
Information and Computation 185 (2003) 105–157

www.elsevier.com/locate/ic

Hybrid I/O automata�

Nancy Lynch,a,∗,1 Roberto Segala,b,2 and Frits Vaandragerc,3

aMIT Laboratory for Computer Science, Massachusetts Institute of Technology,
200 Technology Square, NE43-365, Cambridge, MA 02139-3578, USA

bDipartimento di Informatica, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
cNijmeegs Instituut voor Informatica en Informatiekunde, University of Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Received 15 February 2002; revised 21 August 2002

Abstract

Hybrid systemsare systems that exhibit a combination of discrete and continuous behavior. Typical hybrid
systems include computer components, which operate in discrete program steps, and real-world components,
whose behavior over time intervals evolves according to physical constraints. Important examples of hybrid systems
include automated transportation systems, robotics systems, process control systems, systems of embedded devices,
and mobile computing systems. Such systems can be very complex, and very difficult to describe and analyze. This
paper presents theHybrid Input/Output Automaton(HIOA) modeling framework, a basic mathematical framework
to support description and analysis of hybrid systems. An important feature of this model is its support for
decomposing hybrid system descriptions. In particular, the framework includes a notion ofexternal behavior
for a hybrid I/O automaton, which captures its discrete and continuous interactions with its environment. The
framework also defines what it means for one HIOA toimplementanother, based on an inclusion relationship
between their external behavior sets, and defines a notion ofsimulation, which provides a sufficient condition for
demonstrating implementation relationships. The framework also includes acompositionoperation for HIOAs,
which respects the implementation relation and a notion ofreceptiveness, which implies that an HIOA does not
block the passage of time. The framework is intended to support analysis methods from both computer science

�An extended abstract of this paper appeared as [52].
∗Corresponding author. Fax: 1-617-258-8682.
E-mail addresses:lynch@theory.lcs.mit.edu (N. Lynch), segala@sci.univr.it (R. Segala), fvaan@cs.kun.nl (F. Vaandrager).
1Supported by PATH 1784-18454LD; AFOSR F49620-00-1-0097, F49620-97-1-0337, and SA2796PO 1-0000243658; NTT

MIT9904-12; NSF ACI-9876931, CCR-9909114, and CCR-9804665; Multi-sponsored Consortium Project Oxygen; DARPA
F33615-01-C-1850.

2Supported by MURST Project TOSCA.
3Supported by Esprit Project 26270, Verification of Hybrid Systems (VHS), GBE/SION Project 612-14-004, Step-

wise Refinement of Hybrid Systems, and PROGRESS Project TES4199, Verification of Hard and Softly Timed Systems
(HaaST).

0890-5401/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0890-5401(03)00067-1

106 N. Lynch et al. / Information and Computation 185 (2003) 105–157

and control theory. This work is a simplification of our earlier HIOA model. The main simplification in the new
model is a clearer separation between the mechanisms used to model discrete and continuous interaction between
components. In particular, the new model removes the dual use of external variables for discrete and continuous
interactions.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

1.1. Overview

Recent years have seen a rapid growth of interest inhybrid systems—systems that intermix discrete
and continuous behavior [9,10,12,20,28,34,51,62,70,73,80]. Typical hybrid systems include computer
components, which operate in discrete program steps, and real-world components, whose behavior over
time intervals evolves according to physical constraints. Such systems are used in many application
domains, including automated transportation, avionics, automotive control, robotics, process control,
embedded devices, consumer electronics, and mobile computing.

Hybrid systems can be very complex, and therefore very difficult to describe and reason about. At the
same time, because they involve real-world activity, they often have stringent safety requirements. This
combination of factors leads to a need for rigorous mathematical models for describing hybrid systems
and their properties, and for practical analysis methods based on these models.

In this paper, we present a basic mathematical framework to support description and analysis of hybrid
systems: theHybrid Input/Output Automatonmodeling framework. AHybrid I/O Automaton(HIOA)
is a kind of nondeterministic, possibly infinite-state, state machine. The state of an HIOA is divided
into state variables, and it may also have additionalinput variablesand output variables. The state
can change in two ways: instantaneously by the occurrence of adiscrete transition, or according to
sometrajectorywhen time passes. Formally, a discrete transition is a triple consisting of a source state,
an action (for synchronization with other automata), and a target state. Trajectories are functions that
describe the evolution of the state variables, along with the input and output variables, over intervals of
time. Trajectories may be continuous or discontinuous functions.

HIOAs are intended to be used to model all components of hybrid systems, including physical
components, controllers, sensors, actuators, computer software, communication services, and humans
that interact with the rest of the system. The framework is very general: for example, we do not
require that trajectories be expressible using systems of equations of a particular form, and we do not
require that discrete transitions be expressible using a particular logical language. Particular kinds of
systems of equations and particular logical languages can be used to define special cases of the general
model.

The most important feature of the hybrid I/O automaton framework is its support for decomposing
hybrid system description and analysis; this is important because many hybrid systems are too complex
to understand all at once. A key to this decomposition is that the framework includes a rigorously defined
notion of external behaviorfor hybrid I/O automata, which captures their discrete and continuous
interactions with their environment. The external behavior of each HIOA is defined by a simple

N. Lynch et al. / Information and Computation 185 (2003) 105–157 107

mathematical object called atrace. The framework also includes notions ofabstractionandparallel
composition.

For abstraction, the framework includes notions ofimplementationand simulation, which can be
used to view hybrid systems at multiple levels of abstraction, starting from a high-level version that
describes required properties, and ending with a low-level version that describes a detailed design or
implementation. In particular, the HIOA framework defines what it means for one HIOA,A, to implement
another HIOA,B, namely, any trace that can be exhibited byA is also allowed byB. In this case,A
might be more deterministic thanB, in terms of either discrete transitions or trajectories. For instance,
B might be allowed to perform an output action at an arbitrary time before noon, whereasA produces
the same output sometime between 10 and 11 AM. OrB might allow an output variabley to evolve with
ẏ ∈ [0, 2], whereasA might ensure thaṫy = 1.

The notion of asimulation relationfromA toB provides a sufficient condition for demonstrating that
A implementsB. A simulation relation is defined to satisfy three conditions, one relating start states, one
relating discrete transitions, and one relating trajectories ofA andB.

For parallel composition, the framework provides acomposition operation, by which HIOAs mod-
eling individual hybrid system components can be combined to produce a model for a larger hybrid
system. The model for the composed system can describe interactions among the components, including
joint participation in discrete transitions and trajectories. Composition requires certain “compatibility”
conditions, namely, that each output variable and output action be controlled by at most one automaton,
and that internal variables and actions of one automaton cannot be shared by any other automaton. The
composition operation respects the implementation relation, for example, ifA1 implementsA2 then the
composition ofA1 andB implements the composition ofA2 andB. Composition also satisfiesprojection
results saying that a trace of a composition of HIOAs projects to give traces of the individual HIOAs,
andpastingresults saying that compatible behaviors of components are “pastable” to give behaviors of
the composition. Such results are essential if the models are to be used for compositional design and
verification of systems. In addition, the framework includeshiding operations for output actions and
variables, which respect the implementation relationship.

An interesting complication that arises in the hybrid setting is the possibility that a state machine
could “prevent time from passing”, for example, by blocking it entirely, or by scheduling infinitely many
discrete actions to happen in a finite amount of time—so-calledZeno behavior. The HIOA framework
includes a notion ofreceptiveness, which says that an HIOA does not contribute to producing Zeno
behavior, and which (under suitable compatibility conditions) is preserved by composition. We also give
simple sufficient conditions for these compatibility conditions to hold.

The generality of the HIOA framework means that a large collection of analysis methods, derived
from both discrete and continuous analysis methods, can be applied to systems modeled as HIOAs.
For example, inductive methods for proving invariant assertions and simulation relationships (see, e.g.
[58,72]), which are commonly used in computer science for reasoning about discrete systems, can
be extended to the hybrid setting and expressed by theorems about HIOAs. Other discrete analysis
methods that should be extendible include proving progress using well-founded sets (see, e.g. [26]),
assume-guarantee compositional reasoning (e.g. [16,36]), and deducing properties within temporal logic
and other logical formalisms. All of these methods could be supported by interactive theorem proving
software. Automatic methods based on state-space searching and based on decision procedures for
automata on infinite paths (see, e.g. [16]) should also be extendible; however, these methods will apply
only to special cases of the general model.

108 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Likewise, key methods used in control theory for reasoning about continuous systems, such as
stability analysis using Lyapunov functions (e.g. [79]) and robust control techniques (e.g. [23]), should
be extendible to hybrid systems using HIOAs.

1.2. Evolution of the HIOA framework

The HIOA framework has evolved from two earlier input/output automaton models: the basic I/O
automaton model of Lynch and Tuttle [55,56] and the timed I/O automaton model of Lynch, Vaandrager
et al. [60,74]. Basic I/O automata consist essentially of states, start states, and discrete transitions. They
have been used fairly extensively to describe and analyze asynchronous distributed algorithms—see, for
example [48].

Timed I/O automata add explicittime-passage steps, which allow time to pass in discrete jumps. In
the simplest cases, time-passage steps involve just the passage of time, with no other changes to the state.
However, in general, they are allowed to change the state in more elaborate ways, including changing
variables that represent physical quantities. Timed I/O automata have been used mainly to describe
timing-based distributed algorithms and communication protocols (e.g. [19,25,45,75–78]). Timed I/O
automata have also been used in a few cases to model simple hybrid system “challenge problems”,
including the Generalized Railroad Crossing problem [30,31]. In these examples, the time-passage steps
include changes to physical quantities such as train position and water level.

An early version of the HIOA modeling framework appeared in [53,54]. It augmented timed I/O
automata by adding input and output variables and explicittrajectories; the trajectories describe the
evolution of the state and external variables over intervals of time, rather than just their cumulative
changes. This version of the HIOA framework was used to describe and analyze many hybrid systems
examples, including automated transportation systems [42,44,49,50,61,81–83], intelligent vehicle high-
way systems [22,47], aircraft control systems [43,46], automotive control systems [24], and consumer
electronics systems [11].

We summarize the results of these modeling efforts briefly. In these examples, HIOAs were used
to model system components of many different kinds, including real-world components, computer
programs, communication channels, sensors, actuators, and humans (for example, pilots interacting with
aircraft control systems). Individual component automata were generally highly nondeterministic, and
often allowed for bounded uncertainty in the values of quantities represented in the state. Component
states often included timing information, for example, the current time and deadlines for the performance
of certain actions. Composition was used to combine the component HIOAs into models of the complete
systems. Levels of abstraction were used to describe several kinds of relationships between HIOAs, for
example: the relationship between a detailed view of a system and a more abstract view; the relationship
between a description of a system in terms of higher derivatives (e.g., acceleration) and a description
in terms of lower derivatives (e.g., velocity or position); and the relationship between a version of a
system that includes periodic sampling and correction and a version in which adjustment is continuous,
but within an envelope of uncertainty.

The examples were analyzed using a variety of methods, including invariant assertions, simulation
relations, compositional reasoning, differential equations, and integration. Many of the invariants and
simulation relations involved timing data and data representing real-world quantities. Invariants and
simulation relations were proved using inductive arguments on the length of executions, as is usual
in the purely discrete setting. However, unlike in the discrete setting, the proofs in the hybrid setting

N. Lynch et al. / Information and Computation 185 (2003) 105–157 109

included two different kinds of inductive steps: for discrete steps and trajectories. Arguments about
discrete steps involved the sort of algebraic deduction that is typical in the discrete setting, whereas
arguments about trajectories involved manipulation of differential equations and integrals. For example,
a technique involving “positive invariant sets”, derived from control theory, was used in [15] for showing
that certain properties of the state are preserved during trajectories.

In general, the formal HIOA framework proved to be adequate for these examples. However, it was
not ideal, because it introduced some complications that proved to be distracting. The main source of
complication seemed to be the fact that the model has two mechanisms for modeling discrete commu-
nication:shared actionsandshared variables. Also, it uses the same mechanism—shared variables—to
model both discrete and continuous interactions between components. This intertwining of mechanisms
led to some technicalities, for example, each automaton had to include a specialenvironment actione,
which is associated with discrete changes to input variables. To simplify matters, we were led to develop
the new version of the HIOA model presented in this paper. The new version has a clearer separation
between the mechanisms used to model discrete and continuous activity, and has only one mechanism
for discrete communication: shared actions.

In the literature on discrete state machine models, both shared actions and shared variables are popular
mechanisms for modeling interactions between system components. The shared action approach is used,
for example, in the extensive research literature on process algebras (e.g. [35,66,67]), and in the work on
I/O automata (e.g. [49,55]). The shared variable approach is used, for example, in the temporal logic and
model-checking communities (e.g. [7,40,64]). The expressive power of shared action and shared variable
communication is similar, and translations between special cases of these two types of models have
been developed [18,39]. Choosing between these two forms of communication seems to be generally a
matter of custom and convenience. One advantage of the shared-action approach is that it leads to simple
mathematical notions of external behavior of state machines, based on sequences of actions (which are
usually called “traces”).

The new HIOA framework presented in this paper uses (only) shared actions for discrete communica-
tion, and uses shared variables for continuous communication. Discrete events are not allowed to make
changes to shared variables, and the special environment actione is eliminated. Because the new model
maintains a clearer separation between mechanisms for describing discrete and continuous activity, it
is simpler overall—in its definitions, result statements, and proofs—than the earlier HIOA model of
[53,54].

Another simplification in the new framework appears in the definitions and results involving recep-
tiveness. In the original HIOA model of [53,54], and in other work that dealt with receptiveness [1,21,74]
for discrete systems, receptiveness was defined in terms of two-player games between the system and its
environment. In such a game, the goal of the system is to construct an infinite, non-Zeno execution, and
the goal of the environment is to prevent this from happening. The simplification in this material in the
new model is a result of our modeling of the game itself as an HIOA.

1.3. Other related work

Besides the models already discussed above, other precursors to the new HIOA model include the phase
transition system models of [3,38,63] and Branicky’s hybrid control systems [13,14]. Phase transition
systems are similar to HIOAs in their combined treatment of discrete and continuous activity, for example,
they have notions similar to our trajectories and hybrid sequences. However, work on phase transition

110 N. Lynch et al. / Information and Computation 185 (2003) 105–157

system models does not address system decomposition issues such as external behavior, implementation
relationships, and composition, which are emphasized in our paper. Branicky’s hybrid control systems
are also similar to ours in their modeling of discrete and continuous activity. This work has a control
theory flavor, focusing on standard configurations including plant, controller, sensor and actuator, and
focusing on stability results. Again, system decomposition issues are not addressed.

System decomposition issues, including levels of abstraction, compositionality, and receptiveness have
been addressed by Alur and Henzinger [8] in their work on hybrid reactive modules. A major difference
between this work and ours is that reactive modules communicate via shared variables and not via shared
actions. Another difference is that hybrid reactive modules include an additional layer of structure tailored
to modeling synchronous systems—structure that is not present in the HIOA model. In [8], a definition of
receptiveness based on two-player games, similar to the definition in [53,54], is proposed, and is shown
to be preserved by parallel composition. However, in [8], no circular dependencies (“feedback loops”)
are allowed among the continuous variables of different components, a restriction that greatly simplifies
the analysis.

In [6,33], compositional trace-based semantics are presented for Statecharts-like languages that support
hierarchical design of hybrid systems. These languages, called Charon and Masaccio, respectively, allow
one to describe hierarchical state machines that communicate with their environment using shared
variables. Communication via shared actions is not supported. Besides parallel composition and variable
hiding, the languages also contain other operations required for the construction of hierarchical state
machines, such as variable renaming and serial composition. The trace semantics presented in [6,33] for
Charon and Masaccio is more concrete than the one that we present here: discrete events that do not
change the observable part of the state are not eliminated from traces. As a consequence, a system that
just lets time pass and performs a discrete “tick” step once every time unit is not an implementation of the
same system without any discrete steps. The two systems are equivalent according to the trace semantics
of this paper. We believe that our semantics are more intuitively appealing; the price we pay is that the
proofs of our compositionality results are more complicated. Ref. [33] also contains some interesting
proof rules for assume-guarantee reasoning. In [6,33], Zeno behavior and the issue of receptiveness are
not considered.

1.4. Paper organization

The rest of this paper is organized as follows. Section 2 contains mathematical preliminaries. Next,
Section 3 defines notions that are useful for describing the behavior of hybrid systems, most importantly,
trajectories and hybrid sequences. Section 4 definesHybrid Automata(HAs), which contain all of the
structure of HIOAs except for the classification of external actions and variables as inputs or outputs. It
also defines external behavior for HAs and implementation and simulation relationships between HAs.
Section 5 presents composition and hiding operations for HAs. Section 6 definesHybrid I/O Automata
(HIOAs) by adding an input/output classification to HAs, and extends the theory of HAs to HIOAs.
It also introduces a “strong compatibility” condition that ensures that HIOAs are composable, and
describes situations in which strong compatibility is guaranteed to hold. Section 7 presents the theory of
receptiveness, including a main theorem stating that receptiveness is preserved by composition (assuming
strong compatibility). Finally, Section 8 presents some conclusions. Examples derived from earlier work
on hybrid system modeling are included throughout. Appendix A lists some notational conventions used
in the paper.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 111

2. Mathematical preliminaries

In this section, we give basic mathematical definitions that will be used as a foundation for our
definitions of hybrid automata and hybrid I/O automata. These definitions involve functions, sequences,
partial orders, and time. The automata definitions appear later in Sections 4 and 6. Since most of the
definitions here are reasonably standard, we encourage the reader to skip ahead to Section 3 and return
to this section as needed.

2.1. Functions

If f is a function, then we denote the domain and range off by dom(f) and range(f), respec-
tively. If also S is a set, then we writef �S for the restriction off to S, that is, the functiong with
dom(g) = dom(f) ∩ S such thatg(c) = f (c) for eachc ∈ dom(g).

We say that two functionsf andg arecompatibleif f �dom(g) = g�dom(f). If f andg are compatible
functions then we writef ∪ g for the unique functionh with dom(h) = dom(f) ∪ dom(g) satisfying the
condition: for eachc ∈ dom(h), if c ∈ dom(f) thenh(c) = f (c) and if c ∈ dom(g) thenh(c) = g(c).
More generally, ifF is a set of pairwise compatible functions then we write

⋃
F for the unique

functionhwith dom(h) = ⋃{dom(f) | f ∈ F } satisfying the condition: for eachf ∈ F andc ∈ dom(f),
h(c) = f (c).

If f is a function whose range is a set of functions andS is a set, then we writef↓S for the function
g with dom(g) = dom(f) such thatg(c) = f (c)�S for eachc ∈ dom(g). The restriction operation↓ is
extended to sets of functions by pointwise extension. Also, iff is a function whose range is a set of
functions, all of which have a particular elementd in their domain, then we writef↓d for the function
g with dom(g) = dom(f) such thatg(c) = f (c)(d) for eachc ∈ dom(g).

