
Proving Correctness of a Controller Algorithm for the RAID Level

5 System

�

Mandana Vaziri and Nancy Lynch

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

December 7, 1997

Abstract

Most RAID controllers implemented in industry are complicated and di�cult to reason

about. This complexity has led to software and hardware systems that are di�cult to debug

and hard to modify. To overcome this problem Courtright and Gibson have developed a rapid

prototyping framework for RAID architectures which relies on a generic controller algorithm

[Courtright94]. The designer of a new architecture needs to specify parts of the generic controller

algorithm and must justify the validity of the controller algorithm obtained. However the latter

task may be di�cult due to the concurrency of operations on the disks. This is the reason why

it would be useful to provide designers with an automated veri�cation tool tailored speci�cally

for the RAID prototyping system.

As a �rst step towards building such a tool, our approach consists of studying several con-

troller algorithms manually, to determine the key properties that need to be veri�ed.

This paper presents the modeling and veri�cation of a controller algorithm for the RAID

Level 5 System [Gibson95]. We model the system using I/O automata [Lynch89], give an external

requirements speci�cation, and prove that the model implements its speci�cation. We use a key

invariant to �nd an error in a controller algorithm for the RAID Level 6 System [Gibson95].

Keywords: Modeling, Formal veri�cation, I/O Automata, RAID

1 Introduction

Most RAID controllers implemented in industry are complicated and di�cult to reason about. This

complexity has led to software and hardware systems that are di�cult to debug and hard to extend.

To overcome this problem Courtright and Gibson have developed a rapid prototyping framework

for RAID architectures which relies on a generic controller algorithm [Courtright94]. The designer

of a new architecture needs to specify parts of the generic controller algorithm and must justify

the validity of the controller algorithm obtained. However the latter task may be di�cult due to

the concurrency of operations on the disks. This is the reason why it would be useful to provide

designers with an automated veri�cation tool tailored speci�cally for the RAID prototyping system.

As a �rst step towards building such a tool, our approach consists of studying several controller

algorithms manually, to determine the key properties that need to be veri�ed.

�

This work was supported by ARPA contract F19628-95-C-0118 and AFOSR contract F49620-97-1-0337

1

This paper presents the correctness of a controller algorithm [Gibson95] for the RAID Level 5

system. We chose this architecture because of its popularity, as well as for its relative simplicity.

Our method consists of modeling the controller formally, giving an external requirements spec-

i�cation and proving that the model satis�es its speci�cation.

Our study results in a key invariant for the controller that can be generalized for other archi-

tectures. We use this invariant to �nd an error in a RAID Level 6 controller [Gibson95].

The outline of the paper is as follows. Sections 2 and 3 give background on RAID systems

and I/O automata respectively. Section 4 presents the RAID Level 5 system informally. Section 5

gives conventions used throughout the paper. Section 6 describes the speci�cation and Section 7

our model of RAID Level 5 and its properties. Section 8 presents the proof of correctness and

Section 9 the extension of our work to the study of RAID Level 6, as well as the error found.

Finally, Section 10 is a summary of our conclusions and future work.

2 RAID Systems

Improvements in semiconductor technology make possible faster microprocessors and larger primary

memory systems, making secondary storage systems the bottleneck of overall system performance.

As microprocessors get faster, the overall system improvement will not be signi�cant unless there

are also improvements in secondary storage systems.

The emergence of new applications such as video, hypertext and multimedia has also increased

the need for larger secondary storage systems with higher performance. RAID or Redundant Arrays

of Inexpensive Disks were developed in the 1980's to address this need. They were �rst described

at the beginning of the decade [Lawlor81, Park86], and popularized by the work of a group at UC

Berkeley [Patterson88, Patterson89].

We can think of a RAID system as being composed of two parts:

� A disk array, and

� A disk array controller.

The controller's function is to receive a high-level operation from the user of the disk array, and to

carry it out by performing a set of low-level operations on speci�c disks. The user has no knowledge

about the existence of a disk array and sees it as one large, logical disk with high performance.

We use the terms operation and low-level op to refer to a high-level and a low-level operation,

respectively.

RAID systems have two main advantages over traditional secondary storage systems. First, the

data on the disks can be accessed in parallel, which improves the I/O performance. Each �le that

is stored in the array is striped and placed on several disks. This scheme improves the response

time when the user accesses that �le [Kim86, Reddy89, Salem86]. The controller can also carry

out several operations at the same time if the disks involved in these operations are di�erent. This

scheme improves the throughput.

Second, when the number of disks increases in a disk array, the availability of data and the

reliability of the disk array may decrease dramatically [Gibson93]. We consider independent catas-

trophic disk failures, i.e., disk failures in which all data stored on the disk becomes inaccessible and

the disk cannot be written any further. RAID systems are designed to be fault-tolerant by storing

redundant data [Gibson90] on extra disks and to tolerate 1 or 2 disk failures. The redundancy can

be an identical copy of each disk, also known as disk mirroring [Bitton88, Gray90]. In this case, if

the disk containing one copy fails, the controller can use the other copy which is on a separate disk.

Having two copies of each data unit also has the advantage that, in the case of read operations, if

2

the disk containing one copy is busy with a di�erent operation, the other disk can be used instead,

improving throughput. In this form of redundancy, lost or damaged data can be recovered by using

the backup copy.

Another form of redundancy is having a parity disk [Patterson88], for n disks containing data.

The parity disk contains blocks, called parity blocks, that cover groups of n blocks independently

stored. A set of n blocks along with the parity block that covers them is called a parity group. The

parity block is computed by performing a bit-wise exclusive or operation on the blocks it covers.

Given any set of n blocks, the (n + 1)st block can be recovered by performing an exclusive or

operation on the n blocks.

There are several RAID architectures that are classi�ed into �ve \levels" [Patterson88]. RAID

Level 1 employs disk mirroring and thus uses twice as many disks as a non-redundant disk array

for the same amount of data. RAID Level 2 provides redundancy by using Hamming codes. Levels

3, 4 and 5 all use parity. RAID Level 3 is bit-interleaved, meaning that data is interleaved bit-wise

over the data disks. RAID Level 4 is block-interleaved. RAID Level 5 is also block-interleaved, but

distributes parity among all the disks in the array. All the architectures mentioned above tolerate

a single disk failure. Two other levels have been introduced. The �rst one is RAID Level 6 which

is a two fault-tolerant architecture. It employs two parities, one of which is computed using Reed-

Solomon codes. The second one is just a non-redundant disk array, RAID Level 0, which is not

fault-tolerant. Beyond the above taxonomy, a number of RAID architectures have been proposed

to solve a variety of price/performance/dependability tradeo� questions.

Di�erent RAID architectures can be distinguished based on their type of encoding, mapping

and algorithms used to access data. The encoding indicates the type of redundancy information

used, and the mapping the placement of data and redundant information on the disk array.

Algorithms used to access data can be classi�ed as normal-mode and failed-mode ones. In

normal-mode, the controller knows about failed disks, if any, and operates on the disk array with

this knowledge. In failed-mode, a disk failure has occurred in the middle of controller operation.

The controller then needs to recover from the error and complete the operation. This process is

called error recovery.

Most RAID architectures use forward error recovery. This scheme consists of transitioning from

a state in which an error has occurred in the middle of controller operation directly to completion.

This method requires knowing about the context in which an error occurred and thus involves

enumerating a large number of erroneous states. Courtright notes in his dissertation that 60 to

70% of the code found in implementations based upon forward error recovery may be devoted to

error recovery. Furthermore these schemes results in architecture-speci�c controller algorithms,

making extension to new architectures di�cult.

To overcome this problem, Courtright and Gibson propose a form of backward error-recovery

method [Courtright94]. Traditional backward error-recovery methods consist of undoing operations

and returning the disk array to an error-free state. The disadvantage of these methods is that they

are expensive. However, Courtright and Gibson's method is based on retry

1

. When an error is

encountered, the state of the system is modi�ed to note which disk has failed, and the operation is

retried based on the new state.

In this approach, operations are represented as Directed Acyclic Graphs (DAGs). Each node

in a DAG is a low-level op to be performed on a disk or a low-level op that computes data. DAGs

provide a visualization of operations, which simpli�es reasoning about the ordering of low-level ops.

Courtright and Gibson's method of error recovery [Courtright94] has two requirements. First,

1

Courtright has since moved on to a similar but di�erent error recovery method called roll-away error recovery

[Courtright97]

3

each low-level op must be idempotent. When a DAG fails, some low-level ops may have been

executed and some may have not. The controller then retries the operation with a similar DAG

and low-level ops that have already been performed will be performed again. Idempotency ensures

that a low-level op that is executed several times has the same e�ect as if it is executed only once.

Secondly, the execution of DAGs must leave the array in a consistent state, that is the redundant

information must be correct.

Due to the concurrency of low-level ops and the existence of failures, reasoning about the

correctness of an algorithm using Courtright and Gibson's error recovery method may be di�cult.

This task would be easier if an automated veri�cation tool were provided.

As a �rst step towards building such a tool, our approach consists of studying several controller

algorithms manually. This paper studies the correctness of a controller algorithm [Courtright94]

for the RAID Level 5 system [Gibson95], that uses Courtright and Gibson's error recovery method.

We chose this architecture because of its popularity, as well as for its relative simplicity.

