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Abstract

Hybrid systemare systems that exhibit a combination of discrete and continuous behavior. Typical hybrid
systems include computer components, which operate in discrete program steps, and real-world components,
whose behavior over time intervals evolves according to physical constraints. Important examples of hybrid systems
include automated transportation systems, robotics systems, process control systems, systems of embedded devices,
and mobile computing systems. Such systems can be very complex, and very difficult to describe and analyze. This
paper presents theybrid Input/Output AutomatofHIOA) modeling framework, a basic mathematical framework
to support description and analysis of hybrid systems. An important feature of this model is its support for
decomposing hybrid system descriptions. In particular, the framework includes a notedteofial behavior
for a hybrid I/O automaton, which captures its discrete and continuous interactions with its environment. The
framework also defines what it means for one HIOAinplementanother, based on an inclusion relationship
between their external behavior sets, and defines a notisimaflation which provides a sufficient condition for
demonstrating implementation relationships. The framework also includesnpositionoperation for HIOAs,
which respects the implementation relation and a notioreoéptivenesswhich implies that an HIOA does not
block the passage of time. The framework is intended to support analysis methods from both computer science
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and control theory. This work is a simplification of our earlier HIOA model. The main simplification in the new
model is a clearer separation between the mechanisms used to model discrete and continuous interaction between
components. In particular, the new model removes the dual use of external variables for discrete and continuous
interactions.

© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction
1.1. Overview

Recent years have seen a rapid growth of interebybrid systems-systems that intermix discrete
and continuous behavior [9,10,12,20,28,34,51,62,70,73,80]. Typical hybrid systems include computer
components, which operate in discrete program steps, and real-world components, whose behavior over
time intervals evolves according to physical constraints. Such systems are used in many application
domains, including automated transportation, avionics, automotive control, robotics, process control,
embedded devices, consumer electronics, and mobile computing.

Hybrid systems can be very complex, and therefore very difficult to describe and reason about. At the
same time, because they involve real-world activity, they often have stringent safety requirements. This
combination of factors leads to a need for rigorous mathematical models for describing hybrid systems
and their properties, and for practical analysis methods based on these models.

In this paper, we present a basic mathematical framework to support description and analysis of hybrid
systems: thédybrid Input/Output Automatomodeling framework. AHybrid 1/0 Automaton(HIOA)
is a kind of nondeterministic, possibly infinite-state, state machine. The state of an HIOA is divided
into state variablesand it may also have additionalput variablesand output variables The state
can change in two ways: instantaneously by the occurrencedigcaete transition or according to
sometrajectorywhen time passes. Formally, a discrete transition is a triple consisting of a source state,
an action (for synchronization with other automata), and a target state. Trajectories are functions that
describe the evolution of the state variables, along with the input and output variables, over intervals of
time. Trajectories may be continuous or discontinuous functions.

HIOAs are intended to be used to model all components of hybrid systems, including physical
components, controllers, sensors, actuators, computer software, communication services, and humans
that interact with the rest of the system. The framework is very general: for example, we do not
require that trajectories be expressible using systems of equations of a particular form, and we do not
require that discrete transitions be expressible using a particular logical language. Particular kinds of
systems of equations and particular logical languages can be used to define special cases of the general
model.

The most important feature of the hybrid I/O automaton framework is its support for decomposing
hybrid system description and analysis; this is important because many hybrid systems are too complex
to understand all at once. A key to this decomposition is that the framework includes a rigorously defined
notion of external behaviorfor hybrid I/0O automata, which captures their discrete and continuous
interactions with their environment. The external behavior of each HIOA is defined by a simple
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mathematical object calledteace The framework also includes notions albstractionand parallel
composition

For abstraction, the framework includes notionsimaplementatiorand simulation which can be
used to view hybrid systems at multiple levels of abstraction, starting from a high-level version that
describes required properties, and ending with a low-level version that describes a detailed design or
implementation. In particular, the HIOA framework defines what it means for one HiQ#,implement
another HIOA,3, namely, any trace that can be exhibited lbyis also allowed by5. In this case,A
might be more deterministic thds, in terms of either discrete transitions or trajectories. For instance,

B might be allowed to perform an output action at an arbitrary time before noon, whérnpasiuces
the same output sometime between 10 and 11 AM3@right allow an output variable to evolve with
y € [0, 2], whereas4 might ensure thag = 1.

The notion of asimulation relationfrom A to 5 provides a sufficient condition for demonstrating that
A implements3. A simulation relation is defined to satisfy three conditions, one relating start states, one
relating discrete transitions, and one relating trajectoried4 ahds.

For parallel composition, the framework providesamposition operatignby which HIOAs mod-
eling individual hybrid system components can be combined to produce a model for a larger hybrid
system. The model for the composed system can describe interactions among the components, including
joint participation in discrete transitions and trajectories. Composition requires certain “compatibility”
conditions, namely, that each output variable and output action be controlled by at most one automaton,
and that internal variables and actions of one automaton cannot be shared by any other automaton. The
composition operation respects the implementation relation, for example iihplementsA, then the
composition of4; andB implements the compaosition of, andB. Composition also satisfiggojection
results saying that a trace of a composition of HIOAs projects to give traces of the individual HIOAs,
andpastingresults saying that compatible behaviors of components are “pastable” to give behaviors of
the composition. Such results are essential if the models are to be used for compositional design and
verification of systems. In addition, the framework includiéging operations for output actions and
variables, which respect the implementation relationship.

An interesting complication that arises in the hybrid setting is the possibility that a state machine
could “prevent time from passing”, for example, by blocking it entirely, or by scheduling infinitely many
discrete actions to happen in a finite amount of time—so-calkytb behaviarThe HIOA framework
includes a notion ofeceptivenesswhich says that an HIOA does not contribute to producing Zeno
behavior, and which (under suitable compatibility conditions) is preserved by composition. We also give
simple sufficient conditions for these compatibility conditions to hold.

The generality of the HIOA framework means that a large collection of analysis methods, derived
from both discrete and continuous analysis methods, can be applied to systems modeled as HIOAs.
For example, inductive methods for proving invariant assertions and simulation relationships (see, e.g.
[58,72]), which are commonly used in computer science for reasoning about discrete systems, can
be extended to the hybrid setting and expressed by theorems about HIOAs. Other discrete analysis
methods that should be extendible include proving progress using well-founded sets (see, e.g. [26]),
assume-guarantee compositional reasoning (e.qg. [16,36]), and deducing properties within temporal logic
and other logical formalisms. All of these methods could be supported by interactive theorem proving
software. Automatic methods based on state-space searching and based on decision procedures for
automata on infinite paths (see, e.g. [16]) should also be extendible; however, these methods will apply
only to special cases of the general model.
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Likewise, key methods used in control theory for reasoning about continuous systems, such as
stability analysis using Lyapunov functions (e.g. [79]) and robust control techniques (e.g. [23]), should
be extendible to hybrid systems using HIOAs.

1.2. Evolution of the HIOA framework

The HIOA framework has evolved from two earlier input/output automaton models: the basic 1/0
automaton model of Lynch and Tuttle [55,56] and the timed I/O automaton model of Lynch, Vaandrager
et al. [60,74]. Basic I/O automata consist essentially of states, start states, and discrete transitions. They
have been used fairly extensively to describe and analyze asynchronous distributed algorithms—see, for
example [48].

Timed I/0O automata add explidiime-passage stepwhich allow time to pass in discrete jumps. In
the simplest cases, time-passage steps involve just the passage of time, with no other changes to the state.
However, in general, they are allowed to change the state in more elaborate ways, including changing
variables that represent physical quantities. Timed 1/O automata have been used mainly to describe
timing-based distributed algorithms and communication protocols (e.g. [19,25,45,75-78]). Timed I/O
automata have also been used in a few cases to model simple hybrid system “challenge problems”,
including the Generalized Railroad Crossing problem [30,31]. In these examples, the time-passage steps
include changes to physical quantities such as train position and water level.

An early version of the HIOA modeling framework appeared in [53,54]. It augmented timed I/O
automata by adding input and output variables and exgliajectories the trajectories describe the
evolution of the state and external variables over intervals of time, rather than just their cumulative
changes. This version of the HIOA framework was used to describe and analyze many hybrid systems
examples, including automated transportation systems [42,44,49,50,61,81-83], intelligent vehicle high-
way systems [22,47], aircraft control systems [43,46], automotive control systems [24], and consumer
electronics systems [11].

We summarize the results of these modeling efforts briefly. In these examples, HIOAs were used
to model system components of many different kinds, including real-world components, computer
programs, communication channels, sensors, actuators, and humans (for example, pilots interacting with
aircraft control systems). Individual component automata were generally highly nondeterministic, and
often allowed for bounded uncertainty in the values of quantities represented in the state. Component
states often included timing information, for example, the current time and deadlines for the performance
of certain actions. Composition was used to combine the component HIOAs into models of the complete
systems. Levels of abstraction were used to describe several kinds of relationships between HIOAs, for
example: the relationship between a detailed view of a system and a more abstract view; the relationship
between a description of a system in terms of higher derivatives (e.g., acceleration) and a description
in terms of lower derivatives (e.g., velocity or position); and the relationship between a version of a
system that includes periodic sampling and correction and a version in which adjustment is continuous,
but within an envelope of uncertainty.

The examples were analyzed using a variety of methods, including invariant assertions, simulation
relations, compositional reasoning, differential equations, and integration. Many of the invariants and
simulation relations involved timing data and data representing real-world quantities. Invariants and
simulation relations were proved using inductive arguments on the length of executions, as is usual
in the purely discrete setting. However, unlike in the discrete setting, the proofs in the hybrid setting
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included two different kinds of inductive steps: for discrete steps and trajectories. Arguments about
discrete steps involved the sort of algebraic deduction that is typical in the discrete setting, whereas
arguments about trajectories involved manipulation of differential equations and integrals. For example,
a technique involving “positive invariant sets”, derived from control theory, was used in [15] for showing
that certain properties of the state are preserved during trajectories.

In general, the formal HIOA framework proved to be adequate for these examples. However, it was
not ideal, because it introduced some complications that proved to be distracting. The main source of
complication seemed to be the fact that the model has two mechanisms for modeling discrete commu-
nication:shared actiongndshared variablesAlso, it uses the same mechanism—shared variables—to
model both discrete and continuous interactions between components. This intertwining of mechanisms
led to some technicalities, for example, each automaton had to include a spediahment actiorm,
which is associated with discrete changes to input variables. To simplify matters, we were led to develop
the new version of the HIOA model presented in this paper. The new version has a clearer separation
between the mechanisms used to model discrete and continuous activity, and has only one mechanism
for discrete communication: shared actions.

In the literature on discrete state machine models, both shared actions and shared variables are popular
mechanisms for modeling interactions between system components. The shared action approach is used,
for example, in the extensive research literature on process algebras (e.qg. [35,66,67]), and in the work on
I/0O automata (e.g. [49,55]). The shared variable approach is used, for example, in the temporal logic and
model-checking communities (e.g. [7,40,64]). The expressive power of shared action and shared variable
communication is similar, and translations between special cases of these two types of models have
been developed [18,39]. Choosing between these two forms of communication seems to be generally a
matter of custom and convenience. One advantage of the shared-action approach is that it leads to simple
mathematical notions of external behavior of state machines, based on sequences of actions (which are
usually called “traces”).

The new HIOA framework presented in this paper uses (only) shared actions for discrete communica-
tion, and uses shared variables for continuous communication. Discrete events are not allowed to make
changes to shared variables, and the special environment acgti@timinated. Because the new model
maintains a clearer separation between mechanisms for describing discrete and continuous activity, it
is simpler overall—in its definitions, result statements, and proofs—than the earlier HIOA model of
[53,54].

Another simplification in the new framework appears in the definitions and results involving recep-
tiveness. In the original HIOA model of [53,54], and in other work that dealt with receptiveness [1,21,74]
for discrete systems, receptiveness was defined in terms of two-player games between the system and its
environment. In such a game, the goal of the system is to construct an infinite, non-Zeno execution, and
the goal of the environment is to prevent this from happening. The simplification in this material in the
new model is a result of our modeling of the game itself as an HIOA.

1.3. Other related work

Besides the models already discussed above, other precursors to the new HIOA model include the phase
transition system models of [3,38,63] and Branicky’s hybrid control systems [13,14]. Phase transition
systems are similar to HIOAs in their combined treatment of discrete and continuous activity, for example,
they have notions similar to our trajectories and hybrid sequences. However, work on phase transition
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system models does not address system decomposition issues such as external behavior, implementation
relationships, and composition, which are emphasized in our paper. Branicky’s hybrid control systems
are also similar to ours in their modeling of discrete and continuous activity. This work has a control
theory flavor, focusing on standard configurations including plant, controller, sensor and actuator, and
focusing on stability results. Again, system decomposition issues are not addressed.

System decomposition issues, including levels of abstraction, compositionality, and receptiveness have
been addressed by Alur and Henzinger [8] in their work on hybrid reactive modules. A major difference
between this work and ours is that reactive modules communicate via shared variables and not via shared
actions. Another difference is that hybrid reactive modules include an additional layer of structure tailored
to modeling synchronous systems—structure that is not present in the HIOA model. In [8], a definition of
receptiveness based on two-player games, similar to the definition in [53,54], is proposed, and is shown
to be preserved by parallel composition. However, in [8], no circular dependencies (“feedback loops”)
are allowed among the continuous variables of different components, a restriction that greatly simplifies
the analysis.

In[6,33], compositional trace-based semantics are presented for Statecharts-like languages that support
hierarchical design of hybrid systems. These languages, called Charon and Masaccio, respectively, allow
one to describe hierarchical state machines that communicate with their environment using shared
variables. Communication via shared actions is not supported. Besides parallel composition and variable
hiding, the languages also contain other operations required for the construction of hierarchical state
machines, such as variable renaming and serial composition. The trace semantics presented in [6,33] for
Charon and Masaccio is more concrete than the one that we present here: discrete events that do not
change the observable part of the state are not eliminated from traces. As a consequence, a system that
just lets time pass and performs a discrete “tick” step once every time unit is not an implementation of the
same system without any discrete steps. The two systems are equivalent according to the trace semantics
of this paper. We believe that our semantics are more intuitively appealing; the price we pay is that the
proofs of our compositionality results are more complicated. Ref. [33] also contains some interesting
proof rules for assume-guarantee reasoning. In [6,33], Zeno behavior and the issue of receptiveness are
not considered.

1.4. Paper organization

The rest of this paper is organized as follows. Section 2 contains mathematical preliminaries. Next,
Section 3 defines notions that are useful for describing the behavior of hybrid systems, most importantly,
trajectories and hybrid sequences. Section 4 detihgsid Automata(HAS), which contain all of the
structure of HIOAs except for the classification of external actions and variables as inputs or outputs. It
also defines external behavior for HAs and implementation and simulation relationships between HAs.
Section 5 presents composition and hiding operations for HAs. Section 6 défibes I/O Automata
(HIOAS9) by adding an input/output classification to HAs, and extends the theory of HAs to HIOAs.