We say that two functionsf andg whose ranges are sets of functions arepointwise compatibleif
for eachc ∈ dom(f) ∩ dom(g), f (c) andg(c) are compatible. Iff andg have the same domain and
are pointwise compatible, then we denote byf ∪̇g the functionh with dom(h) = dom(f) such that
h(c) = f (c) ∪ g(c) for eachc ∈ dom(h).

2.2. Sequences

Let S be any set. Asequenceover S is a function from a downward closed subset of the natural
numbers toS. Thus, the domain of a sequence is either the set of all natural numbers, or is of the form
{0, . . . , k}, for some natural numberk. In the first case we say that the sequence is infinite, and in the
second case finite. The sets of finite and infinite sequences overS are denoted byS∗ andSω, respectively.
Concatenation of a finite sequence with a finite or infinite sequence is denoted by juxtaposition. We use
λ to denote the empty sequence, that is, the sequence with the empty domain. The sequence containing
one elementc ∈ S is abbreviated asc. We say that a sequenceσ is aprefixof a sequenceρ, denoted by
σ � ρ, if σ = ρ�dom(σ). Thus,σ � ρ if either σ = ρ, or σ is finite andρ = σσ ′ for some sequence
σ ′. If σ is a nonempty sequence thenhead(σ) denotes the first element ofσ andtail(σ) denotesσ with
its first element removed. Moreover, ifσ is finite, thenlast(σ) denotes the last element ofσ andinit(σ)

denotesσ with its last element removed.

112 N. Lynch et al. / Information and Computation 185 (2003) 105–157

2.3. Partial orders

We recall some basic definitions and results regarding partial orders (posets), and in particular,
complete partial orders (cpos) from [29,32]. Apartial order (poset) is a setS together with a binary
relation� that is reflexive, antisymmetric, and transitive. In the sequel, we usually denote posets by the
setS without explicit mention to the binary relation�.

A subsetP ⊆ S is bounded(above) if there is ac ∈ S such thatd � c for eachd ∈ P ; in this case,c
is anupper boundfor P . A least upper bound (lub)for a subsetP ⊆ S is an upper boundc for P such
that c � e for every upper bounde for P . If P has a lub, then it is necessarily unique, and we denote
it by

⊔
P . A subsetP ⊆ S is directedif every finite subsetQ of P has an upper bound inP . A poset

S is complete, and hence is acomplete partial order(cpo) if every directed subsetP of S has a lub
in S.

We say thatP ′ ⊆ S dominatesP ⊆ S, denoted byP � P ′, if for every c ∈ P there is somec′ ∈ P ′
such thatc � c′. We use the following two simple lemmas, adapted from [32] (Lemmas 3.1.1 and 3.1.2).

Lemma 2.1. If P, P ′ are directed subsets of a cpoS andP � P ′ then
⊔

P � ⊔
P ′.

Lemma 2.2. LetP = {cij | i ∈ I, j ∈ J } be a doubly indexed subset of a cpoS. LetPi denote the set
{cij | j ∈ J } for eachi ∈ I. Suppose

(1) P is directed,
(2) eachPi is directed with lubci, and
(3) the set{ci | i ∈ I } is directed.

Then�P = �{ci | i ∈ I }.
A finite or infinite sequence of elements,c0, c1, c2, . . ., of a posetS is called achain if ci � ci+1 for

each non-final indexi. We define thelimit of the chain, limi→∞ ci , to be the lub of the set{c0, c1, c2, . . .}
if S contains such a bound; otherwise, the limit is undefined. Since a chain is a special case of a directed
set, each chain of a cpo has a limit.

A functionf : S → S′ between posetsS andS′ is monotoneif f (c) � f (d) wheneverc � d. If f is
monotone andP is a directed set, then the setf (P) = {f (c) | c ∈ P } is directed as well. Iff is monotone
andf (

⊔
P) = ⊔

f (P) for every directed setP , thenf is said to becontinuous.
An elementc of a cpoS is compactif, for every directed setP such thatc � ⊔

P , there is some
d ∈ P such thatc � d. We defineK(S) to be the set of compact elements ofS. A cpoS is algebraicif
everyc ∈ S is the lub of the set{d ∈ K(S) | d � c}. A simple example of an algebraic cpo is the set of
finite or infinite sequences over some given domain, equipped with the prefix ordering. Here the compact
elements are the finite sequences.

2.4. Time

Throughout this paper, we fix atime axisT, which is a subgroup of(R,+), the real numbers with
addition. We assume that every infinite, monotone, bounded sequence of elements ofT has a limit inT.
The reader may find it convenient to think ofT as the setR of real numbers, but the setZ of integers and
the singleton set{0} are also examples of allowed time axes. We defineT�0 � {t ∈ T | t � 0}.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 113

An intervalJ is a nonempty, convex subset ofT. We denote intervals as usual:[t1, t2] = {t ∈ T | t1 �
t � t2}, etc. An interval isleft-closed(right-closed) if it has a minimum (resp., maximum) element, and
left-open(right-open) otherwise. An interval isclosedif it is both left-closed and right-closed, andopenif
it is both left-open and right-open. We write min(J)and max(J) for the minimum and maximum elements,
respectively, of an intervalJ (if they exist), and inf(J) and sup(J) for the infimum and supremum,
respectively, ofJ in T ∪ {−∞,∞}. ForK ⊆ T andt ∈ T, we defineK + t � {t ′ + t | t ′ ∈ K}. Similarly,
for a functionf with domainK, we definef + t to be the function with domainK + t satisfying, for
eacht ′ ∈ K + t , (f + t) (t ′) = f (t ′ − t).

3. Describing hybrid behavior

In this section, we give basic definitions that are useful for describing discrete and continuous behavior
of a system or system component, including discrete and continuous changes to the system’s state, and
discrete and continuous flow of information into and out of the system. The key notions arestaticand
dynamic typesfor variables,trajectories, andhybrid sequences.

3.1. Static and dynamic types

We assume a universal setV of variables. A variable represents either a location within the state of a
system or a location where information flows from one system component to another. For each variable
v, we assume both a(static) type, which gives the set of values it may take on, and adynamic type, which
gives the set of trajectories it may follow. Formally, for each variablev we assume the following:
• type(v), the(static) typeof v. This is a nonempty set of values.
• dtype(v), thedynamic typeof v. This is a set of functions from left-closed intervals ofT to type(v)

that satisfies the following properties:
(1) (Closure under time shift)

For eachf ∈ dtype(v) andt ∈ T, f + t ∈ dtype(v).
(2) (Closure under subinterval)

For eachf ∈ dtype(v) and each left-closed intervalJ ⊆ dom(f), f �J ∈ dtype(v).
(3) (Closure under pasting)

Let f0, f1, f2, . . . be a sequence of functions indtype(v) such that, for each indexi such thatfi

is not the final function in the sequence,dom(fi) is right-closed and max(dom(fi)) = min
(dom(fi+1)). Then the functionf defined byf (t)� fi(t), wherei is the smallest index such that
t ∈ dom(fi), is in dtype(v).

The pasting-closure property is useful for modeling “discontinuities” in the evolution of variables caused
by discrete transitions. Dynamic types provide a convenient way of describing restrictions on system
behavior over time intervals, for example, restrictions on the behavior of system input variables.

Example 3.1 (Discrete variables). Let v be any variable and letC be the set of constant functions from
a left-closed interval totype(v). ThenC is closed under time shift and subinterval. If the dynamic type
of v is obtained by closingC under the pasting operation, thenv is called adiscretevariable. This is
essentially the same as the definition of a discrete variable in [63].�

114 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Fig. 1. Example of a function in a dynamic type based on continuous functions.

Example 3.2 (Standard real-valued function classes). If we takeT = R and type(v) = R, then other
examples of dynamic types can be obtained by taking the pasting closure of standard function classes
from real analysis, such as the set of continuous functions, the set of differentiable functions, the set of
functions that are differentiablek times (for anyk), the set of smooth functions, the set of integrable
functions, the set ofLp functions (for anyp), the set of measurable locally essentially bounded functions
[79], or the set of all functions. �

Standard function classes are closed under time shift and subinterval, but not under pasting. A natural
way of defining a dynamic type is as the pasting closure of a class of functions that is closed under time
shift and subinterval. In such a case, it follows that the new class is closed under all three operations.

Example 3.3 (Pasting closure of the continuous functions). Fig. 1 shows an example of an elementf in
a dynamic type based on (more precisely, equal to the pasting closure of) a subclass of the continuous
functions. Functionf is defined on the interval[0, 4) and is obtained by pasting together four pieces.
At the boundary points between these pieces,f takes the value specified by the leftmost piece, which
makesf continuous from the left. Note thatf is undefined at time 4. �

In practice, most interesting dynamic types are pasting closures of subclasses of the continuous
functions. Note that functions in such dynamic types are continuous from the left. Elsewhere in the
literature on hybrid systems (e.g. [37]), functions that are continuous from the right are considered. To
some extent, the choice of how to define function values at discontinuities is arbitrary. An advantage of
our choice is a nice correspondence between concatenation and prefix ordering of trajectories and hybrid
sequences (see Lemmas 3.5 and 3.7).

In this paper, we will occasionally be slightly sloppy and say that the dynamic type of a variablev is
the function classF , even thoughF in not closed under the three required operations. In such a case,
we mean that the dynamic type ofv is the function class that results from closingF under the three
operations.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 115

3.2. Trajectories

In this subsection, we define the notion of atrajectory, define operations on trajectories, and prove
simple properties of trajectories and their operations. A trajectory is used to model the evolution of a
collection of variables over an interval of time.

3.2.1. Basic definitions
Let V ⊆ V be a set of variables. Avaluationv for V is a function that associates with each variable

v ∈ V a value intype(v). We writeval(V) for the set of valuations forV . Let J be a left-closed interval
of T with left endpoint equal to 0. Then aJ -trajectoryfor V is a functionτ : J → val(V), such that for
eachv ∈ V , τ↓v ∈ dtype(v). A trajectoryfor V is aJ -trajectory forV , for anyJ . We writetrajs(V) for
the set of all trajectories forV .

A trajectory forV with domain[0, 0] is called apoint trajectory forV . If v is a valuation forV
then℘(v) denotes the point trajectory forV that maps 0 tov. We say that aJ -trajectory isfinite if J

is a finite interval,closedif J is a (finite) closed interval,openif J is a right-open interval, andfull if
J = T�0.

If τ is a trajectory thenτ.ltime, thelimit timeof τ , is the supremum ofdom(τ). Also, we defineτ.fval,
the first valuationof τ , to beτ(0), and if τ is closed, we defineτ.lval, the last valuationof τ , to be
τ(τ.ltime). Forτ a trajectory andt ∈ T�0, we define

τ � t � τ�[0, t],
τ � t � τ�[0, t),
τ � t � (τ�[t,∞))− t.

Note that, since dynamic types are closed under time shift and subintervals, the result of applying the
above operations is always a trajectory, except when the result is a function with an empty domain. By
convention, we also writeτ �∞� τ andτ �∞� τ .

3.2.2. Prefix ordering
Trajectoryτ is a prefix of trajectoryτ ′, denoted byτ � τ ′, if τ can be obtained by restrictingτ ′

to a subset of its domain. Formally, ifτ andτ ′ are trajectories forV , thenτ � τ ′ iff τ = τ ′�dom(τ).
Alternatively,τ � τ ′ iff there exists at ∈ T�0 ∪ {∞} such thatτ = τ ′ � t or τ = τ ′ � t . If τ � τ ′ then
clearlydom(τ) ⊆ dom(τ ′). If T is a set of trajectories forV , thenpref(T) denotes theprefix closureof
T , defined by

pref(T) � {τ ∈ trajs(V) | ∃τ ′ ∈ T : τ � τ ′}.
We say thatT is prefix closedif T = pref(T).

The following lemma gives a simple domain-theoretic characterization of the set of trajectories over
a given setV of variables:

Lemma 3.4. LetV be a set of variables. The set trajs(V) of trajectories forV, together with the prefix
ordering�, is an algebraic cpo. Its compact elements are the closed trajectories.

116 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Proof. It is trivial to check that(trajs(V),�) is a partial order. In order to prove that it is a cpo, assume
thatT is a directed subset oftrajs(V). We prove thatT has a least upper bound. It is routine to check
that a set of trajectories is directed iff it is totally ordered by prefix. SoT is totally ordered. Using
this, it follows that the trajectories inT are pairwise compatible functions. Therefore, function

⋃
T is

defined.
We now prove that

⋃
T is a trajectory forV . If

⋃
T ∈ T then this is immediate. Otherwise, let

t ∈ T ∪ {∞} be the supremum of the limit times of all trajectories inT . There exists an infinite ascending
chaint0, t1, t2, . . . of limit times of trajectories inT such thatt = limi→∞ ti and all theti ’s are different.
For eachi, let τi be a trajectory inT with ti = τi.ltime. Next define, for eachi, τ ′i = τi+1 � ti . Then, by
construction, the trajectoriesτ ′0, τ ′1, τ ′2, . . . are closed and pairwise compatible, and

⋃
i τ

′
i =

⋃
T . Let

τ ′′0 , τ ′′1 , τ ′′2 , . . . be the sequence of functions defined by

τ ′′0 � τ ′0,
τ ′′i � τ ′i �[τ ′i−1.ltime,∞) if i > 0.

By construction, theτ ′′i ’s are closed, pairwise compatible, and
⋃

i τ
′′
i = ⋃

i τ
′
i . Using the assumption

that dynamic types are closed under pasting, it follows that
⋃

i τ
′′
i (and hence

⋃
T) is a trajectory.

Now we show that
⋃

T is a lub forT . It follows immediately from the construction of
⋃

T that⋃
T is an upper bound forT . Suppose thatτ ′ is also an upper bound forT . We prove that

⋃
T � τ ′.

Since eachτ ∈ T satisfiesdom(τ) ⊆ dom(τ ′), also
⋃

τ∈T dom(τ) ⊆ dom(τ ′). By definition of
⋃

T ,
dom(

⋃
T) = ⋃

τ∈T dom(τ). Hencedom(
⋃

T) ⊆ dom(τ ′). Let t be an element ofdom(
⋃

T). Then
t is in the domain of someτ ∈ T . Sinceτ is a prefix of both

⋃
T and τ ′, (

⋃
T)(t) = τ ′(t). Thus,

τ ′�dom(
⋃

T) = ⋃
T , that is,

⋃
T � τ ′. It follows thattrajs(V) is a cpo.

We leave it to the reader to check that the closed trajectories are the compact elements in this cpo, and
that the cpo is algebraic.�

3.2.3. Concatenation
The concatenation of two trajectories is obtained by taking the union of the first trajectory and the

function obtained by shifting the domain of the second trajectory until the start time agrees with the limit
time of the first trajectory; the last valuation of the first trajectory, which may not be the same as the first
valuation of the second trajectory, is the one that appears in the concatenation. Formally, supposeτ and
τ ′ are trajectories forV , with τ closed. Then theconcatenationτ$τ ′ is the function given by

τ$τ ′ � τ ∪ (τ ′�(0,∞)+ τ.ltime).

Because dynamic types are closed under time shift and pasting, it follows thatτ$τ ′ is a trajectory for
V . Observe thatτ$τ ′ is finite (resp., closed, full) if and only ifτ ′ is finite (resp., closed, full). Observe
also that concatenation is associative.

The following lemma, which is easy to prove, shows the close connection between concatenation and
the prefix ordering.

Lemma 3.5. Let τ andυ be trajectories forV with τ closed. Then

τ � υ ⇔ ∃τ ′ : υ = τ$τ ′.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 117

Note that ifτ � υ, then the trajectoryτ ′ such thatυ = τ$τ ′ is unique except that it has an arbi-
trary value forτ ′.fval. Note also that the “⇐” implication in Lemma 3.5 would not hold if the first
valuation of the second argument, rather than the last valuation of the first argument, were used in the
concatenation.

We extend the definition of concatenation to any (finite or countably infinite) number of arguments.
Let τ0, τ1, τ2, . . . be a (finite or infinite) sequence of trajectories such thatτi is closed for each nonfinal
indexi. Define trajectoriesτ ′0, τ ′1, τ ′2, . . . inductively by

τ ′0 � τ0,

τ ′i+1 � τ ′i$τi+1 for nonfinali.

Lemma 3.5 implies that for each nonfinali, τ ′i � τ ′i+1. We define theconcatenationτ0
$τ1

$τ2 · · · to be
the limit of the chainτ ′0, τ ′1, τ ′2, . . .; existence of this limit follows from Lemma 3.4.

3.3. Hybrid sequences

In this subsection, we introduce the notion of ahybrid sequence, which is used to model a combination
of changes that occur instantaneously and changes that occur over intervals of time. Our definition is
parameterized by a setA of actions, which are used to model instantaneous changes and instantaneous
synchronizations with the environment, and a setV of variables, which are used to model changes over
intervals of time and continuous interaction with the environment. We also define some special kinds of
hybrid sequences and some operations on hybrid sequences, and give basic properties.

3.3.1. Basic definitions
Fix a setA of actions and a setV of variables. An(A, V)-sequenceis a finite or infinite alternating

sequenceα = τ0 a1 τ1 a2 τ2, . . . , where
(1) eachτi is a trajectory intrajs(V),
(2) eachai is an action inA,
(3) if α is a finite sequence then it ends with a trajectory, and
(4) if τi is not the last trajectory inα thendom(τi) is closed.
A hybrid sequenceis an(A, V)-sequence for someA andV .

Since the trajectories in a hybrid sequence can be point trajectories, our notion of hybrid sequence
allows a sequence of discrete actions to occur at the same real time, with corresponding changes of
variable values. An alternative approach is described in [69], where state changes at a single real time
are modeled using a notion of “superdense time”. Specifically, hybrid behavior is modeled in [69] using
functions from an extended time domain, which includes countably many elements for each real time,
to states.

If α is a hybrid sequence, with notation as above, then we define thelimit time of α, α.ltime, to be∑
i τi .ltime. A hybrid sequenceα is defined to be:

• time-boundedif α.ltime is finite.
• admissibleif α.ltime= ∞.
• closedif α is a finite sequence and the domain of its final trajectory is a closed interval.

118 N. Lynch et al. / Information and Computation 185 (2003) 105–157

• Zenoif α is neither closed nor admissible, that is, ifα is time-bounded and is either an infinite sequence,
or else a finite sequence ending with a trajectory whose domain is right-open.

A more standard definition of “Zeno” would be simply “a time-bounded infinite sequence”. We add the
second option to the definition in order to guarantee a simple property of the hiding/restriction operator,
see Lemma 4.9(2). Except for Lemma 4.9(2), all results of this paper hold also for the more standard
definition. We say that a hybrid sequence is “non-Zeno” if it is not Zeno, that is, if it is closed or
admissible.