We model the algorithm using I/O automata [Lynch96], and give an external requirements

speci�cation. We then prove that the model implements its speci�cation, in the sense that there

exists a simulation relation [Lynch96] from the model to its speci�cation.

3 I/O Automaton Model

I/O automata [Lynch89] provide a mathematical model suitable for describing asynchronous con-

current systems. The model provides a precise way of describing and reasoning about system

components that interact with each other and permits the composition of these components.

An I/O automaton is a state machine that has labels, called actions, associated with its tran-

sitions. The following de�nitions introduce signatures and I/O automata.

De�nition 3.1 A signature S is a triple consisting of three disjoint sets of actions:

� in(S), the input actions,

� out(S), the output actions,

� int(S), the internal actions.

The input together with the output actions are called the external actions. The external inter-

face is de�ned to be the signature (in(S), out(S), ;). We de�ne acts(S) to be all actions of S and

local(S) to be out(S) [int(S).

De�nition 3.2 An I/O automaton A consists of �ve components:

� sig(A), a signature.

� states(A), a (not necessarily �nite) set of states.

� start(A), a nonempty subset of states(A) known as the start states or initial states.

� trans(A), a state-transition relation, where trans(A) � states(A) � acts(sig(A)) � states(A).

An element (s,�,s

0

) of trans(A) is called a transition, or a step of A. trans(A) must have

the property that for every state s and every input action �, there is a transition (s,�,s

0

) 2

trans(A).

4

� task(A), a task partition, which is an equivalence relation on local(sig(A)) having at most

countably many equivalence classes.

We do not use the task partition in our I/O automaton models, because we do not deal with

fairness or liveness issues. An action � is said to be enabled in a state s if there is another

state s

0

such that (s,�,s

0

) is a transition of the automaton. Input actions are enabled in every

state; i.e automata are not able to \block" input actions from occurring. An execution fragment

of an I/O automaton is either a �nite sequence s

0

,�

1

,s

1

,�

2

,s

2

,. . . ,�

n

,s

n

, or an in�nite sequence

s

0

,�

1

,s

1

,�

2

,s

2

,. . . , of alternating states and actions such that (s

i

,�

i+1

,s

i+1

) is a transition of the

automaton for every i � 0. An execution is an execution fragment that begins with a start state. A

state is reachable if it occurs in some execution. The trace of an execution fragment is the sequence

of external actions in that execution fragment. We denote the set of traces of the executions of an

automaton A, by traces(A).

Two automata A and B are allowed to be composed together, if the following is true.

� The internal actions of A are disjoint from the actions of B, and vice versa.

� The set of output actions of A and B are disjoint.

When the above two properties are true, we say that A and B are compatible. The composition

of A and B, denoted A�B, is the following automaton.

� sig(A�B) = (in(A) [in(B) � out(A) [out(B), out(A) [out(B), int(A) [int(B))

� states(A�B) = states(A) � states(B)

� start(A �B) = start(A) � start(B)

� trans(A �B) is the set of triples (s,�,s

0

) such that, if � 2 acts(A), then (s

A

,�,s

0

A

) 2 trans(A);

otherwise s

A

= s

0

A

, and similarly for B.

� task(A�B) = task(A) [task(B).

We say that an automaton A implements an automaton B if traces(A) � traces(B). The

following de�nes a simulation relation from an automaton A to an automaton B, and the following

theorem states that if there exists a simulation relation from A to B then A implements B.

De�nition 3.3 Let A and B be two I/O automata with the same external interface and f a binary

relation over states(A) and states(B). Then f is a simulation relation from A to B, provided that

both of the following are true:

1. If s 2 start(A), then there exists u such that u 2 start(B) and f(s,u) = true.

2. If s is a reachable state of A, u is a reachable state of B such that f(s,u) = true, and (s,�,s

0

)

2 trans(A), then there exists an execution fragment � of B starting with u and ending with

some u

0

such that f(s

0

,u

0

) = true and trace(�) = trace(�).

Theorem 3.4 If there is a simulation relation from an automaton A to an automaton B, then

traces(A) � traces(B).

5

RD i_0

RD i_(m-1)

Figure 1: DAG1, Fault Free Read DAG.

4 Informal Description of the RAID Level 5 System

RAID Level 5 [Gibson95] uses parity and can tolerate one disk failure. In this architecture, data is

block-interleaved and parity blocks are distributed among all the disks in the array. A parity block

is the bit-wise XOR of all the blocks it covers. We assume that there are n+ 1 disks in the array.

The controller receives read and write operations from the environment sequentially. For each

operation it �gures out where the data to be read/written is located in the array, and what parity

groups are concerned. For each parity group, the controller chooses an algorithm for carrying out

the operation and starts executing it. If a disk needed in an algorithm fails while the algorithm

is running, then the controller stops the execution of that algorithm and chooses another one to

complete the operation. The controller assumes at most one failure.

Disk array algorithms are represented as Directed Acyclic Graphs (DAGs). Each node in a

DAG represents a disk read or write or an XOR. All the low-level ops of a single DAG refer to a

unique parity group and represent reads and writes to disk sectors. In a read DAG, we denote the

indices of disks to be read by i

0

to i

m�1

in an arbitrary order, where m is an integer such that 0 �

m < n. Similarly, in a write DAG, we denote the indices of disks to be written by i

0

to i

m�1

. In

this case, i

m

to i

n�1

represent indices of disks not to be written. We denote the index of the failed

disk by failed. In the DAGs, the notation RD i means read disk with index i (similarly for WR i).

DAGs and the criteria for choosing them are described below.

DAGs and DAG selection Figures 1 through 6 present the DAGs. Note that these are

informal and do not contain information about how to compute parity blocks. We do not give

formal semantics for these DAGs. An arrow from node A to node B indicates that node A must

be performed before node B. Low-level ops are atomic.

� Fault Free Read (DAG1, Figure 1) The Fault-Free Read DAG is used when there is no

failure among the disks to be read. It consists of reading disks containing the data to be read

directly.

� Degraded Read (DAG2, Figure 2) The Degraded Read DAG is used when one of the disks

to be read has failed. It consists of reading the entire array, except the failed disk, and

reconstructing the missing data, by taking the bit-wise XOR of the data read.

� Small Write (DAG3, Figure 3) The Small Write DAG is used in the absence of failures,

when less than half of the array is to be written. In the presence of a failure in a disk that is

not to be written, the Small Write is also used regardless of the number of disks to be written.

It consists of reading the old data on the disks to be written and the parity, computing the

new parity and writing the new parity and the new data. The new parity is the bit-wise XOR

of the old data, the new data and the old parity.

6

RD n

XOR

RD failed-1

RD failed+1

RD 0

Figure 2: DAG2, Degraded Read DAG.

RD i_0 WR i_0

RD n XOR WR n

RD i_(m-1) WR i_(m-1)

Figure 3: DAG3, Small Write DAG

RD i_m WR i_0

XOR WR n

WR i_(m-1)RD n-1

Figure 4: DAG4, Large Write DAG, no failure

7

RD i_m

WR i_0

WR nXOR

WR failed+1

WR failed-1

WR i_(m-1)

RD n-1

Figure 5: DAG5, Large Write DAG, failure in disk to be written.

WR i_0

WR i_(m-1)

Figure 6: DAG6, Large Write DAG, parity failure.

8

� Large Write, absence of failure (DAG4, Figure 4) DAG4 is chosen when there are no

failures and more than half of the array is to be written. DAG4 consists of reading the data

from the disks that are not to be written, computing the parity from the data read and the

data to be written and writing the new parity and data. In DAG4, there is an antecedence

from each read to each write. Without these antecedences, there exists an execution of the

DAG that leaves the disk array in an inconsistent state and no DAG can restore consistency.

� Large Write, failure in disk to be written (DAG5, Figure 5) In the presence of a failure

in a disk that is to be written, DAG5 is used regardless of the number of disks to be written.

DAG5 is identical to DAG4 except that the failed disk is not written.

� Large Write, failure in parity disk (DAG6, Figure 6) DAG6 is used when the parity disk

has failed. It consists of writing the disks to be written directly.

5 Conventions

In this section, we introduce the notation we use throughout the paper. We use the type V =

f0,1g to denote values of bits read or written. The symbol ? denotes the unde�ned value, and

?

+

denotes a marked version of the unde�ned value. The usage of the latter will become apparent

when we introduce the models. The type V

+

denotes V [f?

+

g. We de�ne the ordering relation

� on V

+

[f?g as follows.

� v � v

0

, (v = v

0

) _ (v 2 f?;?

+

g ^ v

0

2 f0; 1g)

We next de�ne types needed for the indices of disks. We use I to denote the set f0, ..., n� 1g

and I

n

the set I [fng. B is the set of all subsets of I, and B

n

the set of all subsets of I

n

. We

de�ne the following operators, for B 2 B,

� B

co

= I �B.

� B

n

= B [fng.

We use the notation B

co

n

to denote (B

co

)

n

. We use the shorthand notation B=j to denote B=fjg,

for B 2 B

n

and j 2 I

n

[fnoneg. In this notation, j intuitively represents a disk that has failed.

The value none represents no failure. So B=j intuitively means all indices in B except the one that

has failed, if any.

Finally, P is the set of all partial functions from I to V

+

. Likewise, P

n

is the set of all partial

functions from I

n

to V

+

. We use the symbol ? to represent the unde�ned value for a partial

function. P

0

of type P is such that 8i 2 I, P

0

[i] = ?. Similarly, P

n0

of type P

n

is such that

8i 2 I

n

, P

n0

[i] = ?.

