
On the Borowsky-Gafni Simulation Algorithm
(Extended Abstract)

Nancy Lynch�
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

lynch@theory.lcs.mit.edu

Sergio Rajsbaumy
Instituto de Matemáticas, UNAM

Ciudad Universitaria
D.F. 04510, México

rajsbaum@servidor.unam.mx

Abstract

The first precise description of a version of the Borowsky-
Gafni fault-tolerant simulation algorithm is given, along
with a careful description of what it accomplishes and a
proof of correctness. The algorithm implements a notion of
fault-tolerant reducibility between decision problems. This
notion of reducibility is defined, and examples of its use are
provided.

The algorithm is presented and verified in terms of I/O
automata. The presentation has a great deal of interest-
ing modularity, expressed by I/O automaton composition
and both forward and backward simulation relations. Com-
position is used to include a safe agreement module as a
subroutine. Forward and backward simulation relations
are used to view the algorithm as implementing a multi-try
snapshot strategy.

1 Introduction

Consider a read/write asynchronous shared memory sys-
tem. In [3], Borowsky and Gafni describe an algorithm
that allows a set of f + 1 processes, any f of which may
exhibit stopping failures, to “simulate” a larger number n
of processes, also with at most f failures. In the n-processk-set-agreement problem [6], all n processes propose val-
ues and decide on at most k of the proposed values. The
simulation algorithm is used in [3] to convert an arbitraryk-fault-tolerant n-process solution for the k-set-agreement
problem into a wait-free k+1-process solution for the same�Supported by Air Force Contract AFOSR F49620-92-J-0125, NSF
contract 9225124CCR, and DARPA contracts N00014-92-J-4033 and
F19628-95-C-0118.yPart of this work was done at the Laboratory for Computer Science
of MIT and at the Cambridge Research Laboratory of DEC. Supported by
DGAPA and CONACYT Projects.

problem. A wait-free algorithm is one in which any non-
failing process terminates, regardless of the failure of any
number of the other processes. Since the k + 1-process k-
set-agreement problem has been shown to have no wait-free
solution [3, 8, 12], this transformation implies that there is
no k-fault-tolerant solution to then-process k-set-agreement
problem, for any n. Other applications of the simulation al-
gorithm appear in [4] and in [5].

These initial examples suggest that the Borowsky-Gafni
simulation can become a powerful tool for proving solvabil-
ity and unsolvability results for fault-prone asynchronous
systems. However, in order for this to happen, it must be
clear exactly what the simulation guarantees. Borowsky and
Gafni’s presentation is brief and informal, and does not in-
clude a careful specification of what the algorithm provides
to its users. In fact, the emphasis in [3] is mainly on the
application to the k-set-agreement problem rather than on
the simulation itself.

We began this research with the modest aim of stating and
proving precise correctness guarantees for the Borowsky-
Gafni simulation algorithm, using the I/O automaton model
and standard proof techniques (invariants, simulation rela-
tions, composition, etc.). However, the job turned out to be
more difficult than we expected, because the description in
[3] left some ambiguities that we needed to resolve.1 The fi-
nal product of our work is a complete and careful description
of a version of the Borowsky-Gafni simulation algorithm,
plus a careful description of what it accomplishes, plus a
proof of correctness.

In order to specify what the simulation accomplishes,
we define a notion of fault-tolerant reducibility between de-
cision problems, and show that the algorithm implements
this reducibility, in a precise sense. Although this notion

1For example, the read/write shared memory model that we believe
is intended in [3] turns out not to provide enough coherence among the
data read by different processes. In order to rectify this, we switched to
an atomic snapshot memory model, which can be done without loss of
generality.

of reducibility is quite natural, it is specially tailored to
the Borowsky-Gafni simulation algorithm; it does not seem
suitable as a general notion of reducibility between decision
problems. We give some examples of pairs of decision prob-
lems that do and do not satisfy this reducibility. For exam-
ple, the n-process k-set-agreement problem is f -reducible
to the n0-process k0-set-agreement problem if k � k0 andf � min fn; n0g. (The particular case where n = k+ 1 andf = k = k0 was used in [3].) On the other hand, these prob-
lems are not reducible if k � f < k0. Moreover, we only
know trivial instances of the renaming problem that satisfy
the reducibility. The moral is that one must be careful in
applying the simulation – it does not work for all pairs of
problems, but only those that satisfy the reducibility.

We present and verify the algorithm in terms of I/O au-
tomata [10]. The presentation has a great deal of interesting
modularity, expressed by I/O automaton composition and
both forward and backward simulation relations (see [11],
for example, for definitions). Composition is used to include
a safe agreement module, a simplification of one in [3], as
a subroutine. Forward and backward simulation relations
are used to view the algorithm as implementing a multi-try
snapshot strategy. The most interesting part of the proof
is the safety argument, which is handled by the forward
and backward simulation relations; once that is done, the
liveness argument is straightforward.

Some of the formal descriptions and proofs are omitted
from this extended abstract.