It also introduces a “strong compatibility” condition that ensures that HIOAs are composable, and
describes situations in which strong compatibility is guaranteed to hold. Section 7 presents the theory of
receptiveness, including a main theorem stating that receptiveness is preserved by composition (assuming
strong compatibility). Finally, Section 8 presents some conclusions. Examples derived from earlier work
on hybrid system modeling are included throughout. Appendix A lists some notational conventions used
in the paper.
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2. Mathematical preliminaries

In this section, we give basic mathematical definitions that will be used as a foundation for our
definitions of hybrid automata and hybrid 1/O automata. These definitions involve functions, sequences,
partial orders, and time. The automata definitions appear later in Sections 4 and 6. Since most of the
definitions here are reasonably standard, we encourage the reader to skip ahead to Section 3 and return
to this section as needed.

2.1. Functions

If f is a function, then we denote the domain and rang¢ dfy dom(f) andrangeg(f), respec-
tively. If also S is a set, then we writg/ [ S for the restriction off to S, that is, the functiorg with
dom(g) = dom(f) N S such thatg(c) = f(c) for eachc € dom(g).

We say that two functiong andg arecompatiblgf f[dom(g) = g[dom(f). If f andg are compatible
functions then we writg’ U g for the unique functiok with dom(z) = dom(f) U dom(g) satisfying the
condition: for eachr € don(h), if ¢ € dom(f) thenh(c) = f(c) and if c € dom(g) thenh(c) = g(c).
More generally, if F is a set of pairwise compatible functions then we wtiteF' for the unique
functions withdomh) = | J{dom(f) | f € F} satisfying the condition: for each € F andc € dom(f),
h(c) = f(c).

If f is a function whose range is a set of functions &rid a set, then we writg | S for the function
g with dom(g) = don(f) such thatg(c) = f(c)[S for eachc € dom(g). The restriction operatiof is
extended to sets of functions by pointwise extension. Alsg, i a function whose range is a set of
functions, all of which have a particular elemehin their domain, then we writ¢ | d for the function
g with dom(g) = dom(f) such thatg(c) = f(c)(d) for eachc € dom(g).

We say that two functiong and g whose ranges are sets of functions pointwise compatibléf
for eachc € dom(f) Nndom(g), f(c) andg(c) are compatible. Iff andg have the same domain and
are pointwise compatible, then we denote pyg the functions with dom#) = dom(f) such that
h(c) = f(c) U g(c) for eachc € dom(h).

2.2. Sequences

Let S be any set. Asequencever S is a function from a downward closed subset of the natural
numbers taS. Thus, the domain of a sequence is either the set of all natural numbers, or is of the form
{0, ..., k}, for some natural numbé. In the first case we say that the sequence is infinite, and in the
second case finite. The sets of finite and infinite sequences@rerdenoted by* andS®, respectively.
Concatenation of a finite sequence with a finite or infinite sequence is denoted by juxtaposition. We use
A to denote the empty sequence, that is, the sequence with the empty domain. The sequence containing
one element € S is abbreviated as. We say that a sequenees aprefixof a sequence, denoted by
o < p, if o = p[dom(o). Thus,o < p if eithero = p, oro is finite andp = oo’ for some sequence
o’. If o is a nonempty sequence theead o) denotes the first element afandtail (o) denotesr with
its first element removed. Moreover dfis finite, thenlast(c) denotes the last element@fandinit (o)
denotesr with its last element removed.
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2.3. Partial orders

We recall some basic definitions and results regarding partial orders (posets), and in particular,
complete partial orders (cpos) from [29,32].partial order (pose} is a setS together with a binary
relationC that is reflexive, antisymmetric, and transitive. In the sequel, we usually denote posets by the
setS without explicit mention to the binary relatian.

A subsetP C S is boundedabovg if there is ac € S such that C ¢ for eachd € P; in this case¢
is anupper boundor P. A least upper bound (lukfpr a subset? C S is an upper bound for P such
thatc C e for every upper bound for P. If P has a lub, then it is necessarily unique, and we denote
itby | | P. A subsetP C S is directedif every finite subse) of P has an upper bound iR. A poset
S is complete and hence is aomplete partial ordecpo) if every directed subseP of S has a lub
insS.

We say thatP’ C S dominatesP C S, denoted byP T P’, if for everyc € P there is some’ € P’
such that C ¢’. We use the following two simple lemmas, adapted from [32] (Lemmas 3.1.1 and 3.1.2).

Lemma2.l. If P, P’ are directed subsets of a coand P C P’ then| [P C | | P'.

Lemma22. LetP ={c;l|i el je J}beadoublyindexed subset of a cpolet P; denote the set
{cij| j € J} for eachi € I. Suppose

(1) P isdirected
(2) eachp; is directed with lukx;, and
(3) the sef{c; |i € I}is directed

ThenuP = u{c; |i € I}.

A finite or infinite sequence of elements, c1, c2, . . ., of a posets is called achainif ¢; C ¢;;1 for
each non-final indekx We define thdimit of the chain, lim_,  ¢;, to be the lub of the sdt, c1, c2, ...}
if S contains such a bound; otherwise, the limit is undefined. Since a chain is a special case of a directed
set, each chain of a cpo has a limit.

A function f : § — S’ between posetS andS’ is monotonéf f(c) C f(d) whenever C d. If fis
monotone and is a directed set, then the $&tP) = { f(¢) | ¢ € P}isdirected as well. Iff is monotone
andf(_| P) = || f(P) for every directed seP, then f is said to becontinuous

An elementc of a cposS is compactif, for every directed seP such thatc C |_| P, there is some
d € P such that C d. We defineK(S) to be the set of compact elements$fA cpo S is algebraicif
everyc € S is the lub of the setd € K(S) | d C c}. A simple example of an algebraic cpo is the set of
finite or infinite sequences over some given domain, equipped with the prefix ordering. Here the compact
elements are the finite sequences.

2.4. Time

Throughout this paper, we fix ttime axisT, which is a subgroup ofR, +), the real numbers with
addition. We assume that every infinite, monotone, bounded sequence of elemEhisscd limit inT.
The reader may find it convenient to think bias the seR of real numbers, but the sg&tof integers and
the singleton sef0} are also examples of allowed time axes. We defin®2 {r € T | > 0}.
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An interval J is a nonempty, convex subsetbfWe denote intervals as usugtl, 1] = {t € T |11 <
t < 2}, etc. An interval ideft-closed(right-closed if it has a minimum (resp., maximum) element, and
left-open(right-oper) otherwise. An interval islosedf it is both left-closed and right-closed, angenif
itis both left-open and right-open. We write ndif) and maxJ) for the minimum and maximum elements,
respectively, of an interval (if they exist), and infJ) and supJ) for the infimum and supremum,
respectively, off in T U {—o0, oo}. ForK € T andr € T,we definek +t £ {t' +1¢ |t e K}. Similarly,
for a function f with domaink, we definef + ¢ to be the function with domaiik + ¢ satisfying, for
eacht e K +1,(f +1) (t') = f(t' —1).

3. Describing hybrid behavior

In this section, we give basic definitions that are useful for describing discrete and continuous behavior
of a system or system component, including discrete and continuous changes to the system'’s state, and
discrete and continuous flow of information into and out of the system. The key notiostatcand
dynamic typesor variablestrajectories andhybrid sequences

3.1. Static and dynamic types

We assume a universal 9éf variables A variable represents either a location within the state of a
system or a location where information flows from one system component to another. For each variable
v, we assume both(atatic) type which gives the set of values it may take on, amtyaamic typewhich
gives the set of trajectories it may follow. Formally, for each variable assume the following:

e typgv), the(static) typeof v. This is a nonempty set of values.
e dtypdv), thedynamic typeof v. This is a set of functions from left-closed intervalsToto typgv)
that satisfies the following properties:
(1) (Closure under time shift
For eachf e dtypgv) andr € T, f +t € dtypdv).
(2) (Closure under subinterval
For eachf e dtypgv) and each left-closed intervdl C dom(f), f[J € dtyp&v).
(3) (Closure under pasting
Let fo, f1, f2, ... be a sequence of functionsditypgv) such that, for each indexsuch thatf;
is not the final function in the sequenagom( f;) is right-closed and madom(f;)) = min
(dom(fi+1)). Then the functiory defined byf (t) £ f:(t), wherei is the smallest index such that
t € dom(f;), is in dtypgv).
The pasting-closure property is useful for modeling “discontinuities” in the evolution of variables caused
by discrete transitions. Dynamic types provide a convenient way of describing restrictions on system
behavior over time intervals, for example, restrictions on the behavior of system input variables.

Example 3.1 (Discrete variablel Let v be any variable and let be the set of constant functions from
a left-closed interval toypg(v). ThenC is closed under time shift and subinterval. If the dynamic type
of v is obtained by closing” under the pasting operation, theris called adiscretevariable. This is
essentially the same as the definition of a discrete variable in [63].
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0 4

Fig. 1. Example of a function in a dynamic type based on continuous functions.

Example 3.2 (Standard real-valued function clas3elf we take T = R andtypev) = R, then other
examples of dynamic types can be obtained by taking the pasting closure of standard function classes
from real analysis, such as the set of continuous functions, the set of differentiable functions, the set of
functions that are differentiable times (for anyk), the set of smooth functions, the set of integrable
functions, the set aof.” functions (for anyp), the set of measurable locally essentially bounded functions
[79], or the set of all functions. [

Standard function classes are closed under time shift and subinterval, but not under pasting. A natural
way of defining a dynamic type is as the pasting closure of a class of functions that is closed under time
shift and subinterval. In such a case, it follows that the new class is closed under all three operations.

Example 3.3 (Pasting closure of the continuous functiprisig. 1 shows an example of an elemeghin

a dynamic type based on (more precisely, equal to the pasting closure of) a subclass of the continuous
functions. Functionf is defined on the intervdD, 4) and is obtained by pasting together four pieces.

At the boundary points between these piecesakes the value specified by the leftmost piece, which
makesyf continuous from the left. Note thatis undefined at time 4. [

In practice, most interesting dynamic types are pasting closures of subclasses of the continuous
functions. Note that functions in such dynamic types are continuous from the left. Elsewhere in the
literature on hybrid systems (e.g. [37]), functions that are continuous from the right are considered. To
some extent, the choice of how to define function values at discontinuities is arbitrary. An advantage of
our choice is a nice correspondence between concatenation and prefix ordering of trajectories and hybrid
sequences (see Lemmas 3.5 and 3.7).

In this paper, we will occasionally be slightly sloppy and say that the dynamic type of a variable
the function clasg¢’, even though#' in not closed under the three required operations. In such a case,
we mean that the dynamic type ofis the function class that results from closifgunder the three
operations.
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3.2. Trajectories

In this subsection, we define the notion ofrajectory, define operations on trajectories, and prove
simple properties of trajectories and their operations. A trajectory is used to model the evolution of a
collection of variables over an interval of time.

3.2.1. Basic definitions

Let V C V be a set of variables. saluationv for V is a function that associates with each variable
v € V avalue intype(v). We writeval(V) for the set of valuations fov. Let J be a left-closed interval
of T with left endpoint equal to 0. Then&trajectoryfor V is a functionr : J — val(V), such that for
eachv € V, t v € dtypdv). A trajectoryfor V is aJ-trajectory forV, for anyJ. We writetrajs(V) for
the set of all trajectories fov .

A trajectory for V with domain[O, O] is called apoint trajectory forV. If v is a valuation forV
theng (v) denotes the point trajectory fof that maps O tor. We say that a/-trajectory isfinite if J
is a fini'ge interval closedif J is a (finite) closed intervabpenif J is a right-open interval, anfiill if
J=T".

If T is atrajectory then.ltime, thelimit time of z, is the supremum afom(z). Also, we definer .fval,
the first valuationof 7, to bet(0), and if r is closed, we define.lval, the last valuationof t, to be
(z.ltime). Forr a trajectory and € T>°, we define

<4t 21[[0, ],
T<t21[[0, 1),
>t 2 (t[[t, 00)) —t.

Note that, since dynamic types are closed under time shift and subintervals, the result of applying the
above operations is always a trajectory, except when the result is a function with an empty domain. By
convention, we also write <oco £t andt <oco £ 7.

3.2.2. Prefix ordering

Trajectoryt is a prefix of trajectoryt’, denoted byr < 7/, if ¢ can be obtained by restricting
to a subset of its domain. Formally,ifand ¢’ are trajectories fo¥, thent < ¢’ iff T = ’[dom(z).
Alternatively,r < 7’ iff there exists & € T U {oo} such thatr = ¢/ <7 ort = ¢/ «¢. If t < 7’/ then
clearlydom(z) € dom(z’). If T is a set of trajectories fov, thenpref(T) denotes therefix closureof
T, defined by

pref(T) £ {r etrajs(V) |37’ e T: 7 < 7'}.

We say that’" is prefix closedf T = pref(T).
The following lemma gives a simple domain-theoretic characterization of the set of trajectories over
a given set of variables:

Lemma3.4. LetV be a set of variablesThe set trajéV) of trajectories forV, together with the prefix
ordering <, is an algebraic cpolts compact elements are the closed trajectories
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Proof. Itis trivial to check thattrajs(V), <) is a partial order. In order to prove that it is a cpo, assume
that T is a directed subset afajs(V). We prove thafl” has a least upper bound. It is routine to check
that a set of trajectories is directed iff it is totally ordered by prefix.7Ses totally ordered. Using
this, it follows that the trajectories ifi are pairwise compatible functions. Therefore, functigif is
defined.

We now prove that J T is a trajectory forV. If | JT € T then this is immediate. Otherwise, let
t € T U {oo} be the supremum of the limit times of all trajectoriedinThere exists an infinite ascending
chainr, 1, 12, . .. of limit times of trajectories if" such that = lim;_, o #; and all they;’s are different.
For each, let7; be a trajectory iff” with ; = 7;.Itime. Next define, for each ] = 7;,1 <. Then, by
construction, the trajectoriesg, 73, 75, . .. are closed and pairwise compatible, dndz/ = |J 7. Let
7. 71, 75, . .. be the sequence of functions defined by

w2,
T/ £ ¢/[[t/_y.Itime, co) if i > 0.

By construction, the/"’s are closed, pairwise compatible, anfj 7/ = |, /. Using the assumption
that dynamic types are closed under pasting, it follows|that”” (and hencé J T') is a trajectory.

Now we show that J 7 is a lub for T. It follows immediately from the construction ¢f) 7 that
J T is an upper bound fof. Suppose that’ is also an upper bound far. We prove that J7 < 7'.
Since eachr € T satisfiesdom(r) € dom(t’), also| J,., dom(r) € dom(z’). By definition of |J 7,
domUT) = U,y dom(z). Hencedom(J 7') € dom(z’). Let r be an element oflom(J 7). Then
t is in the domain of some € T. Sincer is a prefix of both JT andz’, ((JT)(¢r) = t/(z). Thus,
/f[dom|JT) =T, thatis,|JT < 7’. It follows thattrajs(V) is a cpo.

We leave it to the reader to check that the closed trajectories are the compact elements in this cpo, and
that the cpo is algebraic.(]

3.2.3. Concatenation

The concatenation of two trajectories is obtained by taking the union of the first trajectory and the
function obtained by shifting the domain of the second trajectory until the start time agrees with the limit
time of the first trajectory; the last valuation of the first trajectory, which may not be the same as the first
valuation of the second trajectory, is the one that appears in the concatenation. Formally, sugpuibse
7/ are trajectories foV, with r closed. Then theoncatenatiorr ~ 7’ is the function given by

27U (7'(0, 00) + t.ltime).