We also de�ne the following functions.

� For P 2 P

n

, indices(P)= fi j P [i] 2 Vg, and

�

L

P =

(

L

i2indices(P)

P [i] if indices(P) 6= ;,

0 otherwise.

We also introduce the following shortcuts for the code in our models.

� For P 2 P

n

, B 2 B

n

and v 2 V

+

, P (B) := v is equivalent to the following piece of code:

for all i 2 B do P [i] := v od .

9

Env

Signature

Inputs:

ReadBack(P) P 2 P

WriteOK

Internals:

Outputs:

Read(B) B 2 B

Write(P) P 2 P

State

ready Boolean, initially true.

Transitions

Read(B)

Pre:

ready = true

E�:

ready = false

ReadBack(P)

E�:

ready = true

Write(P)

Pre:

ready = true

E�:

ready = false

WriteOK

E�:

ready = true

Figure 7: I/O Automaton for the environment

� For P 2 P

n

, Q 2 P , P := Q is equivalent to the following piece of code:

for all i 2 I do P [i] := Q[i] od ; P [n] := ?

6 Speci�cation

In this section, we describe the speci�cation, Spec, for the system. Spec makes the assumption that

there are n bits, indexed from 0 to n� 1 that can be read or written. It captures the property that

the value returned on a read from a bit corresponds to the last write to that bit, or an arbitrary

value if no write has been performed. It interacts with an environment automaton Env. Section 6.1

presents the environment. Section 6.2 presents the speci�cation and �nally Section 6.3 presents

some properties of the speci�cation composed with its environment.

6.1 Environment

Figure 7 shows the environment of the speci�cation. The automaton has the following interface.

� Inputs:

{ ReadBack(P), where P 2 P .

{ WriteOK.

� Outputs:

{ Read(B), where B 2 B.

{ Write(P), where P 2 P .

10

The environment Env submits one outstanding request (Read(B), Write(P)) at a time, that is,

before submitting the next request the environment waits for a response (ReadBack(P), WriteOK)

from Spec. The environment may read or write bits indexed from 0 to n-1.

6.2 Speci�cation

Figure 8 presents the model for the speci�cation. Underlined variables and statements are not part

of the basic model. These variables are history variables and will be introduced below. The model

has the following external interface.

� Inputs:

{ Read(B), where B 2 B.

{ Write(P), where P 2 P .

� Outputs:

{ ReadBack(P), where P 2 P .

{ WriteOK.

Spec has the following state variables.

� Bit is an array of n bits, indexed from 0 to n� 1, initially arbitrary.

� ReadPairs is of type P and is initially P

0

. It is used to record what bits need to be read.

� WritePairs is of type P and is initially P

0

. It is used to record what bits and values need to

be written.

� pc ranges over fidle,read,writeg and is initially idle.

Spec has the following transitions.

� Read(B) is an input from the environment. It has the e�ect of placing a placeholder ?

+

in

ReadPairs for every index that needs to be read.

� Upon receiving a Read(B) input, the automaton performs a series of internal read(i) actions

to perform the read. Each such action reads Bit[i] and records that value in ReadPairs.

� When all bits that had to be read have been read, the automaton performs a ReadBack(P)

output, where P is identical to ReadPairs. This action resets state variables.

� Write(P) is the other input from the environment. It has the e�ect of setting the variable

WritePairs to P , thereby recording which bits need to be written with what values.

� Upon receiving a Write(P) input, the automaton performs a series of internal write(i,v)

actions to perform the writes. Each such action writes value v to Bit[i] and sets WritePairs[i]

to ?.

� When WritePairs has no more values to be written, the automaton performs a WriteOK

output, which sets pc back to idle.

We add the following history variables to Spec. The modi�ed automaton is shown in Figure 8.

The changes are shown by underlining. These variables are useful for the main proof of correctness.

11

Spec

Signature

Inputs:

Read(B) B 2 B

Write(P) P 2 P

Internals:

read(i)

write(i,v)

Outputs:

ReadBack(P) P 2 P

WriteOK

State

Bit Array of n bits, indexed from 0 to n-1, initially arbitrary.

ReadPairs P, initially P

0

.

WritePairs P, initially P

0

.

pc fidle,read,writeg, initially idle.

Indices B, initially empty.

WritePairsPerm P, initially P

0

.

Transitions

Read(B)

E�:

ReadPairs(B) := ?

+

pc := read

Indices := B

read(i)

Pre:

pc = read

ReadPairs[i] = ?

+

E�:

ReadPairs[i] := Bit[i]

ReadBack(P)

Pre:

pc = read

8i 2 I, ReadPairs[i] 6= ?

+

P = ReadPairs

E�:

ReadPairs := P

0

pc := idle

Indices := fg

Write(P)

E�:

WritePairs := P

pc := write

Indices := indices(P)

WritePairsPerm := P

write(i,v)

Pre:

pc = write

WritePairs[i] = v, where v 2 V

E�:

WritePairs[i] := ?

Bit[i] := v

WriteOK

Pre:

pc = write

WritePairs = P

0

E�:

pc := idle

Indices = fg

WritePairsPerm := P

0

Figure 8: I/O Automaton for Spec.

12

� Indices of type B, initially empty. Actions Read(B) and Write(P) set it and ReadBack(P)

and WriteOK reset it. It records what bits need to be read during a read operation and what

bits need to be written during a write.

� WritePairsPerm of type P , initially P

0

. It records bits and values to be written during a

write operation. It does not change as the write progresses. Actions Write(P) and WriteOK

modify it.

6.3 Properties of Spec

We use Spec

0

to denote the composition of Spec with Env. Spec

0

has the following properties. The

symbol * indicates that the lemma is used in the main proof of correctness (Section 8.4). The �rst

lemma is a basic lemma. Part 1 states that for all i 2 I, WritePairs[i] is not ?

+

. Part 2 states

that the variables ReadPairs and WritePairs are unde�ned at indices that are not to be read or

written.

Lemma 6.1 * In all reachable states of Spec

0

,

1. For all i 2 I, WritePairs[i] 6= ?

+

.

2. For all i 62 Indices, ReadPairs[i] = WritePairs[i] = ?.

The �rst part of the second lemma states the fact that if Spec

0

has read a value and stored it

in ReadPairs, then this value is correct, that is, it is the same value as what is stored in Bit. The

following invariant states the fact that if Spec

0

has written a value it was supposed to write, then

Bit contains the value written. Finally, the third part states that if there is a value to be written

in WritePairs then this value is the same as the corresponding one in WritePairsPerm.

Lemma 6.2 * In all reachable states of Spec

0

, for all i 2 I,

1. If ReadPairs[i] 2 V, then ReadPairs[i] = Bit[i].

2. If WritePairsPerm[i] 2 V, and WritePairs[i] = ?, then Bit[i] = WritePairsPerm[i].

3. If WritePairs[i] 2 V, then WritePairsPerm[i] = WritePairs[i].

7 Model for the RAID Level 5 System

In this section, we give our model for the RAID Level 5 System. Section 7.1 presents some as-

sumptions. Section 7.2 presents the model and Section 7.3 presents some properties of the model

composed with its environment.

7.1 Assumptions

The following lists the assumptions and justi�cations for these assumptions made by the RAID

Level 5 model.

� The controller uses the same set of DAGs on every parity group and two DAGs on di�erent

parity groups do not interfere with each other's execution. Therefore it is su�cient to show

that the controller's behavior is correct on one parity group. Thus the model assumes a single

parity group consisting of n+ 1 disks, indexed from 0 to n, where disk n is the parity disk.

13

� All parity computations are bit-wise. Therefore the model assumes one bit per disk, and this

restriction can be removed trivially.

� The model assumes at most one disk failure.

7.2 Model

We present the RAID Level 5 model in Figures 9, 10, and 11, and refer to this model as RAID. In

the �gures, underlined variables and statements are not part of the basic model. These variables

are history variables and will be introduced below.

The external interface of RAID is the same as the one for Spec. The environment automaton

Env (Figure 7) presented earlier interacts with RAID.

RAID has the following state variables.

� Disk is an array of n+1 bits, indexed from 0 to n. This variable models a single parity group

in a physical RAID system. Disk[n] models the parity. The values in Disk are initially such

that:

L

0�i�n

Disk[i] = 0.

� Indices is of type B, initially empty, and is used to hold the indices of disks to be written or

read.

� ReadPairs is of type P

n

, initially P

n0

. It is used to remember values read from Disk. It is

also used to indicate which indices need to be read.

� WritePairs is of type P

n

, initially P

n0

. It is used to remember values that are to be written

to Disk and that have not been written yet.

� WritePairsPerm is of type P , initially P

0

. It is used to remember the values that are to be

written to disks other than the parity, for the duration of a write operation.

� DAG ranges over fnone,chooseR,chooseW,1,2,3,4,5,6g and indicates which DAG is currently

running or whether a DAG is to be chosen. It is set to none when the automaton is idle,

which is also its initial value.

� f is of type I

n

[fnoneg and indicates which disk has failed. If it is equal to none, then no disk

has failed. A failed disk cannot be read or written any further. This models the catastrophic

failure of disks. f is initially none.

We de�ne the following derived variables for RAID, which are used in the statement of properties

and proofs in subsequent sections.