2 The Model

The underlying model is the I/O automaton model of
Lynch and Tuttle [10], as described, for example, in Chapter
8 of [9]. Briefly, an I/O automaton is a simple state machine
whose transitions are labelled with actions. Actions are
classified as input, output, or internal. The automaton need
not be finite-state, and may have multiple start states. For
expressing liveness, each automaton is equipped with a task
structure (formally, a partition of its non-input actions), and
the execution is assumed to give fair turns to each task.

Most of the systems in this paper are asynchronous shared
memory systems, as defined, for example, in Chapter 9 of
[9]. Briefly, ann-process asynchronousshared memory sys-
tem consists of n processes interacting via instantaneously-
accessible shared variables. We allow finitely many or in-
finitely many shared variables. (Allowing infinitely many
shared variables is a slight generalization over what appears
in [9], but it does not affect any of the properties we require.)
Formally, we model the system as a single I/O automaton,
whose state consists of all the process local state informa-
tion plus the values of the shared variables, and whose task
structure respects the division into processes. To model pro-
cess stopping failures, we stipulate that each process i in the

system has a stopi input action whose effect is to disable all
future non-input actions involving that process.

In most of this paper, we focus on shared memory systems
with snapshot shared variables. A snapshot variable for ann-process system takes on values that are length n vectors
of elements of some basic data type R. It is accessible by
update and snap operations. An update(i; r) operation has
the effect of changing the i’th component of the vector tor; we assume that it can be invoked only by process i. A
snap operation can be invoked by any process; it returns the
entire vector.

As we have defined it, a snapshot system may have more
than one snapshot shared variable. However, any system
with more than one snapshot variable (even with infinitely
many snapshot variables) can easily be “implemented” by a
system with only a single snapshot variable, with no change
in any externally-observable behavior (including behavior
in the presence of failures) of the system. Likewise, a sys-
tem using snapshot shared memory can be “implemented”
in terms of single-writer multi-reader read/write shared vari-
ables, again with no change in externally-observable behav-
ior; see, e.g., [1] for a construction.

3 Decision Problems and Fault-Tolerant Re-
ducibility

First we define decision problems and say what it means
for a system to solve a decision problem (e.g. [8]). Then
we define the fault-tolerant reducibility between decision
problems.

A relation from X to Y is a subset of X � Y . A relationR from X to Y is total if for every x 2 X, there is somey 2 Y such that (x; y) 2 R. We write R(x) as shorthand
for fy : (x; y) 2 Rg. For a relation R from X to Y , and a
relationG fromY toZ,R�G denotes relational composition.

Let V be an arbitrary set of values; we use the same V
as the input and output domain for all the decision problems
in this paper. An n-port decision problem D = hI;O;∆i
consists of a set of input vectors, I, I � V n, a set of output
vectors,O, O � V n, and ∆, a total relation from I to O.

Let D = hI;O;∆i be an n-port decision problem; we
define what it means for an I/O automaton A (in particular,
a shared memory system) to solve D. A is required to have
inputs init(v)i and outputs decide(v)i, where v 2 V and
1 � i � n. We consider A in conjunction with any user
automaton U that submits at most one initi on each port i.
We require the following conditions:

Well-formedness: A only produces a decidei if there is a
preceding initi, andA never responds more than once
on the same port.

Correct answers: If init events occur on all ports, forming

a vectorw 2 I, then the outputs that appear in decide
events can be completed to a vector in ∆(w).

We say that A solvesD provided that for anyU , the combi-
nation of A and U guarantees well-formedness and correct
answers. In addition, we consider a resilience condition:f -failure termination: In any fair execution of A with U ,

if init events occur on all ports and stop events occur
on at most f ports, then a decide occurs on every
non-failing port.A is said to guarantee wait-free termination provided that

it guarantees n-failure termination (or, equivalently, n � 1-
failure termination).

A Fault-Tolerant Reducibility

We define the notion of f -reducibility from an n-port
decision problem D = hI;O;∆i to an n0-port decision
problem D0 = hI 0;O0;∆0i, where 0 � f � n0.

The reducibility is motivated by the way the Borowsky-
Gafni simulation operates. In that simulation, a shared mem-
ory system P simulates an f -fault-tolerant system P 0 that
solvesD0. The simulating systemP is supposed to solveD,
and so it obtains an input vector w 2 I, one component per
process. Each process i, based on its own input value w(i),
determines a “proposed” input vector gi(w(i)) 2 I 0. The
actual input for each simulated process j of P 0 is chosen ar-
bitrarily from among the jth components of the proposed in-
put vectors. Thus, for eachw 2 I, there is a setG(w) � I 0,
of possible input vectors of the simulated system P 0.

When the “subroutine” that solvesP 0 produces a result (a
vector in O0), different processes of P can obtain different
partial information about this result. However, with at mostf stopping failures, the only difference is that each process
can miss at most f components; the possible variations are
captured by the F relation below. Then each process i of P
uses its partial information x(i) to decide on a final value,hi(x(i)). The values produced in this way form a vector
in O, according to the H relation. The formal definitions
follow.