For any hybrid sequenceα, we define thefirst valuationof α, α.fval, to beτ0.fval. Also, if α is closed,
we define thelast valuationof α, α.lval, to belast(α).lval, that is, the last valuation in the final trajectory
of α.

3.3.2. Prefix ordering
We say that(A, V)-sequenceα = τ0 a1 τ1 . . . is aprefixof (A, V)-sequenceβ = υ0 b1 υ1 . . . ,denoted

by α � β, provided that (at least) one of the following holds:
(1) α = β.
(2) α is a finite sequence ending in someτk; τi = υi andai+1 = bi+1 for everyi, 0 � i < k; andτk � υk.
Like the set of trajectories overV , the set of(A, V)-sequences is a cpo:

Lemma 3.6. Let V be a set of variables andA a set of actions. The set of(A, V)-sequences, to-
gether with the prefix ordering�, is an algebraic cpo. Its compact elements are the closed(A, V)-
sequences.

Proof. We leave to the reader the routine check that� is a partial order. Note that this uses the fact that
� is a partial order on trajectories (Lemma 3.4).

In order to prove that we have a cpo, letS be a directed subset of(A, V)-sequences. We prove that
S has a least upper bound. It is easy to check thatS is totally ordered by the prefix ordering�. We
distinguish two cases.
(1) There is no finite upper bound on the number of trajectories that occur in the sequences inS. In

this case, we can construct an infinite sequenceα0, α1, α2 . . . of elements ofS such that, for each
i, αi contains at leasti actions andi + 1 trajectories, andαi � αi+1. For eachi ∈ N, let τi be the
i + 1-st trajectory (the one indexed byi) in αi+1, and fori � 1, let ai be thei-th action inαi . Let
α = τ0 a1 τ1 a2 τ2 It is easy to verify thatα is an upper bound of the set{αi | i ∈ N} and in fact,
is the only upper bound of this set. It follows thatα is the lub ofS, as needed.

(2) There is a finite upper boundk on the number of trajectories that occur in the(A, V)-sequences inS.
In this case, letS′ be the set obtained by removing all sequences with fewer thank trajectories from
S. SinceS′ is totally ordered,init(α) = init(α′) for anyα, α′ ∈ S′. (Recall thatinit is an ordinary
sequence operation—it yields all but the last element of the sequence.) Choose anyα ∈ S′ and let
σ = init(α). Let T be the set of final trajectories of sequences inS′. Again using the fact thatS′ is
totally ordered, we obtain thatT is totally ordered by the prefix ordering on trajectories. Letτ be the
least upper bound ofT (this upper bound exists by Lemma 3.4). It is routine to check thatσ τ is a
least upper bound ofS′, and thus ofS.

We leave it to the reader to check that the closed(A, V)-sequences are the compact elements in this cpo,
and that the cpo is algebraic.�

N. Lynch et al. / Information and Computation 185 (2003) 105–157 119

3.3.3. Concatenation
Supposeα andα′ are(A, V)-sequences withα closed. Then theconcatenationα$α′ is the(A, V)-

sequence given by

α$α′ � init(α) (last(α)$head(α′)) tail(α′).

(Here,init, last, headandtail are ordinary sequence operations.)

Lemma 3.7. Letα andβ be(A, V)-sequences withα closed. Then

α � β ⇔ ∃α′ : β = α$α′.

Note that ifα � β, then the(A, V)-sequenceα′ such thatβ = α$α′ is unique except that it has an
arbitrary value inval(V) for α′.fval.

As we did for trajectories, we extend the concatenation definition for(A, V)-sequences to any finite
or infinite number of arguments. Letα0, α1, . . . be a finite or infinite sequence of(A, V)-sequences such
thatαi is closed for each nonfinal indexi. Define(A, V)-sequencesα′

0, α
′
1, . . . inductively by

α′
0 �α0,

α′
i+1 �α′

i
$αi+1 for nonfinali.

Lemma 3.7 implies that for each nonfinali, α′
i � α′

i+1. We define theconcatenationα0
$α1 · · · to be the

limit of the chainα′
0, α

′
1, . . .; existence of this limit is ensured by Lemma 3.6.

3.3.4. Restriction
Let A and A′ be sets of actions and letV and V ′ be sets of variables. The(A′, V ′)-restriction

of an (A, V)-sequenceα, denoted byα�(A′, V ′), is obtained by first projecting all trajectories ofα

on the variables inV ′, then removing the actions not inA′, and finally concatenating all adjacent
trajectories. Formally, we define the(A′, V ′)-restriction first for closed(A, V)-sequences and then
extend the definition to arbitrary(A, V)-sequences using a limit construction. The definition for closed
(A, V)-sequences is by induction on the length of those sequences:

τ�(A′, V ′) = τ↓V ′ if τ is a single trajectory,

α a τ�(A′, V ′) =
{
(α�(A′, V ′)) a (τ↓V ′) if a ∈ A′,
(α�(A′, V ′))$(τ↓V ′) otherwise.

Note that in the case where, due to removal of some action, we concatenate two adjacent trajectories, we
lose the first state of the second trajectory (by letting the last state of the first trajectory dominate). It is
easy to see that the restriction operator is monotone on the set of closed(A, V)-sequences. Hence, if we
apply this operation to a directed set, the result is again a directed set. Together with Lemma 3.6, this
allows us to extend the definition of restriction to arbitrary(A, V)-sequences by:

α�(A′, V ′) = �{β�(A′, V ′) |β is a closed prefix ofα}.
Lemma 3.8. (A′, V ′)-restriction is a continuous operation.

120 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Proof. This follows by general domain-theoretic arguments. For convenience, in this proof we write
f (α) as an abbreviation forα�(A′, V ′).

First we establish that(A′, V ′)-restriction is monotone for arbitrary(A, V)-sequences. Letα, α′
be (A, V)-sequences withα � α′; we show thatf (α) � f (α′). Let P and P ′ denote the set of
closed prefixes ofα and α′, respectively. By transitivity of the prefix ordering, it follows thatP ′
dominatesP , that is, P � P ′. Since the restriction operation is monotone on closed(A, V)-
sequences, it follows thatf (P) � f (P ′). Then Lemma 2.1 implies that�f (P) � �f (P ′). By the
definition of the restriction operation, this implies thatf (α) � f (α′), which shows monoto-
nicity.

Now we complete the proof that(A, V)-restriction is continuous by assuming thatP is any di-
rected set of(A, V)-sequences and showing thatf (�P) = �f (P). By the definition of the restriction
operation,f (�P) = �{f (β) |β is a closed prefix of� P }. By Lemma 3.6 and the definition of com-
pact elements, any closed prefixβ of �P is also a prefix of someα ∈ P . Therefore,f (�P) =
�{f (β) |β is closed and∃α ∈ P : β is a prefix ofα}.

Now we apply Lemma 2.2 to the right-hand side of this last equation. To do this, we must show:
(1) Q� {f (β) |β is closed and∃α ∈ P : β is a prefix ofα} is a directed set. To see this, consider any

nonempty finite subsetR ⊆ Q. Each element ofR is a prefix of someα ∈ P . Therefore, since
P is a directed set, there is some singleα′ ∈ P such that each element ofR is a prefix of
α′. Therefore,R is a directed set; sinceR is finite, it has a lub inR, and hence inQ, as
needed.

(2) For eachα ∈ P , {f (β) |β is closed andβ is a prefix ofα} is a directed set with lubf (α). The first
part follows because the set of closed prefixes ofα is a directed set andf is monotone. The second
part follows from the definition of restriction.

(3) The setf (P) is directed. This follows becauseP is a directed set andf is monotone.
Then Lemma 2.2 implies that

�{f (β) |β is closed and∃α ∈ P : β is a prefix ofα}
= �{f (α) |α ∈ P } = �f (P).

Thus,f (�P) = �f (P), as needed. �

The proofs of the following three lemmas are left to the reader.

Lemma 3.9. (α0
$α1

$ · · ·)�(A, V) = α0�(A, V)$α1�(A, V)$ · · · .

Lemma 3.10. (α�(A, V))�(A′, V ′) = α�(A ∩ A′, V ∩ V ′).

Lemma 3.11.
(1) α is time-bounded if and only ifα�(A, V) is time-bounded.
(2) α is admissible if and only ifα�(A, V) is admissible.
(3) If α is closed thenα�(A, V) is closed.
(4) If α is non-Zeno thenα�(A, V) is non-Zeno.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 121

4. Hybrid automata

In this section, as a preliminary step toward defining hybrid I/O automata, we define a slightly more
generalhybrid automatonmodel. In hybrid automata, actions and variables are classified as external
or internal. External actions and variables are not further classified as input or output; the input/output
distinction is added later in Section 6. We define how hybrid automata execute and define implementation
and simulation relations between hybrid automata.

4.1. Definition of hybrid automata

A hybrid automaton is a state machine whose states are valuations ofvariables, and that uses other
variables for communication with its environment. It also has a set ofactions, some of which may
be internal and some external. The state of a hybrid automaton may change in two ways: bydiscrete
transitions, which change the state atomically and instantaneously, and bytrajectories, which describe
the evolution of the state over intervals of time. The discrete transitions are labeled with actions; this
will allow us to synchronize the transitions of different hybrid automata when we compose them in
parallel. The evolution described by a trajectory may be described by continuous or discontinuous
functions.

Definition 4.1. A hybrid automaton(HA) A = (W,X,Q,/,E,H,D, T) consists of:
• A setW of external variablesand a setX of internal variables, disjoint from each other. We write

V �W ∪X.
• A setQ ⊆ val(X) of states.
• A nonempty set/ ⊆ Q of start states.
• A set E of external actionsand a setH of internal actions, disjoint from each other. We write

A�E ∪H .
• A setD ⊆ Q× A×Q of discrete transitions. We usex

a→Ax′ as shorthand for(x, a, x′) ∈ D. We
sometimes drop the subscript and writex

a→x′, when we thinkA should be clear from the context. We
say thata is enabledin x if there exists anx′ such thatx

a→x′.
• A setT of trajectories forV such thatτ(t)�X ∈ Q for everyτ ∈ T andt ∈ dom(τ). Given a trajectory

τ ∈ T we denoteτ.fval�X by τ.fstateand, if τ is closed, we denoteτ.lval�X by τ.lstate. We require
that the following axioms hold:
T1 (Prefix closure)

For everyτ ∈ T and everyτ ′ � τ , τ ′ ∈ T .
T2 (Suffix closure)

For everyτ ∈ T and everyt ∈ dom(τ), τ � t ∈ T .
T3 (Concatenation closure)

Let τ0, τ1, τ2, . . . be a sequence of trajectories inT such that, for each nonfinal indexi, τi is
closed andτi.lstate= τi+1.fstate. Thenτ0

$τ1
$τ2 · · · ∈ T .

AxiomsT1-T3 express some natural conditions on the set of trajectories that we need to construct our
theory. A key part of this theory is a parallel composition operation for hybrid automata. In a composed
system, any trajectory of any component automaton may be interrupted at any time by a discrete transition

122 N. Lynch et al. / Information and Computation 185 (2003) 105–157

of another (possibly independent) component automaton. AxiomT1 ensures that the part of the trajectory
up to the discrete transition is a trajectory, and axiomT2 ensures that the remainder is a trajectory. Axiom
T3 is required because the environment of a hybrid automaton, as a result of its own internal discrete
transitions, may change its continuous dynamics repeatedly, and the automaton must be able to follow
this behavior.

The earlier definition of hybrid automata in [53,54] used a special stuttering actione instead of
axiom T3. Another key difference between the new definition of hybrid automaton and the earlier
one is that in [53,54], the external variables were considered to be part of the state. This meant,
for example, that discrete transitions could depend on the values of these variables, a situation that
introduced technical complications. A local transition of one automaton could change an output var-
iable, which could cause a discrete change in a second automaton, which in turn could change an
input variable in the first automaton. To avoid cyclic constraints during the interaction of systems,
we had to add several axioms, which complicated the use of our automaton definitions in applica-
tions.

In the new definition, we explicitly identify the setQ of states as a subset ofval(X). In the earlier
definition of [53,54] any valuation inval(X) was called a state. The reason for introducingQ is that in
Section 6, we will require that in each state each input trajectory is accepted. In actual system descriptions,
we often encounter valuations which are not reachable from the initial state, which in fact we do not
want to view as states, and from which no behavior is enabled.4 By excluding these “ghost” valuations
from Q, we save ourselves the trouble of having to think about them.

Hybrid automata that have no external variables are very similar to the timed automata defined in
[60,74]. The main difference is that hybrid automata have trajectories as a primitive rather than a derived
notion. Also, the state of a timed automaton need not be organized using variables with particular types
and dynamic types.

Notation. We often denote the components of an HAA by WA, XA, QA, /A, EA, etc., and the
components of an HAAi by Wi , Xi , Qi /i , Ei , etc. We sometimes omit these subscripts, where no
confusion seems likely.

Notation. In examples we typically specify sets of trajectories using differential and algebraic equations
and inclusions. Below we explain a few notational conventions that help us in doing this. Suppose the
time domainT is R, τ is a (fixed) trajectory over some set of variablesV , andv ∈ V . With some abuse of
notation, we use the variable namev to denote the functionτ↓v in dom(τ) → type(v), which gives the
value ofv at all times during trajectoryτ . Similarly, we view any expressione containing variables from
V as a function with domaindom(τ). Using these conventions we can say, for example, thatτ satisfies
the algebraic equation

v = e,

which means that, for everyt ∈ dom(τ), v(t) = e(t), that is, the constraint on the variables expressed
by equationv = e holds for each state on trajectoryτ . Suppose thatv is a variable ande is a real-valued
expression containing variables fromV . Suppose also thate, when viewed as a function, is integrable.
Then we say thatτ satisfies

v̇ = e

4 Typical examples are the valuations that do not satisfy the “location invariants” of Alur-Dill style timed automata [2].

N. Lynch et al. / Information and Computation 185 (2003) 105–157 123

Fig. 2. The hybrid automatonVehicle.

if, for every t ∈ dom(τ), v(t) = v(0)+ ∫ t

0 e(t ′) dt ′. Note that this interpretation of the differential equa-
tion makes sense even at points wherev is not differentiable. A similar interpretation of differential
equations is used by Polderman and Willems [71], who call these “weak solutions”.

In the remainder of this section, we give two simple examples of hybrid automata.

Example 4.2 (Vehicle HA). We describe an HAVehicle, displayed5 in Fig. 2, which models a vehicle
that follows a suggested acceleration approximately, to within an error ofε � 0.

The time domainT isR. The state of theVehicleautomaton includes two real-valued internal variables
vel andacc, which represent the actual velocity and acceleration of the vehicle, respectively. In addition,
the automaton has two real-valued external variables,vel-out andacc-in, representing reported velocity
and suggested acceleration. The dynamic type of the variablesvel, vel-out, andacc-in is the (pasting
closure of the) set of continuous functions. The dynamic type ofacc is the set of integrable functions.

Vehicleis defined to be the HA such thatW = {acc-in, vel-out}, X = {vel, acc}, Q is the set of all
valuations of the variablesvel andacc, and/ consists of the single valuation that assigns 0 to both state
variables. The set of actions is empty, and (therefore)D, the set of discrete transitions, is empty. SetT
consists of all trajectories that satisfy:

˙vel = acc (1)

acc(t) ∈ [acc-in(t)− ε, acc-in(t)+ ε] for t > 0, (2)

vel-out= vel (3)

Eq. (1) says that the velocity is obtained by integrating the acceleration. Inclusion (2) asserts that, except
possibly for the left endpoint, the actual acceleration is withinε of the suggested acceleration. Eq. (3)
says that the velocity is reported accurately. We leave the reader to show that the trajectory axioms
T1–T3 are satisfied; the form of the equations and inclusions used to define the trajectories should make
this clear. We restrict to the caset > 0 in Eq. (2) because we do not want to constrain either the input or
the starting state of trajectories. The reason for this restriction is technical (it ensures thatVehiclecan be
viewed as a proper HIOA that satisfies the input trajectory enabling property) and should become clearer
in Section 6. �

5 We use an arrow notation because later on in this paper in Section 6, we will viewacc-in as an input variable andvel-out
as an output variable. Within the context of the present chapter the arrow notation has no meaning.

124 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Fig. 3. The hybrid automatonController.

Example 4.3 (Controller HA). Now we describe an HAController, displayed in Fig. 3, which models
a controller that suggests accelerations for a vehicle, with the intention of ensuring that the vehicle’s
velocity does not exceed a pre-specified velocityvmax. The controller monitors the vehicle’s velocity,
and every timed, for some fixedd > 0, it produces a new suggested acceleration to be followed for the
next timed. The acceleration is chosen in such a way that, if it is followed to within an error ofε, the
velocity will remain belowvmax (provided the vehicle is not going too fast in the first place). We assume
thatvmax � ε d.

The components of theController HA are as follows:W = {vel-out, acc-in} andX = {vel-sensed,
acc-suggested, clock}. All variables are of typeR. The dynamic types ofvel-out, vel-sensed, acc-in, and
clockare the (pasting closure of the) set of continuous functions, andacc-suggestedis a discrete variable.
Q is the set of valuations ofX in which clock� d. / consists of one valuation, which assigns 0 to
all state variables.E = ∅ andH contains the single actionsuggest. SetD consists of thesuggeststeps
specified by:6

clock= d (4)

vel-sensed+ (acc-suggested′ + ε)d � vmax (5)

clock′ = 0 (6)

vel-sensed′ = vel-sensed (7)

Eq. (4) says that the clock indicates that it is time for the suggested acceleration to be computed. Inequality
(5) says that the new suggested acceleration is chosen so that, if the vehicle follows it for the next time
d, even with an error ofε, the velocity will still remain at mostvmax. Equation (6) says that the clock
is reset after the discrete transition. Equation (7) says that the transition does not change the value of
vel-sensed. SetT consists of all trajectories that satisfy:

˙acc−suggested= 0 (8)

˙clock= 1 (9)

6 Here we use the standard convention thatv denotes the value of a variable in the start state of a discrete transition, andv′
denotes the value in the end state.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 125

vel-sensed(t) = vel-out(t) for t > 0 (10)

acc−in = acc-suggested. (11)

Sinceacc-suggestedis a discrete variable, the reader might think that adding constraint (8) makes
no difference. However, if we expand this constraint using our definition of solutions for differential
equations, we obtain

acc-suggested(t) = acc-suggested(0)+
∫ t

0
0 dt ′ = acc-suggested(0),

which means thatacc-suggestedremains constant throughout the full trajectory. So the effect of adding
differential equation (8) is that it rules out the jumps that are allowed by the dynamic type ofacc-suggested.