� All = I

n

=f.

� StartedWriting, is a boolean equivalent to 9i 2 Indices, WritePairs[i] 6= WritePairsPerm[i].

RAID does not represent DAGs explicitly. DAG nodes are represented by the actions read(i),

write3(i,v), write45(i,v) and write6(i,v). DAG precedences are represented in the preconditions of

low-level writes. DAG selection is done using actions chooseDAG1, through chooseDAG6. Note

that XOR nodes in the DAGs are not present in the model as separate actions, the XORs are

computed in the preconditions of low-level writes to Disk[n].

We now explain how RAID works.

14

RAID

Signature

Inputs:

Read(B) B 2 B

Write(P) P 2 P

Internals:

read(i), fail(i) i 2 I

n

write3(i,v), write45(i,v), write6(i,v) i 2 I

n

, v 2 V

chooseDAG1, chooseDAG2

chooseDAG3, chooseDAG4

chooseDAG5, chooseDAG6

Outputs:

ReadBack(P) P 2 P

WriteOK

State

Disk Array of n+1 bits, indexed from 0 to n, initially such that

L

i

Disk[i] = 0.

Indices B, initially empty.

ReadPairs P

n

, initially P

n0

.

WritePairs P

n

, initially P

n0

.

WritePairsPerm P, initially P

0

.

DAG fnone,chooseR,chooseW,1,2,3,4,5,6g, initially none

f I

n

[fnoneg, initially none.

VD V, initially 0.

Rec Boolean, initially false.

Transitions

Read(B)

E�:

Indices := B

ReadPairs(B) := ?

+

DAG := chooseR

chooseDAG1

Pre:

DAG = chooseR

f 62 Indices

E�:

DAG := 1

chooseDAG2

Pre:

DAG = chooseR

f 2 Indices

E�:

DAG := 2

ReadPairs(Indices

co

n

) := ?

+

read(i)

Pre:

DAG 2 f1,2,3,4,5g

i 6= f

ReadPairs[i] = ?

+

E�:

ReadPairs[i] := Disk[i]

ReadBack(P)

Pre:

DAG 2 f1,2g

8i 2 Indices=f, P [i] = ReadPairs[i]

8i 2 Indices

co

, P [i] = ?

8i 2 Indices=f, ReadPairs[i] 2 V

if DAG = 2

then 8i 2 Indices

co

n

ReadPairs[i] 2 V

P [f] =

L

ReadPairs

�

E�:

ReadPairs := P

n0

Indices := fg

DAG := none

Rec := false

Figure 9: I/O Automaton for RAID with history variables.

15

RAID (Continued)

Write(P)

E�:

WritePairs := P

WritePairsPerm := P

Indices := indices(P)

DAG := chooseW

chooseDAG3

Pre:

DAG = chooseW

f = none ^ jIndicesj � n=2

_ f 2 Indices

co

E�:

DAG := 3

ReadPairs(Indices

n

) := ?

+

WritePairs[n] := ?

+

chooseDAG4

Pre:

DAG = chooseW

f = none ^ n=2 < jIndicesj

E�:

DAG := 4

ReadPairs(Indices

co

) := ?

+

WritePairs[n] := ?

+

chooseDAG5

Pre:

DAG = chooseW

f 2 Indices

E�:

DAG := 5

ReadPairs(Indices

co

) := ?

+

WritePairs[n] := ?

+

chooseDAG6

Pre:

DAG = chooseW

f = n

E�:

DAG := 6

write3(i,v)

Pre:

DAG = 3

i 6= n

i 6= f

WritePairs[i] = v, v 2 V

ReadPairs[i] 6= ?

+

E�:

WritePairs[i] := ?

Disk[i] := v

write3(n,v)

Pre:

DAG = 3

n 6= f

WritePairs[n] = ?

+

v=

L

ReadPairs

�

L

WritePairsPerm

8i 2 Indices

n

ReadPairs[i] 6= ?

+

E�:

WritePairs[n] := ?

Disk[n] := v

write45(i,v)

Pre:

DAG 2 f4,5g

i 6= n

i 6= f

WritePairs[i] = v, v 2 V

8i2 Indices

co

ReadPairs[i] 6= ?

+

E�:

WritePairs[i] := ?

Disk[i] := v

write45(n,v)

Pre:

DAG 2 f4,5g

n 6= f

WritePairs[n] = ?

+

v =

L

ReadPairs

�

L

WritePairsPerm

8i 2 Indices

co

ReadPairs[i] 6= ?

+

E�:

WritePairs[n] := ?

Disk[n] := v

write6(i,v)

Pre:

DAG = 6

i 6= n

WritePairs[i] = v, v 2 V

E�:

WritePairs[i] := ?

Disk[i] := v

Figure 10: I/O Automaton for RAID with history variables (Continued).

16

RAID (Continued)

WriteOK

Pre:

DAG 2 f3,4,5,6g ^

WritePairs = P

n0

E�:

Indices := fg

ReadPairs := P

n0

WritePairsPerm := P

0

DAG := none

if f 2 Indices

then VD := WritePairsPerm[f]

Rec := false

fail(i)

Pre:

f = none

E�:

f := i

if ReadPairs[i] = ?

+

_ WritePairs[i] 6= ?

then if DAG 2 fchooseR,1g

then ReadPairs(Indices) := ?

+

DAG := chooseR

�

if DAG 2 fchooseW,3,4g

then ReadPairs := P

n0

WritePairs := WritePairsPerm

DAG := chooseW

�

Rec := true

�

if i 6= n then VD := Disk[i] �

Figure 11: I/O Automaton for RAID with history variables (Continued).

� Read(B). When RAID receives a Read(B) input, it records which indices are to be read in

the variable Indices. It also sets ReadPairs[i], for i 2 B , to ?

+

. The symbol ?

+

is used as a

placeholder. The values read from the disk array will be placed into this state variable and

?

+

will be replaced with values read.

� Write(P). When RAID receives a Write(P) input, it records which indices are to be written

along with corresponding values in variable WritePairs.

� chooseDAG. After receiving an input, RAID proceeds to choosing a DAG to execute. The

selection criteria appear in the precondition of each chooseDAG action. DAG1 is selected if

the operation is a read and there is no failure among disks to be read. DAG2 is selected if

the operation is a read and there is a failure among disks to be read. DAG3 is selected if the

operation is a write and either there is no failure and the number of disks to be written is

fewer than half of the number of disks in the disk array, or if there is a failure in a disk not to

be written. DAG4 is selected if the operation is a write, there is no failure, and the number

of disks to be written is greater than half. DAG5 is chosen if there is a failure in a disk to be

written. Finally, DAG6 is selected if the parity disk has failed.

chooseDAG actions may change ReadPairs by putting placeholders for indices to be read.

They may also change WritePairs[n] to ?

+

, which signi�es that Disk[n] needs to be written.

When Disk[n] is actually written, then WritePairs[n] is set back to ?.

� read(i). The precondition for this action includes ReadPairs[i] = ?

+

, which means that this

low-level read needs to be performed and has not been performed yet. The action records the

value read in place of the placeholder ?

+

.

� write3(i,v), write45(i,v), write6(i,v). The preconditions for these actions includeWritePairs[i]

2 V , if i 6= n, and WritePairs[i] = ?

+

, if i = n. These expressions indicate that the low-level

write needs to be performed and has not been performed yet. The action has the e�ect of

setting WritePairs[i] to ?. The precondition of this action also encodes the precedences in

DAGs.

17

� ReadBack(P). If DAG 2 f1,2g and all the appropriate low-level reads have been performed,

then the controller performs a ReadBack(P) output. In the case of DAG2, this action com-

putes the value of disk f by taking the xor of every value in ReadPairs. This variable has a

value in V for every i 2 I

n

except f. Therefore the value computed for disk f is the XOR of

every other disk. The e�ect of the action is to reset state variables.

� WriteOK. If DAG 2 f3,4,5,6g and all the appropriate low-level writes have been performed,

then the controller performs a WriteOK action. Its e�ect is to reset state variables.

� fail(i). A fail(i) action may occur at most once. It sets variable f to i. The test ReadPairs[i]

= ?

+

_WritePairs[i] 6= ? checks whether there is any low-level read or write on Disk[i] that

needs to be executed. In that case, the action stops the execution of the current DAG by

changing DAG to either chooseR or chooseW, which causes a new DAG to be chosen using

the same rules as before. Otherwise, DAG remains unchanged.

We add the following history variables to RAID. The changes are shown in Figures 9, 10, and

11 by underlining.

� VD of type V stands for Virtual Disk and is initially 0. It is used to keep the last value

written to a disk, except the parity disk, if it has failed. VD is updated as indicated in the

�gure.

� Rec, is a boolean, initially false. It is true when a DAG has stopped execution because of a

failure and a second DAG is running to complete the operation. Rec is updated by fail(i),

ReadBack(P) and WriteOK.

7.3 Properties of RAID

0

We use RAID

0

to denote the composition of RAID and Env. In this section, we give some properties

of RAID

0

. The symbol * indicates the lemmas used in the main proof of correctness (Section 8.4).

The Lemmas not marked with this symbol are used in the proof of the Consistency Lemma presented

in Section 8.1. The proofs for these Lemmas are simple inductive arguments, which require the

introduction of other very simple Lemmas.

Lemma 7.1 presents some basic properties of RAID

0

.