For a setW of length n vectors and index i 2 f1; : : : ; ng,W (i) denotes fw(i) : w 2 Wg, and W̄ denotes the Carte-
sian productW (1)�W (2)� : : :�W (n). Thus, W̄ consists
of all the vectors that can be assembled from vectors in W
by choosing each component to be the corresponding com-
ponent of some vector in W .

For a length n vector w of values in V , and 0 � f � n,
viewsf (w) denotes the set of length n vectors over V [f?g
that are obtained by changing at most f of the components
of w to?. If W is a set of length n vectors, then viewsf (W)
denotes [w2Wfviewsf (w)g.

Our reducibility is defined in terms of three auxiliary
relations:

1. G = G(g1; g2; : : : ; gn), a total relation from I to I 0;
here, each gi is a function from I(i) to I 0.
For any w 2 I, let W � I 0 denote the set of all
vectors of the form gi(w(i)), 1 � i � n, and defineG(w) = W̄ . We assume that for eachw 2 I,G(w) �I 0.

2. F = F (f), a total relation fromO0 to (viewsf (O0))n.

For any w 2 O0, F (w) = (viewsf (w))n.

3. H = H(f; h1; h2; : : : ; hn), a total (single-valued) re-
lation from (viewsf(O0))n to V n; here, each hi is a
function from viewsf (O0) to O(i).
For any x 2 (viewsf (O0))n, H(x) contains exactly
the length n vector w such that w(i) = hi(x(i)) for
every i.

Definition 3.1 (f -Reducibility)
Suppose that D = hI;O;∆i is an n-port decision prob-
lem, D0 = hI 0;O0;∆0i is an n0-port decision problem, and
0 � f � n0. Then D is f -reducible to D0 via relationsG = G(g1; g2; : : : ; gn) and H = H(f; h1; h2; : : : ; hn),
written as D �G;Hf D0, provided that G � ∆0 � F �H � ∆.

The following examples give some pairs of decision
problems that do and do not satisfy the reducibility. Be-
cause the reducibility expresses the power of the Borowsky-
Gafni simulation, the examples indicate situations where the
simulation can and cannot be used.
Example 1: (n; k)-set agreement is f -reducible to (n0; k0)-
set agreement for k � k0, f < minfn; n0g.

For v 2 V , define gi(v) to be the vector vn0
. Also, forw 2 viewsf(V n0), define hi(w) to be the first entry of w

different from ?. It is easy to check that Definition 3.1 is
satisfied.
Example 2: (n; k)-set agreement is not f -reducible to(n0; k0)-set agreement if k � f < k0.

If this reducibility held, then the main theorem of this
paper, Theorem 6.9, together with the fact that (n0; k0)-set
agreement is solvable when f < k0 [6], would imply the
existence of an f -fault-tolerant algorithm to solve (n; k)-set-
agreement. But this contradicts the results of [3, 7, 8, 12].
Example 3: (2; 2)-renaming (2-process renaming to a 2-
valued name space) is 1-reducible to (n0; n0)-renaming, for
any n0 � 2. However, we cannot (yet) say anything about
other cases of the renaming problem.

4 A Safe Agreement Module

The simulation protocol uses a component that we call
a safe agreement module. This module solves a variant
of the ordinary agreement problem and guarantees failure-
free termination. In addition, it guarantees a nice resiliency

property: its susceptibility to failure on each port is limited
to a designated “unsafe” portion of an execution. If no
failure occurs during these unsafe intervals, then decisions
are guaranteed on all non-failing ports on which invocations
occur.

Formally, we assume that the module communicates with
its “users” on a set of n ports numbered 1; : : : ; n. Each porti supports input actions of the form propose(v)i, v 2 V , by
which a user at port i proposes specific values for agreement,
and output actions of the form safei and agree(v)i, v 2 V .
The safei action is an announcement to the user at port i that
the unsafe portion of the execution corresponding to port i
has been completed, and the agree(v)i is an announcement
on port i that the decision value is v. In addition, we assume
that port i supports an input action stopi, representing a
stopping failure.

We say that a sequence of proposei, safei and agreei
actions is well-formed for i provided that it is a prefix of a
sequence of the form propose(v)i; safei; agreei. We assume
that the users preserve well-formedness on every port, i.e.,
there is at most one proposei event for any particular i. Then
we require the following properties of any execution of the
module together with its users:

Well-formedness: For any i, the interactions between the
module and its users on port i are well-formed for i.

Agreement: All agreement values are identical.

Validity: Any agreement value must be proposed.

In addition, we require two liveness conditions, which are
stated in terms of fair executions. The first condition says
that any propose event on a non-failing port eventually re-
ceives a safe announcement. This guarantee is required in
spite of any failures on other ports.

Wait-free progress: In any fair execution, for any i, if a
proposei event occurs and no stopi event occurs, then
a safei event occurs.

The second liveness condition says that if the execution does
not remain unsafe for any port, then any propose event on a
non-failing port eventually receives an agreeannouncement.

Safe termination: In any fair execution, if there is no j
such that proposej occurs and safej does not occur,
then for any i, if a proposei event occurs and no stopi
event occurs, then agreei occurs.