Because dynamic types are closed under time shift and pasting, it followsthats a trajectory for
V. Observe that ~ 1’ is finite (resp., closed, full) if and only if’ is finite (resp., closed, full). Observe
also that concatenation is associative.

The following lemma, which is easy to prove, shows the close connection between concatenation and
the prefix ordering.

Lemma3.5. Lett andv be trajectories forV with T closed Then

r<ve It v=1""1.
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Note that ift < v, then the trajectory’ such thatv =t 1’ is unigque except that it has an arbi-
trary value forz’.fval. Note also that the<" implication in Lemma 3.5 would not hold if the first
valuation of the second argument, rather than the last valuation of the first argument, were used in the
concatenation.

We extend the definition of concatenation to any (finite or countably infinite) number of arguments.
Let g, 71, 72, .. . be a (finite or infinite) sequence of trajectories such tha closed for each nonfinal
indexi. Define trajectoriesy, 73, 75, . .. inductively by

702 10,

T/, 27 141 fornonfinali.
Lemma 3.5 implies that for each nonfinak; < ;. ,. We define th&oncatenationo 71" 72 - - to be
the limit of the chaingg, 77, 75, . . .; existence of this limit follows from Lemma 3.4.

3.3. Hybrid sequences

In this subsection, we introduce the notion ¢fydrid sequencgeavhich is used to model a combination
of changes that occur instantaneously and changes that occur over intervals of time. Our definition is
parameterized by a sdt of actions which are used to model instantaneous changes and instantaneous
synchronizations with the environment, and a8eif variables which are used to model changes over
intervals of time and continuous interaction with the environment. We also define some special kinds of
hybrid sequences and some operations on hybrid sequences, and give basic properties.

3.3.1. Basic definitions

Fix a setA of actions and a sét of variables. An(A, V)-sequencés a finite or infinite alternating
sequence = tgai 11 42 T2, ..., Where
(1) eachr; is a trajectory irtrajs(V),

(2) eachy; is an action inA,

(3) if ¢ is a finite sequence then it ends with a trajectory, and
(4) if 7; is not the last trajectory in thendont(t;) is closed.

A hybrid sequences an(A, V)-sequence for somg andV'.

Since the trajectories in a hybrid sequence can be point trajectories, our notion of hybrid sequence
allows a sequence of discrete actions to occur at the same real time, with corresponding changes of
variable values. An alternative approach is described in [69], where state changes at a single real time
are modeled using a notion of “superdense time”. Specifically, hybrid behavior is modeled in [69] using
functions from an extended time domain, which includes countably many elements for each real time,
to states.

If « is a hybrid sequence, with notation as above, then we definiénitgime of «, «.Itime, to be
> _; ti.ltime. A hybrid sequence is defined to be:

e time-boundedf «.ltimeis finite.
e admissibldf «.ltime = cc.
e closedif « is a finite sequence and the domain of its final trajectory is a closed interval.
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e Zenaif « is neither closed nor admissible, that isy i time-bounded and is either an infinite sequence,
or else a finite sequence ending with a trajectory whose domain is right-open.

A more standard definition of “Zeno” would be simply “a time-bounded infinite sequence”. We add the
second option to the definition in order to guarantee a simple property of the hiding/restriction operator,
see Lemma 4.9(2). Except for Lemma 4.9(2), all results of this paper hold also for the more standard
definition. We say that a hybrid sequence is “non-Zeno” if it is not Zeno, that is, if it is closed or
admissible.

For any hybrid sequenceg we define thdirst valuationof «, «.fval, to berg.fval. Also, if « is closed,
we define théast valuationof «, a.lval, to belast(«).lval, that is, the last valuation in the final trajectory
of a.

3.3.2. Prefix ordering

We saythatA, V)-sequence = 19 a1 11 .. . isaprefixof (A, V)-sequenc@ = vg b1 v1 ..., denoted
by a < B, provided that (at least) one of the following holds:
1) @ = B.
(2) «isafinite sequence endingin somer; = v; anda; 1 = b;1foreveryi,0 < i < k;andr; < w.
Like the set of trajectories ovéf, the set of(A, V)-sequences is a cpo:

Lemma3.6. LetV be a set of variables and a set of actionsThe set of(A, V)-sequences, to-
gether with the prefix orderingg, is an algebraic cpolts compact elements are the closet, V)-
sequences

Proof. We leave to the reader the routine check #ias a partial order. Note that this uses the fact that
< is a partial order on trajectories (Lemma 3.4).
In order to prove that we have a cpo, ebe a directed subset 6fA, V)-sequences. We prove that
S has a least upper bound. It is easy to check that totally ordered by the prefix ordering. We
distinguish two cases.
(1) There is no finite upper bound on the number of trajectories that occur in the sequelscéds in
this case, we can construct an infinite sequenger, a2 ... of elements ofS such that, for each
i, a; contains at least actions and + 1 trajectories, and; < «;,1. For each € N, let 7; be the
i + 1-st trajectory (the one indexed byin «; 1, and fori > 1, leta; be thei-th action ine;. Let
a=T19a1T1a2T2.... Itis easy to verify that is an upper bound of the sgt; | i € N} and in fact,
is the only upper bound of this set. It follows thats the lub ofS, as needed.
(2) Thereis afinite upper bourtdon the number of trajectories that occur in tie V)-sequences ifi.
In this case, les’ be the set obtained by removing all sequences with feweritheajectories from
S. Sinces’ is totally orderedjnit(a) = init(«) for anya, o’ € S’. (Recall thatinit is an ordinary
sequence operation—it yields all but the last element of the sequence.) Choase dtfyand let
o = init(a). Let T be the set of final trajectories of sequences’inAgain using the fact thaf’ is
totally ordered, we obtain thdt is totally ordered by the prefix ordering on trajectories. t. bk the
least upper bound df (this upper bound exists by Lemma 3.4). It is routine to checkdhais a
least upper bound of’, and thus ofS.
We leave it to the reader to check that the clog&dV)-sequences are the compact elements in this cpo,
and that the cpo is algebraic.(J
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3.3.3. Concatenation
Supposexr anda’ are(A, V)-sequences with closed. Then theoncatenationr ™o’ is the(A, V)-
sequence given by

a" o 2init(x) (last(a) " head«”)) tail (o).

(Here,init, last, headandtail are ordinary sequence operations.)

Lemma3.7. Leta andp be(A, V)-sequences with closed Then
a<B&I:Bp=a"d.

Note that ifa < 8, then the(A, V)-sequence’ such that8 = ™o’ is unique except that it has an
arbitrary value inval(V) for o’ .fval.

As we did for trajectories, we extend the concatenation definitioi40V )-sequences to any finite
or infinite number of arguments. Leg, a1, . . . be afinite or infinite sequence o4, V)-sequences such
thate; is closed for each nonfinal indéxDefine(A, V)-sequences, o7, ... inductively by

oy = ao,

o 2o aip1 fornonfinali.
Lemma 3.7 implies that for each nonfiraly; < a;+1. We define theoncatenatiog "y - - - to be the
limit of the chainag, o}, . . .; existence of this limit is ensured by Lemma 3.6.

3.3.4. Restriction

Let A and A’ be sets of actions and laét and V’ be sets of variables. Thed’, V')-restriction
of an (A, V)-sequencer, denoted byx[(A’, V'), is obtained by first projecting all trajectories @f
on the variables inV’, then removing the actions not id’, and finally concatenating all adjacent
trajectories. Formally, we define thel’, V’)-restriction first for closed A, V)-sequences and then
extend the definition to arbitrargd, V)-sequences using a limit construction. The definition for closed
(A, V)-sequences is by induction on the length of those sequences:

[(A', V)=tV if risasingle trajectory,
Con _ @A V) a TV ifaed,

aar[(4. V)= {(a[(A’, V)" (tlV’)  otherwise.

Note that in the case where, due to removal of some action, we concatenate two adjacent trajectories, we

lose the first state of the second trajectory (by letting the last state of the first trajectory dominate). It is

easy to see that the restriction operator is monotone on the set of ¢ls®d-sequences. Hence, if we

apply this operation to a directed set, the result is again a directed set. Together with Lemma 3.6, this

allows us to extend the definition of restriction to arbitrésy V)-sequences by:

al(A', V) =U{B[(A’, V') | B is a closed prefix of}.

Lemma3.8. (A’, V')-restriction is a continuous operation
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Proof. This follows by general domain-theoretic arguments. For convenience, in this proof we write

f(a) as an abbreviation far[(A’, V).

First we establish thatA’, V’)-restriction is monotone for arbitrargA, V)-sequences. Let, o’
be (A, V)-sequences witlw < o’; we show thatf(«) < f(a’). Let P and P’ denote the set of
closed prefixes ofr and «’, respectively. By transitivity of the prefix ordering, it follows th&t
dominates P, that is, P C P’. Since the restriction operation is monotone on closddV)-
sequences, it follows that(P) C f(P’). Then Lemma 2.1 implies that f(P) < uf(P’). By the
definition of the restriction operation, this implies thdt(a) < f(a’), which shows monoto-
nicity.

Now we complete the proof thatd, V)-restriction is continuous by assuming th&tis any di-
rected set of A, V)-sequences and showing th&tiP) = L f(P). By the definition of the restriction
operation, f(LP) = L{ f(B) | B is a closed prefix of1 P}. By Lemma 3.6 and the definition of com-
pact elements, any closed preftx of LUP is also a prefix of some € P. Therefore, f(LP) =
L{f(B)|Bisclosed andlx € P : B is a prefix ofa}.

Now we apply Lemma 2.2 to the right-hand side of this last equation. To do this, we must show:
(1) Q= {f(B)|Bisclosed andla € P : B is a prefix ofa} is a directed set. To see this, consider any

nonempty finite subsek € Q. Each element oR is a prefix of somex € P. Therefore, since
P is a directed set, there is some singlee P such that each element & is a prefix of
o’. Therefore,R is a directed set; sinc® is finite, it has a lub inR, and hence inQ, as
needed.

(2) Foreachx € P, {f(B)|B is closed ang is a prefix ofx} is a directed set with luly («). The first
part follows because the set of closed prefixes @f a directed set and is monotone. The second
part follows from the definition of restriction.

(3) The setf (P) is directed. This follows becaugeis a directed set and is monotone.

Then Lemma 2.2 implies that

L{f(B)|Bisclosed andlx € P : B is a prefix ofa}
=u{f(a) | € P} =Lf(P).
Thus, f(LP) = LUf(P), as needed.

The proofs of the following three lemmas are left to the reader.

Lemma39. (o a1 - )[(A, V) =0ao[(A, V) a1[(A, V)" ..

Lemma3.10. («[(A, V)[(A, V) =a[(ANA,VNV).

Lemma 3.11.

(1) « is time-bounded if and only éf[ (A, V) is time-bounded.
(2) « is admissible if and only &[(A, V) is admissible.

(3) If x is closed them[(A, V) is closed.

(4) If « is non-Zeno ther[(A, V) is non-Zeno.
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4, Hybrid automata

In this section, as a preliminary step toward defining hybrid I/O automata, we define a slightly more
generalhybrid automatommodel. In hybrid automata, actions and variables are classified as external
or internal. External actions and variables are not further classified as input or output; the input/output
distinction is added later in Section 6. We define how hybrid automata execute and define implementation
and simulation relations between hybrid automata.

4.1. Definition of hybrid automata

A hybrid automaton is a state machine whose states are valuatimagialbles and that uses other
variables for communication with its environment. It also has a setctibng some of which may
be internal and some external. The state of a hybrid automaton may change in two wdiscrbie
transitions which change the state atomically and instantaneously, aticjegtories which describe
the evolution of the state over intervals of time. The discrete transitions are labeled with actions; this
will allow us to synchronize the transitions of different hybrid automata when we compose them in
parallel. The evolution described by a trajectory may be described by continuous or discontinuous
functions.

Definition 4.1. A hybrid automator{HA) A = (W, X, Q,®, E, H, D, T) consists of:

e A setW of external variablesand a setX of internal variables disjoint from each other. We write
VEWUX.

e AsetQ C val(X) of states

e A nonempty se® C Q of start states

e A set E of external actionsand a setH of internal actions disjoint from each other. We write
ASEUH.

e AsetD C QO x A x Q of discrete transitionsWe usex—a>Ax/ as shorthand fotx, a, X') € D. We
sometimes drop the subscript and writé x’, when we think4 should be clear from the context. We

say that is enabledn x if there exists ax’ such thak-—>x'.

e Aset7 oftrajectories folV suchthat (r)[X € Q foreveryr € 7 andr € dom(t). Given a trajectory
7 € 7 we denoter.fval[ X by r.fstateand, if r is closed, we denotelval[ X by r.Istate We require
that the following axioms hold:

T1 (Prefix closurg
Foreveryr € T andeveryr’ < t,t' € 7.
T2 (Suffix closurg
For everyr € 7 and every € domz), t >t € 7.
T3 (Concatenation closuje
Let 19, 71, T2, ... be a sequence of trajectoriesdnsuch that, for each nonfinal indeéxz; is
closed and; .Istate= t;1.fstate Thentg" 11" 12--- € 7.

Axioms T1-T3 express some natural conditions on the set of trajectories that we need to construct our
theory. A key part of this theory is a parallel composition operation for hybrid automata. In a composed
system, any trajectory of any component automaton may be interrupted at any time by a discrete transition
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of another (possibly independent) component automaton. AXibensures that the part of the trajectory

up to the discrete transition is a trajectory, and axio2ensures that the remainder is a trajectory. Axiom

T3 is required because the environment of a hybrid automaton, as a result of its own internal discrete
transitions, may change its continuous dynamics repeatedly, and the automaton must be able to follow
this behavior.

The earlier definition of hybrid automata in [53,54] used a special stuttering actinstead of
axiom T3. Another key difference between the new definition of hybrid automaton and the earlier
one is that in [53,54], the external variables were considered to be part of the state. This meant,
for example, that discrete transitions could depend on the values of these variables, a situation that
introduced technical complications. A local transition of one automaton could change an output var-
iable, which could cause a discrete change in a second automaton, which in turn could change an
input variable in the first automaton. To avoid cyclic constraints during the interaction of systems,
we had to add several axioms, which complicated the use of our automaton definitions in applica-
tions.

In the new definition, we explicitly identify the s of states as a subset w&l(X). In the earlier
definition of [53,54] any valuation imal(X) was called a state. The reason for introducihgs that in
Section 6, we will require that in each state each input trajectory is accepted. In actual system descriptions,
we often encounter valuations which are not reachable from the initial state, which in fact we do not
want to view as states, and from which no behavior is engbBy excluding these “ghost” valuations
from Q, we save ourselves the trouble of having to think about them.

Hybrid automata that have no external variables are very similar to the timed automata defined in
[60,74]. The main difference is that hybrid automata have trajectories as a primitive rather than a derived
notion. Also, the state of a timed automaton need not be organized using variables with particular types
and dynamic types.

Notation. We often denote the components of an BAby W4, X4, O4, O4, E4, etc., and the
components of an HA4; by W;, X;, O; ©;, E;, etc. We sometimes omit these subscripts, where no
confusion seems likely.