Eq. (9) states thatclockhas rate 1, and is therefore a clock variable in the sense of the timed automaton
model of [5].
Eq. (10) says that the velocity sensed by the controller is the same as the velocity reported to the controller
by its environment. Eq. (11) asserts that the acceleration that the controller provides to its environment
is the same as the acceleration that it has most recently computed. Again, we leave the reader to show
that the trajectory axiomsT1–T3 are satisfied. �

4.2. Executions and traces

We now define execution fragments, executions, trace fragments, and traces, which are used to
describe automaton behavior. Anexecution fragmentof a hybrid automatonA is an(A, V)-sequence
α = τ0 a1 τ1 a2 τ2 . . . , where (1) eachτi is a trajectory inT , and (2) ifτi is not the last trajectory in

α thenτi.lstate
ai+1→ τi+1.fstate. An execution fragment records what happens during a particular run of a

system, including all the instantaneous, discrete state changes and all the changes to the state and external
variables that occur while time advances. We writefragsA for the set of all execution fragments ofA.

If α is an execution fragment, with notation as above, then we define thefirst stateof α, α.fstate, to be
τ0.fstate. We say thatα is an execution fragmentfroma statex if α.fstate= x. An execution fragmentα
is defined to be anexecutionif α.fstateis a start state, that is,α.fstate∈ /. We writeexecsA for the set
of all executions ofA. If α is a closed(A, V)-sequence then we define thelast stateof α, α.lstate, to be
last(α).lstate. A state ofA is reachableif it is the last state of some closed execution ofA.

Example 4.4 (Vehicle execution). Since theVehicleHA of Example 4.2 has no discrete steps, each of its
executions is a one-element sequence consisting of a single trajectory over all the variables ofVehicle.
An example of such an execution, depicted graphically in Fig. 4, is the one consisting of the trajectoryτ

with τ.ltime= ∞, and such that:

acc-in(t) =



0 if t � 1,
2 if 1 < t � 3,
0 if t > 3.

acc(t) =


ε if t � 1,
2+ ε if 1 < t � 3,
0 if t > 3.

126 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Fig. 4. An execution of theVehicle(lower two lines after 3 are supposed to coincide).

vel(t) = vel-out(t) =


εt if t � 1,
(2+ ε)t − 2 if 1 < t � 3,
4+ 3ε if t > 3.

Any finite prefix ofτ would also yield an execution ofVehicle. The trace ofτ is the one-element sequence
obtained by projectingτ on {acc-in, vel-out}. �

Example 4.5 (Controller execution). In the Controller HA of Example 4.3, supposed = 1, so the
suggested acceleration is recalculated at times 1, 2, etc. Also suppose thatvmax � 4+ 4ε. Then an
example execution ofController is the infinite sequenceα = τ0 suggestτ1 suggestτ2 . . . , where, for
everyi and for everyt ∈ dom(τi)
(1) τi.ltime= 1.
(2) τi(t)(clock) = t .
(3) If i=0 thenτi(t)(v) is equal to 0 forv ∈ {acc-suggested, acc-in} andεt for v ∈ {vel-out, vel-sensed}.
(4) If 1 � i � 2 thenτi(t)(v) is equal to 2 forv ∈ {acc-suggested, acc-in} and(2+ ε)(i + t)− 2 for

v ∈ {vel-out, vel-sensed}.
(5) If i � 3 thenτi(t)(v) is equal to 0 forv ∈ {acc-suggested, acc-in} and 4+ 3ε for v ∈ {vel-out, vel-

sensed}.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 127

The assumed bound onvmax implies that the suggested accelerations in this execution are actually
possible suggestions according to the rule given in theController automaton definition. The trace of
executionα consists of a single trajectory becauseController has no external actions. This trajectory is
defined by:

acc-in(t) =



0 if t � 1,
2 if 1 < t � 3,
0 if t > 3.

vel-out(t) =


εt if t � 1,
(2+ ε)t − 2 if 1 < t � 3,
4+ 3ε if t > 3.

Like trajectories also execution fragments are closed under countable concatenation.�

Lemma 4.6. Let α0, α1, . . . be a finite or infinite sequence of execution fragments ofA such that,
for each nonfinal indexi, αi is closed andαi.lstate= αi+1.fstate. Thenα0

$α1
$ · · · is an execution

fragment ofA.

Proof. Follows easily from the definitions, using axiomT3. �

Lemma 4.7. Letα andβ be execution fragments ofA with α closed. Then

α � β ⇔ ∃α′ ∈ f ragsA : β = α$α′.

Proof. Implication “⇐” follows directly from the corresponding implication in Lemma 3.7. Implication
“⇒” follows from the definitions andT2. �

The external behavior of a hybrid automaton is captured by the set of “traces” of its execution
fragments, which record external actions and the trajectories that describe the evolution of external
variables. Formally, ifα is an execution fragment, then thetrace of α, denoted bytrace(α), is the
(E,W)-restriction ofα. (Recall thatE denotes the external actions andW the external variables.) A
trace fragmentof a hybrid automatonA from a statex of A is the trace of an execution fragment ofA
from x. We writetracefragsA(x) for the set of trace fragments ofA from x. Also, we define atraceof A
to be a trace fragment from a start state, that is, the trace of an execution ofA, and writetracesA for the
set of traces ofA.

The following lemma follows trivially from Lemma 3.11:

Lemma 4.8. If α is an execution fragment ofA then
(1) α is time-bounded if and only if trace(α) is time-bounded.
(2) α is admissible if and only if trace(α) is admissible.
(3) If α is closed then trace(α) is closed.
(4) If α is non-Zeno then trace(α) is non-Zeno.

In parts (3) and (4) of the above lemma, the converse implications do not hold. Counterexamples
can be obtained by taking an execution fragmentα that ends with an infinite sequence of internal

128 N. Lynch et al. / Information and Computation 185 (2003) 105–157

actions without any delay in between. However, a slight weakening of the converse implications does
hold:

Lemma 4.9. If β is a trace fragment ofA from statex then

(1) If β is closed then there exists an execution fragmentα ofA fromx such that trace(α) = β andα is
closed.

(2) If β is non-Zeno then there exists an execution fragmentα of A from x such that trace(α) = β and
α is non-Zeno.

If the definition of non-Zeno was broadened to include the case of a right-open final trajectory, then part
2 of the above lemma can fail. It might be that the only execution that leads to such a trace is a Zeno
execution, one with infinitely many internal events, and delays which get smaller and smaller.

The next definition defines an implementation relation between hybrid automata in terms of inclusion
of traces: a low-level specificationA implementsa high-level specificationB if any behavior (trace)
of A is also an allowed behavior ofB. Without additional assumptions, our implementation relation
only preserves safety properties. However, in Section 7 we will see that if the low-level specification
automaton is required to bereceptive, our implementation relation also preserves bounded liveness
properties.

Definition 4.10. Hybrid automataA1 andA2 arecomparableif they have the same external interface,
that is, if W1 = W2 and E1 = E2. If A1 and A2 are comparable then we say thatA1 implements
A2, denoted byA1 � A2, if the traces ofA1 are included among those ofA2, that is, if tracesA1 ⊆
tracesA2.7

4.3. Simulation relations

In this subsection, we define simulation relations between hybrid automata. Simulation relations may
be used to show that one HA implements another, in the sense of inclusion of sets of traces.

Let A andB be comparable HAs. Asimulationfrom A to B is a relationR ⊆ QA ×QB satisfying
the following conditions, for all statesxA andxB of A andB, respectively:
(1) If xA ∈ /A then there exists a statexB ∈ /B such thatxA R xB.
(2) If xA R xB andα is an execution fragment ofA consisting of one action surrounded by two point

trajectories, withα.fstate= xA, thenB has a closed execution fragmentβ with β.fstate= xB,
trace(β) = trace(α), andα.lstateRβ.lstate.

7 In [27,53,54,60], definitions of the set of traces of an automaton and of one automaton implementing another are based
on closed and admissible executions only. The results we obtain in this paper using the newer, more inclusive definition imply
corresponding results for the earlier definition. For example, we have the following property: IfA1 � A2 then the set of traces
that arise from closed or admissible executions ofA1 is a subset of the set of traces that arise from closed or admissible
executions ofA2.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 129

(3) If xARxB andα is an execution fragment ofA consisting of a single closed trajectory, withα.fstate=
xA, thenB has a closed execution fragmentβ with β.fstate= xB, trace(β) = trace(α), andα.lstateR
β.lstate.

The definition of a simulation fromA to B yields a correspondence for open trajectories:

Lemma 4.11. LetA andB be comparable HAs and letR be a simulation fromA to B. LetxA andxB
be states ofA andB, respectively, such thatxARxB. Let α be an execution fragment ofA from state
xA consisting of a single open trajectory. ThenB has an execution fragmentβ with β.fstate= xB and
trace(β) = trace(α).

Proof. Let τ be the single open trajectory inα. Using axiomsT1 and T2, we construct an infinite
sequenceτ0, τ1, . . . of closed trajectories ofA such thatτ = τ0

$τ1
$ · · ·. Then, working inductive-

ly, we construct a sequenceβ0, β1, . . . of closed execution fragments ofB such thatβ0.fstate=
xB and, for eachi, τi.lstateR βi.lstate, βi.lstate= βi+1.fstate, and trace(τi) = trace(βi). This con-
struction uses induction oni, using Property 3 of the definition of a simulation relation in the
induction step. Now letβ = β0

$β1
$ · · ·. By Lemma 4.6,β is an execution fragment ofB. Clearly,

β.fstate= xB. By Lemma 3.9 applied to bothα andβ, trace(β) = trace(α). Thusβ has the required
properties. �

Theorem 4.12. LetA andB be comparable HAs and letR be a simulation fromA to B. Let xA and
xB be states ofA andB, respectively, such thatxA R xB. Then tracefragsA(xA) ⊆ tracefragsB(xB).

Proof. Suppose thatδ is the trace of an execution fragment ofA that starts fromxA; we prove thatδ is
also a trace of an execution fragment ofB that starts fromxB. Letα = τ0 a1 τ1 a2 τ2 . . . be an execution
fragment ofA such thatα.fstate= xA andδ = trace(α). We consider cases:
(1) α is an infinite sequence.

Using axiomsT1 andT2, we can writeα as an infinite concatenationα0
$α1

$α2 · · ·, in which
the execution fragmentsαi with i even consist of a trajectory only, and the execution fragmentsαi

with i odd consist of a single discrete step surrounded by two point trajectories.
We define inductively a sequenceβ0, β1, . . . of closed execution fragments ofB, such thatβ0.fstate

= xB and, for all i, βi.lstate= βi+1.fstate, αi.lstateR βi.lstate, and trace(βi) = trace(αi). We
use Property 3 of the definition of a simulation relation for the construction of theβi ’s with
i even, and Property 2 for the construction of theβi ’s with i odd. Letβ = β0

$β1
$β2 · · ·. By

Lemma 4.6,β is an execution fragment ofB. Clearly,β.fstate= xB. By Lemma 3.9,trace(β) =
trace(α). Thusβ has the required properties.

(2) α is a finite sequence ending with a closed trajectory.
Similar to the first case.

(3) α is a finite sequence ending with an open trajectory.
Similar to the first case, using Lemma 4.11.�

Corollary 4.13. Let A and B be comparable HAs and letR be a simulation fromA to B. Then
tracesA ⊆ tracesB.

130 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Proof. Supposeβ ∈ tracesA. Thenβ ∈ tracefragsA(xA) for some start statexA of A. Property 1 of
the definition of simulation relation implies the existence of a start statexB of B such thatxA R xB.
Then Theorem 4.12 implies thatβ ∈ tracefragsB(xB). SincexB is a start state ofB, this implies that
β ∈ tracesB, as needed. �

Example 4.14 (Vehicle implementation). Now denote theVehicleHA of Example 4.2 byVehicle(ε),
making the uncertainty parameter explicit. Assume that 0� ε1 � ε2. Let A = Vehicle(ε1) andB =
Vehicle(ε2). We claim thatA � B. We can show this by demonstrating that the identity mapping is a
simulation relation fromA to B. Since these HAs have no discrete steps, we need only show Properties
1 and 3 of the definition of simulation relation. Property 1 is obvious because the two HAs have the
same (unique) start state, which assigns 0 to both state variables. For Property 3, assume thatxA R xB
andα consists of a closed trajectoryτ of A with α.fstate= xA. Letβ = α. Clearly,β is a closed hybrid
sequence,β.fstate= xB, trace(β) = trace(α), andα.lstateR β.lstate. It remains to show thatβ is an
execution fragment ofB, that is, thatτ is a trajectory ofB. This follows immediately from the definition
of trajectories forVehicle(ε1) andVehicle(ε2); the only interesting point is that, for everyt ∈ dom(τ),
t > 0, we have:[acc-in(t)− ε1, acc-in(t)+ ε1] ⊆ [acc-in(t)− ε2, acc-in(t)+ ε2]. �

Example 4.15 (Controller implementation). Denote theController HA of Example 4.3 byController
(vmax), making the maximum velocity parameter explicit. Assume that 0� vmax1 � vmax2. We claim
that Controller(vmax1) � Controller(vmax2); again, we show this by demonstrating that the identity
mapping is a simulation relation. This requires showing all three properties of the definition of simulation
relation. Properties 1 and 3 are immediate, becausevmax does not appear in the definitions of the start
states and the trajectories. For Property 2, the key is that, ifvel-sensed+ (acc-suggested′ + ε)d � vmax1,
then alsovel-sensed+ (acc-suggested)′ + ε)d � vmax2. �

5. Operations on hybrid automata

In this section, we present two kinds of operations on hybrid automata: parallel composition and hiding.

5.1. Composition

We now introduce the operation of parallel composition for hybrid automata, which allows an autom-
aton representing a complex system to be constructed by composing automata representing individual
system components. Our composition operation identifies external actions with the same name in different
component automata, and likewise for external variables. When any component automaton performs a
discrete step involving an actiona, so do all component automata that havea in their signatures.
Likewise, when any component automaton performs a trajectory involving a particular evolution of
values for an external variablev, then so do all component automata that havev in their signatures. We
prove several results that say that the composition operation respects our notions of external behavior
and implementation.

We define composition as a partial, binary operation on hybrid automata. Since internal actions of an
automatonA1 are intended to be unobservable by any other automatonA2, we allowA1 to be composed

N. Lynch et al. / Information and Computation 185 (2003) 105–157 131

with A2 only if the internal actions ofA1 are disjoint from the actions ofA2. Similarly, we require
disjointness of the internal variables ofA1 and the variables ofA2.

Definition 5.1. We say that hybrid automataA1 andA2 arecompatibleif H1 ∩ A2 = H2 ∩ A1 = ∅ and
X1 ∩ V2 = X2 ∩ V1 = ∅. If A1 andA2 are compatible then theircompositionA1‖A2 is defined to be
the structureA = (W,X,Q,/,E,H,D, T) where
• W = W1 ∪W2 andX = X1 ∪X2.
• Q = {x ∈ val(X) | x�X1 ∈ Q1 ∧ x�X2 ∈ Q2}.
• / = {x ∈ Q | x�X1 ∈ /1 ∧ x�X2 ∈ /2}.
• E = E1 ∪ E2 andH = H1 ∪H2.
• For eachx, x′ ∈ Q and eacha ∈ A, x

a→A x′ iff for i = 1, 2, either (1)a ∈ Ai andx�Xi
a→i x′�Xi , or

(2) a "∈ Ai andx�Xi = x′�Xi .
• T ⊆ trajs(V) is given byτ ∈ T ⇔τ↓V1 ∈ T1 ∧ τ↓V2 ∈ T2.
Whenever we writeA1‖A2, we implicitly assume thatA1 andA2 are compatible.

Theorem 5.2. If A1 andA2 are hybrid automata thenA1‖A2 is a hybrid automaton.

Proof. Let A denoteA1‖A2 as above. We show thatA satisfies the properties of a hybrid automaton
(cf. Section 4.1). Disjointness ofW andX follows from disjointness ofW1 andX1, disjointness ofW2
andX2, and compatibility. Similarly, disjointness ofE andH follows from disjointness ofE1 andH1,
disjointness ofE2 andH2, and compatibility. Nonemptiness of/ follows from nonemptiness of/1 and
/2 and disjointness ofX1 andX2. We verify theT properties:
T1 Let τ ∈ T , letτ ′ be a trajectory such thatτ ′ � τ , and leti ∈ {1, 2}. By the definition of composition,

τ↓Vi ∈ Ti . By the definition of prefix,τ ′↓Vi � τ↓Vi . By T1 applied toAi , τ ′↓Vi ∈ Ti . Then by
definition of composition,τ ′ ∈ T , as needed.

T2 Letτ ∈ T , t ∈ dom(τ), τ ′ = τ � t , andi ∈ {1, 2}. By the definition of composition,τ↓Vi ∈ Ti . Then
byT2 applied toAi , (τ↓Vi)� t ∈ Ti . Observe that(τ↓Vi)� t = τ ′↓Vi ; therefore,τ ′↓Vi ∈ Ti . Then
by the definition of composition,τ ′ ∈ T , as needed.

T3 Let τ0, τ1, τ2, . . . be a sequence of trajectories inT such that, for each nonfinal indexj , τj is
closed andτj .lstate= τj+1.fstate. Let τ denoteτ0

$τ1
$τ2 · · ·, and leti ∈ {1, 2}. By the definition

of composition, operation, for each indexj , τj↓Vi ∈ Ti , and for each nonfinal indexj , τj↓Vi is
closed and(τj↓Vi).lstate= (τj+1↓Vi).fstate. By T3 applied toAi , τ0↓Vi

$τ1↓Vi
$τ2↓Vi · · · ∈ Ti .

Observe thatτ↓Vi = τ0↓Vi
$τ1↓Vi

$τ2↓Vi · · ·; therefore,τ↓Vi ∈ Ti . Then by the definition of
composition,τ ∈ T , as needed. �

The following “projection lemma” says that executions of a composition of HAs project to give executions
of the component automata. Moreover, certain properties of the executions of the composition imply, or
are implied by, similar properties for the component executions.

Lemma 5.3. LetA = A1‖A2 and letα be an execution fragment ofA. Thenα�(A1, V1) andα�(A2, V2)

are execution fragments ofA1 andA2, respectively. Furthermore,

132 N. Lynch et al. / Information and Computation 185 (2003) 105–157

(1) α is time-bounded iff bothα�(A1, V1) andα�(A2, V2) are time-bounded.
(2) α is admissible iff bothα�(A1, V1) andα�(A2, V2) are admissible.
(3) α is closed iff bothα�(A1, V1) andα�(A2, V2) are closed.
(4) α is Zeno iff at least one ofα�(A1, V1) andα�(A2, V2) is Zeno.
(5) α is an execution iff bothα�(A1, V1) andα�(A2, V2) are executions.