An I/O automaton with the appropriate interface is said to
be a safe agreement module provided that it guarantees all
the preceding conditions. The following is an informal de-
scription of a simple design (using snapshot shared memory)
for a safe agreement module. The formal description in the
Appendix is a simplification of the one in [3].

The snapshot shared memory contains a val component
and a level component for each process i. When processi receives a propose(v)i, it records the value v in its val
component and raises its level to 1. Then i uses a snapshot
to determine the level’s of the other processes. If i sees that
any process has attained level = 2, then it backs off and
resets its level to 0, and otherwise, it raises its level to 2.

Next, process i enters a wait loop, repeatedly taking snap-
shots until it sees a situation where no process has level = 1.
When this happens, the set of processes with level = 2 is
nonempty. Let v be the val value of the process with the
smallest index with level = 2. Then process i performs an
agree(v)i output.

5 The Basic Borowsky-Gafni Simulation Al-
gorithm

In this section, we present the basic algorithm as an n-
process snapshot shared memory system Q with a single
snapshot object. This algorithm is assumed to interact not
only with the usual environment, via init and decide actions,
but also with a two-dimensional array of safe agreement
modules Aj;`, j 2 f1; : : : ; n0g, ` 2 N , N = f0; 1; 2; : : :g.
In the final version of the simulation algorithm, system P ,
these safe agreement modules are replaced by implementa-
tions and the whole thing implemented by a snapshot shared
memory system with a single object.

We assume that the simulated system,P 0, is ann0-process
snapshot shared memory system. It has only a single snap-
shot shared variable, called mem0. We assume that each
component of mem0 takes on values in a setR, with a distin-
guished initial value r0. Thus, the snapshot shared variable
mem0 has a unique initial value, consisting of r0 in every
component. Furthermore, we assume that P 0 solves a deci-
sion problem D0, guaranteeing f -failure termination.

We make some simplifying assumptions about P 0, with-
out loss of generality: We assume that for each process,
there is only one initial state, only one task, and, in any
state, at most one non-input action enabled. Moreover, for
any action performed from any state, we assume that there is
a uniquely-defined next state. Also, the initial state of each
process is “quiescent” – no non-input actions are enabled
(until an input arrives).

For any state s of a process j ofP 0, define nextop(s) to be
an element of f“init”;“snap”;“local”g [f(“update”; r) :r 2 Rg [f(“decide”; v) : v 2 V g. For any states of a process j such that nextop(s) = “init” and anyv 2 V , define trans-init(s; v) to be the state that results
from applying init(v)j to s. For any state s of a processj such that nextop(s) = “snap” and any w 2 Rn0

, define
trans-snap(s;w) to be the state that results from performing
the snapshot operation from state s, with the return value for
the snapshot being w. Finally, for any state s of a process

j such that nextop(s) is an “update”, “local”, or “decide”
pair, define trans(s) to be the state of j that results from
performing the operation from state s.

The system Q is assumed to interact with eachAj;` via outputs propose(w)j;`;i and inputs safej;`;i and
agree(w)j;`;i. Here, we subscript the safe agreement ac-
tions by the particular instance of the protocol. For ` = 0,
we have w 2 V . For ` 2 N+, we have w 2 Rn0

.
System Q simulates the n0 processes of P 0, by using a

safe agreement protocol Aj;0 to allow all processes of Q
to agree on the input of each process j, and also a safe
agreement protocol Aj;`, ` 2 N+ to allow all processes to
agree on the value returned by the `’th simulated snapshot
statement of each process j.

Each process i ofQ simulates the steps of each process j
of P 0 in order, waiting for each to complete before going on
to the next one. Process i works concurrently on simulating
steps of different processes of P 0. However, it is only
permitted to be in the “unsafe” portion of its execution for
one process j of P 0 at a time.

The shared memory of Q is a single snapshot variable
mem, contains a portion mem(i) for each process i of Q. In
its component, process i keeps track of the latest values in
all the registers of P 0, according to i’s local simulation ofP 0. Along with each such value, sim-mem(j), it keeps a tag
sim-steps(j), which counts the number of steps that it has
simulated for j, up to and including the latest step at which
process j of P 0 updated its register.

Simulation System Q:
Shared variables:

mem, a length n snapshot value; for each i, mem(i) has
components:

sim-mem, a vector in Rn0
, initially everywhere r0

sim-steps, a vector of N , initially everywhere 0

Actions of i:
Input:

init(v)i, v 2 V
safej;`;i, ` 2 N
agree(v)j;`;i, ` = 0 and v 2 V ,
or ` 2 N+ and v 2 Rn

Output:
decide(v)i, v 2 V
propose(v)j;`;i, ` = 0 and v 2 V ,
or ` 2 N+ and v 2 Rn0

Internal:
sim-updatej;i
snapj;i
sim-localj;i
sim-decidej;i

States of i:
input 2 V [fnullg, initially null
reported, a Boolean, initially false

for each j:
sim-state(j), a state of j, initially the initial state
sim-steps(j) 2 N , initially 0
sim-snaps(j) 2 N , initially 0
status(j) 2 fidle; propose; unsafe; safeg, initially idle
sim-mem-local 2 Rn0

