > (1 + Æ)�) represents the probability that no more than (1 + Æ)� events occur in a given arc of r

processes during a time interval �. Taking v = (1 + Æ)�, the probability that the deterministic bound is violated in a

given arc of r processors during a time interval � is

Pr(X > v) < e

�

(v��)

2

4�

: (4)

The probability p(�; r) that the deterministic bound is violated in any arc of r processors during an interval � is

bounded above by

p(�; r) < NPr(X > v) < Ne

�

(v��)

2

4�

: (5)

Then the mean time T
f

between two violations of the deterministic bound is

T

f

=

�

p(�; r)

>

�

N

e

(v��)

2

4� (6)

Expanding � yields

T

f

>

�

N

e

(v����r)

2

4���r

: (7)

where � = �=N represents the normalized rate of change.

Next, let us consider how do deterministic constraints presented in Section 3 map to Ineq. (7). In particular, we

consider the following constraints:

30

T

e

� 5T

j

(8)

 > 7joinbd+ 4failbd

b � 2
+ 3joinbd+max(2joinbd; failbd); (9)

where failbd represents the number of failures in an arc of b+ 1 processes during time T
e

, and joinbd represents the

number of joins in an arc of b+ 1 processes during time T
j

.

Because we assume steady state, the number of failures and joins in an arc of b+ 1 processes is roughly the same

during a given time interval. This means that failbd = joinbdT

e

=T

j

. If we take T
e

=T

j

= 5, the last two constraints

in Ineqs. (8) become:

 > 27joinbd (10)

b � 61joinbd

during an interval of time T
e

, and

 > 5:4joinbd (11)

b � 12:2joinbd

during an interval of time T
j

.

Since constraints (11) imply constraints (10) next we consider only constraints (11). Let us take
 = 6joinbd,

b = 13joind, values which satisfy both these constraints.

Finally, we take r = b + 1, � = T

j

, and v = 2joinbd (the factor of 2 is because v accounts for both joins and

failures during the interval T
j

). With these values, the expected time before the deterministic constraints are violated

(see Ineq (7)) becomes

T

f

>

T

j

N

e

(
=3��T

j

(b+1))

2

4�T

j

(b+1)

; (12)

where b � 13
=6.

31