Proof. Simple application of the definitions.�

Example 5.4 (Composition and Zeno executions). Consider a compositionA = A1‖A2 in which the
two components have no actions or variables in common. We describe a Zeno execution fragmentα of
A in which only one of the projected execution fragments is Zeno. Namely, letα = τ0 a1 τ1 a2 τ2 . . .,
whereτ0.ltime= 1 and for alli � 1, τi is a point trajectory. Also, all theai ’s are actions ofA1 but
not of A2. Then α�(A1, V1), which includes all theai ’s, is a Zeno execution fragment, whereas
α�(A2, V2), which consists of the single right-closed trajectoryτ0↓V2, is a closed execution frag-
ment. �

Example 5.5 (Execution of vehicle and controller). Consider theVehicleandController automata of
Examples 4.2 and 4.3 (for the sameε). These two HAs are compatible. Their composition is displayed in
Fig. 5. An example execution of the composition is the infinite sequenceα = τ0 suggestτ1 suggestτ2 . . .,
where, for everyi and for everyt ∈ dom(τi):
(1) τi.ltime= 1.
(2) τi(t)(clock) = t .
(3) If i = 0 thenτi(t)(v) is equal to 0 forv ∈ {acc-suggested, acc-in}, ε for v = acc, andεt for v ∈

{vel, vel-out, vel-sensed}.
(4) If 1 � i � 2 then τi(t)(v) is equal to 2 forv ∈ {acc-suggested, acc-in}, 2+ ε for v = acc, and

(2+ ε)(i + t)− 2 for v ∈ {vel, vel-out, vel-sensed}.
(5) If i � 3 thenτi(t)(v) is equal to 0 forv ∈ {acc-suggested, acc-in, acc} and 4+ 3ε for v ∈ {vel,

vel-out, vel-sensed}.
This execution is admissible. Its projections on theVehicleandController automata are given by the
admissible executions in Examples 4.4 and 4.5, respectively.�

Fig. 5. Composition of hybrid automataVehicleandController.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 133

The following lemma says that we obtain the same result for an execution fragmentα of a composition
if we first extract the trace and then restrict to one of the components, or if we first restrict to the component
and then take the trace.

Lemma 5.6. LetA = A1‖A2, and letα be an execution fragment ofA. Then, fori = 1, 2, trace(α)
�(Ei,Wi) = trace(α�(Ai, Vi)).

Proof. Recall thattrace(α) = α�(E,W). The result follows straightforwardly by Lemma 3.10 and the
observation thatW ∩Wi = Wi = Vi ∩Wi andE ∩ Ei = Ei = Ai ∩ Ei . �

The following fundamental theorem relates the set of traces of a composed automaton to the sets of
traces of the component automata. It is expressed in terms of equality between two sets of traces. Set
inclusion in one direction expresses the idea that a trace of a composition “projects” to yield traces of
the components. Set inclusion in the other direction expresses the idea that traces of components can be
“pasted together” to yield a trace of the composition.

Theorem 5.7. LetA = A1‖A2. Then tracesA is exactly the set of(E,W)-sequences whose restrictions
to A1 andA2 are traces ofA1 andA2, respectively. That is,

tracesA = {β |β is (E,W)-sequence andβ�(Ei,Wi) ∈ tracesAi
, i = 1, 2}.

Proof. For one direction, suppose thatβ is a trace ofA. Then by definition,β is an(E,W)-sequence.
Let α be an execution ofA such thatβ = trace(α). Let i ∈ {1, 2}. Then Lemma 5.6 implies that
β�(Ei,Wi) = trace(α�(Ai, Vi)). Since, by Lemma 5.3,α�(Ai, Vi) is an execution ofAi , β�(Ei,Wi) is
a trace ofAi .
Conversely, letβ be an(E,W)-sequence such thatβ�(Ei,Wi) is a trace ofAi , i = 1, 2. Then there
are executionsα1 andα2 of A1 andA2, respectively, such that, fori = 1, 2, trace(αi) = β�(Ei,Wi).
Decomposeα1 into α0

1
$α1

1
$α2

1
$ · · ·, decomposeα2 into α0

2
$α1

2
$α2

2
$ · · ·, and decomposeβ into β0$

β1$β2$ · · · in such a way that for eachj , (1) trace(αj
i) = βj�(Ei,Wi) for i ∈ {1, 2}, (2)αj

i is either a

trajectory or an action surrounded by point trajectories,i ∈ {1, 2}, and (3) if bothαj

1 andα
j

2 consist of
actions surrounded by point trajectories then these actions are identical. AxiomsT1 andT2 imply that
such decompositions exist.8

Now we define a sequence of execution fragments ofA, α0, α1, . . . , such that
(1) α0.fstate∈ /A,
(2) for every nonfinalj , αj .lstate= αj+1.fstate, and
(3) for everyj , trace(αj) = βj .
By Lemma 4.6, the concatenationα0$α1$ · · · is an execution ofA. Moreover, by Lemma 3.9, the trace
of this execution isβ. To define eachαj , we distinguish the following cases:
(1) Each ofαj

1 andαj

2 is a trajectory.

8 See [59] for a detailed existence proof for similar decompositions.

134 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Then suppose thatαj

1 = τ1 andαj

2 = τ2. Defineαj to be the functionτ with domaindom(τ1) such
thatτ(t) = τ1(t) ∪ τ2(t) for everyt . (Compatibility ofτ1 andτ2 follows here, and in the remaining
three cases, from the facts thatα

j

1 = βj�(E1,W1) andαj

2 = βj�(E2,W2).)

(2) α
j

1 is a trajectory andαj

2 is an action surrounded by point trajectories.

Thenαj

1 must be a point trajectory as well. Letα
j

1 = ℘(v1) andαj

2 = ℘(v2)a℘ (v′2). Then define
αj to be℘(v1 ∪ v2) a ℘ (v1 ∪ v′2).

(3) α
j

1 is an action surrounded by point trajectories andα
j

2 is a trajectory.
This is symmetric with the previous case.

(4) Each ofαj

1 andαj

2 is an action (the same in both cases) surrounded by point trajectories.

Let αj

1 = ℘(v1)a℘ (v′1) andαj

2 = ℘(v2)a℘ (v′2). Defineαj to be℘(v1 ∪ v2) a ℘ (v′1 ∪ v′2).
It is straightforward to verify that theαj fragments satisfy the required properties.�

The following theorem describes a basic substitutivity property:

Theorem 5.8. SupposeA1 andA2 are comparable HAs withA1 � A2. SupposeB is an HA that is
compatible with each ofA1 andA2. ThenA1‖B andA2‖B are comparable andA1‖B � A2‖B.

Proof. The fact thatA1‖B and A2‖B are comparable follows from the fact thatA1 and A2 are
comparable and the definition of composition.

Letβ ∈ tracesA1‖B. By Theorem 5.7,β�(E1,W1) ∈ tracesA1 andβ�(EB,WB) ∈ tracesB. SinceA1 �
A2, β�(E1,W1) ∈ tracesA2. SinceA1 andA2 have the same external interface,(E1,W1) = (E2,W2).
Thus,β�(E2,W2) ∈ tracesA2. It follows from Theorem 5.7 thatβ ∈ tracesA2‖B. �

Example 5.9 (Invariant for combined vehicle and controller). Consider again the composition of the
VehicleandController automata of Examples 4.2 and 4.3 (for the sameε). In the composed automaton,
it turns out that the velocity is always less than or equal tovmax, that is, in all reachable states,

vel � vmax (12)

This statement may be proved by induction on the length of closed execution fragments. In the proof,
we use the fact thatclock� d, which follows from the definition ofQ. We also use assertions (3) and
(11). In addition, we require the following auxiliary invariants:

vel + (acc-suggested+ ε)(d − clock) � vmax (13)

clock> 0 ⇒ acc � acc-suggested+ ε (14)

vel-sensed= vel (15)

0 � clock (16)

Here the interesting assertion is (13), which says, essentially, that the velocity will stay less than or
equal tovmax if the vehicle accelerates at the currently suggested acceleration plusε until the next
recalculation. The main invariant (12) and the auxiliary invariants (13)-(16) can all be proved together.
All are easily seen to be true in the initial state. There are two kinds of inductive steps, for discrete

N. Lynch et al. / Information and Computation 185 (2003) 105–157 135

suggesttransitions and for trajectories. Discrete transitions are easily seen to preserve all the assertions;
the most interesting property to show is invariant (13), which holds because of the constraints on the
new suggested acceleration, the fact thatvel-sensed= vel, and the fact that, in the new state,clock
= 0.

Trajectories also preserve all the assertions; now the interesting thing to show is the conjunction of
(12) and (13). Depending on whether or notacc-suggested+ ε � 0, it suffices to show only (12) or only
(13). For example, supposeacc-suggested+ ε � 0; we show the auxiliary invariant (13). The trajectory
guarantees thatvel′ � vel + (acc-suggested+ ε)t andclock′ = clock+ t , wheret is the limit time of
the trajectory and unprimed and primed instances of the variables are used (as usual) to indicate their
values at the beginning and end of the trajectory, respectively. The inequality is based on the integral
definition ofvel in terms ofacc and the relationship betweenacc andacc-suggested. Then

vel′ + (acc−suggested ′ + ε)(d − clock′)
= vel′ + (acc−suggested + ε)(d − clock− t)

= vel′ − (acc−suggested+ ε)t + (acc−suggested+ ε)(d − clock)

� vel + (acc−suggested+ ε)(d − clock)

� vmax (by inductive hypothesis).

Note that, because of the two kinds of inductive steps, the inductive proof divides cleanly into separate
parts that involve discrete and continuous reasoning.�

5.2. Hiding

We define two hiding operations for hybrid automata, which hide external actions and external
variables, respectively, and we prove that these operations respect the implementation relationship. The
hiding operations reclassify external actions or external variables as internal actions or variables.
• If E ⊆ EA, then ActHide(E,A) is the HA B that is equal toA except thatEB = EA − E and

HB = HA ∪ E.
• If W ⊆ WA, thenVarHide(W,A) is the HAB that is equal toA except thatWB = WA −W and

TB = TA↓(VA −W).

Lemma 5.10. LetE ⊆ EA andW ⊆ WA. ThenActHide(E,A) andVarHide(W,A) are HAs.

Proof. This is a straightforward application of the definitions.�

The following lemma characterizes the traces of the automata that result from applying the hiding
operations:

Lemma 5.11. LetA be an HA.
(1) If E ⊆ EA then tracesActHide(E,A) = {β�(EA − E,VA) |β ∈ tracesA}.
(2) If W ⊆ WA then tracesVarHide(W,A) = {β�(AA,WA −W) |β ∈ tracesA}.
Proof. For (1), first observe thatActHide(E,A) has the same set of executions asA. Then apply Lemma
3.10. The proof of (2) is straightforward.�

136 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Theorem 5.12. SupposeA andB are HAs withA � B, and supposeE ⊆ EA andW ⊆ WA. Then
ActHide(E,A) � ActHide(E,B) andVarHide(W,A) � VarHide(W,B).

Proof. Straightforward, using Lemma 5.11.�

Example 5.13 (Implementing a velocity specification). In the composition of theVehicleandController
automata defined in Example 5.5, we may hide theacc-in variable used for communication between the
two components. Thus, we define

A=VarHide({acc-in},Vehicle‖Controller).

In the resulting automatonA, the only external variable isvel-out.
We may express the correctness ofA by showing that it implements an abstract specification automaton

VSpec, displayed in Fig. 6, that simply represents the constraint that the vehicle’s velocity is at most
vmax.VSpechas one external variablevel-out, one state variablevel, and the sets of states and initial
states both consist of all valuations satisfyingvel � vmax. Both variables have typeR and dynamic type
equal to the (pasting closure of the) continuous functions.VSpechas no actions.

The trajectories ofVSpecare those that satisfy:

vel-out= vel (17)

We may argue thatA implementsVSpecusing a simulation relationR. Most of the work has already
been done by proving invariants in Example 5.9. RelationR relates statesxA of A andxB of B� VSpec
exactly if xA is a reachable state ofA andxB(vel) = xA(vel). It is easy to see thatR satisfies the start
condition of the simulation relation definition. The discrete step condition follows because discrete actions
of A do not changevel. For the trajectory condition, assumexA R xB andτ is a trajectory ofA with first
statexA. The definition ofR implies thatxA is a reachable state ofA. Therefore all states in trajectoryτ
are also reachable states ofA. Therefore, the invariantvel � vmax, which was proved forA in Example
5.9, is also true of all states inτ . Now define the corresponding execution fragment ofB to consist of the
single trajectoryτ ′ such thatτ ′↓vel = τ ′↓vel-out= τ↓vel. This satisfies all the required properties.�

Example 5.14 (Sensor and discrete controller). We describe how to implement theController of
Example 4.3, which receives continuous information about the vehicle’s velocity throughvel-out and
suggests accelerations, using two other components: aSensor, which periodically samples the continuous

Fig. 6. Specification automatonVSpec.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 137

Fig. 7. The hybrid automataSensorandDiscreteController.

velocity information and produces discrete velocity reports, and aDiscreteController, which uses the
discrete velocity reports and immediately suggests accelerations. These two components are displayed in
Fig. 7.

TheSensorautomaton has state variablesclockandvel-sensed, both initially 0, and external variable
vel-out. All variables have typeR and dynamic type equal to the (pasting closure of the) continuous
functions. The setQ of states consists of all valuations in whichclock� d. Sensoralso has external
actionsreport(v), v ∈ R. D consists ofreport(v) steps specified by:

clock= d (18)

clock′ = 0 (19)

v = vel-sensed (20)

That is, when the clock reachesd, theSensormay reset the clock to 0 and report the current velocity. Set
T consists of trajectories that satisfy:

˙clock= 1 (21)

vel-sensed(t) = vel-out(t) for t > 0 (22)

That is, the clock increases at rate 1 and the velocity sensed is exactly what is seen invel-out.
The DiscreteControllerHA has state variablesvel-reportedandacc-suggested, both discrete vari-

ables of typeR, initially 0, a discrete Boolean state variablestable, initially true, and one external
variableacc-in, of type R and dynamic type equal to (the pasting closure of) the continuous func-
tions. The state consists of all valuations of the internal variables. TheDiscreteControlleralso has
external actionsreport(v), v ∈ R, and an internal actionsuggest. D includes report(v) steps that
satisfy:

vel-reported′ = v (23)

stable′ = false (24)

andsuggeststeps that satisfy:

stable= false (25)

stable′ = true (26)

vel-reported+ (acc-suggested′ + ε)d � vmax (27)

138 N. Lynch et al. / Information and Computation 185 (2003) 105–157

That is, a new velocity report sets the flag that triggers theDiscreteControllerto recalculate the suggested
acceleration. Trajectories satisfy:

stable(t) = stable(0) (28)

stable(t) = true for t > 0 (29)
˙acc-suggested= 0 (30)

acc-in = acc-suggested (31)

That is, theDiscreteControllerdoes not allow time to pass ifstable = false; it must perform asuggest
action after receiving areport input and before time can pass. TheDiscreteControllerdoes not change
the suggested acceleration during a trajectory, and submits it accurately to its environment. Now define

A=ActHide({report(v) | v ∈ R},Sensor‖DiscreteController).

We claim thatA implementsB� Controller. We may argue this using the simulation relation
R that relates statesxA of A and xB of Controller provided thatxA is a reachable state ofA,
xB(vel-sensed) = xA(vel-sensed), xB(acc-suggested) = xA(acc-suggested) andxB(clock) = xA(clock)
if xA(stable) = true, elsed. A key to the argument is that asuggeststep occurs inB whensuggest
occurs inA, rather than when areport occurs.

SinceA � Controller, Theorem 5.8 impliesA‖Vehicle� Controller‖Vehicle. Then Theorem 5.12
implies

VarHide({acc-in},A‖Vehicle) � VarHide({acc-in},Controller‖Vehicle).

Since, by Example 5.13,VarHide({acc-in},Controller‖Vehicle) � VSpec, transitivity of implementa-
tion implies thatVarHide({acc-in},A‖Vehicle) implementsVSpec. �

6. Hybrid I/O automata

In this section, we refine the hybrid automaton model of Section 4 by distinguishing between input and
output actions and between input and output variables. The results on simulation relations and operations
for hybrid automata presented in Sections 4.3 and 5 can be extended to this new setting.

6.1. Definition of hybrid I/O automata

Definition 6.1. A hybrid I/O automaton (HIOA)A is a tuple(H, U, Y, I,O) where
• H = (W,X,Q,/,E,H,D, T) is a hybrid automaton.
• U andY partitionW into inputandoutputvariables, respectively.

Variables inZ �X ∪ Y are calledlocally controlled; as before, we writeV �W ∪X.
• I andO partitionE into inputandoutputactions, respectively.

Actions inL�H ∪O are calledlocally controlled; as before we writeA�E ∪H .
• The following additional axioms are satisfied:

E1 (Input action enabling)
For everyx ∈ Q and everya ∈ I , there existsx′ ∈ Q such thatx

a→x′.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 139

E2 (Input trajectory enabling)
For everyx ∈ Q and everyυ ∈ trajs(U), there existsτ ∈ T such thatτ.fstate= x, τ↓U � υ,
and either
(1) τ↓U = υ, or
(2) τ is closed and somel ∈ L is enabled inτ.lstate.

Input action enabling is the input enabling condition of ordinary I/O automata. Input trajectory
enabling is a new, corresponding condition for interaction over time intervals. It says that an HIOA
should be able to accept any input trajectory, that is, any trajectory for the input variables, either
by letting time advance for the entire duration of the input trajectory, or by reacting with a locally
controlled action after some part of the input trajectory has occurred. In Section 7, we will see that
by repeated application of axiomE2 a HIOA is able to fully accept any input trajectory, possi-
bly interleaved with locally controlled actions, provided the HIOA does not exhibit unwanted Zeno
behavior.

Note the role of dynamic types in axiomE2. Input trajectory enabling means that an automaton
cannot restrict the inputs. The problem we hit is that with absolutely no way of restricting the in-
puts, the inputs were just too ill-behaved. In examples, we typically want to be able to integrate
the input to get the value of internal variables, but we cannot do this unless the input is integrable.
Axiom E2 states that a HIOA needs to be able to accept any input trajectory intrajs(U). By definition,
the trajectories intrajs(U), when projected on an individual variableu ∈ U , must be in agreement
with the dynamic type ofu. For instance, by taking as the dynamic type of variables inU the set
of piecewise smooth functions, we impose some rather minimal constraints on the input trajectories
that allow us to give meaningful automaton definitions involving integrals, differential equations,
etc.