, initially arbitrary
sim-decision(j) 2 V [fnullg, initially null

Transitions of i:
init(v)i

Effect:
input := v

propose(v)j;0;i
Precondition:

status(j) = idle6 9k : status(k) = unsafe
nextop(sim-state(j)) = “init”
input 6= nullv = gi(input)(j)

Effect:
status(j) := unsafe

safej;`;i
Effect:

status(j) := safe

agree(v)j;0;i
Effect:

sim-state(j) :=
trans-init(sim-state(j); v)

sim-steps(j) := 1
status(j) := idle

snapj;i
Precondition:

nextop(sim-state(j)) = “snap”
status(j) = idle

Effect:
sim-mem-local(j) := latest(mem)
status(j) := propose

propose(w)j;`;i, ` 2 N+
Precondition:

status(j) = propose6 9k : status(k) = unsafe
sim-snaps(j) = `� 1w = sim-mem-local(j)

Effect:
status(j) := unsafe

agree(w)j;`;i, ` 2 N+
Effect:

sim-state(j) :=
trans-snap(sim-state(j); w)

sim-steps(j) := sim-steps(j) + 1
sim-snaps(j) := sim-snaps(j) + 1
status(j) := idle

sim-updatej;i
Precondition:

nextop(sim-state(j)) = (“update”; r)
Effect:

sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1
mem(i):sim-mem(j) := r
mem(i):sim-steps(j) := sim-steps(j)

sim-localj;i
Precondition:

nextop(sim-state(j)) = “local”
Effect:

sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1

sim-decidej;i
Precondition:

nextop(sim-state(j)) = (“decide”; v)
Effect:

sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1
sim-decision(j) := v

decide(v)i
Precondition:

reported = falsejsim-decisionj � n0 � fv := hi(sim-decision)
Effect:

reported := true

Tasks of i:fdecide(v)i : v 2 V g
for each j:

all non-input actions involving j
A function latest is used to combine the information in

the various components of mem to produce a single lengthn0 vector of R values, representing the latest values written
by all the processes. This function operates “pointwise” for
each j, selecting the sim-mem(j) value associated with the
highest sim-steps(j), which must be unique.

When process i simulates a decision step of j, it stores the
decision value in the local sim-decision(j). Once process i
has simulated decision steps of at least n0�f processes, i.e.jsim-decisionj � n0 � f , it computes a decision value v for
itself, using the function hi, that is, v := hi(sim-decision).

The specification of safe-agreement stipulates that if a
non-failing process i executes a proposej;l;i action it will get
an agreej;l;i action, unless some other process i0, simulating
step l of j, fails when “unsafe.” In this case i0 could block
the simulation of j. However, i0 is allowed to participate in
this safe agreement only if it is not currently in the “unsafe”
portion of any other safe agreement execution. That is, i0 can
block at most one simulated process. In any execution with
at most f simulators failing, at most f simulated processes
are blocked, and each non-failing simulator i can complete

the simulation of at least n0� f processes. Therefore, sinceP 0 satisfies f -failure termination, a non-failing simulator
will eventually execute its decide step. Thus the whole
system satisfies f -failure termination.

6 Correctness Proof

In our proofs of safety properties for the main simulation
algorithm, we would like to use invariants involving the
states of the safe agreement modules. Since we do not want
these invariants to depend on any particular implementation
of safe agreement, we add abstract state information, in the
form of history variables that are definable for all correct
safe agreement implementations:

proposed-vals � V , initially ;
agreed-val 2 V [null, initially null

proposed-procs � f1; : : : ; ng, initially ;
agreed-procs � f1; : : : ; ng, initially ;

These history variables are maintained by adding the fol-
lowing new effects to actions:

propose(v)i
Effect:

proposed-vals := proposed-vals [fvg
proposed-procs := proposed-procs [fig

agree(v)i
Effect:

agreed-val := v
agreed-procs := agreed-procs [fig

For the safety part of the proof, we use three levels of
abstraction, related by forward and backward simulation
relations. Informally, forward and backward simulation re-
lations are techniques to show that one I/O automaton im-
plements another [11]; they have nothing to do with “sim-
ulations” in the sense of the Borowsky-Gafni simulation
algorithm.

6.1. The SimpleSpec Automaton

Our highest level is expressed by the SimpleSpec automa-
ton, which directly simulates system P 0, in a centralized
manner. Repeatedly, a process j of P 0 is chosen nondeter-
ministically and its next step simulated. The only compli-
cation is the way of choosing the inputs for theP 0 processes
and the outputs for the Q processes, using the G and H
relations. In order to determine an input v for a process j ofP 0, a process i is chosen nondeterministically from among
those that have received their inputs, and v is set to the j-th
component of gi(input(i)). At any time after at least n0� f
of the j processes have produced decision values, outputs
can be produced, using the functions hi.

We give a formal description of the transitions of the
SimpleSpec automaton.