Lemma 7.1 In all reachable states of RAID

0

,

1. If ready = true, then DAG = none.

2. * If f = none, then Rec = false.

3. If DAG = chooseW then StartedWriting = false.

Lemma 7.2 gives some properties concerning the variable ReadPairs. Invariant 1 states that

during the execution of DAGs 1 and 2, if the controller has read a value, then this value is equal

to the value on the corresponding disk. Invariant 2 states that during DAG2, the failed disk is not

read. Invariant 3 presents the fact that during DAGs 4 and 5, the controller does not read disks

to be written. Invariant 4 says that if action WriteOK is enabled, i.e., at the end of execution

of a write DAG, no read of the disk array is enabled. Finally, Invariant 5 states that during the

execution of DAG 4, if the DAG has started writing, then all disks not to be written have been

read, and the values read are equal to the corresponding values on the disk, or to VD if a disk has

failed.

18

Lemma 7.2 In all reachable states of RAID

0

,

1. * If DAG 2 f1,2g, and for i 2 I

n

=f, ReadPairs[i] 2 V, then ReadPairs[i] = Disk[i].

2. * If DAG = 2, then ReadPairs[f] = ?

+

.

3. If DAG 2 f4,5g, then for all i 2 Indices

n

, ReadPairs[i] = ?.

4. If WriteOK is enabled, then for all i 2 I

n

, ReadPairs[i] 6= ?

+

.

5. If DAG = 4 ^ StartedWriting then for all i 2 Indices

co

:

ReadPairs[i] =

(

Disk[i] if i 6= f,

VD otherwise.

Lemma 7.3 gives some properties concerning WritePairs. Invariant 1 states that for all i not

equal to n, WritePairs[i] is never set to ?

+

. Invariant 2 presents the fact that if there is a value in

WritePairs that has not been written yet, then this value is the same as the corresponding value

in WritePairsPerm. Invariant 3 states that during the execution of DAG5, the failed disk is not

written. Invariant 4 says that when DAG 2 fchooseW,3,4g, if a read of a disk to be written is

enabled, then the write to that disk has not been performed yet. Finally, Invariant 5 states that

the controller only writes indices that are to be written.

Lemma 7.3 In all reachable states of RAID

0

,

1. * 8i 2 I, WritePairs[i] 6= ?

+

.

2. * If for some i 2 I, WritePairs[i] 2 V, then WritePairsPerm[i] = WritePairs[i].

3. * If DAG = 5, then WritePairs[f] 2 V.

4. * If DAG 2 fchooseW,3,4g, and for some i 2 Indices, ReadPairs[i] = ?

+

, then WritePairs[i]

2 V.

5. If for i 2 I, WritePairs[i] 2 V, then i 2 Indices.

Lemma 7.4 states properties concerning the f variable. Invariant 1 says that if DAG6 is executing

then the parity disk has failed. Invariant 2 states that if DAG 2 or 5 is running then a disk in

Indices has failed.

Lemma 7.4 In all reachable states of RAID

0

,

1. If DAG = 6, then f = n.

2. If DAG 2 f2,5g, then f 2 Indices.

Lemma 7.5 gives a property concerning the state of DAG 3, or DAG 4 when it has started

writing. The expression \for some i 2 I

n

, ReadPairs[i] = ?

+

_ WritePairs[i] 6= ?", implies that

there is a low-level read or write to disk i to be done in this state. The invariant states that i must

be in Indices

n

. For DAG3 this is easy to see, since DAG3 only reads and writes disks with indices

in Indices

n

. For DAG4, this is true because the DAG has started writing and the precedences are

such that all the reads to indices not in Indices

n

have been performed.

Lemma 7.5 In all reachable states of RAID

0

, if DAG = 3 _ (DAG = 4 ^ StartedWriting) and

for some i 2 I

n

, ReadPairs[i] = ?

+

_ WritePairs[i] 6= ?, then i 2 Indices

n

.

19

Lemma 7.6 presents properties concerning the Disk variable. Invariant 1 states the fact that if

the parity disk has been written, then Disk[n] contains the value that is indicated. Invariant 2 says

that, for write DAGs, if a write has been performed, then the disk contains the value written, if

the disk has not failed.

Lemma 7.6 In all reachable states of RAID

0

,

1. If DAG 2 f3,4,5g and WritePairs[n] = ?, then

Disk[n] =

L

ReadPairs �

L

WritePairsPerm.

2. If DAG 2 f3,4,5,6g and for i 2 Indices=f, WritePairs[i] = ?, then Disk[i] = WritePairsPerm[i].

8 Proof of Correctness

This section presents the proof of correctness. Section 8.1 presents the key invariant called Consis-

tency. Section 8.2 gives the simulation relation to be proved. Section 8.3 gives the step correspon-

dence of the proof. Finally Section 8.4 presents the proof of the simulation relation.

8.1 Consistency

In this section, we present and prove the Consistency property. Informally, a parity group with no

failure is consistent, if the XOR of all bits is equal to 0. If there is a failure at a disk other that

the parity disk, then the XOR of all bits, except the one that has failed, is equal to the last value

written to the failed bit. Thus consistency can be expressed as: If f 6= n, then

L

i2All

Disk[i] = VD.

Note that if there is no failure then VD = 0.

The Consistency property consists of two parts as indicated in Lemma 8.1. The �rst part

expresses under what conditions the parity group is consistent. These conditions are: when the

controller is idle or doing a read operation, when the controller is about to choose a write DAG

and the failed disk, if any, is not among the disks to be written, and when DAG4 is executing and

it has not started writing. This last condition is true because of the dependencies in DAG4 that

force all the writes to occur after all the reads.

When the controller is executing a write DAG and it has started writing, the parity group is no

longer consistent. The second part of Lemma 8.1 expresses an invariant relevant to the execution

of write DAGs 3,4, and 5, that is needed to restore the parity group to a consistent state when the

write operation is done. Note that the parity group is trivially consistent after the execution of

DAG6, since f = n in that case.

Informally, the second part expresses the fact that the parity group resulting from the execution

of a write DAG is in a consistent state. A write DAG has �nished executing if action WriteOK is

enabled. In such a state we have the following.

L

i2All

Disk[i] =

(

VD if f 62 Indices,

v otherwise, where v = WritePairsPerm[f]

We have the following.

M

i2All

Disk[i] =

M

i2Indices=f

Disk[i]�

M

i2Indices

co

=f

Disk[i]�Disk[n]

=

M

i2Indices=f

Disk[i]�

M

i2Indices

co

=f

Disk[i]

�

L

ReadPairs �

L

WritePairsPerm;by Part 1 of Lemma 7.6.

20

Part 2 of Lemma 7.6 implies that

L

i2Indices=f

Disk[i]�

L

WritePairsPerm =

(

0 if f 62 Indices,

v otherwise, where v = WritePairsPerm[f].

Therefore we have that

L

i2Indices

co

=f

Disk[i]�

L

ReadPairs =

(

VD if f 62 Indices,

0 otherwise.

When a write DAG is executing, ReadPairs gets its values from the disks. This motivates the

second part of the Consistency Lemma.

Lemma 8.1 * Consistency In all reachable states of RAID

0

, if n 6= f, then:

1. If DAG 2 fnone,chooseR,1,2g _ (DAG = chooseW ^ f 62 Indices) _

(DAG = 4 ^ : StartedWriting), then

L

i2All

Disk[i] = VD.

2. If DAG 2 f3,5g _ (DAG= 4 ^ StartedWriting), then

L

ReadPairs �

M

ReadPairs[i]=?

+

Disk[i]�

M

i2Indices

co

=f

Disk[i] =

(

VD if f 62 Indices

0 otherwise

In the following proof we refer to the statements above as Invariant 1 and Invariant 2.

Proof. Initially, DAG = none,

L

i

Disk[i] = 0, f = none, and VD = 0. Therefore Consistency is

satis�ed in any initial state.

We show that each step (s,�,s

0

) of RAID

0

preserves the invariant. Consider the following cases.

In the following, a variable name not preceded by the name of a state, stands for the variable in

state s.

Case: � 2 fRead(B),Write(P)g

Since s.ready = true, then by Invariant 1 of Lemma 7.1, s.DAG= none. By the inductive hypothesis,

Invariant 1 is true in s. This invariant is trivially preserved in s

0

.

Case: � = read(i)

Consider the following cases.

Subcase: s.DAG 2 f1,2g _ s.DAG = 4 ^ : StartedWriting

In this case, the invariant is trivially preserved.

Subcase: s.DAG 2 f3,5g _ s.DAG= 4 ^ StartedWriting

In this case, Invariant 2 is true in s. The e�ect of � is such that this invariant is preserved.

Case: � = chooseDAG3

By the precondition of �, s.DAG = chooseR. Therefore Invariant 1 is true in s. Action � sets DAG

to 3, and assigns ?

+

to all ReadPairs[i] such that i 2 Indices

n

. We also know that f 62 Indices

n

.

We have that

L

s

0

.ReadPairs = 0. Therefore Invariant 2 is true in s

0

.

Case: � = chooseDAG4

Action � sets DAG to 4. By Invariant 3 of Lemma 7.1, s.StartedWriting is false. We know that

s.DAG = chooseW, and s.f = none. By the inductive hypothesis, Invariant 1 is true, and this

invariant is preserved in s

0

.

21

Case: � = chooseDAG5

Action � sets DAG to 5, and assigns ?