In control theory it is customary to requirecausality, that is, the output at timet depends only upon
the input trajectory up to, and possibly including, timet [71]. In our setting, there is no need to enforce
causality explicitly since it is implied already by the closure of the set of trajectories under prefix and
concatenation. Assume that in a trajectoryτ the output at timet “depends” on the input trajectory after
t . By prefix closure of trajectories (axiomT1), τ � t is also a trajectory. Letx be the state ofτ at timet ,
and letυ be any input trajectory. By axiomE2 there exists a trajectoryτ ′ with first statex that agrees
with υ (at least up to a certain point). By axiomT3 the concatenation ofτ � t andτ ′ is again a trajectory.
The output of this trajectory at timet agrees with the output ofτ at timet , even though the subsequent
inputs will in general be different. It follows that inτ the output at timet does not depend on the input
after t , a contradiction. Also note that our definition does not enforce functional dependence of outputs
from inputs: HIOAs may be nondeterministic, allowing for several possible outputs for any given input
trajectory.

It will sometimes be convenient for us to consider automata in which inputs and outputs are dis-
tinguished, but that do not necessarily satisfy the propertiesE1 or E2. We call such an automaton a
pre-HIOA.

Notation. As we did for HAs, we denote the components of a (pre-)HIOAA byHA, UA, YA, . . . ,WA,

XA,QA,/A, etc., and those of a (pre-)HIOAAi byHi,Ui, Yi, . . . ,Wi,Xi , Qi,/i , etc. We sometimes
omit these subscripts, where no confusion is likely. We abuse notation slightly by referring to a (pre-)HIOA
A as an HA when we intend to refer toHA.

140 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Example 6.2 (Vehicle and controller HIOAs). TheVehicleHA of Example 4.2 can be converted into an
HIOA by classifyingacc-in as an input variable andvel-out as an output variable. PropertyE1, input
action enabling, holds vacuously. It is also easy to see thatE2 holds, in fact, the first alternative always
holds—from any state theVehicleautomaton can accept any input trajectory. Note that, in order forE2
to hold, it is essential that we do not require inclusion (2) to hold for initial states of trajectories.

Similarly, theController HA of Example 4.3 can be converted into an HIOA by classifyingvel-out
as an input variable andacc-in as an output variable. Again,E1 holds vacuously. To seeE2, consider a
statex, and an input trajectoryυ. The definition ofQ implies thatx(clock) � d. Then the definition of
theController trajectories implies that there is some trajectoryτ starting fromx that is consistent with
υ and that either spans all ofυ or stops short, at a valuationv in whichclock= d. Then the definition of
thesuggesttransitions implies that this locally controlled action is enabled inv�X, as needed. �

Example 6.3 (Sensor and discrete controller HIOAs). The Sensorautomaton from Example 5.14 can
be converted into an HIOA by classifyingvel-out as an input variable and thereport actions as output
actions. The argument thatSensoris actually an HIOA is similar to the argument for theController in
Example 6.2.

Similarly, theDiscreteControllerautomaton from Example 5.14 can be converted into an HIOA by
classifying thereportactions as input actions and theacc-in variable as an output variable. It is straightfor-
ward to verifyE1. E2 is not completely trivial, even though the automaton has no input variables: from
any statex we must consider “null” input trajectories, which map a time interval to the empty valuation
(the valuation for no variables). Ifx(stable) = true, then theDiscreteControllercan accept the entire
input trajectory, and ifx(stable) = false, thensuggestis enabled inx. This impliesE2. �

6.2. Executions, traces, and simulation relations

An executionof a pre-HIOAA is defined to be an execution ofHA, a traceof A is a trace ofHA, and
similarly for execution fragments and trace fragments. We extend the notationexecsA, etc. to pre-HIOAs
in the obvious way. Two pre-HIOAsA1 andA2 arecomparableif their inputs and outputs coincide, that
is, if I1 = I2, O1 = O2, U1 = U2, andY1 = Y2. If A1 andA2 are comparable, thenA1 � A2 is defined
to mean that the traces ofA1 are included among those ofA2: A1 � A2 � tracesA1 ⊆ tracesA2.

Lemma 6.4. Let A1 andA2 be two comparable pre-HIOAs. ThenH1 andH2 are comparable and
A1 � A2 iff H1 � H2.

Proof. Immediate from the definitions.�

The definition of simulation for pre-HIOAs is the same as for HAs. Formally, ifA1 andA2 are
comparable pre-HIOAs, then asimulationfromA1 to A2 is a simulation fromH1 to H2.

Theorem 6.5. If A1 andA2 are comparable pre-HIOAs and there is a simulation fromA1 to A2, then
A1 � A2.

Proof. Immediate from the definition of simulation, Theorem 4.12, and Lemma 6.4.�

N. Lynch et al. / Information and Computation 185 (2003) 105–157 141

6.3. Composition

The definition of composition for HIOAs is based on the corresponding definition for HAs, but also
takes the input/output structure into account. Just as for HAs, we allow an HIOAA1 to be composed with
an HIOAA2 only if the sets of internal actions and variables ofA1 are disjoint from the sets of actions
and variables, respectively, ofA2. In addition, in order that the composition operation might satisfy
certain desirable properties (see, for example, the results in Section 6.5), we require that at most one
component should “control” any given action or variable; that is, we allowA1 andA2 to be composed
only if the sets of output actions ofA1 andA2 are disjoint and the sets of output variables ofA1 andA2
are disjoint.

Formally, we say that pre-HIOAsA1 andA2 arecompatibleif H1 andH2 are compatible and

Y1 ∩ Y2 = O1 ∩O2 = ∅.
Lemma 6.6. If A1 andA2 are compatible pre-HIOAs, thenH1 andH2 are compatible HAs.

Proof. Immediate from the definitions.�

If A1 andA2 are compatible pre-HIOAs then theircompositionA1‖A2 is defined to be the tuple
A = (H, U, Y, I,O) where
• H = H1‖H2,
• Y = Y1 ∪ Y2,
• U = (U1 ∪ U2)− Y ,
• O = O1 ∪O2, and
• I = (I1 ∪ I2)−O.
Thus, an external action or variable of the composition is classified as an output if it is an output of one
of the component automata, and otherwise it is classified as an input.

The composition of two HIOAs (or pre-HIOAs) is guaranteed to be a pre-HIOA:

Theorem 6.7. If A1 andA2 are pre-HIOAs thenA1‖A2 is a pre-HIOA.

Proof. Let A denoteA1‖A2. Lemma 5.2 implies thatH = H1‖H2 is an HA. By construction,U and
Y form a partition ofW andI andO form a partition ofE. This suffices. �

Example 6.8 (Interfaces for compositions of HIOAs). When theVehicleandController HIOAs from
Example 6.2 are composed, the external interface of the resulting pre-HIOA consists ofU = I = O = ∅
andY = {acc-in, vel-out}. When theSensorandDiscreteControllerfrom Example 6.3 are composed,
the external interface of the resulting pre-HIOA consists ofU = {vel-out}, Y = {acc-in}, I = ∅, and
O = {report(v) | v ∈ R}. �

Composition of pre-HIOAs satisfies the following substitutivity result:

Theorem 6.9. SupposeA1 andA2 are comparable pre-HIOAs withA1 � A2. SupposeB is a pre-
HIOA that is compatible with each ofA1 andA2. ThenA1‖B andA2‖B are comparable andA1‖B �
A2‖B.

142 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Proof. The fact thatA1 andA2 are comparable and the definition of composition for pre-HIOAs implies
thatA1‖B andA2‖B are comparable.

SinceA1 andA2 are comparable andA1 � A2, Lemma 6.4 implies thatHA1 andHA2 are comparable
andHA1 � HA2. Lemma 6.6 implies thatHA1 andHB are compatible HAs andHA2 andHB are
compatible HAs. Theorem 5.8 then implies thatHA1‖HB � HA2‖HB. By the definition of composition,
it follows that HA1‖B � HA2‖B. Then the definition of implementation for pre-HIOAs implies that
A1‖B � A2‖B. �

We would like to show that the composition of two HIOAs is an HIOA; however, this is not true in
general. PropertyE1 is preserved by composition:

Lemma 6.10. If A1 andA2 are pre-HIOAs that satisfyE1, then the compositionA1‖A2 also satisfies
E1.

Proof. Let A = A1‖A2. Assume thatA1 andA2 satisfyE1. We verify thatA satisfiesE1. Consider
x ∈ Q anda ∈ I . We distinguish three cases.
(1) a ∈ I1 ∩ I2. By definition of composition,x�Xi ∈ Qi for i ∈ {1, 2}. Then byE1 applied toAi , there

exists a statex′i of Ai such that(x�Xi)
a→ix′i . Let x′ � x′1 ∪ x′2. We know thatx′ is well defined since,

by compatibility,X1 ∩X2 = ∅. Then by definition of composition,x′ ∈ Q andx
a→x′.

(2) a ∈ I1 − I2. By definition of composition,x�X1 ∈ Q1. By E1 applied toA1, there exists a state
x′1 of A1 such that(x�X1)

a→1x′1. Let x′ � x′1 ∪ (x�X2). We know thatx′ is well defined since, by

compatibility,X1 ∩X2 = ∅. Then by definition of parallel composition,x′ ∈ Q andx
a→x′.

(3) a ∈ I2 − I1. Symmetric to the previous case.�

However,E2 is not necessarily preserved by composition:

Example 6.11 (Two HIOAs whose composition does not satisfyE2). Suppose thatA1 has no discrete
actions, no state variables, one output variablev1 and one input variablev2. All variables are of typeR
and dynamic type the (pasting closure of the) continuous functions. The setsQ1 and/1 of states and start
states consist of the unique valuation of the empty set of variables. The trajectories are all those functions
that satisfyv1(t) = v2(t)+ 1 for t > 0. It is easy to check thatA1 is an HIOA. DefineA2 symmetrically,
with output variablev2 and input variablev1; A2’s trajectories are those that satisfyv2(t) = v1(t)+ 1
for t > 0.

The composition pre-HIOA,A1‖A2, does not satisfyE2. SatisfyingE2 would require (since the
composition has no discrete actions) that the composition include at least one trajectory with limit time
∞ starting from the initial state. However, no such trajectory exists, because the combined constraints
are inconsistent for everyt > 0. �

As a way out of the difficulties noted in Example 6.11, we might consider introducing a static
dependency relation≺A between the external variables of a hybrid automaton. Ifx ≺A y then the
value of y is allowed to depend without delay on the value ofx. As an additional condition for
compatibility of A and B, we would then require thatA and B do not share variablesx and y

such thatx ≺ Ay and y ≺B x. This approach, which is followed, for example, in the Masaccio

N. Lynch et al. / Information and Computation 185 (2003) 105–157 143

language of [33], would rule out the above example. However, it would also rule out any form of
dynamic feedback as studied in control theory (for instance, PID control) [79]. We therefore think
that this static approach is overly restrictive. Within control theory there is no generally applicable
syntactic criterion to test whether combinations of differential and algebraic equations are well-defined;
consequently, we have no simple criterion to test whether the composition of two HIOAs satisfies
E2.

As a technical way out of the difficulty, we define a stronger notion of compatibility. Namely, we
say that compatible pre-HIOAsA1 andA2 arestrongly compatibleif A1‖A2 satisfies axiomE2. Strong
compatibility says that any input trajectoryυ of the composition must be acceptable by the composition:
the two component automata are able to evolve together, following the input trajectoryυ, in such a way
that either they accept all ofυ or else they accept part ofυ, up to a point where one of them can interrupt
with a locally controlled action.

Theorem 6.12. If A1 andA2 are strongly compatible HIOAs, thenA1‖A2 is an HIOA.

Proof. Lemma 6.7 implies that the composition is a pre-HIOA. Lemma 6.10 implies that the composition
satisfiesE1. PropertyE2 follows immediately from strong compatibility. �

Strong compatibility is a technical notion. By itself, it does not seem to be very useful, because checking
it involves verifying compatibility between the continuous dynamics of two systems. In Section 6.5, we
give some sufficient conditions for strong compatibility that are easier to check.

6.4. Hiding

The definitions of variable and action hiding extend to any pre-HIOAA. For input/output automata,
we allow hiding outputs only (but not inputs):
(1) If O ⊆ OA, thenActHide(O,A) is the pre-HIOAB that is equal toA except thatOB = OA −O

andHB = HA ∪O.
(2) If Y ⊆ YA thenVarHide(Y,A) is the pre-HIOAB given by:

• HB = VarHide(Y,HA).
• YB = YA − Y .
• UB = UA, IB = IA, andOB = OA.

Lemma 6.13. SupposeA is a pre-HIOA, O ⊆ OA andY ⊆ YA. Then:
(1) ActHide(O,A) andVarHide(Y,A) are pre-HIOAs.
(2) If A satisfiesE1 then so doActHide(O,A) andVarHide(Y,A).
(3) If A satisfiesE2 then so doActHide(O,A) andVarHide(Y,A).

Lemma 6.14. LetA be a pre-HIOA.
(1) If O ⊆ OA then tracesActHide(O,A) = {β�(EA −O,VA) |β ∈ tracesA}.
(2) If Y ⊆ YA then tracesVarHide(Y,A) = {β�(AA,WA − Y) |β ∈ tracesA}.
Proof. Straightforward, see also the proof of Lemma 5.11.�

144 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Theorem 6.15. SupposeA andB are pre-HIOAs withA � B, and supposeO ⊆ OA andY ⊆ YA.

ThenActHide(O,A) � ActHide(O,B) andVarHide(Y,A) � VarHide(Y,B).

Proof. Straightforward, using Lemma 6.14.�

Example 6.16 (Interfaces for automata with hiding). In Example 5.14, we defined the HAB�
VarHide({acc-in},A‖Vehicle), where

A� ActHide({report(v) | v ∈ R},Sensor‖DiscreteController).

This models the three-way composition of the sensor, discrete controller, and vehicle, with the internal
report actions and acceleration suggestions hidden. If we interpret the three automata as HIOAs, then
these definitions still make sense because the actions and variables that are hidden are outputs. The
external interface forA is given byUA = {vel-out}, YA = {acc-in}, andIA = OA = ∅, and the external
interface forB is given byUB = IB = OB = ∅ andYB = {vel-out}. �

6.5. Sufficient conditions for strong compatibility

Checking strong compatibility of two HIOAs can be difficult because it requires checking compatibility
between the continuous dynamics of two systems. However, for certain restricted classes of HIOAs, strong
compatibility is implied by compatibility, which is easy to check.

Example 6.17 (HIOAs for which compatibility implies strong compatibility). It is routine to verify that
two HIOAs without input variables are strongly compatible if and only if they are compatible. In the
classical control theory setting, a system without input variables is uninteresting because it cannot be
controlled. However, in the hybrid setting, such a system can still interact with its environment via discrete
input actions.Linear hybrid automataas described in [3,4], for instance, have no input variables.

Symmetrically, two HIOAs without output variables are strongly compatible if and only if they are
compatible. The same equivalence holds if one of the HIOAs has no input variables and the other has no
output variables, or if one has no external variables at all.�

The following theorem generalizes all the claims in Example 6.17. It applies to pairs of HIOAs that
cannot mutually affect each other because the output variables of one are disjoint from the input variables
of the other.

Theorem 6.18. LetA1 andA2 be two compatible HIOAs such thatU1 ∩ Y2 = ∅. ThenA1 andA2 are
strongly compatible.

Proof. Let A denoteA1‖A2. We need to show thatA satisfiesE2. Let x be a state ofA and letυ
be a trajectory intrajs(U). SinceU1 ∩ Y2 = ∅, the definition of composition implies thatU1 ⊆ U . By
E2 applied toA1, there exists a trajectoryτ1 ∈ T1, with τ1.fstate= x�X1 that is pointwise compatible
with υ and such that eitherdom(τ1) = dom(υ), or elsedom(τ1) ⊂ dom(υ), τ1 is closed, and a locally
controlled action ofA1 is enabled inτ1.lstate.

Let υ2 be((υ�dom(τ1)) ∪̇ τ1)↓U2. That is,υ2 is an input trajectory forA2. Each input variable ofA2
is either an input variable ofA or an output variable ofA1; the valuations inυ2 for those that are inputs

N. Lynch et al. / Information and Computation 185 (2003) 105–157 145

of A are obtained fromυ, whereas the valuations for those that are output variables ofA1 are obtained
from τ1. By E2 applied toA2, there exists a trajectoryτ2 ∈ T2, with τ2.fstate= x�X2, that is pointwise
compatible withυ2 and such that eitherdom(τ2) = dom(υ2), or elsedom(τ2) ⊂ dom(υ2), τ2 is closed,
and a locally controlled action ofA2 is enabled inτ2.lstate.

In the second case,(τ1�dom(τ2)) ∪̇ τ2 is a trajectory ofT that starts fromx, is pointwise compatible
with υ, is closed, and enables a locally controlled action ofA (in particular, ofA2) in its last state. In
the first case,τ1 ∪̇ τ2 is a trajectory ofT that starts fromx, is pointwise compatible withυ, and either
spans all ofυ or is closed and enables a locally controlled action ofA (in particular, ofA1) in its last
state. This shows thatA satisfiesE2. �

We can also consider HIOAs that do not exhibit any dependencies between inputs and outputs during
a trajectory. In particular, the values of the input variables should affect neither the values of the output
variables nor the amount of time that elapses until a locally controlled action is enabled. Formally, we
say that an HIOAA is obliviousif it satisfies the following axiom:

OBL For all τ ∈ T andυ ∈ trajs(U) with dom(τ) = dom(υ), there existsτ ′ ∈ T such that:
(1) τ ′↓U = υ.
(2) τ ′↓Y = τ↓Y .
(3) If τ is closed and some locally controlled action is enabled inτ.lstatethen some locally controlled

action is enabled inτ ′.lstate.

Theorem 6.19. LetA1 andA2 be two compatible HIOAs and suppose thatA1 is oblivious. ThenA1
andA2 are strongly compatible.

Proof. Let A denoteA1‖A2. We need to show thatA satisfiesE2. Let x be a state ofA and letυ be a
trajectory intrajs(U). Letυ1 be any trajectory oftrajs(U1) that is pointwise compatible withυ and such
thatdom(υ1) = dom(υ). ByE2 applied toA1, there exists a trajectoryτ1 ∈ T1, withτ1.fstate= x�X1, that
is pointwise compatible withυ1 and such that eitherdom(τ1) = dom(υ1), or elsedom(τ1) ⊂ dom(υ1),
τ1 is closed, and a locally controlled action ofA1 is enabled inτ1.lstate.

Let υ2 be ((υ�dom(τ1)) ∪̇ τ1)↓U2. By E2 applied toA2, there exists a trajectoryτ2 ∈ T2, with
τ2.fstate= x�X2, that is pointwise compatible withυ2 and such that eitherdom(τ2) = dom(υ2), or else
dom(τ2) ⊂ dom(υ2), τ2 is closed, and a locally controlled action ofA2 is enabled inτ2.lstate.