Notation. In examples we typically specify sets of trajectories using differential and algebraic equations
and inclusions. Below we explain a few notational conventions that help us in doing this. Suppose the
time domainT isR, t is a (fixed) trajectory over some set of variablegsandv € V. With some abuse of
notation, we use the variable naméo denote the functiom| v in dom(z) — typgwv), which gives the

value ofv at all times during trajectory. Similarly, we view any expressiancontaining variables from

V as a function with domaidom(z). Using these conventions we can say, for example,disatisfies

the algebraic equation

v=e,

which means that, for evenye dom(t), v(t) = e(¢), that is, the constraint on the variables expressed
by equatiorv = e holds for each state on trajectorySuppose thai is a variable and is a real-valued
expression containing variables frovh Suppose also that when viewed as a function, is integrable.
Then we say that satisfies

v=c¢e

4 Typical examples are the valuations that do not satisfy the “location invariants” of Alur-Dill style timed automata [2].
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Vehicle

vel-out

Fig. 2. The hybrid automatoviehicle

if, for everyr € dom(t), v(z) = v(0) + fé e(t’) dt’. Note that this interpretation of the differential equa-
tion makes sense even at points wheres not differentiable. A similar interpretation of differential
equations is used by Polderman and Willems [71], who call these “weak solutions”.

In the remainder of this section, we give two simple examples of hybrid automata.

Example 4.2 (Vehicle HA. We describe an HA/ehicle displayed in Fig. 2, which models a vehicle
that follows a suggested acceleration approximately, to within an erro00.

The time domaifT is R. The state of th&ehicleautomaton includes two real-valued internal variables
vel andacc, which represent the actual velocity and acceleration of the vehicle, respectively. In addition,
the automaton has two real-valued external variamelsyut andaccin, representing reported velocity
and suggested acceleration. The dynamic type of the variableselout, andaccin is the (pasting
closure of the) set of continuous functions. The dynamic typeofis the set of integrable functions.

Vehicleis defined to be the HA such th&it = {accin, velout}, X = {vel acd, Q is the set of all
valuations of the variables/ andacc, and® consists of the single valuation that assigns 0 to both state
variables. The set of actions is empty, and (theref@rghhe set of discrete transitions, is empty. et
consists of all trajectories that satisfy:

vel = acc D)
acc(t) € [accin(?) — ¢, accin(t) +¢] fort > 0O, 2)
velout = vel 3)

Eq. (1) says that the velocity is obtained by integrating the acceleration. Inclusion (2) asserts that, except
possibly for the left endpoint, the actual acceleration is withisf the suggested acceleration. Eqg. (3)
says that the velocity is reported accurately. We leave the reader to show that the trajectory axioms
T1-T3 are satisfied; the form of the equations and inclusions used to define the trajectories should make
this clear. We restrict to the case- 0 in Eq. (2) because we do not want to constrain either the input or
the starting state of trajectories. The reason for this restriction is technical (it ensurdshitéécan be

viewed as a proper HIOA that satisfies the input trajectory enabling property) and should become clearer
in Section 6. [

5We use an arrow notation because later on in this paper in Section 6, we wilbe®in as an input variable angekout
as an output variable. Within the context of the present chapter the arrow notation has no meaning.
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Controller

t vel-sensed

acc-in

vel-out

%acc—suggestedi

Fig. 3. The hybrid automato@ontroller.

Example 4.3 (Controller HA). Now we describe an HAontroller, displayed in Fig. 3, which models

a controller that suggests accelerations for a vehicle, with the intention of ensuring that the vehicle’s
velocity does not exceed a pre-specified velogitiax. The controller monitors the vehicle’s velocity,

and every timel, for some fixedd > 0, it produces a new suggested acceleration to be followed for the
next timed. The acceleration is chosen in such a way that, if it is followed to within an errey thie
velocity will remain belowmax (provided the vehicle is not going too fast in the first place). We assume
thatvmax > e d.

The components of th€ontroller HA are as follows:W = {velout, accin} and X = {velsensed
accsuggestegdclock}. All variables are of typ®. The dynamic types ofelout, velsensedaccin, and
clockare the (pasting closure of the) set of continuous functionsaaaduggesteds a discrete variable.

Q is the set of valuations oX in which clock < d. ® consists of one valuation, which assigns 0 to
all state variablest = ¢ and H contains the single actiosuggestSetD consists of thesuggessteps
specified by?

clock = d (4)
velsensedt (acesuggesteth €)d < vmax (5)
clock’ =0 (6)
velsensed= velsensed (7)

Eg. (4) says that the clock indicates that it is time for the suggested acceleration to be computed. Inequality
(5) says that the new suggested acceleration is chosen so that, if the vehicle follows it for the next time

d, even with an error of, the velocity will still remain at mostmax. Equation (6) says that the clock

is reset after the discrete transition. Equation (7) says that the transition does not change the value of
velsensedSet7 consists of all trajectories that satisfy:

acc—suggested= 0 (8)

clock=1 9)

6 Here we use the standard convention thdenotes the value of a variable in the start state of a discrete transition, and
denotes the value in the end state.
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veklsensed) = velout(r) forr >0 (120)

acc—in = accsuggested (11)

Sinceaccsuggesteds a discrete variable, the reader might think that adding constraint (8) makes
no difference. However, if we expand this constraint using our definition of solutions for differential
equations, we obtain

t
accsuggested) = accsuggeste@®) + / 0 df' = accsuggested),
0

which means thaticc-suggestedemains constant throughout the full trajectory. So the effect of adding
differential equation (8) is thatitrules outthe jumps that are allowed by the dynamic tgpe sfiggested

Eq. (9) states thatlockhas rate 1, and is therefore a clock variable in the sense of the timed automaton
model of [5].
Eq. (10) says that the velocity sensed by the controller is the same as the velocity reported to the controller
by its environment. Eq. (11) asserts that the acceleration that the controller provides to its environment
is the same as the acceleration that it has most recently computed. Again, we leave the reader to show
that the trajectory axiom&1-T3 are satisfied. [

4.2. Executions and traces

We now define execution fragments, executions, trace fragments, and traces, which are used to
describe automaton behavior. Axecution fragmentf a hybrid automatod is an (A, V)-sequence
a=7t0a111a212..., Where (1) each; is a trajectory in7, and (2) ift; is not the last trajectory in
o thenri.Istat(eailriJrl.fstate An execution fragment records what happens during a particular run of a
system, including all the instantaneous, discrete state changes and all the changes to the state and external
variables that occur while time advances. We whiggs, for the set of all execution fragments 4f

If o is an execution fragment, with notation as above, then we defirfeshstateof «, «..fstate to be
7o.fstate We say thatr is an execution fragmeffitom a statex if «.fstate= x. An execution fragment
is defined to be aexecutionf «.fstateis a start state, that ig,fstatee ®. We writeexecg, for the set
of all executions ofA. If « is a closed A, V)-sequence then we define tlast stateof «, «.Istate to be
last(«).Istate A state ofA is reachabléf it is the last state of some closed execution®bf

Example 4.4 (Vehicle execution Since theé/ehicleHA of Example 4.2 has no discrete steps, each of its
executions is a one-element sequence consisting of a single trajectory over all the varigbleslef

An example of such an execution, depicted graphically in Fig. 4, is the one consisting of the tragectory
with z.ltime = oo, and such that:

0 ifr<1,
accin(t) =42 ifl<r<3,
0 ifr>3.
€ if r <1,

acct) =124+¢ ifl <r <3
0 ifr > 3.
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_____ = acc

— = vel = vel-out

Fig. 4. An execution of th&ehicle(lower two lines after 3 are supposed to coincide).

€t if r <1,
vel(t) =velout(t) ={ 2+ e)r —2 ifl <t <3,
44 3¢ if £ > 3.

Any finite prefix ofr would also yield an execution &khicle The trace ot is the one-element sequence
obtained by projecting on{accin, velout}. [

Example 4.5 (Controller executioh In the Controller HA of Example 4.3, supposé = 1, so the

suggested acceleration is recalculated at times 1, 2, etc. Also supposentixat: 4 + 4¢. Then an

example execution o€ontroller is the infinite sequence = tg suggest; suggest,..., where, for

everyi and for every € dom(z;)

(1) 7;.Itime = 1.

(2) 7; (¢)(clock) = ¢.

(3) If i =0thent; (¢)(v) is equal to 0 fow € {accsuggestegdaccin} andet for v € {velout, velsensegl

(4)If 1 <i < 2thent(¢)(v) is equal to 2 forv € {accsuggestedaccin} and (2 +€)(@ + ) — 2 for
v € {velout, velsensefl

(5) If i > 3thent;(r)(v) is equal to O fow € {accsuggestedaccin} and 4+ 3¢ for v € {velout, vel
sensedl
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The assumed bound amnax implies that the suggested accelerations in this execution are actually
possible suggestions according to the rule given inGbatroller automaton definition. The trace of
executionx consists of a single trajectory becawentroller has no external actions. This trajectory is
defined by:

0 ifr<1,
accin®) =42 ifl<r<3,
0 ifr>3.
€t if r <1,
velout(r) = { 2+e)t—2 ifl<r<3
44 3e if t > 3.

Like trajectories also execution fragments are closed under countable concatenafion.

Lemma4.6. Letag, o1,... be a finite or infinite sequence of execution fragmentsi afuch that,
for each nonfinal index, «; is closed andy;.Istate= «;1.fstate Thenag™w1™ --- iS an execution
fragment ofA.

Proof. Follows easily from the definitions, using axioh3. O
Lemma4.7. Leta andp be execution fragments gf with & closed Then
a<B&Id e fragsy:p=a"d.

Proof. Implication “<" follows directly from the corresponding implication in Lemma 3.7. Implication
“=" follows from the definitions and2. O

The external behavior of a hybrid automaton is captured by the set of “traces” of its execution
fragments, which record external actions and the trajectories that describe the evolution of external
variables. Formally, ifx is an execution fragment, then tlace of o, denoted bytrace(w), is the
(E, W)-restriction ofa. (Recall thatE denotes the external actions aitthe external variables.) A
trace fragmenbf a hybrid automatond from a statex of A is the trace of an execution fragment.f
from x. We writetracefrags, (x) for the set of trace fragments &f from x. Also, we define @raceof A
to be a trace fragment from a start state, that is, the trace of an executirantl writetracesy for the
set of traces o#4.

The following lemma follows trivially from Lemma 3.11:

Lemma4.8. If « is an execution fragment of then

(1) « istime-bounded if and only if trace) is time-bounded.
(2) « is admissible if and only if trade) is admissible.

(3) If @ is closed then traqe) is closed.

(4) If @ is non-Zeno then trace) is non-Zeno.

In parts (3) and (4) of the above lemma, the converse implications do not hold. Counterexamples
can be obtained by taking an execution fragmerthat ends with an infinite sequence of internal
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actions without any delay in between. However, a slight weakening of the converse implications does
hold:

Lemma4.9. If is atrace fragment afd from statex then

(1) If g is closed then there exists an execution fragmeott.A from x such that tracéx) = g and« is
closed.

(2) If B is non-Zeno then there exists an execution fragrenit.4 from x such that tracéx) = 8 and
« is non-Zeno.

If the definition of non-Zeno was broadened to include the case of a right-open final trajectory, then part
2 of the above lemma can fail. It might be that the only execution that leads to such a trace is a Zeno
execution, one with infinitely many internal events, and delays which get smaller and smaller.

The next definition defines an implementation relation between hybrid automata in terms of inclusion
of traces: a low-level specificatiad implementsa high-level specificatio8 if any behavior (trace)
of A is also an allowed behavior @&. Without additional assumptions, our implementation relation
only preserves safety properties. However, in Section 7 we will see that if the low-level specification
automaton is required to beceptive our implementation relation also preserves bounded liveness
properties.

Definition 4.10. Hybrid automatad; and.4, arecomparablef they have the same external interface,
that is, if Wiy = W, and E1 = E5. If A1 and A> are comparable then we say thdi implements
A, denoted byA; < Ay, if the traces ofA; are included among those of,, that is, iftraces,, <
tracesy,.’

4.3. Simulation relations

In this subsection, we define simulation relations between hybrid automata. Simulation relations may
be used to show that one HA implements another, in the sense of inclusion of sets of traces.
Let A andB be comparable HAs. Aimulationfrom A to B is a relationR C Q 4 x Qp satisfying
the following conditions, for all states4 andxg of .A andB, respectively:
(1) If x4 € ® 4 then there exists a statg € ©p such thak 4 R Xj.
(2) If x4 R x5 anda is an execution fragment o4 consisting of one action surrounded by two point
trajectories, witha.fstate= x4, then 5 has a closed execution fragmefitwith g.fstate= xz,
trace(B) = trace(ar), andw.IstateR8.Istate

7In [27,53,54,60], definitions of the set of traces of an automaton and of one automaton implementing another are based
on closed and admissible executions only. The results we obtain in this paper using the newer, more inclusive definition imply
corresponding results for the earlier definition. For example, we have the following propedty <f. A, then the set of traces
that arise from closed or admissible executions4afis a subset of the set of traces that arise from closed or admissible
executions of4,.
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(3) If x4 Rxp andwx is an execution fragment of consisting of a single closed trajectory, witlistate—=
X4, then3 has a closed execution fragmenuith g.fstate= xg, trace(8) = trace(x), andw.IstateR
B.Istate

The definition of a simulation frorm to B yields a correspondence for open trajectories:

Lemma4.11. Let.A and5 be comparable HAs and I& be a simulation from4 to B. Letx4 andxg

be states ofd and B, respectively such thatx 4 Rxz. Let @ be an execution fragment of from state
X4 consisting of a single open trajectorfhen’3 has an execution fragmegtwith g.fstate= xz and
trace(B) = trace(w).

Proof. Let t be the single open trajectory im Using axiomsT1 and T2, we construct an infinite
sequencerg, 11, . .. Of closed trajectories ofd such thatt = 1" t1™ ---. Then, working inductive-
ly, we construct a sequendgg, 81, ... of closed execution fragments & such thatgg.fstate=

Xz and, for each, r;.Istate R B;.Istate §;.Istate= B;,1.fstate andtrace(r;) = trace(s;). This con-
struction uses induction on, using Property 3 of the definition of a simulation relation in the
induction step. Now le = o~ 81~ ---. By Lemma 4.6,8 is an execution fragment d$. Clearly,
B.fstate= xz. By Lemma 3.9 applied to botta and 8, trace(8) = trace(«). Thus g has the required
properties. [

Theorem 4.12. Let.A and B be comparable HAs and I&& be a simulation fromA to B. Letx 4 and
Xp be states ofd and B, respectively, such that4 R xz. Then tracefragg(x 4) < tracefragd3(xz).

Proof. Suppose that is the trace of an execution fragmentdthat starts fronx 4; we prove thas is
also a trace of an execution fragmenibthat starts fronxz. Leta = 19 a1 11 a2 72.. . . be an execution
fragment of A such thatr.fstate= x4 ands = trace(«). We consider cases:

(1) « is an infinite sequence.

Using axiomsT1 and T2, we can writex as an infinite concatenatiary™a1 a2 - - -, in which
the execution fragmentg with i even consist of a trajectory only, and the execution fragments
with i odd consist of a single discrete step surrounded by two point trajectories.

We define inductively a sequengg B1, . . . of closed execution fragmentsBf such thapy.fstate
= X and, for alli, B;.Istate= B;,1.fstate «;.IstateR §;.Istate andtrace(s;) = trace(w;). We
use Property 3 of the definition of a simulation relation for the construction offtlsewith
i even, and Property 2 for the construction of i#és with i odd. Letg = 8o~ B1"B2---. By
Lemma 4.6,8 is an execution fragment @. Clearly, g.fstate= xz. By Lemma 3.9trace(8) =
trace(x). Thusg has the required properties.