SimpleSpec:

init(v)i
Effect:

input(i) := v
sim-initj

Precondition:
nextop(sim-state(j)) = “init”
for some i

input(i) 6= nullv = gi(input(i))(j)
Effect:

sim-state(j) := trans-init(sim-state(j); v)
sim-snapj

Precondition:
nextop(sim-state(j)) = “snap”

Effect:
sim-state(j) :=

trans-snap(sim-state(j); sim-mem)
sim-updatej

Precondition:
nextop(sim-state(j)) = (“update”; r)

Effect:
sim-state(j) := trans(sim-state(j))
sim-mem(j) := r

sim-localj
Precondition:

nextop(sim-state(j)) = “local”
Effect:

sim-state(j) := trans(sim-state(j))
sim-decidej

Precondition:
nextop(sim-state(j)) = (“decide”; v)

Effect:
sim-state(j) := trans(sim-state(j))
sim-decision(j) := v

decide(v)i
Precondition:

reported(i) = falsew is a “subvector” of sim-decisionjwj � n0 � fv = hi(w)
Effect:

reported(i) := true

A sim-initj action is used to simulate an init step of pro-
cess j. To simulate any other step of j, the function nextop
is used to determine what the next operation is: “init”,
“snap”, (“update”; r), “local”, or (“decide”; v). Then the
state transition specified by P 0 is performed, using the ap-
propriate function: trans-init, trans-snap or trans. Once the

simulation of at least n0 � f processes has been completed
a decision value for i can be produced, using hi.
Lemma 6.1 If P 0 solves D0 and D �G;Hf D0, then
SimpleSpec solves D.

6.2. The DelayedSpec Automaton

Our second level is the DelayedSpec automaton. This
is a slight modification of SimpleSpec, which replaces each
snapshot step of a process j of P 0 (sim-snapj) with a series
of snap-tryj steps during which snapshots are taken and
their values recorded, followed by one snap-succeedj step
in which one of the recorded snapshot values is chosen for
actual use.

The DelayedSpec automaton is the same as SimpleSpec,
except for the snapshot attempts. There is an extra state
component snap-set(j), which keeps track of the set of
snapshot vectors that result from doing snap-tryj actions.
The sim-snap actions are omitted. The new actions are:

snap-tryj
Precondition:

nextop(sim-state(j)) = “snap”
Effect:

snap-set(j) := snap-set(j) [fsim-memg
snap-succeedj

Precondition:
nextop(sim-state(j)) = “snap”w 2 snap-set(j)

Effect:
sim-state(j) := trans-snap(sim-state(j); w)
snap-set(j) := ;

It should not be hard to believe that DelayedSpec “im-
plements” SimpleSpec, in the sense of trace inclusion – the
result of a sequence of snap-try steps plus one snap-succeed
step is the same as if a single sim-snap occurred at the point
of the selected snapshot. (The “trace” of an execution is just
the sequence of external actions occurring in that execution.
Here, the external actions are just the init and decide ac-
tions) Formally, we use a backward simulation to prove the
implementation relationship. The reason for the backward
simulation is that the decision of which snapshot is selected
is made after the point of the simulated snapshot step.

The backward simulation relation we use is the relationb from states of DelayedSpec to states of SimpleSpec that
is defined as follows. If s is a state of DelayedSpec and u
is a state of SimpleSpec, then (s; u) 2 b provided that the
following all hold:

1. u:sim-mem = s:sim-mem.

2. For each i,
(a) u:input(i) = s:input(i).
(b) u:reported(i) = s:reported(i).

3. For each j,

(a) u:sim-state(j) 2 fs:sim-state(j)g [ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g.

(b) u:sim-decision(j) = s:sim-decision(j).
That is, all state components are the same in u and s, with
the sole exception that u:sim-state(j) 2 fs:sim-state(j)g [ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g, i.e.,u:sim-state(j) is either s:sim-state(j), or else the result of
applying one of the snapshot results to s:sim-state(j). Each
sim-stepj step of SimpleSpec is “implemented” by a chosen
snap-tryj step of Delayed Spec.

Lemma 6.2 Relation b is a backward simulation from
DelayedSpec to SimpleSpec.

Sketch of proof: Let (s; �; s0) be a step of DelayedSpec,
and let (s0; u0) 2 f . We produce a corresponding execution
fragment of SimpleSpec, from u to u0, with (s; u) 2 b. The
construction is in cases based on the type of action. The
interesting cases are snap-try and snap-succeed:

1. � = snap-tryj .
Let x denote s:sim-mem. If u0:sim-state(j) =
trans-snap(s0:simstate(j); x), then let the corre-
sponding execution fragment be (u; sim-snapj ; u0),
whereu is the same asu0, except thatu:sim-state(j) =s:sim-state(j). This is an execution fragment becauses:sim-state(j) = s0:sim-state(j).
Otherwise, let the corresponding execution frag-
ment be just the single state u0. Then we know
that, either u0:sim-state(j) = s0:sim-state(j), oru0:sim-state(j) 2 ftrans-snap(s0:sim-state(j); w) :w 2 s0:snap-set(j); w 6= xg. We need
to know that u0:sim-state(j) is in the setfs:sim-state(j)g [ftrans-snap(s:sim-state(j); w) :w 2 s:snap-set(j)g. But this follows easily
from the facts that s:sim-state(j) = s0:sim-state(j),s:snap-set(j) � s0:snap-set(j) � fxg, and thatu0:sim-state(j) 6= trans-snap(s0:simstate(j); x).