+

to all ReadPairs[i] such that i 2 Indices

co

. We have that

L

s

0

.ReadPairs = 0 and f 2 Indices. Therefore Invariant 2 is true in s

0

and the invariant is preserved

in this case.

Case: � = write3(i,v)

We know that s.ReadPairs[i] 6= ?

+

, also i 2 Indices, by Invariant 5 of Lemma 7.3. Therefore action

� preserves the invariant trivially.

Case: � = write45(i,v)

By Lemma 5, i 2 Indices and by Lemma 3 ReadPairs[i] = ?. Consider the following cases.

Subcase: s.DAG = 5 _ s.DAG= 4 ^ StartedWriting

The invariant is preserved trivially in this case.

Subcase: s.DAG = 4 ^ : StartedWriting

In this case, Invariant 1 is true in s. Invariant 5 of Lemma 7.2 implies that

L

ReadPairs �

M

i2Indices

co

=f

Disk[i] =

(

VD if f 2 Indices=f

0 otherwise

By the precondition of �, 8j 2 Indices=f, ReadPairs[j] 6= ?

+

. Thus Invariant 2 is true in s

0

.

Case: � = write6(i,v)

Since f = n, by Lemma 1, the invariant is preserved trivially.

Case: � = WriteOK

By Lemma 4, for all i 2 I

n

, s.ReadPairs[i] 6= ?

+

. By the inductive hypothesis, Invariant 2 is true

in s. In the following, we use Lemmas 1 and 2.

M

i2All

s:Disk[i] =

M

i2Indices=f

Disk[i]�

M

i2Indices

co

=f

Disk[i]

�

L

ReadPairs �

L

WritePairsPerm

=

(

WritePairsPerm[f] if f 2 Indices

VD otherwise

If f 2 Indices, then WritePairsPerm[f] is written to s

0

.VD. Otherwise VD does not change with

action � and Invariant 1 is true in s

0

. Thus the invariant is satis�ed in this case.

Case: � = fail(i)

We have that s.f = none. Action � sets VD to Disk[i]. Note that s.DAG 62 f2,5,6g. Consider the

following cases.

Subcase: DAG 2 fnone,chooseR,chooseW,1g _ DAG = 4 ^ : StartedWriting.

In this case, Invariant 1 is true in s and is preserved in s

0

.

22

Subcase: DAG = 3 _ DAG= 4 ^ StartedWriting

In this case, Invariant 2 is true in s. First assume that ReadPairs[i] 6= ?

+

^WritePairs[i] = ?. In

this case Invariant 2 is preserved in s

0

.

Now assume that ReadPairs[i] = ?

+

_ WritePairs[i] 6= ?

By Lemma 7.5, i 2 Indices

n

. Since s

0

.DAG = chooseW, the invariant is trivially satis�ed in this

case.

8.2 Simulation Relation

Let s and u be states of RAID

0

and Spec

0

respectively, and f the following relation.

f(s,u) , f

1

(s,u) ^ f

2

(s,u) ^ f

3

(s,u) ^ f

4

(s,u) ^ f

5

(s,u),

where f

1

(s,u) through f

5

(s,u) are de�ned below.

� f

1

(s,u) , 8 i s.t. 0 � i < n

if s.f 6= i then u.Bit[i] = s.Disk[i]

else u.Bit[i] = s.VD

� f

2

(s,u) , 8i 2 s.Indices

if s.DAG 2 fchooseR,1,2g ^ (s.Rec = false _ i = s.f)

then s.ReadPairs[i] = u.ReadPairs[i]

else s.ReadPairs[i] � u.ReadPairs[i]

� f

3

(s,u) , 8i 2 s.Indices

if s.DAG 2 fchooseW,3,4,5,6g ^ (s.Rec = false _ i = s.f)

then u.WritePairs[i] = s.WritePairs[i]

else u.WritePairs[i] � s.WritePairs[i]

� f

4

(s,u) , if s.DAG = none then u.pc = idle

elseif s.DAG 2 fchooseR,1,2g then u.pc = read

else u.pc = write

� f

5

(s,u) , u.WritePairsPerm = s.WritePairsPerm ^ u.ready = s.ready.

f

1

gives the correspondence between Bit and Disk variables. If disk i has failed, then u.Bit[i] =

s.VD. f

2

and f

3

give the correspondence for ReadPairs and WritePairs variables. If the controller

is running a DAG right after receiving an input (s.Rec = false), then the variables are equal to

their counterparts in Spec. On the other hand, if a DAG has failed and the controller is running

a second DAG to complete the operation then the variables are related to their counterparts with

the � relation, de�ned previously in Section 5. In either case, if a disk i has failed, then these

variables evaluated at i are equal to their counterparts. f

4

gives the correspondence between DAG

and pc. f

5

gives some trivial equalities.

We show the following theorem.

Theorem 8.2 f is a simulation relation from RAID

0

to Spec

0

.

23

8.3 Step Correspondence

In order to prove that f is a simulation relation, we need to show that each execution of RAID

0

has

a corresponding execution in Spec

0

having the same trace. For each transition of RAID

0

we need to

give the corresponding sequence of steps in Spec

0

. In this section, we give a corresponding sequence

of steps for each transition.

Let s and u be reachable states of RAID

0

and Spec

0

, respectively, such that f(s,u) = true, and

(s,�,s

0

) 2 trans(RAID

0

).

� � = Read(B)

Let the corresponding execution fragment be u,Read(B),u

0

.

� � = Write(P)

Let the corresponding execution fragment be u,Write(P),u

0

.

� � = read(i)

{ If s.DAG 2 f3,4,5g _ s.DAG = 2 ^ i 62 s:Indices.

Let the corresponding execution fragment be none. In this case, the value read by � is

not directly returned to Env. These reads are performed to compute parity or the value

of a lost data being read.

{ If s.DAG = 1 _ (s.DAG = 2 ^ i 2 s:Indices), and u.ReadPairs[i] 62 V.

Let the corresponding execution fragment be u,read(i),u

0

In this case, the value read by

� needs to be returned directly to Env, and Spec

0

has not performed a read yet.

{ If s.DAG = 1 _ (s.DAG = 2 ^ i 2 s:Indices), and u.ReadPairs[i] 2 V.

Let the corresponding execution fragment be none. In this case, the value read by

� also needs to be returned directly to Env. However, Spec

0

has already performed

a read, meaning that RAID

0

is running a second DAG for the current operation. Here

idempotency of reads is used to show that s

0

and u correspond via the simulation relation.

� � 2 fwrite3(i,v),write45(i,v),write6(i,v)g, where i 6= n

{ u.WritePairs[i] 6= ?

Let the corresponding execution fragment be u,write(i,v),u

0

.

{ u.WritePairs[i] = ?

Let the corresponding execution fragment be none. In this case, Spec

0

has already

performed the write, meaning that RAID

0

is running a second DAG for the current

operation. Here idempotency of writes is used to show that s

0

and u correspond via the

simulation relation.

� � = ReadBack(P)

{ If s.DAG = 1

Let the corresponding execution fragment be u,ReadBack(P),u

0

.

{ If s.DAG = 2

Let the corresponding execution fragment be u,read(s.f),u

00

,ReadBack(P),u

0

.

In this case, there is a failure among disks to be read. In RAID

0

, reads of failed disks

do not occur. But the value needs to be read in Spec

0

. We use the Consistency property

presented in the next section, to argue that RAID

0

returns the right value for the failed

disk.

24

� � = WriteOK

{ If s.DAG 2 f3,4,6g

Let the corresponding execution fragment be u,WriteOK,u

0

.

{ If s.DAG = 5

Let the corresponding execution fragment be u,write(s.f,v),u

00

,WriteOK,u

0

, where v =

WritePairsPerm[f]. In this case, there is a failure among disks to be written. In RAID

0

,

writes to failed disks do not occur. But the write needs to be performed in Spec

0

.

� � 2 ffail(i), chooseDAG1 � chooseDAG6, write(n,v)g

Let the corresponding execution fragment be none.

Recall from the introduction that, informally, the two conditions for correctness are consistency

and idempotency. We indicate in what follows where these properties are used. Consistency is used

to prove the step correspondence for ReadBack(P), in the case where there is a failure among disks

to be read. Idempotency of read (write) low-level ops is used to prove the step correspondence of

read(i) (write(i,v)), in the case where RAID

0

is running a second DAG to complete an operation

and this low-level op has been performed once before.

8.4 Proof of Theorem 8.2

In the following proof, any state variable not preceded by a state name, is implicitly preceded by

state s.

Proof. Assume s 2 start(RAID

0

). We show that there exists a state u of Spec

0

such that u

2 start(Spec

0

). In s, f = none and the variable Bit of Spec

0

has arbitrary values. Therefore there

exists a state u of Spec

0

such that f

1

(s,u) is true. Secondly, s.DAG = none and u.pc = idle initially.

Thus f

2

(s,u), f

3

(s,u), and f

4

(s,u) are also true. Finally, the WritePairsPerm variables variables

are equal to P

0

, and ready variables are true. Therefore f

5

(s,u) is true. Hence for any arbitrary

initial start state s of RAID

0

, there exists a start state u of Spec

0

such that f(s,u) is true.

Now assume that s is a reachable state of RAID

0

, u is a reachable state of Spec

0

such that f(s,u) =

true, and (s,�,s

0

) 2 trans(RAID

0

). We show that for all action �, there exists an execution fragment

� of Spec

0

starting at u and ending in u

0

such that f(s

0

,u

0

) = true and trace(�) = trace(�).