(2) « is a finite sequence ending with a closed trajectory.

Similar to the first case.

(3) «a is a finite sequence ending with an open trajectory.

Similar to the first case, using Lemma 4.11.]

Corollary 4.13. Let .A and B be comparable HAs and leR be a simulation from4 to B. Then
traces, C tracess.
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Proof. Supposes € tracesy. Theng e tracefrags,(x4) for some start state 4 of A. Property 1 of
the definition of simulation relation implies the existence of a start statef B such thatx4 R Xg.
Then Theorem 4.12 implies th@te tracefragg (Xp). Sincexg is a start state oB, this implies that
B € tracess, as needed. O

Example 4.14 (Vehicle implementatign Now denote thévehicle HA of Example 4.2 byWehiclde),
making the uncertainty parameter explicit. Assume that & < €. Let A = Vehiclde;) and B =
Vehiclgez). We claim that4 < B. We can show this by demonstrating that the identity mapping is a
simulation relation from4 to B. Since these HAs have no discrete steps, we need only show Properties
1 and 3 of the definition of simulation relation. Property 1 is obvious because the two HAs have the
same (unique) start state, which assigns 0 to both state variables. For Property 3, assymethat

anda consists of a closed trajectotryof A with «.fstate= x 4. Let 8 = «. Clearly,s is a closed hybrid
sequenceg.fstate= xz, trace(8) = trace(«), anda.Istate R B.Istate It remains to show tha# is an
execution fragment a8, that is, thatr is a trajectory of3. This follows immediately from the definition

of trajectories forVehiclge;) andVehiclgeo); the only interesting point is that, for everye don(z),

t > 0, we havel{accin(r) — €1, accin(t) + €1] C [accin(t) — €2, accin(®) +e2]. O

Example 4.15 (Controller implementation Denote theController HA of Example 4.3 byController
(vmax), making the maximum velocity parameter explicit. Assume thdtwinax; < vmaxo. We claim

that Controller(vmaxy) < Controller(vmaxz); again, we show this by demonstrating that the identity
mapping is a simulation relation. This requires showing all three properties of the definition of simulation
relation. Properties 1 and 3 are immediate, becauss does not appear in the definitions of the start
states and the trajectories. For Property 2, the key is thatk fensedt (accsuggestett €)d < vmax,

then alsovelsensedt (accsuggested + €)d < vmaxp. [

5. Operationson hybrid automata

In this section, we present two kinds of operations on hybrid automata: parallel composition and hiding.

5.1. Composition

We now introduce the operation of parallel composition for hybrid automata, which allows an autom-
aton representing a complex system to be constructed by composing automata representing individual
system components. Our compaosition operation identifies external actions with the same name in different
component automata, and likewise for external variables. When any component automaton performs a
discrete step involving an actiom, so do all component automata that havén their signatures.
Likewise, when any component automaton performs a trajectory involving a particular evolution of
values for an external variable then so do all component automata that have their signatures. We
prove several results that say that the composition operation respects our notions of external behavior
and implementation.

We define composition as a partial, binary operation on hybrid automata. Since internal actions of an
automatonA; are intended to be unobservable by any other automéatowe allow.4; to be composed
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with A only if the internal actions of4; are disjoint from the actions ofl,. Similarly, we require
disjointness of the internal variables df and the variables ofl,.

Definition 5.1. We say that hybrid automatdy and.A, arecompatiblef Hy N A> = HoN A1 = @ and
X1NVy= XNV, =4@. If A1 and. A, are compatible then theaompositionA; || A is defined to be
the structured = (W, X, 0,0, E, H, D, T) where

o W=WUWyandX = X1 U X».

Q0 = {xeval(X)|x[X1 € Q1 AX[X2 € Q2}.

O ={Xe Q|X[X1€O1AX[X2 € O2).

E=FE1UExandH = H1 U Ho.

For eachx, X’ € Q and eacl: € A, xiA X ifffor i =1, 2, either (1) € A; andx[X; N [X;,or
(2)a ¢ A; andXx[X; = X'[X;.

e 7 Ctrajs(V)isgivenbyr e TotlVie i ATl Vo € To.

Whenever we writed || A2, we implicitly assume thatl; and. A, are compatible.

Theorem 5.2. If A1 and. A, are hybrid automata thenls ||.A> is a hybrid automaton

Proof. Let.A denoteA;|.42 as above. We show that satisfies the properties of a hybrid automaton
(cf. Section 4.1). Disjointness ¢ and X follows from disjointness of¥1 and X1, disjointness o,
and X5, and compatibility. Similarly, disjointness @& and H follows from disjointness oF; and Hy,
disjointness oft» and H,, and compatibility. Nonemptiness 6f follows from nonemptiness @b, and
®> and disjointness ok, and X». We verify theT properties:

T1 Letr € 7, lett’ be atrajectory suchthat < z, and leti € {1, 2}. By the definition of composition,
7l V; € 7;. By the definition of prefixz’|V; < t|V;. By T1 applied toA;, '} V; € 7;. Then by
definition of compositions” € 7, as needed.

T2 Lett € 7,1t e dom(t), 7’ = t >t,andi € {1, 2}. By the definition of compositior,| V; € 7;. Then
by T2 appliedtad;, (z|V;) >r € 7;. Observe thatt | V;) >t = /| V;; thereforez’| V; € 7;. Then
by the definition of compositior,” € 7, as needed.

T3 Let 70, 11, 72, . .. be a sequence of trajectories Tn such that, for each nonfinal index z; is
closed and; Istate= r;,.fstate Let r denoterg " 7112 - -, and leti € {1, 2}. By the definition
of composition, operation, for each indgxt;|V; € 7;, and for each nonfinal index, z;|V; is
closed andz;|V;).Istate= (t; 1] V;).fstate By T3 applied toA;, 1ol Vi "t Vi "2l Vi --- € T,.
Observe thatt | V; = 10l V; "1l Vi "2l V; - - -; therefore,z|V; € 7;. Then by the definition of
compositiongt € 7, as needed. [J

The following “projection lemma” says that executions of a composition of HAs project to give executions
of the component automata. Moreover, certain properties of the executions of the composition imply, or
are implied by, similar properties for the component executions.

Lemmab.3. LetA = A1]| A2 and letx be an execution fragmentdf Thena[(A1, V1) anda[ (A2, V2)
are execution fragments gf; and .42, respectively. Furthermore,
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(1) «istime-bounded iff both[(A1, V1) anda[(A2, Vo) are time-bounded.
(2) « is admissible iff botl [(A1, V1) anda [ (A2, Vo) are admissible.

(3) «is closed iff bothw [ (A1, V1) anda[ (A2, Vo) are closed.

(4) ais Zeno iff at least one af[ (A1, V1) anda[(A2, Vo) is Zeno.

(5) « is an execution iff botk[(A1, V1) anda[(A2, V) are executions.

Proof. Simple application of the definitions.[

Example 5.4 (Composition and Zeno executign€onsider a compositioil = A1|.A2 in which the
two components have no actions or variables in common. We describe a Zeno execution fragfent
A in which only one of the projected execution fragments is Zeno. Namely, ietroay t1 a2 72.. . .,
wheretg.ltime = 1 and for alli > 1, t; is a point trajectory. Also, all the;’s are actions of4; but
not of A,. Then«f(A1, V1), which includes all thes;’s, is a Zeno execution fragment, whereas
af(Az, Vo), which consists of the single right-closed trajectagy, V>, is a closed execution frag-
ment. O

Example 5.5 (Execution of vehicle and controllerConsider thévehicleand Controller automata of

Examples 4.2 and 4.3 (for the sam)e These two HAs are compatible. Their composition is displayed in

Fig. 5. An example execution of the composition is the infinite sequenree suggest; suggesty. . .,

where, for every and for every € dom(t;):

Q) ; Itime = 1.

(2) 7; () (clock) = ¢.

(3)If i =0 thent;(r)(v) is equal to O forv € {accsuggestedaccin}, € for v = acc, andet for v €
{vel, velout, velsensefl

@ If1<i<2thent;()(v) is equal to 2 forv € {accsuggestedaccin}, 2+ € for v = ace, and
2+¢e)(i +1)— 2forv € {vel, velout, velsensedl

(5) If i > 3 thenrt;(¢)(v) is equal to O forv € {accsuggestedaccin, acg and 4+ 3¢ for v € {vel,
velout, velsensefl

This execution is admissible. Its projections on tfehicleand Controller automata are given by the

admissible executions in Examples 4.4 and 4.5, respectivéely.

Controller

. vel-sensed

‘acc-suggested; vel-out

Fig. 5. Composition of hybrid automatéhicleandController.
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The following lemma says that we obtain the same result for an execution fragraEatomposition
if we first extract the trace and then restrict to one of the components, or if we first restrict to the component
and then take the trace.

Lemmab.6. LetA = A;|.A2, and leta be an execution fragment gf. Then, fori = 1, 2, trace(«)
[(E;, W;) = trace(a[(A;, V})).

Proof. Recall thatrace(o) = «[(E, W). The result follows straightforwardly by Lemma 3.10 and the
observationthaW N W, =W; =V, NW,;andENE;, =E; = A, NE;. O

The following fundamental theorem relates the set of traces of a composed automaton to the sets of
traces of the component automata. It is expressed in terms of equality between two sets of traces. Set
inclusion in one direction expresses the idea that a trace of a composition “projects” to yield traces of
the components. Set inclusion in the other direction expresses the idea that traces of components can be
“pasted together” to yield a trace of the composition.

Theorem 5.7. LetA = A1||A2. Then traceg is exactly the set aff, W)-sequences whose restrictions
to.4; and A are traces of4; and A, respectivelyThat is

tracesy = {B | B is (E, W)-sequence and[(E;, W;) € tracesy,, i = 1, 2}.

Proof. For one direction, suppose thais a trace of4d. Then by definitiong is an(E, W)-sequence.
Let @ be an execution ofd such thatg = trace(w). Let i € {1, 2}. Then Lemma 5.6 implies that
BI(E;, W;) = tracela[(A;, V;)). Since, by Lemma 5.3;[(A4;, V;) is an execution of4;, B[ (E;, W;) is
atrace ofA;.

Conversely, let8 be an(E, W)-sequence such th@t[ (E;, W;) is a trace ofA4;, i = 1, 2. Then there
are executiong1 andas of A7 and Ay, respectively, such that, for= 1, 2, trace(o;) = B[ (E;, W;).
Decompose; into o ~al~a?" - .., decomposes into «d "l w2 - ., and decomposg into 0
p~B%~ ... in such a way that for each (1) trace(}) = B/ [(E;, W;) fori € {1, 2}, (2) &/ is either a
trajectory or an action surrounded by point trajectories,{1, 2}, and (3) if bothoz{ andaé consist of
actions surrounded by point trajectories then these actions are identical. Akibersd T2 imply that
such decompositions exi&t.

Now we define a sequence of execution fragmentd,af®, o%, ..., such that

(1) o fstatee O 4,

(2) for every nonfinalj, o/ Istate= o/ ** fstatg and

(3) for everyj, trace(a/) = B/.

By Lemma 4.6, the concatenatie~«™ - - - is an execution ofd. Moreover, by Lemma 3.9, the trace
of this execution i$8. To define eack/, we distinguish the following cases:

(1) Each ofa{ andaé is a trajectory.

8 See [59] for a detailed existence proof for similar decompositions.



134 N. Lynch et al. / Information and Computation 185 (2003) 105-157

Then suppose that{ =1 andaé = 1. Definea’ to be the functionr with domaindom(z1) such
thatz (1) = 71(r) U 72(2) for everyz. (Compatibility ofq. andr, follows here, and in the remaining

three cases, from the facts thet= B/ [(E1, W1) andag = B/ [(E2, W2).)
(2) of isa trajectory andef is an action surrounded by point trajectorles
Thenoz1 must be a point trajectory as well. L:ei © (V1) anda2 = p (V2)ap (V,). Then define
af to bep (Vi U V2) a o (V1 U VS).
3) al is an action surrounded by point trajectories atjds a trajectory.
This is symmetric with the previous case.
(4) Each Ofozl anda2 is an action (the same in both cases) surrounded by point trajectories.
Let al » (Viagp (V7) andoz2 = p (V2)ap (V5). Definea/ to bep (v1 U Vo) a o (Vi U V).
It is straightforward to verify that the/ fragments satisfy the required properties]

The following theorem describes a basic substitutivity property:

Theorem 5.8. Supposed; and A, are comparable HAs witbd; < As. Supposes is an HA that is
compatible with each aofl; and.A,. ThenA;||B and.A|| B are comparable anti; || B < A2||B.

Proof. The fact thatA;| B and A||B are comparable follows from the fact that; and A, are
comparable and the definition of composition.

Let e tracesy, 5. By Theorem 5.78[(E1, W1) € tracesy, andB[(Eg, Wp) € tracess. Sinced; <
Ao, B[(E1, W1) € tracesy,. SinceA; and.A; have the same external interfac&y, W) = (E2, W2).
Thus,B[(E>2, W) € tracesy,. It follows from Theorem 5.7 that € tracesy, 5. U

Example 5.9 (Invariant for combined vehicle and controljeiConsider again the composition of the
VehicleandController automata of Examples 4.2 and 4.3 (for the sanén the composed automaton,
it turns out that the velocity is always less than or equahtax, that is, in all reachable states,

vel < vmax (12)

This statement may be proved by induction on the length of closed execution fragments. In the proof,
we use the fact thatlock < d, which follows from the definition ofD. We also use assertions (3) and
(11). In addition, we require the following auxiliary invariants:

vel 4+ (accsuggested- €)(d — clock) < vmax (13)
clock > 0 = acc < accsuggested- € (14)
velsensed= vel (15)
0 < clock (16)

Here the interesting assertion is (13), which says, essentially, that the velocity will stay less than or
equal tovmax if the vehicle accelerates at the currently suggested acceleratior pioSl the next
recalculation. The main invariant (12) and the auxiliary invariants (13)-(16) can all be proved together.
All are easily seen to be true in the initial state. There are two kinds of inductive steps, for discrete
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suggestransitions and for trajectories. Discrete transitions are easily seen to preserve all the assertions;
the most interesting property to show is invariant (13), which holds because of the constraints on the
new suggested acceleration, the fact ttsensed= vel, and the fact that, in the new statdock
=0.

Trajectories also preserve all the assertions; now the interesting thing to show is the conjunction of
(12) and (13). Depending on whether or act-suggested- € > 0, it suffices to show only (12) or only
(13). For example, supposecsuggested- € > 0; we show the auxiliary invariant (13). The trajectory
guarantees thatel” < vel + (accsuggested- €)r andclocK = clock+ ¢, wheret is the limit time of
the trajectory and unprimed and primed instances of the variables are used (as usual) to indicate their
values at the beginning and end of the trajectory, respectively. The inequality is based on the integral
definition ofvel in terms ofacc and the relationship betweerc andaccsuggestedThen

vel' + (acc—suggested’ + €)(d — clocK)
= vel’ + (acc—suggested + €)(d — clock— t)
= vel’ — (acc—suggested- €)r + (acc—suggested- €)(d — clock)
< vel + (acc—suggested- €)(d — clock)
< vmax (by inductive hypothesis)

Note that, because of the two kinds of inductive steps, the inductive proof divides cleanly into separate
parts that involve discrete and continuous reasoning.