2. � = snap-succeedj .

The corresponding execution fragment consists of
only the single stateu0. We must show that (s; u0) 2 b.
Fix x 2 s:snap-set(j) to be the snapshot value se-
lected in the step we are considering.

Everything carries over immediately, except for
the equation involving the u0:sim-state(j) compo-
nent. For this, we know that u0:sim-state(j) 2fs0:sim-state(j)g [ftrans-snap(s0:sim-state(j); w) :w 2 s0:snap-set(j)g. But by the code for
snap-succeedj , the set s0:snap-set(j) is empty. So
it must be that u0:sim-state(j) = s0:sim-state(j).
Now, the code implies that s0:sim-state(j) =
trans-snap(s:sim-state(j); x), which implies that

u0:sim-state(j) = trans-snap(s:sim-state(j); x).
Therefore, u0:sim-state(j) 2 fs:sim-state(j)g [ftrans-snap(s:sim-state; w) : w 2 s:snap-setg, as
needed.

Corollary 6.3 Every trace of DelayedSpec is a trace of
SimpleSpec.

6.3. The System Q with Safe Agreement Modules

Finally, our third level is the system Q, composed with
arbitrary safe agreement modules (and with the propose
and agree actions reclassified as internal). We show that
this system “implements” DelayedSpec in the sense of trace
inclusion. The idea is that individual processes of Q that
are simulating a snapshot step of a process j of P 0 “try” to
perform the simulated snapshot at the point where they take
their actual snapshots. At the point where the appropriate
safe agreement module chooses the winning actual snapshot,
the simulated snapshot “succeeds”. As in the DelayedSpec,
this choice is made after the snapshot attempts.

Formally, we use a weak forward simulation. The word
“weak” simply indicates that the proof uses invariants. We
need the invariants for the specification as well as for the
proof of the forward simulation. Strictly speaking, the defi-
nition of the forward simulation we use is ambiguous with-
out the invariants.

The basic invariant is a “coherence” invariant. It does
require us to talk about a run, but not of the entire system.
We only look at an execution of each process j of P 0 (with
initial values and snapshot values arriving from the safe-
agreement protocols). All we claim is that it is an execution
of the individual process of P 0. That is not too difficult
to see just by simple following of the code. The argument
about a global execution of the entire systemP 0 falls into the
simulation proof in the next section, rather than an invariant.

Express a run of process j in P 0 in the forms0; c1; s1; c2; s2; : : : ; sk, where each si is a state of pro-
cess j, and each ci is a “change”, i.e., one of the fol-
lowing: (“init”; v), (“snap”; w), (“update”; r), “local”,(“decide”; v); the first state is the unique start state, and all
the changes are correct.

The key coherence invariant is the following. The in-
variant is asserting consistency among three things: the run
of an individual process, �, the information kept by the i
processes, and the information in the safe agreement mod-
ules. Invariant 1 relates the information of the processes
and of the safe agreement, and therefore, it does not involve�. Invariants 2 and 3 relate the process information and �,
and the last two invariants relate � and safe-agreement.

Lemma 6.4 In every reachable state of Q with abstract
safe agreement modules, for each j, there is a run � =s0; c1; s1; : : : ; sk of process j such that:

1. For any i:
(a) sim-steps(j)i � 1 if and only if i 2

agreed-procsj;0.

(b) sim-snaps(j)i � ` if and only if i 2
agreed-procsj;`.

(c) i 2 proposed-procsj;0 � agreed-procsj;0 if and
only if nextop(sim-state(j)i) = “init” and
status(j)i 2 funsafe; safeg.

(d) For any` � 1, i 2 proposed-procsj;` � agreed-procsj;`
if and only if nextop(sim-state(j)i) = “snap”,
sim-snaps(j)i = ` � 1, and status(j)i 2funsafe; safeg.

2. k = maxifsim-steps(j)ig.

3. For any i, if sim-steps(j)i = ` then:

(a) sim-state(j)i = s`.
(b) sim-snaps(j)i is the number of snap’s amongc1; : : : ; c`.
(c) mem(i):sim-mem(j) is the value written in the

last update among c1; : : : ; c`, if any, else r0.

(d) mem(i):sim-steps(j) is the number of the last
update among c1; : : : ; c`, if any, else 0.

4. (a) (“init”; v) appears in � if and only if
agreed-valj;0 = v.

(b) (“snap”; w) is the `’th snapshot in � if and only
if agreed-valj;` = w.

5. If proposed-valsj;` 6= ; and agreed-valj;` = null then

(a) If ` = 0 then � consists of only one state s, and
nextop(s) = “init”.

(b) If ` � 1, then nextop(s) = “snap”, where s is
the final state of �, and the number of snaps in� is `� 1.