Case: � = Read(B)

Let the corresponding execution fragment of Spec

0

be u,Read(B),u

0

. The two actions modify the

variables ReadPairs in an identical way. Also DAG is set to chooseR in RAID

0

and pc to read in

Spec

0

. Therefore, f(s

0

,u

0

) is true.

Case: � = Write(P)

Let the corresponding execution fragment of Spec

0

be u,Write(P),u

0

. The two actions modify the

variable WritePairs in an identical way. Also DAG is set to chooseW in RAID

0

and pc to write in

Spec

0

. Therefore, f(s

0

,u

0

) is true.

Case: � = read(i)

We know that i 6= s.f and s.DAG 2 f1,2,3,4,5g by the precondition of �. We consider the following

cases.

Subcase: s.DAG 2 f3,4,5g _ s.DAG = 2 ^ i 62 Indices

Let the corresponding execution fragment be none. f(s

0

,u

0

) is trivially true.

25

Subcase: s.DAG = 1 _ s.DAG = 2 ^ i 2 Indices

By the inductive hypothesis (f

2

(s,u)), either s.ReadPairs[i] = u.ReadPairs[i], or s.ReadPairs[i] �

u.ReadPairs[i]. Since s.ReadPairs[i] = ?

+

, then u.ReadPairs[i] 2 V

+

. We consider the following

cases.

Subsubcase: u.ReadPairs[i] = ?

+

Let the corresponding execution fragment of Spec

0

be u,read(i),u

0

. Since i 6= s.f, then by the

inductive hypothesis (f

1

(s,u)), s.Disk[i] = u.Bit[i]. Therefore the two actions change variables

ReadPairs in an identical way, and f(s

0

,u

0

) is true.

Subsubcase: u.ReadPairs[i] 2 V

Let the corresponding execution fragment of Spec

0

be none. By Invariant 1 of Lemma 6.2, u.ReadPairs[i]

= u.Bit[i]. By the inductive hypothesis (f

1

(s,u)), u.Bit[i] = s.Disk[i]. Also s

0

.ReadPairs[i] =

s.Disk[i]. Therefore s

0

.ReadPairs[i] = u

0

.ReadPairs[i] and f(s

0

,u

0

) is true

2

.

Case: � 2 fwrite3(i,v),write45(i,v),write6(i,v)g, where i 6= n

By Lemma 6.1, u.WritePairs[i] 6= ?

+

. We also know that i 6= s.f. We consider the following cases.

Subcase: u.WritePairs[i] 2 V

Let the corresponding execution fragment be u,write(i,v),u

0

. Since u.WritePairs[i] 2 V, then by the

inductive hypothesis (f

3

(s,u)), u.WritePairs[i] = s.WritePairs[i]. Action write(i,v) and � change

variables WritePairs and, Bit and Disk in an identical way. Therefore f(s

0

,u

0

) is true.

Subcase: u.WritePairs[i] = ?

Let the corresponding execution fragment be none. Since i 6= s.f, then by the inductive hypoth-

esis (f

1

(s,u)), s.Disk[i] = u.Bit[i]. By the inductive hypothesis (f

5

(s,u)), u.WritePairsPerm[i] =

s.WritePairsPerm[i]. Also by Invariant 2 of Lemma 7.3, s.WritePairsPerm[i] = s.WritePairs[i],

which is in V. By Invariant 2 of Lemma 6.2, u.Bit[i] = u.WritePairsPerm[i]. So u.Bit[i] =

s.WritePairs[i]. Action � has the e�ect of writing s.WritePairs[i] to Disk[i]. Therefore we have

u

0

.Bit[i] = s

0

.Disk[i]. Thus f(s

0

,u

0

) is true

3

.

Case: � = ReadBack(P)

We know that s.DAG 2 f1,2g. We consider the following cases.

Subcase: s.DAG = 1

Let the corresponding execution fragment be u,ReadBack(P),u

0

. We show that ReadBack(P) is

enabled in u. We know that for all i 2 Indices, s.ReadPairs[i] 2 V. Therefore, the inductive hy-

pothesis (f

2

(s,u)) implies that for all i 2 Indices, u.ReadPairs[i] 2 V. Thus the action ReadBack(P)

is enabled in u. The two actions change the state in an identical way. Therefore we have f(s

0

,u

0

)

is true.

Subcase: s.DAG = 2

Let the corresponding execution fragment be u,read(f),u

00

,ReadBack(P),u

0

. We �rst show that

action read(f) is enabled in u. By the inductive hypothesis (f

2

(s,u)), u.ReadPairs[f] = s.ReadPairs[f].

2

If read low-level ops were not idempotent, then this part of the proof would break.

3

If write low-level ops were not idempotent, then this part of the proof would break.

26

By Invariant 2 of Lemma 7.2, s.ReadPairs[f] = ?

+

. Therefore u.ReadPairs[f] = ?

+

. Thus action

read(f) is enabled in u.

Next we show that action ReadBack(P) is enabled in u

00

. We know that 8i 2 All, s.ReadPairs[i]

2 V. Therefore, by the inductive hypothesis (f

2

(s,u)), for all i 2 Indices=f, u.ReadPairs[i] =

s.ReadPairs[i]. The action read(f) has an e�ect such that u

00

.ReadPairs[f] 2 V. Therefore for all

i 2 Indices, u

00

.ReadPairs[f] 2 V.

In order to show that ReadBack(P) is enabled in u

00

, it remains to show that P [f] =

L

s.ReadPairs.

We know that P [f] = u

00

.ReadPairs[f], and that u

00

.ReadPairs[f] = u.Bit[f]. By the inductive hy-

pothesis (f

1

(s,u)), u.Bit[f] = s.VD.

By Invariant 1 of Lemma 7.2, 8i 2 All, s.ReadPairs[i] = s.Disk[i]. Thus

L

(s.ReadPairs)

=

L

i2All

s.Disk[i]. By Part 1 of Lemma 8.1 (Consistency),

L

i2All

s.Disk[i] = s.VD. Therefore

L

s.ReadPairs = u

00

.ReadPairs[f]. Thus action ReadBack(P) is enabled in u

00

. The two ReadBack(P)

actions a�ect the state in such a way that f(s

0

,u

0

) is true.

Case: � = WriteOK

We consider the following cases.

Subcase: s.DAG 2 f3,4,6g

Let the corresponding execution fragment of Spec

0

be u,WriteOK,u

0

. We know that s.WritePairs

= P

n0

. By the inductive hypothesis (f

3

(s,u)) and Invariant 2 of Lemma 6.1 u.WritePairs = P

0

,

and action WriteOK is enabled in u.

The actions have a similar e�ect. Thus f(s

0

,u

0

) is true.

Subcase: s.DAG = 5

Let the corresponding execution fragment of Spec

0

be u,write(f,v),u

00

,WriteOK,u

0

, where v = u.WritePairsPerm[f].

We �rst show that write(f,v) is enabled in u. By the inductive hypothesis (f

3

(s,u)), u.WritePairs[f]

= s.WritePairs[f]. By Invariant 3 of Lemma 7.3, s.WritePairs[f] 2 V . Therefore u.WritePairs[f]

2 V. By Invariant 3 of Lemma 6.2, u.WritePairs[f] = u.WritePairsPerm[f]. Therefore action

write(f,v) is enabled in u.

We now show that action WriteOK is enabled in u

00

. Since s.WritePairs = P

n0

[;] then by the

inductive hypothesis (f

3

(s,u)), we have for all i 6= f, u.WritePairs[i] = ?. Also action write(f,v)

sets u.WritePairs[f] to ?. Therefore u

00

.WritePairs = P

0

. Thus action WriteOK is enabled in u

00

.

Action � and WriteOK have identical e�ects on the states of both automata. Therefore f(s

0

,u

0

)

is true.

Case: � = fail(i)

Let the corresponding execution fragment be none. Note that s.DAG 62 fnone,2,5,6g. In the

following, i denotes the index of the failed disk in s

0

.

Action � assigns the value of s.Disk[i] to s.VD. By the inductive hypothesis (f

1

(s,u)), s.Disk[i] =

u.Bit[i]. Therefore u

0

.Bit[i] = s

0

.VD. Thus f

1

(s

0

,u

0

) is true. Action � either leaves DAG unchanged,

or changes it in such a way that f

4

(s

0

,u

0

) is true. Also we have that f

5

(s

0

,u

0

) is trivially true. We

show that f

2

(s

0

,u

0

) and f

3

(s

0

,u

0

) are also true. We consider the following cases.

Subcase: s.DAG 2 fchooseR,1g

We have that f

3

(s

0

,u

0

) is trivially true. In this case, s.WritePairs = P

n0

. If s.ReadPairs[i] 6= ?

+

then f

2

(s

0

,u

0

) is trivially satis�ed. Assume that s.ReadPairs[i] = ?

+

.

By Invariant 2 of Lemma 7.1, s.Rec = false. So by the inductive hypothesis (f

2

(s,u)), for all j

2 s.Indices, s.ReadPairs[j] = u.ReadPairs[j]. Action � has the e�ect of assigning value ?