5.2. Hiding

We define two hiding operations for hybrid automata, which hide external actions and external
variables, respectively, and we prove that these operations respect the implementation relationship. The
hiding operations reclassify external actions or external variables as internal actions or variables.

o If E C E 4, thenActHide(E, A) is the HA B that is equal to4 except thatEz = E4 — E and

Hg=H4UE.

o If W C Wy, thenVarHide(W, A) is the HA B that is equal ta4 except thatWp = W4 — W and

Ip=Tal(Va—W).

Lemmab5.10. LetE € E4 andW C W4. ThenActHide(E, A) andVarHide(W, A) are HAs

Proof. This is a straightforward application of the definitiong.]

The following lemma characterizes the traces of the automata that result from applying the hiding
operations:

Lemmab5.11. LetA be an HA
(1) If E C E 4 then traCeguivee, 4) = {B[(Ea — E, V4) | B € tracesy).
(2) If W € W4 then traceg,mige(w, 4) = {BI(Aa, Wa — W) | B € tracesy}.

Proof. For (1), first observe thdtctHide(E, A) has the same set of executionsag hen apply Lemma
3.10. The proof of (2) is straightforward.]
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Theorem 5.12. Supposed and B are HAs with A < B, and supposé C E4 and W C W4. Then
ActHide(E, A) < ActHide(E, B) andVarHide(W, A) < VarHide(W, B).

Proof. Straightforward, using Lemma 5.11.[]

Example 5.13 (Implementing a velocity specificatiphn the composition of th&ehicleandController
automata defined in Example 5.5, we may hideabein variable used for communication between the
two components. Thus, we define

A=VarHide({accin}, Vehiclg|Controller).

In the resulting automatad, the only external variable igelout

We may express the correctnessidfy showing that itimplements an abstract specification automaton
VSpec displayed in Fig. 6, that simply represents the constraint that the vehicle’s velocity is at most
vmax.VSpedas one external variabieelout, one state variableel, and the sets of states and initial
states both consist of all valuations satisfyirg < vmax. Both variables have typge and dynamic type
equal to the (pasting closure of the) continuous functid®pedas no actions.

The trajectories o¥/Speare those that satisfy:

velout = vel a7

We may argue thatl implementsvVSpeaising a simulation relatioR. Most of the work has already
been done by proving invariants in Example 5.9. Relaftaelates states 4 of A andxs of B= VSpec
exactly if x4 is a reachable state of andxz(vel) = X 4(vel). It is easy to see thak satisfies the start
condition of the simulation relation definition. The discrete step condition follows because discrete actions
of A do not changeel. For the trajectory condition, assumg R Xz andr is a trajectory of4 with first
statex 4. The definition ofR implies thatx 4 is a reachable state gf. Therefore all states in trajectoty
are also reachable states4fTherefore, the invariante! < vmax, which was proved for in Example
5.9, is also true of all states in Now define the corresponding execution fragmerit &d consist of the
single trajectoryt’ such that’ | vel = /| velout = 7 | vel. This satisfies all the required properties.]

Example 5.14 (Sensor and discrete controllerWe describe how to implement th@ontroller of
Example 4.3, which receives continuous information about the vehicle’s velocity thraigiut and
suggests accelerations, using two other compone8enaoywhich periodically samples the continuous

vel-out

Fig. 6. Specification automatdrSpec
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Sensor DiscreteController

stable

vel-out report(v) acc-in

vel-reported

acc-suggested:

B suggest

Fig. 7. The hybrid automataensormndDiscreteController

velocity information and produces discrete velocity reports, aidsareteController which uses the
discrete velocity reports and immediately suggests accelerations. These two components are displayed in
Fig. 7.

The Sensorautomaton has state variabldeckandvelsensedboth initially 0, and external variable
velout. All variables have typdk and dynamic type equal to the (pasting closure of the) continuous
functions. The seD of states consists of all valuations in whiclock < d. Sensoralso has external
actionsreport(v), v € R. D consists ofeport(v) steps specified by:

clock=d (18)
clocKk =0 (19)
v = velsensed (20)

That is, when the clock reachéstheSensomay reset the clock to 0 and report the current velocity. Set
7 consists of trajectories that satisfy:

clock= 1 (21)
velsensed) = velout(r) forr >0 (22)

That is, the clock increases at rate 1 and the velocity sensed is exactly what is gekouin

The DiscreteControllerHA has state variablegelreportedand accsuggestedboth discrete vari-
ables of typeR, initially 0, a discrete Boolean state variableible, initially true, and one external
variable accin, of type R and dynamic type equal to (the pasting closure of) the continuous func-
tions. The state consists of all valuations of the internal variables.DibereteControlleralso has
external actiongeport(v), v € R, and an internal actiosuggest D includesreport(v) steps that
satisfy:

vekreported = v (23)
stablé = false (24)
andsuggessteps that satisfy:

stable= false (25)
stablé = true (26)
vetreported+ (accsuggesteth €)d < vmax (27)
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Thatis, a new velocity report sets the flag that trigger&XisereteControlletto recalculate the suggested
acceleration. Trajectories satisfy:

stablgr) = stablg0) (28)
stablgr) = true fort >0 (29)
accsuggested= 0 (30)
accin = accsuggested (31)

That is, theDiscreteControllerdoes not allow time to passifable = false; it must perform ssuggest
action after receiving eportinput and before time can pass. ThecreteControllerdoes not change
the suggested acceleration during a trajectory, and submits it accurately to its environment. Now define

A=ActHide({report(v) | v € R}, Senso}tDiscreteControlley.

We claim that.A implements3 £ Controller. We may argue this using the simulation relation
R that relates states4 of A and xg of Controller provided thatx 4 is a reachable state ofl,
Xgp(velsenseldl = x 4(velsensell xz(accsuggested= x4 (accsuggestedandxz(clock) = x4 (clock)
if Xa(stable) = true, elsed. A key to the argument is that suggeststep occurs ir3 whensuggest
occurs inA, rather than when eeportoccurs.

Since A < Controller, Theorem 5.8 impliesd||Vehicle< Controller|Vehicle Then Theorem 5.12
implies

VarHide({accin}, Al Vehicle < VarHide({accin}, Controller|Vehicle.

Since, by Example 5.13/arHide({accin}, Controller||Vehicle < VSpectransitivity of implementa-
tion implies thatvarHide({accin}, Al Vehicle implementsVSpec O

6. Hybrid 1/O automata

In this section, we refine the hybrid automaton model of Section 4 by distinguishing between input and
output actions and between input and output variables. The results on simulation relations and operations
for hybrid automata presented in Sections 4.3 and 5 can be extended to this new setting.

6.1. Definition of hybrid I/O automata

Definition 6.1. A hybrid I/O automaton (HIOAM is a tuple(H, U, Y, I, O) where
e H=(W,X,0,0,E, H, D, T)is a hybrid automaton.
e U andY partition W into inputandoutputvariables, respectively.
Variables inZ £ X U Y are calledocally controlled as before, we writd = W U X.
e [ and O partition E into inputandoutputactions, respectively.
Actions inL £ H U O are calledocally controlled as before we writet £ E U H.
e The following additional axioms are satisfied:
E1 (Input action enabling)

For everyx € Q and every € I, there existx’ € Q such thak-—>x.
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E2 (Input trajectory enabling)
For everyx € Q and every € trajs(U), there exists € 7 such thatr.fstate=x, t U < v,
and either
1) tJU =wv,or
(2) 7 is closed and somkec L is enabled irr.Istate

Input action enabling is the input enabling condition of ordinary I/O automata. Input trajectory
enabling is a new, corresponding condition for interaction over time intervals. It says that an HIOA
should be able to accept any input trajectory, that is, any trajectory for the input variables, either
by letting time advance for the entire duration of the input trajectory, or by reacting with a locally
controlled action after some part of the input trajectory has occurred. In Section 7, we will see that
by repeated application of axiofs2 a HIOA is able to fully accept any input trajectory, possi-
bly interleaved with locally controlled actions, provided the HIOA does not exhibit unwanted Zeno
behavior.

Note the role of dynamic types in axiofE2. Input trajectory enabling means that an automaton
cannot restrict the inputs. The problem we hit is that with absolutely no way of restricting the in-
puts, the inputs were just too ill-behaved. In examples, we typically want to be able to integrate
the input to get the value of internal variables, but we cannot do this unless the input is integrable.
Axiom E2 states that a HIOA needs to be able to accept any input trajectirgjsiU). By definition,
the trajectories irtrajs(U), when projected on an individual variablee U, must be in agreement
with the dynamic type of.. For instance, by taking as the dynamic type of variable® ithe set
of piecewise smooth functions, we impose some rather minimal constraints on the input trajectories
that allow us to give meaningful automaton definitions involving integrals, differential equations,
etc.

In control theory it is customary to requicawsality that is, the output at timedepends only upon
the input trajectory up to, and possibly including, tim@1]. In our setting, there is no need to enforce
causality explicitly since it is implied already by the closure of the set of trajectories under prefix and
concatenation. Assume that in a trajectorthe output at time “depends” on the input trajectory after
t. By prefix closure of trajectories (axiofifil), T <7 is also a trajectory. Let be the state of at timer,
and letv be any input trajectory. By axiofa2 there exists a trajectory with first statex that agrees
with v (at least up to a certain point). By axioh® the concatenation af <t andz’ is again a trajectory.

The output of this trajectory at timeagrees with the output af at time¢, even though the subsequent
inputs will in general be different. It follows that inthe output at time does not depend on the input
afterz, a contradiction. Also note that our definition does not enforce functional dependence of outputs
from inputs: HIOAs may be nondeterministic, allowing for several possible outputs for any given input
trajectory.

It will sometimes be convenient for us to consider automata in which inputs and outputs are dis-
tinguished, but that do not necessarily satisfy the propeBiesr E2. We call such an automaton a
pre-HIOA

Notation. As we did for HAs, we denote the components of a (pre-)HI®AY H 4, U, Ya, ..., Wy,

X4, Qa, Oy, etc., and those of a (pre-)HIOA; by H;, U;, Y;, ..., W;, X;, Q;, ©;, etc. We sometimes
omitthese subscripts, where no confusion is likely. We abuse notation slightly by referringto a (pre-)HIOA
A as an HA when we intend to refer t9,.



140 N. Lynch et al. / Information and Computation 185 (2003) 105-157

Example 6.2 (Vehicle and controller HIOAs The VehicleHA of Example 4.2 can be converted into an
HIOA by classifyingaccin as an input variable angelout as an output variable. ProperBi, input
action enabling, holds vacuously. It is also easy to seeBBdiolds, in fact, the first alternative always
holds—from any state theehicleautomaton can accept any input trajectory. Note that, in ordeg2or
to hold, it is essential that we do not require inclusion (2) to hold for initial states of trajectories.

Similarly, theController HA of Example 4.3 can be converted into an HIOA by classifyuegout
as an input variable aratcin as an output variable. Agaiitl holds vacuously. To sd&2, consider a
statex, and an input trajectory. The definition ofQ implies thatx(clock) < d. Then the definition of
the Controller trajectories implies that there is some trajectorstarting fromx that is consistent with
v and that either spans all ofor stops short, at a valuatiarnin which clock = d. Then the definition of
the suggestransitions implies that this locally controlled action is enabled[ii, as needed. [J

Example 6.3 (Sensor and discrete controller HHOAS he Sensorautomaton from Example 5.14 can
be converted into an HIOA by classifyingelout as an input variable and thieport actions as output
actions. The argument th&ensolis actually an HIOA is similar to the argument for t@®ntroller in
Example 6.2.

Similarly, the DiscreteControllerautomaton from Example 5.14 can be converted into an HIOA by
classifying theeportactions as input actions and thecin variable as an output variable. Itis straightfor-
ward to verifyE1. E2 is not completely trivial, even though the automaton has no input variables: from
any statex we must consider “null” input trajectories, which map a time interval to the empty valuation
(the valuation for no variables). ¥(stable = true, then theDiscreteControllercan accept the entire
input trajectory, and ik(stable = false, thensuggests enabled irx. This impliesE2. O

6.2. Executions, traces, and simulation relations

An executiorof a pre-HIOAA is defined to be an execution tf4, atraceof A is a trace ofH 4, and
similarly for execution fragments and trace fragments. We extend the notation, etc. to pre-HIOAs
in the obvious way. Two pre-HIOA4; and.4, arecomparablef their inputs and outputs coincide, that
is, if I1 = I», 01 = 02, U1 = Uy, andY; = Y». If A1 and. A, are comparable, thed, < A is defined
to mean that the traces gf; are included among those @h: A; < A>= tracesy, C tracesy,.

Lemma6.4. Let.A; and Ay be two comparable pre-HIOAThen; and H» are comparable and
A1 < Ao iff H1 < Ho.

Proof. Immediate from the definitions.d

The definition of simulation for pre-HIOAs is the same as for HAs. Formally4difand A, are
comparable pre-HIOAs, thensimulationfrom A1 to A is a simulation front{, to Ho.

Theorem 6.5. If A1 and. A, are comparable pre-HIOAs and there is a simulation frdmto A, then
A < Ao.

Proof. Immediate from the definition of simulation, Theorem 4.12, and Lemma 6[4.
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6.3. Composition

The definition of composition for HIOAs is based on the corresponding definition for HAs, but also
takes the input/output structure into account. Just as for HAs, we allow an H8 be composed with
an HIOA A3 only if the sets of internal actions and variables/fare disjoint from the sets of actions
and variables, respectively, ofo. In addition, in order that the composition operation might satisfy
certain desirable properties (see, for example, the results in Section 6.5), we require that at most one
component should “control” any given action or variable; that is, we allowand.A» to be composed
only if the sets of output actions of; and. A, are disjoint and the sets of output variablesfafand.4,
are disjoint.

Formally, we say that pre-HIOA41 and.A, arecompatiblef H; andH> are compatible and

YinYs=01N02=14.
Lemma6.6. If A1 and.A, are compatible pre-HIOAghenH1 andH2 are compatible HAs
Proof. Immediate from the definitions.

If A; and. A, are compatible pre-HIOAs then theiompositionAs||.A2 is defined to be the tuple
A=(H,U,Y,I, O)where

o H ="HilH>,

e Y =Y1UY>,

e U=(U1UUp -7,
e O =01U 0Oy, and

I=(1UlL)— 0.

Thus, an external action or variable of the composition is classified as an output if it is an output of one
of the component automata, and otherwise it is classified as an input.

The composition of two HIOAs (or pre-HIOAS) is guaranteed to be a pre-HIOA:

Theorem 6.7. If A; and A, are pre-HIOAs themd ||.A> is a pre-HIOA

Proof. Let A denoteA;||.A2. Lemma 5.2 implies thak{ = H;|H2 is an HA. By constructionl/ and
Y form a partition of W and/ and O form a partition ofE. This suffices. O

Example 6.8 (Interfaces for compositions of HHOASNVhen theVehicleand Controller HIOAs from
Example 6.2 are composed, the external interface of the resulting pre-HIOA condists é¢f= O = ¢
andY = {accin, velout}. When theSensorand DiscreteControllerfrom Example 6.3 are composed,
the external interface of the resulting pre-HIOA consistd/of {velout}, Y = {accin}, I = ¢, and
O = {report(v) |v € R}. O

Composition of pre-HIOAs satisfies the following substitutivity result:
Theorem 6.9. Supposed; and A, are comparable pre-HIOAs withl; < A>. Supposes is a pre-

HIOA that is compatible with each of; and A,. ThenA1|| B and Az || B are comparable andl; || B <
A2|lB.
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Proof. The factthatd; and.42 are comparable and the definition of composition for pre-HIOAs implies
that A1 ||B and.A2|| B are comparable.