Let υ ′
1 be ((υ�dom(τ2)) ∪̇ τ2)↓U1. By OBL applied toA1, there exists a trajectoryτ ′1 ∈ T1 such

that τ ′1↓U1 = υ ′
1, τ ′1↓Y1 = (τ1�dom(τ2))↓Y1, and if τ1�dom(τ2) is closed and some locally controlled

action ofA1 is enabled in its last state, then some locally controlled action is also enabled inτ ′1.lstate. It
follows thatτ ′1 andτ2 are pointwise compatible, and thatτ ′1 ∪̇ τ2 is a trajectory inT that starts fromx
and is pointwise compatible withυ. We claim thatτ ′1 ∪̇ τ2 satisfies the requirements forE2. We consider
cases:
(1) dom(τ2) ⊂ dom(υ2).

Thenτ ′1 ∪̇ τ2 is closed and enables a locally controlled action (ofA2) in its last state, which satisfies
the requirements forE2.

(2) dom(τ2) = dom(υ2)(= dom(τ1)).
We consider two subcases. First, ifdom(τ1) ⊂ dom(υ), thenτ1 is closed and enables some locally
controlled action (ofA1) in its last state. By axiomOBL, some locally controlled action is also

146 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Fig. 8. Hybrid Control System.

enabled inτ ′1 ∪̇ τ2.lstate, which suffices forE2. In the other subcase, ifdom(τ1) = dom(υ), then
τ ′1 ∪̇ τ2 spans all ofυ, which again suffices forE2. �

Example 6.20 (Oblivious controller). The Controller HIOA of Example 4.3 and 6.2 satisfiesOBL.
During any trajectoryτ of Controller, velocity information arrives invel-out but does not affect the
Controller’s output; the output is only changed when a (locally controlled)suggesttransition occurs.
Enabling of thesuggestaction is not affected by changes invel-out, but only by the value ofclock.

BecauseController is oblivious and compatible with theVehicleHIOA, Theorem 6.19 implies that
VehicleandController are strongly compatible. It follows that their composition,Vehicle‖Controller, is
an HIOA. �

Example 6.21 (Plant and controller). Fig. 8 displays a standard scenario studied in control theory
involving a plantP controlled by a digital controllerC. The interface from the controller to the plant is
given by a digital/analog converterD, while the interface from the plant to the controller is given by an
analog/digital converterA. The controllerC monitors the input variables and changes its output variables
only at the clock ticks via some discrete transitions. Thus,C satisfiesOBL. The output variables ofA
are disjoint from the input variables of bothP andD, and the output variables ofP are disjoint from the
input variables ofD. Thus, ifP, C,A,D are pairwise compatible, thenP andA are strongly compatible
(by Theorem 6.18),P ‖A andD are strongly compatible (by Theorem 6.18), and((P‖A)‖D) andC are
strongly compatible (by Theorem 6.19). Hence,((P‖A)‖D)‖C is an HIOA. �

Example 6.22 (Lipschitz HIOAs). We may define a subclass of HIOAs calledLipschitz HIOAs, in which
some of the state variables are discrete “mode” variables, and in which, for each mode, the rest of the
variables evolve according to a system of differential equations based on globally Lipschitz functions.
We may restrict this class further by imposing a bound on the range of the input variables (by restricting
their dynamic types), thus obtaining the set ofinput-bounded Lipschitz HIOAs. Then it is possible to
show that two compatible input-bounded Lipschitz HIOAs are strongly compatible, which implies that

N. Lynch et al. / Information and Computation 185 (2003) 105–157 147

the composition of two compatible input-bounded Lipschitz HIOAs is a (Lipschitz) HIOA. A careful
development will be reserved for another paper.�

7. Receptive hybrid I/O automata

In this section, we define the notion ofreceptivenessfor HIOAs. An HIOA will be defined to be
receptive provided that it admits astrategyfor resolving its nondeterministic choices that never generates
infinitely many locally controlled actions in finite time. This notion has two important consequences:
First, a receptive HIOA provides some response from any state, for any sequence of discrete input actions
and input trajectories. This implies that the automaton has a nontrivial set of execution fragments, in
fact, it has execution fragments that accommodate any inputs from the environment. The automaton
cannot simply stop at some point and refuse to allow time to elapse; it must allow time to pass to
infinity if the environment does so. Second, receptiveness is closed under composition. Previous studies
of receptiveness properties include [1,21,54,74].

If HIOA A implements HIOAB and ifA is receptive, then besides preservation of “may” properties
(any trace ofA is also a trace ofB) we also have preservation of “must” properties. For instance,
if in B an input actiona always must be followed by an outputb within 10 time units, then this
property will also hold forA: (1) sinceA is input enabled it will always accept inputa, (2) sinceA is
receptive it will never end up in a time deadlock or a Zeno execution; time can always advance, (3)A
must always perform ab before or at time 10 since otherwise a trace is generated that is not allowed
by B.

We formally define receptiveness by first defining what it means for an HIOA to beprogressive. A
progressive HIOAnevergenerates infinitely many locally controlled actions in finite time. Thus, in all
of its execution fragments, it allows time to pass to infinity provided that its environment also does so.
We then define astrategyfor resolving nondeterministic choices, and define receptiveness in terms of
the existence of a progressive strategy.

The treatment of receptiveness in this paper is much simpler than that in previous papers. One reason is
that we address only the generation of admissible executions here, rather than general liveness properties.
Also, we formulate strategies as restricted automata, rather than introducing separate definitions based
on two-player games.

7.1. Progressive HIOAs

We say that an execution fragment of a pre-HIOA islocally Zenoif it is Zeno and contains infinitely
many locally controlled actions, or equivalently, if it has finite limit time and contains infinitely many
locally controlled actions. A pre-HIOAA is progressiveif it has no locally Zeno execution fragments.

The following lemma says that any progressive pre-HIOA that satisfiesE2, and therefore any HIOA,
is capable of following any input trajectory.

Lemma 7.1. LetA be a progressive pre-HIOA that satisfies propertyE2, let x be a state ofA, and let
υ ∈ trajs(U). Then there exists an execution fragmentα of A such thatα.fstate= x andα�(I, U) = υ.

(Hereυ denotes the hybrid sequence consisting of the single trajectoryυ. Recall that we writea for a
sequence consisting of just a.)

148 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Proof. We construct a finite or infinite sequenceα0, α1, . . . of execution fragments ofA such that:
(1) α0.fstate= x.
(2) For every nonfinal indexi, αi.lstate= αi+1.fstate.
(3) For everyi � 0, (α0

$α1
$ · · ·$αi)�(I, U) � υ.

(4) For everyi � 0, either(α0
$α1

$ · · ·$αi)�(I, U) = υ or αi includes a locally controlled action.
The construction is carried out recursively. To defineα0, we begin with statex and useE2 either to span
all of υ, or to span a prefix ofυ and then perform a locally controlled action. Fori > 0 (assuming that
we have not already spanned all ofυ), we defineαi by beginning withαi−1.lstateand usingE2 either to
span the entire suffix ofυ starting fromα0

$ · · ·$αi−1.ltime, or to span a prefix of that suffix and then
perform a locally controlled action.

Now we consider two cases:
(1) The construction ends after a finite number of stages, having spanned all ofυ, say withαk as the last

execution fragment in the sequence.
In this case, the concatenationα0

$α1
$ · · ·$αk satisfies the conditions of the lemma.

(2) The construction proceeds through infinitely many stages.
In this case, the execution fragmentα �α0

$α1
$ · · · contains infinitely many locally controlled

actions. SinceA is progressive, it must be the case thatα.ltime= ∞, and thereforeα�(I, U).ltime
= ∞. Since the set of trajectories forU is a cpo,α�(I, U) � υ. Sinceα�(I, U) � υ, and α

�(I, U).ltime= ∞, it follows thatα�(I, U) = υ, as needed. �

The following theorem says that a progressive HIOA is capable of following not just individual input
trajectories, but entire input hybrid sequences.

Theorem 7.2. LetA be a progressive HIOA with statex, and letβ be an(I, U)-sequence. Then there
exists an execution fragmentα of A such thatα.fstate= x andα�(I, U) = β.

Proof. Let β = τ0 a1 τ1 a2 τ2 . . . We define a finite or infinite sequenceα0, α1, . . . of execution frag-
ments ofA such that:
(1) α0.fstate= x.
(2) For every nonfinal indexi, αi.lstate= αi+1.fstate.
(3) For everyi, (α0

$α1
$ · · ·$αi)�(I, U) = τ0 a1 τ1 a2 τ2 . . . τi .

The construction is carried out recursively. To defineα0, we begin withx and use Lemma 7.1 to spanτ0.
For i > 0, we defineαi by starting withαi−1.lstate, using propertyE1 to perform actionai and move to
a new state, and then using Lemma 7.1 to spanτi .

Let α = α0
$α1

$ · · ·. By Lemma 3.8 we conclude thatα�(I, U) = β, as needed. �
The property asserted in Theorem 7.2 has been calledI/O feasibility elsewhere in the literature [59].
Thus, we define a pre-HIOA to beI/O feasibleprovided that, for each statex and each(I, U)-sequence
β, there is some execution fragmentα such thatα.fstate= x andα�(I, U) = β. Theorem 7.2 may then
be restated as:

Corollary 7.3. Every progressive HIOA is I/O feasible.

I/O feasibility implies that any finite execution fragment can be extended to an admissible execution
in response to any admissible input from the environment. A related, weaker property that has also been

N. Lynch et al. / Information and Computation 185 (2003) 105–157 149

studied isfeasibility [57]. In terms of our model, we may say that a pre-HIOA isfeasibleprovided that,
for each statex, there is some admissible execution fragmentα such thatα.fstate= x.

Feasibility implies that any finite execution fragment can be extended to some admissible execution
fragment—no constraints are imposed on the inputs. Observe that any I/O feasible HIOA must be feasible,
as long as the dynamic type of each input variable includes at least one admissible trajectory. Feasibility
should be regarded as a minimal liveness requirement that any reasonable HIOA should satisfy. I/O
feasibility is a strengthened version of feasibility that takes inputs into account.

Closure under composition is easy to show:

Theorem 7.4. If A1 and A2 are compatible progressive pre-HIOAs, then their composition is also
progressive.

Proof. Let A be A1‖A2. Suppose for the sake of contradiction thatA is not progressive. Then,
by definition,A has a locally Zeno execution fragmentα, that is,α contains infinitely many locally
controlled actions ofA. Therefore,α contains either infinitely many locally controlled actions ofA1
or infinitely many locally controlled actions ofA2. Suppose without loss of generality thatα contains
infinitely many locally controlled actions ofA1. Then, by Lemma 5.3 and the definition of restriction,
α�(A1, V1) is a time-bounded execution fragment ofA1 with infinitely many locally controlled actions,
that is, a locally Zeno execution fragment ofA1. This contradicts the assumption thatA1 is progressive.

�

Example 7.5 (Progressive and non-progressive pre-HIOAs). TheVehicleHIOA is obviously progressive
because it has no discrete actions. TheControllerandSensorHIOAs are progressive because their locally
controlled actions are separated in time. TheDiscreteControllerHIOA is not progressive, because if
report inputs arrive in a Zeno fashion, theDiscreteControllermay respond by performingsuggest
internal actions in a Zeno fashion. However, the compositionSensor‖DiscreteControlleris progres-
sive.

Consider a more nondeterministic version ofSensor, NSensor, that is allowed to performreport
actions for any value ofclock (� d), rather than just forclock= d. Formally,NSensor is identical
to Sensorexcept that condition (18) is dropped.NSensor is not progressive, because it may perform
infinitely manyreport actions in finite time. Also, the composition ofNSensor with DiscreteController
is not progressive. �

7.2. Strategies

In this subsection, we define the notion of astrategy, which provides a way to resolve some of
the nondeterministic choices in a pre-HIOA. We will use strategies in the next subsection to define
receptiveness.

We define astrategyfor a pre-HIOAA to be an HIOAA′ that differs fromA only in thatD′ ⊆ D and
T ′ ⊆ T . That is, we require:
• D′ ⊆ D.
• T ′ ⊆ T .
• W = W ′, X = X′, Q = Q′, / = /′, E = E′, H = H ′, U = U ′, Y = Y ′, I = I ′, andO = O ′.

150 N. Lynch et al. / Information and Computation 185 (2003) 105–157

Our strategies are nondeterministic and memoryless. They serve to choose some of the evolutions that
are possible from each statex of A. The fact that the state setQ′ of A′ is the same as the state setQ of
A implies thatA′ chooses evolutions from every state ofA.

Strategy notions have been used elsewhere in defining receptiveness, for example, in [1,21,74]. In this
earlier work, strategies have been formalized using two-player games rather than restricted automata.
Defining strategies using automata instead of two-player games allows us to avoid introducing extra
mathematical machinery. A drawback of our approach is that it is not applicable in a setting with general
liveness properties.

Lemma 7.6. If A′ is a strategy forA, then every execution fragment ofA′ is also an execution fragment
of A.

Theorem 7.7. Let A1 andA2 be two compatible pre-HIOAs with strongly compatible strategiesA′
1

andA′
2, respectively. ThenA′

1‖A′
2 is a strategy forA1‖A2.

Proof. Let A denoteA1‖A2 and letA′ denoteA′
1‖A′

2. SinceA′
1 andA′

2 are strongly compatible,
Theorem 6.12 implies thatA′ is an HIOA. From the definitions of composition and strategy,A′ differs
fromA only in thatD′ ⊆ D andT ′ ⊆ T . Then the definition of strategy implies thatA′ is a strategy for
A. �

Lemma 7.8. LetA1 andA2 be two compatible pre-HIOAs with strongly compatible strategiesA′
1 and

A′
2, respectively. ThenA1 andA2 are strongly compatible.

Proof. Let A denoteA1‖A2 and letA′ denoteA′
1‖A′

2. Theorem 7.7 implies thatA′ is a strategy for
A. SinceA′

1 andA′
2 are strongly compatible, their compositionA′ satisfiesE2. We show that alsoA

satisfiesE2.
Let x ∈ Q and letυ ∈ trajs(U). Then sinceA′ is a strategy forA, we haveQ′ = Q and U ′ =

U , Y ′ = Y , and sox ∈ Q′ and υ ∈ trajs(U′). SinceA′ satisfiesE2, there existsτ ∈ T ′ such that
τ.fstate= x, τ↓U ′ � υ, and eitherτ↓U ′ = υ, or elseτ is closed and somel ∈ L′ is enabled (inA′) in
τ.lstate.

SinceA′ is a strategy forA, it follows that alsoτ ∈ T , τ↓U � υ, and eitherτ↓U = υ, or elseτ is
closed and somel ∈ L is enabled (inA) in τ.lstate. Therefore,A satisfiesE2, that is,A1 andA2 are
strongly compatible. �

Example 7.9 (Strategy for nondeterministic sensor). The SensorHIOA defined in Example 5.14 is a
strategy for theNSensor HIOA defined in Example 7.5. �

7.3. Receptive HIOAs

Finally, we define a pre-HIOA to bereceptiveif it has a progressive strategy.

Example 7.10 (Receptive and non-receptive HIOAs). The NSensorHIOA of Example 7.5 is not pro-
gressive, but it is receptive. That is because the originalSensorHIOA, as defined in Example 5.14, is a
progressive strategy forNSensor.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 151

The DiscreteControllerHIOA is not receptive: because any strategy for it must satisfyE1 andE2,
such a strategy must be able to perform discrete steps in response to anyreport input, and so must be
capable of performing infinitely manysuggestactions in finite time.

Consider a variantNDController of DiscreteControllerthat has its own clock and may wait any
amount of time, up to a fixedd’ (> 0), to respond to eachreport input with a newsuggest. (Several
reports may occur in succession; a singlesuggestmay be used to handle all of them, as long as it occurs
within timed’ of the first of these reports.)NDController is not progressive, because it has the option of
responding immediately to reports, and thus may generate infinitely many suggestions in finite time. It
is receptive, however, using a progressive strategy that always waits the maximum allowed time before
generating a suggestion.�

The two most important general properties of receptive HIOAs are expressed by the following
two theorems. The first expresses nontriviality—that any receptive HIOA (or pre-HIOA) can respond
to any inputs from the environment. The second theorem shows that receptiveness is preserved by
composition.

Theorem 7.11. Every receptive pre-HIOA is I/O feasible.

Proof. LetA be a receptive pre-HIOA. By definition of receptive, there exists a progressive strategyA′
for A. SinceA′ is a progressive HIOA, Corollary 7.3 implies thatA′ is I/O feasible. We show that also
A is I/O feasible.

Let x ∈ Q and letβ be an(I, U)-sequence. Then sinceA′ is a strategy forA, we haveQ′ = Q,
I ′ = I , andU ′ = U , and sox ∈ Q′ andβ is an (I ′, U ′)-sequence. SinceA′ is I/O feasible, there is
some execution fragmentα of A′ such thatα.fstate= x andα�(I ′, U ′) = β. By Lemma 7.6,α is also
an execution fragment ofA. SinceA′ is a strategy forA, it follows thatα�(I, U) = β. Therefore,A is
I/O feasible. �

The question of whether the converse of Theorem 7.11 holds is still open. Finally, we have our theorem
about composability of receptive HIOAs:

Theorem 7.12. LetA1 andA2 be two compatible receptive HIOAs with strongly compatible progres-
sive strategiesA′

1 and A′
2, respectively. ThenA1‖A2 is a receptive HIOA with progressive strategy

A′
1‖A′

2.

Proof. LetA andA′ denoteA1‖A2 andA′
1‖A′

2, respectively. The fact thatA is an HIOA follows from
Lemma 7.8 and Theorem 6.12. Theorem 7.7 implies thatA′ is a strategy forA. Theorem 7.4 and the fact
thatA′

1 andA′
2 are progressive implies thatA′ is progressive. Thus,A is a receptive HIOA andA′ is a

progressive strategy forA. �

Example 7.13 (Composition of receptive sensor and receptive discrete controller). As noted in Example
7.10, bothNSensorand NDController are receptive, using progressive strategies that always wait
the maximum allowed amount of time. These two strategies are strongly compatible, by Theo-
rem 6.18. Therefore, by Theorem 7.12, the compositionNSensor‖NDController is a receptive HIOA

152 N. Lynch et al. / Information and Computation 185 (2003) 105–157

with a progressive strategy that is the composition of the two progressive strategies for the two
pieces. �

8. Conclusions

In this paper, we have defined a new hybrid I/O automaton (HIOA) modeling framework for describing
and reasoning about the behavior of hybrid systems. Many future research directions remain.

First, the expressive and analytical power of the new model should be tested further by using it to
describe and analyze many more examples. These should include many of the examples that have been
used as illustrations elsewhere in the hybrid systems literature. The automated transportation examples
studied using the previous version of the HIOA model should be revisited using the new model to see
what changes arise, and new and more ambitious case studies should be attempted.