+

to all

27

RD i_0 WR i_0

RD i_m-1 WR i_m-1

XORRD n_1

RD n_2 Q

WR n_1

WR n_2

Figure 12: RAID Level 6 - Small Write.

s.ReadPairs[j] for j 2 s.Indices. Therefore for all j 2 s:Indices, s

0

.ReadPairs[j] � u

0

.ReadPairs[j].

Also if i2 s:Indices, s

0

.ReadPairs[i] = u

0

.ReadPairs[i]. Therefore f

2

(s

0

,u

0

) is true.

Subcase: s.DAG 2 fchooseW,3,4g

In this case, f

2

(s

0

,u

0

) is trivially true. If s.ReadPairs[i] 6= ?

+

^ s.WritePairs[i] = ?, then f

3

(s

0

,u

0

)

is also trivially true. Assume that s.ReadPairs[i] = ?

+

_ s.WritePairs[i] 6= ?.

By Invariant 2 of Lemma 7.1, s.Rec = false. So by the inductive hypothesis (f

3

(s,u)), for all

j2 s:Indices, s.WritePairs[j] = u.WritePairs[j]. Action � has the e�ect of assigning s.WritePairsPerm

to s.WritePairs. By Invariant 2 of Lemma 7.3, if s.WritePairs[j] 2 V, then s.WritePairs[j] =

s.WritePairsPerm[j]. Therefore for all j 2 s:Indices, u

0

.WritePairs[j] � s

0

.WritePairs[j].

It remains to show that if i 2 s:Indices then s

0

.WritePairs[i] = u

0

.WritePairs[i]. Assume

i 2 s:Indices. If s.ReadPairs[i] = ?

+

, then s.WritePairs[i] 2 V, by Invariant 4 of Lemma 7.3.

If s.WritePairs[i] 6= ?, then s.WritePairs[i] must be in V , since by Invariant 1 of Lemma 7.3, it

cannot be equal to ?

+

. Therefore action � does not change s.WritePairs[i]. Since we know that

s.WritePairs[i] = u.WritePairs[i], then we have s

0

.WritePairs[i] = u

0

.WritePairs[i]. Thus f

3

(s

0

,u

0

)

is true.

9 Extension

We now turn our attention to a controller algorithm for the RAID Level 6 architecture [Gibson95].

We generalize part of the main invariant, Consistency, and use it to �nd an error in a RAID Level

6 DAG.

9.1 RAID Level 6

RAID Level 6 uses two parity blocks for each group of n blocks stored on separate disks. It can

tolerate two disk failures. One parity block (n

1

) is computed by taking the xor of all data blocks.

The other parity (n

2

) is computed using Reed-Solomon codes.

RAID Level 6 uses Courtright and Gibson's error recovery method analogously to RAID Level

5. It has DAGs that are similar. In particular the Small Write DAG is shown in Figure 12. The

symbol Q indicates the computation of n

2

.

28

9.2 Error found

We used a generalized version of part of the Consistency Lemma to �nd an error in the Small Write

DAG, without performing the entire proof of correctness for RAID Level 6. Consider the following

part of the Consistency Lemma (Part 1): In all reachable states of RAID

0

, if n 6= f and DAG =

chooseW ^ f 62 Indices, then

L

i2All

Disk[i] = VD.

Consider the case in which there is a failure in a disk not to be written. Intuitively, this invariant

says that if the controller is about to choose a write DAG, then the value implied by the system

for the failed disk (

L

i2All

Disk[i]) is equal to the value of the last write to that disk (VD).

Consequently, for this invariant to be true, it must be that if a write DAG fails in such a way

that there is a failure among the disks not to be written, then the value implied by the system for

the failed disk is equal to the value last written to it. In other words, the failure of a write DAG

should not cause the loss of data in disks not to be written.

We used this idea to �nd an error in the DAG presented above. Consider a scenario in which,

RD i

0

and WR i

0

are performed, then disk indexed i

m

(not to be written) fails. This does not

cause the DAG to stop. But suppose disk i

1

then fails as well. In this case, the DAG stops and

a new DAG needs to be chosen to complete the operation. However the value of disk i

m

has been

lost, because the array has been partially updated. In addition, when a DAG fails the state is reset

and thus it is impossible to recover the value of the failed disk.

10 Conclusions

In this paper, we used I/O Automata to model and verify a controller algorithm for the RAID

Level 5 system, which uses Courtright and Gibson's error recovery method. By performing this

case study, we formalized a key invariant, consistency, which helped in �nding an error in a di�erent

more complicated RAID controller algorithm.

This project started out by a preliminary study using the model checker SMV [McMillan92].

We modeled the DAGs for RAID Level 5 separately and used the tool to show that the DAGs

preserve consistency. However it became clear that our notion of consistency was not accurate and

that we needed to formalize this property. This led us to the study of the controller algorithm as

a whole.

With the formalization of the consistency invariant we can envisage a tool that takes a model of

a controller algorithm based on Courtright and Gibson's error recovery, and checks that consistency

is preserved in all reachable states. Such a tool can be built based on a model checker.

The advantage of such a tool is that it would be speci�cally tailored to Courtright and Gibson's

prototyping system. Its users will not need to know about the formalization of the Consistency

property and will not need to reproduce the hand-proof present in this case study. However hand-

proofs are essential at this stage of the design of the tool, because they allow us to determine the

exact expression of properties to verify.

Courtright credits our work in his PhD thesis [Courtright97] as playing a role in debugging

his designs and he encourages continued work in this direction, especially in collaboration with

industry partners.

Future work consists of proving correctness of other RAID controllers using Courtright and

Gibson's error recovery, as well as considering controller algorithms that use Courtright's latest

error recovery method [Courtright97]. Finally, we plan to build a special-purpose veri�cation tool.

29

References

[Bitton88] D. Bitton and J. Gray, \Disk Shadowing," Proceedings of the 14th Conference on Very

Large Data Bases, 1988, pp. 331{338.

[Courtright94] W. V. Courtright II and G. A. Gibson. \Backward error recovery in redundant disk

arrays." Proceedings of the 20th International Conference for the Resource Management and

Performance Evaluation of Enterprise Computing Systems (CMG). December 4{9 1994, pp.

63{74.

[Courtright97] William V. Courtright II, "A Transactional Approach to Redundant Disk Array

Implementation." Dept. of Electrical and Computer Engineering, Carnegie Mellon University,

Pittsburgh, PA, Ph.D. thesis, April 1997.

[Gibson90] Garth Gibson. \Redundant Disk Arrays: Reliable, Parallel Secondary Storage". PhD

thesis, University of California at Berkeley, 1990. Report UCB/CSD 91/613.

[Gibson93] G. A. Gibson and D. A. Patterson, \Designing disk arrays for high data reliability",

Journal of Parallel and Distributed Computing. 17(1-2), 1993, 4-27.

[Gibson95] G. Gibson, W. Courtright II, M. Holland, and J. Zelenka, \RAIDframe: Rapid proto-

typing for disk arrays," Computer Science Technical Report CMU-CS-95-200, Carnegie Mellon

University, 1995.

[Gray90] G. Gray, B. Horst, and M. Walker, \Parity Striping of Disc Arrays: Low-Cost Reliable

Storage with Acceptable Throughput," Proceedings of the Conference on Very Large Scale

Data Bases, 1990, pp. 148{160.

[Reddy89] A. L. Narasimha Reddy and Prithviraj Banerjee, \An evaluation of multiple-disk I/O

systems." IEEE Transactions on Computers, Vol. 38, No. 12, December 1989, pp. 1680{1690.

[Kim86] M. Kim. \Synchronized Disk Interleaving". IEEE Transactions on Computers 35(11),

November 1986, pp 978-988.

[Lawlor81] F. D. Lawlor. \E�cient Mass Storage Parity Recovery Mechanism", IBM Technical

Disclosure Bulletin 24(2):986-987, July 1981.

[Lynch87] N. Lynch and M. Tuttle. \Hierarchical correctness proofs for distributed algorithms."

Technical report MIT/LCS/TR-387, MIT Laboratory for Computer Science, Cambridge, MA,

April 1987.

[Lynch89] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI-Quaterly,

2(3): 219-246, September 1989. Centrum voor Wiskunde en Informatica, Amsterdam, The

Netherlands.

[Lynch96] Nancy A. Lynch, \Distributed Algorithms", Morgan Kaufmann Publishers, San Mateo,

CA, 1996.

[McMillan92] K.L. McMillan, \Symbolic Model Checking: an Approach to the State Explosion

Problem", Ph.D. Thesis, Carnegie Mellon University, 1992, CMU-CS-92-131.

[Patterson88] David A. Patterson, Garth A. Gibson, and Randy Katz. \A Case for Redundant

Arrays of Inexpensive Disks (RAID)". Proceedings SIGMOD International Conference on Data

Management, 1988, pp. 109-116.

30

[Patterson89] David A. Patterson, Peter Chen, Garth Gibson and Randy Katz. Introduction to

Redundant Arrays of Inexpensive Disks (RAID). Spring COMPCON'89 San Fransisco, CA,

pp 112-17. IEEE, March 1989.

[Park86] Arvin Park and K. Balasubramanian. \Providing Fault Tolerance in Parallel Secondary

Storage Systems". Technical Report CS-TR-057-86. Department of Computer Science, Prince-

ton University, November 1986.

[Salem86] K. Salem and H. Garcia-Molina. \Disk Striping". Proceedings of the 2nd International

Conference on Data Engineering, 1986, pp. 336{342.

31