SinceA; and.A, are comparable and; < A, Lemma 6.4 implies that 4, and’H 4, are comparable
andH 4, < H4,. Lemma 6.6 implies that{ 4, and Hp are compatible HAs an@ 4, and Hz are
compatible HAs. Theorem 5.8 then implies thaf, || Hg < H 4, [|H - By the definition of composition,
it follows that H 4,5 < H.4, 8- Then the definition of implementation for pre-HIOAs implies that
AillB < A2l1B. O

We would like to show that the composition of two HIOAs is an HIOA; however, this is not true in
general. Propertigl is preserved by composition:

Lemma6.10. If A; and. A are pre-HIOAs that satisfigl, then the compositionl; || A2 also satisfies
El.

Proof. Let A = A1||A>. Assume thatd1 and A, satisfyE1l. We verify that A satisfiesE1l. Consider

X € Q anda € I. We distinguish three cases.

(1) a € I1 N I». By definition of compositionk[X; € Q,; fori € {1, 2}. Then byE1 applied taA4;, there
exists a stat& of A; such thatx[X;)->;x/. Letx’ £ x] U x,. We know thax’ is well defined since,

by compatibility, X1 N X» = @. Then by definition of compositiox/ € Q andx->x'.
(2) a € I1 — I». By definition of compositionx[X; € Q1. By E1 applied to.A1, there exists a state
x; of A3 such that(erl)—”>1x/1. Let X éx’l U (X[ X2). We know thatx’ is well defined since, by

compatibility, X1 N X2 = @. Then by definition of parallel compositior, € Q andx->x’.
(3) a € I — I1. Symmetric to the previous casel

However,E2 is not necessarily preserved by composition:

Example 6.11 (Two HIOAs whose composition does not satis?). Suppose thatd; has no discrete
actions, no state variables, one output variahland one input variable,. All variables are of typ&

and dynamic type the (pasting closure of the) continuous functions. Th@ satsd®; of states and start

states consist of the unique valuation of the empty set of variables. The trajectories are all those functions
that satisfyv1 (r) = v2(r) + 1 fort > 0. Itis easy to check that1 is an HIOA. Defined, symmetrically,

with output variablev, and input variabley1; A2's trajectories are those that satisfy(r) = v1(z) + 1

forz > 0.

The composition pre-HIOAA1 || A2, does not satisffE2. SatisfyingE2 would require (since the
composition has no discrete actions) that the composition include at least one trajectory with limit time
oo starting from the initial state. However, no such trajectory exists, because the combined constraints
are inconsistent for every> 0. [

As a way out of the difficulties noted in Example 6.11, we might consider introducing a static
dependency relatiork 4 between the external variables of a hybrid automaton. 4 y then the
value of y is allowed to depend without delay on the value xof As an additional condition for
compatibility of A and B, we would then require thatl and B do not share variables and y
such thatx < Ay and y < x. This approach, which is followed, for example, in the Masaccio
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language of [33], would rule out the above example. However, it would also rule out any form of

dynamic feedback as studied in control theory (for instance, PID control) [79]. We therefore think

that this static approach is overly restrictive. Within control theory there is no generally applicable

syntactic criterion to test whether combinations of differential and algebraic equations are well-defined;
consequently, we have no simple criterion to test whether the composition of two HIOAs satisfies
E2.

As a technical way out of the difficulty, we define a stronger notion of compatibility. Namely, we
say that compatible pre-HIOA4; and.A;, arestrongly compatibléf 41|42 satisfies axionfE2. Strong
compatibility says that any input trajectonyof the composition must be acceptable by the composition:
the two component automata are able to evolve together, following the input trajeciarguch a way
that either they accept all af or else they accept part of up to a point where one of them can interrupt
with a locally controlled action.

Theorem 6.12. If A; and A, are strongly compatible HIOAshen A4 || A2 is an HIOA

Proof. Lemma6.7 implies thatthe composition is a pre-HIOA. Lemma 6.10 implies that the composition
satisfiesE1l. PropertyE2 follows immediately from strong compatibility. CJ

Strong compatibility is a technical notion. By itself, it does not seem to be very useful, because checking
it involves verifying compatibility between the continuous dynamics of two systems. In Section 6.5, we
give some sufficient conditions for strong compatibility that are easier to check.

6.4. Hiding

The definitions of variable and action hiding extend to any pre-HIQA-or input/output automata,

we allow hiding outputs only (but not inputs):
(1) If O € 04, thenActHide(O, A) is the pre-HIOAB that is equal tod except thatOp = 04 — O

andHp = H4 U O.
(2) If Y C Y4 thenVarHide(Y, A) is the pre-HIOAB given by:

o Hp = VarHide(Y, H4).

e Y=Y ,—-Y.

o Us=Uy, Ig=14,and0Og = O4.

Lemma 6.13. Supposed is a pre-HIOA O € 04 andY C Y 4. Then
(1) ActHide(O, A) andVarHide(Y, A) are pre-HIOAs.

(2) If A satisfiesE1 then so dActHide(O, A) andVarHide(Y, A).

(3) If A satisfieE2 then so ddActHide(O, A) andVarHide(Y, A).

Lemma6.14. Let.A be a pre-HIOA
(1) If O € 0.4 then traceguizeo. 4) = {BI(Ea — O, Va)| B € traces,}.
(2) If Y C Y4 then traceg, mige(v.4) = {B[(Aa, W4 —Y) | B € tracesy}.

Proof. Straightforward, see also the proof of Lemma 5.11]
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Theorem 6.15. Supposed and B are pre-HIOAs with4 < B, and suppos® < O 4 andY C Y 4.
ThenActHide(0, A) < ActHide(0O, B) andVarHide(Y, A) < VarHide(Y, B).

Proof. Straightforward, using Lemma 6.14.[]

Example 6.16 (Interfaces for automata with hidifgIn Example 5.14, we defined the HB =
VarHide({accin}, A|Vehicle, where

A £ ActHide({report(v) | v € R}, SensojtDiscreteControlley.

This models the three-way composition of the sensor, discrete controller, and vehicle, with the internal
report actions and acceleration suggestions hidden. If we interpret the three automata as HIOAs, then
these definitions still make sense because the actions and variables that are hidden are outputs. The
external interface fod is given byU 4 = {velout}, Y4 = {accin}, and/4 = O4 = @, and the external
interface forB is given byUp = Iy = Op = @ andY = {velout}. [

6.5. Sufficient conditions for strong compatibility

Checking strong compatibility of two HIOAs can be difficult because it requires checking compatibility
between the continuous dynamics of two systems. However, for certain restricted classes of HIOAs, strong
compatibility is implied by compatibility, which is easy to check.

Example 6.17 (HIOAs for which compatibility implies strong compatibiityt is routine to verify that
two HIOAs without input variables are strongly compatible if and only if they are compatible. In the
classical control theory setting, a system without input variables is uninteresting because it cannot be
controlled. However, in the hybrid setting, such a system can still interact with its environment via discrete
input actionsLinear hybrid automatas described in [3,4], for instance, have no input variables.
Symmetrically, two HIOAs without output variables are strongly compatible if and only if they are
compatible. The same equivalence holds if one of the HIOAs has no input variables and the other has no
output variables, or if one has no external variables at all.

The following theorem generalizes all the claims in Example 6.17. It applies to pairs of HIOAs that
cannot mutually affect each other because the output variables of one are disjoint from the input variables
of the other.

Theorem 6.18. Let.4; and.A> be two compatible HIOAs such théi N Y> = @. ThenA; and A are
strongly compatible

Proof. Let A denoteA1|.42. We need to show thatl satisfiesE2. Let x be a state of4 and letv
be a trajectory irtrajs(U). SinceU1 N Y2 = @4, the definition of composition implies that; € U. By
E2 applied to.A;, there exists a trajectory; € 71, with t1.fstate= x[ X1 that is pointwise compatible
with v and such that eithatom(z1) = dom(v), or elsedom(r1) € domv), 11 is closed, and a locally
controlled action of41 is enabled irr;.Istate

Let v be ((v[dom(ty)) U 11) Us. That is,u; is an input trajectory ford,. Each input variable ofl,
is either an input variable ofl or an output variable afl;; the valuations irn, for those that are inputs
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of A are obtained fromv, whereas the valuations for those that are output variablgl @ire obtained
from 71. By E2 applied toAy, there exists a trajectomp € 7>, with to.fstate= x[ X >, that is pointwise
compatible withu, and such that eithetom(zo) = dom(vy), or elsedom(zy) C dom(vy), 12 is closed,
and a locally controlled action o4, is enabled in;.Istate

In the second casér; [dom(to)) U 17 is a trajectory off that starts fronx, is pointwise compatible
with v, is closed, and enables a locally controlled actiomdafin particular, ofA») in its last state. In
the first casery U 15 is a trajectory of7 that starts fronx, is pointwise compatible witly, and either
spans all ofv or is closed and enables a locally controlled actiopAdfin particular, ofA1) in its last
state. This shows that satisfieE€2. [

We can also consider HIOAs that do not exhibit any dependencies between inputs and outputs during
a trajectory. In particular, the values of the input variables should affect neither the values of the output
variables nor the amount of time that elapses until a locally controlled action is enabled. Formally, we
say that an HIOAA is obliviousif it satisfies the following axiom:

OBL For allt € 7 andv ¢ trajs(U) with dom(t) = dom(v), there exists’ € 7 such that:

1) U =v.

2 7lYy =1lY.

(3) If T is closed and some locally controlled action is enabledIstatethen some locally controlled
action is enabled in’.Istate

Theorem 6.19. Let.4; and.A; be two compatible HIOAs and suppose thtis oblivious Then A1
and A are strongly compatible

Proof. Let.A denoteA|.A>. We need to show thad satisfiesE2. Let x be a state ofd and letv be a
trajectory intrajs(U). Let vy be any trajectory ofrajs(U1) that is pointwise compatible with and such
thatdom(v1) = domv). By E2applied tads, there exists atrajectory € 73, with r1.fstate= x[ X1, that
is pointwise compatible withy; and such that eithetom(z;) = dom(v1), or elsedom(t;) C dom(v1),
71 IS closed, and a locally controlled action.df is enabled irrq.Istate
Let vy be ((v[dom(ry)) U 1)l Us. By E2 applied to Ay, there exists a trajectory, € 7o, with
1o.fstate= X[ X5, that is pointwise compatible with, and such that eithetom(zp) = dom(vy), or else
dom(to) € dom(uy), 12 is closed, and a locally controlled action.d$ is enabled ir;.Istate
Let v} be ((v[dom(z)) U 10){ U1. By OBL applied to.A;, there exists a trajectory; € 71 such

thatz; | U1 = vy, 71l Y1 = (r1[dom(z2))| Y1, and if r1[dom(r,) is closed and some locally controlled
action of A, is enabled in its last state, then some locally controlled action is also enab{’pt!;iate It
follows thatz; andz, are pointwise compatible, and thth'J T2 IS a trajectory in7 that starts fronx
and is pointwise compatible with. We claim thatr; U 1, satisfies the requirements f&2. We consider
cases:
(1) dom(t2) € dom(vy).

Thent; U 17 is closed and enables a locally controlled action4ef in its last state, which satisfies

the requirements fdge2.
(2) dom(z2) = dom(vz) (= dom(ry)).

We consider two subcases. Firstddm(z1) ¢ domv), thenty is closed and enables some locally

controlled action (ofA1) in its last state. By axionOBL, some locally controlled action is also



146 N. Lynch et al. / Information and Computation 185 (2003) 105-157

Input symbol Output symbol
C
A D
P
Measurement Control

Fig. 8. Hybrid Control System.

enabled int] U 1o.Istate which suffices forE2. In the other subcase, fom(t1) = dom(v), then
124 U 1o spans all ofu, which again suffices fag2. [

Example 6.20 (Oblivious controlle}. The Controller HIOA of Example 4.3 and 6.2 satisfi€3BL.
During any trajectoryr of Controller, velocity information arrives irvelout but does not affect the
Controllers output; the output is only changed when a (locally controlieajgestransition occurs.
Enabling of thesuggestaction is not affected by changesvalout, but only by the value oflock

BecauseController is oblivious and compatible with theehicleHIOA, Theorem 6.19 implies that
VehicleandController are strongly compatible. It follows that their compositidehiclg|Controller, is
an HIOA. O

Example 6.21 (Plant and controlle). Fig. 8 displays a standard scenario studied in control theory
involving a plantP controlled by a digital controlle€. The interface from the controller to the plant is
given by a digital/analog convert@r, while the interface from the plant to the controller is given by an
analog/digital converted. The controllelC monitors the input variables and changes its output variables
only at the clock ticks via some discrete transitions. TldusatisfiesOBL . The output variables oft

are disjoint from the input variables of bothandD, and the output variables &f are disjoint from the
input variables oD. Thus, ifP, C, A, D are pairwise compatible, thénand.A are strongly compatible
(by Theorem 6.18)P| A andD are strongly compatible (by Theorem 6.18), &(#|.4)|D) andC are
strongly compatible (by Theorem 6.19). Hen@&?||.A)||D)||C is an HIOA. [

Example 6.22 (Lipschitz HIOA%. We may define a subclass of HIOAs callegschitz HIOAsin which

some of the state variables are discrete “mode” variables, and in which, for each mode, the rest of the
variables evolve according to a system of differential equations based on globally Lipschitz functions.
We may restrict this class further by imposing a bound on the range of the input variables (by restricting
their dynamic types), thus obtaining the setigbut-bounded Lipschitz HIOAJ hen it is possible to

show that two compatible input-bounded Lipschitz HIOAs are strongly compatible, which implies that
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the composition of two compatible input-bounded Lipschitz HIOAs is a (Lipschitz) HIOA. A careful
development will be reserved for another papérl

7. Receptive hybrid I/O automata

In this section, we define the notion mdceptivenes$or HIOAs. An HIOA will be defined to be
receptive provided that it admitsstrategyfor resolving its nondeterministic choices that never generates
infinitely many locally controlled actions in finite time. This notion has two important consequences:
First, a receptive HIOA provides some response from any state, for any sequence of discrete input actions
and input trajectories. This implies that the automaton has a nontrivial set of execution fragments, in
fact, it has execution fragments that accommodate any inputs from the environment. The automaton
cannot simply stop at some point and refuse to allow time to elapse; it must allow time to pass to
infinity if the environment does so. Second, receptiveness is closed under composition. Previous studies
of receptiveness properties include [1,21,54,74].

If HIOA A implements HIOAB and if A is receptive, then besides preservation of “may” properties
(any trace ofA is also a trace of3) we also have preservation of “must” properties. For instance,
if in B an input actiona always must be followed by an outphtwithin 10 time units, then this
property will also hold forA: (1) sinceA is input enabled it will always accept inpaf (2) sinceA is
receptive it will never end up in a time deadlock or a Zeno execution; time can always advande, (3)
must always perform & before or at time 10 since otherwise a trace is generated that is not allowed
by B.