It would be interesting to define and prove formal relationships between the HA and HIOA models of
this paper and other models of hybrid systems, including those of [3,8,13,14,38,63]. Also, one can define
a timed input/output automaton model by simply restricting the HIOA model of this paper so that it does
not include any external variables. It remains to consider the formal relationship between this model and
other timed automaton models, for example, those of [1,5,60,65,74].

It would also be useful to incorporate additional analysis methods, including assume-guarantee
reasoning [16,36] and a variety of methods from control theory, into the HIOA framework. Control
theory methods to consider should include Lyapunov stability analysis methods [79] and robust control
methods [23]. Results about these methods should be formulated in terms of HIOAs, and the methods
should be extended where necessary in order to accommodate a combination of discrete and continuous
behavior.

Other extensions of the HIOA framework are also desirable. In some prior work (e.g. [1,21,74]),
strategies are used to describe how a system interacts with its environment to guarantee that the outcome
of the interaction satisfies a target liveness property. In this paper, we do not consider general liveness
properties, but only the special case of admissibility. It remains to extend the theory to more general
liveness properties. Another important extension would be the addition of probabilities, which would
make it possible to model and analyze probabilistic hybrid systems. Such an extension could be used, for
example, to prove bounds on the probability of errors in safety-critical real-time systems. This extension
appears to be a very challenging problem.

Future work will include tool support for modeling and analysis as described in this paper. This will
include a formal modeling language based on HIOA, with constructs similar to those used in the examples
of this paper, and connections to a theorem prover. A preliminary language proposal appears in [68].

Acknowledgments

We thank Ekaterina Dolginova, Carl Livadas, John Lygeros, Sayan Mitra, and Natasha Neogi for
working with versions of our HIOA model while it was evolving; their questions and observations have
helped us greatly in completing the development of the model. We also thank Paul Attie for reading and
commenting on an earlier version of the paper, and finding a bug in a definition. Finally, we thank the
referees for their insightful reports.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 153

Appendix A

A.1. Notational conventions

a, b action
c, d element of some set
f, g, h function
i, j index
k natural number
l locally controlled action
t time point
u input variable
v variable
w external variable
x internal variable
y output variable
z local variable
A set of actions
D set of discrete transitions
E set of external actions
F set of functions
H set of internal (hidden) actions
I set of input actions or index set
J interval or index set
K set of time points
L set of locally controlled actions
O set of output actions
P set of elements in cpo
Q set of automaton states
R (simulation) relation
S set
T set of trajectories
U set of input variables
V set of variables
W set of external (Dutch: waarneembare) variables
X set of internal variables
Y set of output variables
Z set of local variables
x state
v valuation
A, B, C hybrid (I/O) automaton
H hybrid automaton
T set of trajectories
N the natural numbers
R the real numbers
T the time axis
Z the integers
V the universe of variables
α, β, δ hybrid sequence
γ sequence
λ the empty sequence

154 N. Lynch et al. / Information and Computation 185 (2003) 105–157

π projection function
ρ, σ sequence
τ , υ trajectory
/ set of start states

References

[1] M. Abadi, L. Lamport, Composing specifications, ACM Transactions on Programming Languages and Systems 1 (15)
(1993) 73–132.

[2] R. Alur, Timed automata, NATO-ASI Summer School on Verification of Digital and Hybrid Systems, Springer, Berlin,
1998.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, The
algorithmic analysis of hybrid systems, Theoretical Computer Science 138 (1995) 3–34.

[4] R. Alur, C. Courcoubetis, T.A. Henzinger, P.-H. Ho, Hybrid automata: an algorithmic approach to the specification and
verification of hybrid systems, in: Grossman et al. [28], 209–229.

[5] R. Alur, D.L. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994) 183–235.
[6] R. Alur, R. Grosu, I. Lee, O. Sokolsky, Compositional refinement of hierarchical hybrid systems, in: Di Benedetto and

Sangiovanni-Vincentelli [20], 33–48.
[7] R. Alur, T.A. Henzinger, Reactive modules, in: Proceedings of the 11th IEEE Syposium on Logic in Computer Science,

1996, pp. 207–218.
[8] R. Alur, T.A. Henzinger, Modularity for timed and hybrid systems, in: Proceedings of the Ninth International Conference

on Concurrency Theory, Lecture Notes in Computer Science, vol. 1243, Springer, Berlin, 1997, pp. 74–88.
[9] R. Alur, T.A. Henzinger, E.D. Sontag (Eds.), Hybrid Systems III, Lecture Notes in Computer Science, vol. 1066, Springer,

Berlin, 1996.
[10] P. Antsaklis, W. Kohn, A. Nerode, S. Sastry (Eds.), Hybrid Systems IV (Fourth International Conference on Hybrid

Systems, Ithaca, NY, October 1996), Lecture Notes in Computer Science, vol. 1273, Springer, Berlin, 1997.
[11] D.J.B. Bosscher, I. Polak, F.W. Vaandrager. Verification of an audio control protocol, in: Langmaack et al. [41], 170–

192.
[12] A. Bouajjani, O. Maler (Eds.), Proceedings Second European Workshop on Real-Time and Hybrid Systems, Grenoble,

France, June, 1995.
[13] M.S. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control, PhD thesis, Laboratory for Information and

Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA, June, 1995.
[14] M.S. Branicky, Analyzing and synthesizing hybrid control systems, in: Rozenberg and Vaandrager [73], 74–113.
[15] M.S. Branicky, E. Dolginova, N.A. Lynch, A toolbox for proving and maintaining hybrid specifications, in: Antsaklis et

al. [10], 18–30.
[16] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.
[17] J.W. de Bakker, C. Huizing, W.P. de Roever, G. Rozenberg (Eds.), Proceedings REX Workshop on Real-Time: Theory in

Practice, Mook, The Netherlands, June 1991, Lecture Notes in Computer Science, vol. 600, Springer, Berlin, 1992.
[18] R. De Nicola, F.W. Vaandrager, Action versus state based logics for transition systems, in: I. Guessarian (Ed.), Semantics

of Systems of Concurrent Processes, Proceedings LITP Spring School on Theoretical Computer Science, La Roche Posay,
France, Lecture Notes in Computer Science, vol. 469, Springer, Berlin, 1990, pp. 407–419.

[19] R. DePrisco, B. Lampson, Nancy Lynch, Revisiting the Paxos algorithm, in: M. Mavronicolas, P. Tsigas (Eds.), Distributed
Algorithms 11th International Workshop, WDAG’97, Saarbrücken, Germany, September 1997 Proceedings, Lecture Notes
in Computer Science, vol. 1320, Springer, Berlin/Heidelberg, 1997, pp. 111–125.

[20] M.D. Di Benedetto, A.L. Sangiovanni-Vincentelli (Eds.), in: Proceedings Fourth International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), Rome, Italy, Lecture Notes in Computer Science, vol. 2034, Springer,
Berlin, 2001.

[21] D. Dill, Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits, ACM Distinguished Disser-
tations, MIT Press, 1988.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 155

[22] E. Dolginova, N.A. Lynch, Safety verification for automated platoon maneuvers: a case study, in: Maler [62], 154–170.
[23] P. Dorato (Ed.), Robust Control, IEEE Press, New York, 1987.
[24] A. Fehnker, Automotive control revisited – linear inequalities as approximation of reachable sets, in: Henzinger and Sastry

[34], 110–125.
[25] A. Fekete, N. Lynch, A. Shvartsman, Specifying and using a partitionable group communication service, ACM Transactions

on Computer Systems 19 (2) (2001) 171–216.
[26] R.W. Floyd, Assigning meanings to programs, Mathematical Aspects of Computer Science, 1967, pp. 19–32 (From

Proceedings of Symposium on Applied Mathematics, vol. 19).
[27] R. Gawlick, R. Segala, J.F. Sogaard-Andersen, N.A. Lynch, Liveness in timed and untimed systems, in: S. Abiteboul, E.

Shamir (Eds.), Proceedings 21th ICALP, Jerusalem, Lecture Notes in Computer Science, vol. 820, Springer, Berlin, 1994,
A full version appears as MIT Technical Report number MIT/LCS/TR-587.

[28] R.L. Grossman, A. Nerode, A.P. Ravn, H. Rischel (Eds.), Hybrid systems, Lecture Notes in Computer Science, vol. 736,
Springer, Berlin, 1993.

[29] C.A. Gunter, Semantics of Programming Languages: Structures and Techniques, MIT Press, Cambridge, MA, 1992.
[30] C. Heitmeyer, N. Lynch, The generalized railroad crossing: a case study in formal verification of real-time systems, in:

Proceedings of the Real-Time Systems Symposium, San Juan, Puerto Rico, December, 1994. IEEE, pp. 120–131.
[31] C. Heitmeyer, N. Lynch, Formal verification of real-time systems using timed automata, in: C. Heitmeyer, D. Mandrioli

(Eds.), Formal Methods for Real-Time Computing, Trends in Software, Wiley, New York, 1996, Chapter 4, pp. 83–106.
[32] M. Hennessy, Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.
[33] T.A. Henzinger, M. Minea, V. Prabhu, Assume-guarantee reasoning for hierarchical hybrid systems, in: Di Benedetto and

Sangiovanni-Vincentelli [20], pp. 275–290.
[34] T.A. Henzinger, S. Sastry (Eds.), Proceedings First International Workshop on Hybrid Systems: Computation and Control

(HSCC’98), Berkeley, CA, Lecture Notes in Computer Science, vol. 1386, Springer, Berlin, 1998.
[35] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, NJ, 1985.
[36] C.B. Jones, Development Methods for Computer Programs Including a Notion of Interference, Ph.D. Thesis, Oxford

University, June 1981, Printed as Programming Research Group, Technical Monograph 25.
[37] A. Kapur, T.A. Henzinger, Z. Manna, A. Pnueli, Proving safety properties of hybrid systems, in: Langmaack et al. [41],

431–454.
[38] Y. Kesten, Z. Manna, and A. Pnueli, Verification of clocked and hybrid systems, in: Rozenberg and Vaandrager [73], 4–73.
[39] L. Lamport, What good is temporal logic?, in: R.E. Mason (Ed.), Information Processing 83, North-Holland, Amsterdam,

1983, pp. 657–668.
[40] L. Lamport, The temporal logic of actions, ACM Transactions on Programming Languages and Systems 16 (3) (1994)

872–923.
[41] H. Langmaack, W.-P. de Roever, J. Vytopil (Eds.), Proceedings of the Third International School and Symposium on

Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’94), Lübeck, Germany, September 1994, Lecture
Notes in Computer Science, vol. 863, Springer, Berlin, 1994.

[42] C. Livadas, Formal verification of safety-critical hybrid systems, Master’s Thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge, September, 1997. Also, MIT/LCS/TR-730.

[43] C. Livadas, J. Lygeros, N.A. Lynch, High-level modelling and analysis of TCAS, Proceedings of the IEEE Real-Time
Systems Symposium (RTSS’99), IEEE Computer Society Press, Silver Spring, MD, 1999.

[44] C. Livadas, N.A. Lynch, Formal verification of safety-critical hybrid systems, in: Henzinger and Sastry [34], 253–272.
[45] V. Luchangco, E. Söylemez, S. Garland, N. Lynch, Verifying timing properties of concurrent algorithms, in: D. Hogrefe, S.

Leue (Eds.), Formal Description Techniques VII: Proceedings of the 7th IFIP WG6.1 International Conference on Formal
Description Techniques (FORTE’94, Berne, Switzerland, October 1994), Chapman & Hall, London, 1995, pp. 259–273.

[46] J. Lygeros, N.A. Lynch, On the formal verification of the TCAS conflict resolution algorithms, in: Proceedings 36th IEEE
Conference on Decision and Control, San Diego, CA, 1997, pp.1829–1834, Extended abstract.

[47] J. Lygeros, N.A. Lynch, Strings of vehicles: Modeling and safety conditions, in: Henzinger and Sastry [34], 273–288.
[48] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann, San Fransisco, CA, 1996.
[49] N.A. Lynch, Modelling and verification of automated transit systems, using timed automata, invariants and simulations,

in: Alur et al. [9], 449–463.
[50] N.A. Lynch. A three-level analysis of a simple acceleration maneuver, with uncertainties, in: Proceedings of the Third

AMAST Workshop on Real-Time Systems, Salt Lake City, UT, March, 1996, pp. 1–22.

156 N. Lynch et al. / Information and Computation 185 (2003) 105–157

[51] N.A. Lynch, B.H. Krogh (Eds.), Proceedings Third International Workshop on Hybrid Systems: Computation and Control
(HSCC 2000), Pittsburgh, PA, USA, Lecture Notes in Computer Science, vol. 1790, Springer, Berlin, 2000.

[52] N.A. Lynch, R. Segala, F.W. Vaandrager, Hybrid I/O automata revisited, in: Di Benedetto, Sangiovanni-Vincentelli [20],
403–417.

[53] N.A. Lynch, R. Segala, F.W. Vaandrager, H.B. Weinberg, Hybrid I/O automata, in: Alur et al. [9], 496-510.
[54] N.A. Lynch, R. Segala, F.W. Vaandrager, H.B. Weinberg. Hybrid I/O automata, Report CSI-R9907, Computing Science

Institute, University of Nijmegen, April, 1999.
[55] N.A. Lynch, M.R. Tuttle, Hierarchical correctness proofs for distributed algorithms, in: Proceedings of the 6th Annual

ACM Symposium on Principles of Distributed Computing, August, 1987, pp. 137–151. A full version is available as MIT
Technical Report MIT/LCS/TR-387.

[56] N.A. Lynch, M.R. Tuttle, An introduction to input/output automata, CWI Quarterly 2 (3) (1989) 219–246.
[57] N.A. Lynch, F.W. Vaandrager, Forward and backward simulations for timing-based systems, in: de Bakker et al. [17],

397–446.
[58] N.A. Lynch, F.W. Vaandrager, Forward and backward simulations, I: Untimed systems, Information and Computation 121

(2) (1995) 214–233.
[59] N.A. Lynch, F.W. Vaandrager, Action transducers and timed automata, Formal Aspects of Computing 8 (5) (1996) 499–538.
[60] N.A. Lynch, F.W. Vaandrager, Forward and backward simulations, II: timing-based systems, Information and Computation

128 (1) (1996) 1–25.
[61] N.A. Lynch, H.B. Weinberg, Proving correctness of a vehicle maneuver: deceleration, in: Bouajjani and Maler [12].
[62] O. Maler (Ed.), Proceedings International Workshop on Hybrid and Real- Time Systems (HART’97), Grenoble, France,

Lecture Notes in Computer Science, vol. 1201, Springer, Berlin, 1997.
[63] O. Maler, Z. Manna, A. Pnueli. From timed to hybrid systems, in: de Bakker, et al., [17], 447–484.
[64] Z. Manna A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer, Berlin, 1992.
[65] M. Merritt, F. Modugno, M.R. Tuttle, Time constrained automata, in: J.C.M. Baeten, J.F. Goote (Eds.), CONCUR’91:

2nd International Conference on Concurrency Theory (Amsterdam, The Netherlands, August 1991), Lecture Notes in
Computer Science, vol. 527, Springer, Berlin, 1991, pp. 408–423.

[66] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[67] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Part I + II, Information and Computation 100 (1) (1992)

1–77.
[68] S. Mitra, Y. Wang, N. Lynch, E. Feron, Safety verification of model helicopter controller using hybrid input/output automata,

Hybrid Systems: Computation and Control (HSCC’03), Prague, the Czech Republic, Lecture Notes in Computer Science,
Springer, Berlin, 2003, pp. 259–273.

[69] A. Pnueli, Development of hybrid systems, in: Langmaack et al. [41], 77–85.
[70] A. Pnueli, J. Sifakis (Eds.), Special Issue on Hybrid Systems of Theoretical Computer Science, vol. 138(1), Elsevier

Science, Amsterdam, 1995.
[71] J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory: A Behavioural Approach, Texts in Applied

Mathematics, Springer, Berlin, 1998.
[72] W.P. de Roever, K. Engelhardt, Data refinement: model-oriented proof methods and their comparison, Cambridge Tracts

in Theoretical Computer Science, vol. 47, Cambridge University Press, Cambridge, 1998.
[73] G. Rozenberg, F.W. Vaandrager (Eds.), Lectures on Embedded Systems, Lecture Notes in Computer Science, vol. 1494,

Springer, Berlin, 1998.
[74] R. Segala, R. Gawlick, J.F. Sogaard-Andersen, N.A. Lynch, Liveness in timed and untimed systems, Information and

Computation 141 (2) (1998) 119–171.
[75] M. Smith, Formal verification of communication protocols, in: R. Gotzhein, J. Bredereke (Eds.), Formal Description

Techniques IX: Theory, Applications, and Tools FORTE/PSTV’96: Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols, and Protocol Specification, Testing, and Verification,
Kaiserslautern, Germany, October, 1996, Chapman & Hall, London, 1996, pp. 129–144.

[76] M. Smith, Formal verification of TCP, in: Proceedings of The Second Technical Conference on Telecommunications R&D
in Massachusetts, Lowell, MA, March, 1996, pp. 279–299.

[77] M. Smith, Reliable message delivery and conditionally-fast transactions are not possible without accurate clocks,
in: Proceedings of the 17th Annual ACM Symposium on the Principles of Distributed Computing, June, 1998,
pp. 163–171.

N. Lynch et al. / Information and Computation 185 (2003) 105–157 157

[78] J. Sogaard-Andersen, S. Garland, J. Guttag, N.A. Lynch, A. Pogosyants, Computer-assisted simulation proofs, in: C.
Courcoubetis (Ed.), Proceedings of the 5th International Conference on Computer Aided Verification, Elounda, Greece,
Lecture Notes in Computer Science, vol. 697, Springer, Berlin, 1993, pp. 305–319.

[79] E.D. Sontag, Mathematical control theory – deterministic finite dimensional systems, Texts in Applied Mathematics, vol.
6, Springer, Berlin, 1990.

[80] F.W. Vaandrager, J.H. van Schuppen (Eds.), Proceedings Second International Workshop on Hybrid Systems: Computation
and Control (HSCC’99), Berg en Dal, The Netherlands, Lecture Notes in Computer Science, vol. 1569, Springer, Berlin,
1999.

[81] H.B. Weinberg, Correctness of vehicle control systems: a case study, Master’s thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology, Cambridge, February, 1996, Also, MIT/LCS/TR-
685.

[82] H.B. Weinberg, N.A. Lynch, Correctness of vehicle control systems: a case study, Proceedings of the 17th IEEE Real-Time
Systems Symposium (RTSS’96), Washington, DC, IEEE Computer Society Press, Silver Spring, MD, 1996, pp. 62–72.

[83] H.B. Weinberg, N.A. Lynch, N. Delisle, Verification of automated vehicle protection systems, in: Alur et al. [9], 101–
113.