We formally define receptiveness by first defining what it means for an HIOA fardigressive A
progressive HIOAevergenerates infinitely many locally controlled actions in finite time. Thus, in all
of its execution fragments, it allows time to pass to infinity provided that its environment also does so.
We then define atrategyfor resolving nondeterministic choices, and define receptiveness in terms of
the existence of a progressive strategy.

The treatment of receptiveness in this paper is much simpler than that in previous papers. One reason is
that we address only the generation of admissible executions here, rather than general liveness properties.
Also, we formulate strategies as restricted automata, rather than introducing separate definitions based
on two-player games.

7.1. Progressive HIOAs

We say that an execution fragment of a pre-HIOAoisally Zenaif it is Zeno and contains infinitely
many locally controlled actions, or equivalently, if it has finite limit time and contains infinitely many
locally controlled actions. A pre-HIOA is progressivef it has no locally Zeno execution fragments.

The following lemma says that any progressive pre-HIOA that satiEReand therefore any HIOA,
is capable of following any input trajectory.

Lemma7.1l. Let.A be a progressive pre-HIOA that satisfies propdfB; let x be a state of4, and let
v € trajs(U). Then there exists an execution fragmertdf A such thatx.fstate= x anda[(I, U) = v.
(Here v denotes the hybrid sequence consisting of the single trajectdRecall that we write: for a
sequence consisting of jus) a.
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Proof. We construct a finite or infinite sequeneg «1, ... of execution fragments ofl such that:
(1) ap.fstate= x.
(2) For every nonfinal indek «;.Istate= «;1.fstate
(3) Foreveryi >0, (ap" a1 - ") [(I,U) < v.
(4) Foreveryi > 0, either(ag”a1™ -+ "a;)[(I, U) = v or; includes a locally controlled action.
The construction is carried out recursively. To detigewe begin with stat& and useE2 either to span
all of v, or to span a prefix of and then perform a locally controlled action. Fas 0 (assuming that
we have not already spanned alkgf we definex; by beginning withy; _1.Istateand usinge2 either to
span the entire suffix af starting fromag™ - - - ~«;_1.Itime, or to span a prefix of that suffix and then
perform a locally controlled action.

Now we consider two cases:
(1) The construction ends after a finite number of stages, having spanned adlagf witha;, as the last

execution fragment in the sequence.
In this case, the concatenatiag™ a1~ - - - "y, satisfies the conditions of the lemma.
(2) The construction proceeds through infinitely many stages.

In this case, the execution fragment ag a1 - - - contains infinitely many locally controlled
actions. Sinced is progressive, it must be the case thdtime = oo, and thereforer[(Z, U).Iltime
= oo. Since the set of trajectories fdr is a cpo,a[(I,U) < v. Sincea[(I,U) < v, anda
[(I, U).ltime = oo, it follows thata[(I, U) = v, as needed. O

The following theorem says that a progressive HIOA is capable of following not just individual input
trajectories, but entire input hybrid sequences.

Theorem 7.2. Let. A be a progressive HIOA with state and lets be an(/, U)-sequenceThen there
exists an execution fragmemtof A such thatr.fstate= x anda [ (1, U) = 8.

Proof. Let 8 = tga1 11 a2 12... We define a finite or infinite sequenag, «1, ... of execution frag-
ments ofA such that:
(1) ao.fstate= x.
(2) For every nonfinal indek «;.Istate= «;1.fstate
(3) Foreveryi, (ag" a1 - "a))[(I,U) =t0a1T1a27T2...T;.
The construction is carried out recursively. To defigewe begin withx and use Lemma 7.1 to spaf
Fori > 0, we definay; by starting witho; 1 .Istate using propertyel to perform actiornz; and move to
a new state, and then using Lemma 7.1 to span

Leta = ap” 1™ - --. By Lemma 3.8 we conclude thaf (I, U) = 8, as needed. [

The property asserted in Theorem 7.2 has been cHl@deasibility elsewhere in the literature [59].
Thus, we define a pre-HIOA to & feasibleprovided that, for each stakeand eachZ, U)-sequence
B, there is some execution fragmensuch thatx.fstate= x andua [ (I, U) = 8. Theorem 7.2 may then
be restated as:

Corollary 7.3. Every progressive HIOA is I/O feasible

I/O feasibility implies that any finite execution fragment can be extended to an admissible execution
in response to any admissible input from the environment. A related, weaker property that has also been
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studied isfeasibility[57]. In terms of our model, we may say that a pre-HIOAedasibleprovided that,
for each state, there is some admissible execution fragmestich thatr.fstate= x.

Feasibility implies that any finite execution fragment can be extended to some admissible execution
fragment—no constraints are imposed on the inputs. Observe that any I/O feasible HIOA must be feasible,
as long as the dynamic type of each input variable includes at least one admissible trajectory. Feasibility
should be regarded as a minimal liveness requirement that any reasonable HIOA should satisfy. I/O
feasibility is a strengthened version of feasibility that takes inputs into account.

Closure under composition is easy to show:

Theorem 7.4. If A; and .A; are compatible progressive pre-HIOAs, then their composition is also
progressive

Proof. Let A be A1 A2. Suppose for the sake of contradiction thétis not progressive. Then,
by definition, A has a locally Zeno execution fragment that is,« contains infinitely many locally
controlled actions ofd. Thereforex contains either infinitely many locally controlled actions.&f
or infinitely many locally controlled actions od,. Suppose without loss of generality thatontains
infinitely many locally controlled actions ofl;. Then, by Lemma 5.3 and the definition of restriction,
af(A1, V1) is atime-bounded execution fragment4df with infinitely many locally controlled actions,
that is, a locally Zeno execution fragment.éf. This contradicts the assumption thét is progressive.
O

Example 7.5 (Progressive and non-progressive pre-HIQA=he VehicleHIOA is obviously progressive
because it has no discrete actions. ToatrollerandSensoHIOAs are progressive because their locally
controlled actions are separated in time. ThiscreteControllerHIOA is not progressive, because if
report inputs arrive in a Zeno fashion, thRiscreteControllermay respond by performinguggest
internal actions in a Zeno fashion. However, the composiBenso}DiscreteControlleris progres-
sive.

Consider a more nondeterministic versionS¥nsoy N Sensor, that is allowed to performeport
actions for any value o€lock (< d), rather than just foclock= d. Formally, N Sensor is identical
to Sensorexcept that condition (18) is droppelN.Sensor is not progressive, because it may perform
infinitely manyreportactions in finite time. Also, the composition 8Sensor with DiscreteController
is not progressive. [

7.2. Strategies

In this subsection, we define the notion oktmategy which provides a way to resolve some of
the nondeterministic choices in a pre-HIOA. We will use strategies in the next subsection to define
receptiveness.
We define astrategyfor a pre-HIOAA to be an HIOAA' that differs fromA only in thatD’” € D and
7' C 7. Thatis, we require:
e D'C D.
e 7T'CT.
e W=W,X=X,0=0,0=0E=E H=H,U=U,Y=Y,I=1I'andO = 0'.
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Our strategies are nondeterministic and memoryless. They serve to choose some of the evolutions that
are possible from each stat®f 4. The fact that the state seX of A’ is the same as the state g2Df
A implies thatA’ chooses evolutions from every stateof

Strategy notions have been used elsewhere in defining receptiveness, for example, in [1,21,74]. In this
earlier work, strategies have been formalized using two-player games rather than restricted automata.
Defining strategies using automata instead of two-player games allows us to avoid introducing extra
mathematical machinery. A drawback of our approach is that it is not applicable in a setting with general
liveness properties.

Lemma7.6. If A'is astrategy fotd, then every execution fragment4fis also an execution fragment
of A.

Theorem 7.7. Let A; and A be two compatible pre-HIOAs with strongly compatible strategiés
and A5, respectivelyThenA’ || A, is a strategy fotdy ||.A>.

Proof. Let A denoteA;|.Az and let A" denoteA’ ||A5. Since A; and A, are strongly compatible,
Theorem 6.12 implies thad’ is an HIOA. From the definitions of composition and stratedydiffers
from A only inthatD’ € D and7’ C 7. Then the definition of strategy implies thdt is a strategy for
A O

Lemma7.8. Let.4; and.Az be two compatible pre-HIOAs with strongly compatible strategiesand
5, respectivelyThen.4; and A are strongly compatible

Proof. Let A denoteA;| .42 and letA” denoteA;||.A5. Theorem 7.7 implies thatl’ is a strategy for
A. Since A] and A, are strongly compatible, their compositiofi satisfiesE2. We show that alsod
satisfiesE2.

Let x e Q and letv € trajs(U). Then sinceA’ is a strategy for4, we haveQ’ = Q and U’ =
U, Y =Y, and sox € Q' and v € trajs(U’). Since A’ satisfiesE2, there existst € 7’ such that
r.fstate=x, 7| U’ < v, and eitherr JU’ = v, or elser is closed and somee L' is enabled (ind’) in
.Istate

Since A’ is a strategy fot4, it follows that alsor € 7, t|U < v, and eitherr |U = v, or elser is
closed and somke L is enabled (inA) in r.Istate Therefore A satisfiesE2, that is,. A1 and. A2 are
strongly compatible. [J

Example 7.9 (Strategy for nondeterministic senyof he SensorHIOA defined in Example 5.14 is a
strategy for theV Sensor HIOA defined in Example 7.5. [J

7.3. Receptive HIOAs
Finally, we define a pre-HIOA to beceptivef it has a progressive strategy.
Example 7.10 (Receptive and non-receptive HIQAShe NSensoHHIOA of Example 7.5 is not pro-

gressive, but it is receptive. That is because the origheaisoHIOA, as defined in Example 5.14, is a
progressive strategy fdfSensor
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The DiscreteControllerHIOA is not receptive: because any strategy for it must sasfyand E2,
such a strategy must be able to perform discrete steps in responsergpartinput, and so must be
capable of performing infinitely marguggestctions in finite time.

Consider a varianNDController of DiscreteControllerthat has its own clock and may wait any
amount of time, up to a fixed" (> 0), to respond to eackeport input with a newsuggest (Several
reports may occur in succession; a singliggestnay be used to handle all of them, as long as it occurs
within time d’ of the first of these reportsNDControlleris not progressive, because it has the option of
responding immediately to reports, and thus may generate infinitely many suggestions in finite time. It
is receptive, however, using a progressive strategy that always waits the maximum allowed time before
generating a suggestion]

The two most important general properties of receptive HIOAs are expressed by the following
two theorems. The first expresses nontriviality—that any receptive HIOA (or pre-HIOA) can respond
to any inputs from the environment. The second theorem shows that receptiveness is preserved by
composition.

Theorem 7.11. Every receptive pre-HIOA is I/O feasible

Proof. Let.A be areceptive pre-HIOA. By definition of receptive, there exists a progressive strdltegy
for A. SinceA’ is a progressive HIOA, Corollary 7.3 implies thdt is 1/0 feasible. We show that also
A is I/O feasible.

Let x € Q and letg be an(I, U)-sequence. Then sincd’ is a strategy fotd, we haveQ’ = Q,
I'=1,andU’ = U, and sox € Q" andg is an(I’, U’)-sequence. Sincd’ is I/O feasible, there is
some execution fragmentof A’ such that.fstate= x anda[(I’, U’) = B. By Lemma 7.6¢ is also
an execution fragment od. Since A’ is a strategy fot4, it follows thata[(/, U) = B. Therefore A is
I/O feasible. O

The question of whether the converse of Theorem 7.11 holds is still open. Finally, we have our theorem
about composability of receptive HIOAS:

Theorem 7.12. Let.4; and. A2 be two compatible receptive HIOAs with strongly compatible progres-
sive strategies4; and A5, respectively Then A1 ||.Az is a receptive HIOA with progressive strategy
AL IIAS.

Proof. Let.AandA’ denoted; |.A> and. A} |.A5, respectively. The fact that is an HIOA follows from
Lemma 7.8 and Theorem 6.12. Theorem 7.7 implies.tias a strategy ford. Theorem 7.4 and the fact
that.4] and.A, are progressive implies that' is progressive. Thus4 is a receptive HIOA andd’ is a
progressive strategy fod. [

Example 7.13 (Composition of receptive sensor and receptive discrete controlemoted in Example

7.10, bothNSensorand NDController are receptive, using progressive strategies that always wait
the maximum allowed amount of time. These two strategies are strongly compatible, by Theo-
rem 6.18. Therefore, by Theorem 7.12, the composi@ensofNDController is a receptive HIOA
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with a progressive strategy that is the composition of the two progressive strategies for the two
pieces. O

8. Conclusions

In this paper, we have defined a new hybrid I/O automaton (HIOA) modeling framework for describing
and reasoning about the behavior of hybrid systems. Many future research directions remain.

First, the expressive and analytical power of the new model should be tested further by using it to
describe and analyze many more examples. These should include many of the examples that have been
used as illustrations elsewhere in the hybrid systems literature. The automated transportation examples
studied using the previous version of the HIOA model should be revisited using the new model to see
what changes arise, and new and more ambitious case studies should be attempted.

It would be interesting to define and prove formal relationships between the HA and HIOA models of
this paper and other models of hybrid systems, including those of [3,8,13,14,38,63]. Also, one can define
a timed input/output automaton model by simply restricting the HIOA model of this paper so that it does
not include any external variables. It remains to consider the formal relationship between this model and
other timed automaton models, for example, those of [1,5,60,65,74].

It would also be useful to incorporate additional analysis methods, including assume-guarantee
reasoning [16,36] and a variety of methods from control theory, into the HIOA framework. Control
theory methods to consider should include Lyapunov stability analysis methods [79] and robust control
methods [23]. Results about these methods should be formulated in terms of HIOAs, and the methods
should be extended where necessary in order to accommodate a combination of discrete and continuous
behavior.

Other extensions of the HIOA framework are also desirable. In some prior work (e.g. [1,21,74]),
strategies are used to describe how a system interacts with its environment to guarantee that the outcome
of the interaction satisfies a target liveness property. In this paper, we do not consider general liveness
properties, but only the special case of admissibility. It remains to extend the theory to more general
liveness properties. Another important extension would be the addition of probabilities, which would
make it possible to model and analyze probabilistic hybrid systems. Such an extension could be used, for
example, to prove bounds on the probability of errors in safety-critical real-time systems. This extension
appears to be a very challenging problem.

Future work will include tool support for modeling and analysis as described in this paper. This will
include a formal modeling language based on HIOA, with constructs similar to those used in the examples
of this paper, and connections to a theorem prover. A preliminary language proposal appears in [68].
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Appendix A
A.1l. Notational conventions

action

element of some set
function

index

natural number

locally controlled action
time point

input variable

variable

external variable

internal variable

output variable

local variable

set of actions

set of discrete transitions
set of external actions
set of functions

set of internal (hidden) actions
set of input actions or index set
interval or index set

set of time points

set of locally controlled actions
set of output actions

set of elements in cpo
set of automaton states
(simulation) relation

set

set of trajectories

set of input variables

set of variables

set of external (Dutch: waarneembare) variables
set of internal variables
set of output variables
set of local variables
state

valuation

hybrid (1/0) automaton
hybrid automaton

set of trajectories

the natural numbers

the real numbers

the time axis

the integers

the universe of variables
hybrid sequence
sequence

the empty sequence
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T projection function
p,0 sequence

T,v trajectory

® set of start states
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