We need a consistency invariant relating the
sim-mem-local values for “current” processes to the
proposed-vals:

Lemma 6.5 Let k = maxifsim-steps(j)ig, and i0 an in-
dex achieving the maximum. If nextop(sim-state(j)i0) =
“snap” then proposed-valsj;` = fsim-mem-local(j)i :
sim-steps(j)i = k and status(j)i 2 fsafe; unsafegg, where` � 1 = sim-snaps(j)i0.

The forward simulation relation we use is the relation f
from states of Q composed with safe agreement modules to
states of DelayedSpec that is defined as follows. If s is a
state of the Q system and u is a state of DelayedSpec, then(s; u) 2 f provided that the following all hold:

1. u:sim-mem = latest(s:mem).
2. For every i,

(a) u:input(i) = s:inputi.
(b) u:reported(i) = s:reportedi.

3. For every j,

(a) u:sim-state(j) = s:sim-state(j)i, where i is the index of
the maximum value of s:sim-steps(j).

(b) If there exists i with s:sim-decision(j)i 6= null thenu:sim-decision(j) = s:sim-decision(j)i for some such i,
else u:sim-decision(j) = null.

(c) If nextop(u:sim-state(j)) = “snap” then u:snap-set(j) =fs:sim-mem-locali(j) : s:sim-steps(j)i =
maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg elseu:snap-set(j) = ;.

Thus, the simulated memory u:sim-mem is determined by
the latest information that any of the processes of Q have
about the memory, and likewise for the simulated pro-
cess states and simulated decisions. Also, the snapshot
sets u:snap-set(j) are determined by the snapshot values
saved in local process states, in Q. Each snap-try step of
DelayedSpec is “implemented” by a current snapofQ. Each
snap-succeed step is implemented by the first agree step of
the appropriate safe agreement module, and likewise for
each sim-init step. Each sim-update step is implemented by
the first step at which some process simulates that update,
and likewise for the other types of simulated process steps.

Lemma 6.6 Relation f is a weak forward simulation fromQ composed with safe agreement modules to DelayedSpec.

Sketch of proof: Let (s; �; s0) be a step of Q, and let u be
any state of DelayedSpec such that (s; u) 2 f . We produce
an execution fragment of DelayedSpec, from u to a state u0,(s0; u0) 2 f . The proof is by cases, according to what � is.
These are the most interesting cases.

1. � = snapj;i.
If sim-steps(j)i is the maximum value of sim-steps(j)
(in both s and s0), then this simulates snap-tryj , else
simulates no steps.

Formally, since (s; �; s0) is a step of Q,
then the precondition for � holds in s and
nextop(s:sim-state(j)i) = “snap”. In the first case,
since (s; u) 2 f , then nextop(u:sim-state(j)) =
“snap”, by 3(a) of the definition of f . Therefore,
the precondition for snap-tryj holds in u, and the cor-
responding execution fragment is (u; snap-tryj ; u0),
where u0 is the same as u except that u0:snap-set(j) =u:snap-set(j)[fu:sim-memg, is well defined.

To prove that (s0; u0) 2 f , the only non triv-
ial part of the definition of f to check is 3(c).
Since nextop(u0:sim-state(j)) = “snap”, we do
have to verify that u0 satisfies part 3(c) of the
definition of f . This follows from the fact that(s; u) 2 f . Thus u:snap-set(j) is equal to
the set fs:sim-mem-local(j)i : s:sim-steps(j)i =
maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg.
Since s0:status(j)i 6= idle, we do have to add the
value s0:sim-mem-local(j)i to the set u0:snap-set(j).
Which is done because s0:sim-mem-local(j)i =
latest(mem), from the effect of snapj;i, andu:sim-mem = latest(s:mem), since (s; u) 2 f , and
part 1 of the definition of f .

The case where sim-steps(j)i is not the maximum
value of sim-steps(j) is trivial.

2. � = agree(w)j;`;i, ` 2 N+.

If this increases the maximum value of sim-steps(j)
then it simulates snap-succeedj with a decision value
of w, else simulates no steps.

Formally, in the first case, maxtfs0:sim-steps(j)tg
is achieved only by s0:sim-steps(j)i, and hences:sim-steps(j)i = maxtfs:sim-steps(j)tg. By
Lemma 6.4(2) for state s, there is a run for j, � =s0; : : : ; sk, such that k = maxtfs:sim-steps(j)tg.
Thus s:sim-state(j)i = sk, by part(3.a) of the
Lemma. By well-formedness s:sim-snaps(j)i =` � 1. Thus, by Lemma 6.4(3.b), ` � 1 is the
number of snap’s in �. By Lemma 6.4(4.b),s:agreed-valj;` = null. Since proposed-valsj;` 6= ;,
Lemma 6.4(5.b) implies that nextop(sk) = “snap”.
Thus nextop(s:sim-state(j)i) = “snap”.

We conclude that nextop(u:sim-state(j)) = “snap”,
since (s; u) 2 f . We need to show that w 2u:snap-set(j). First notice that w 2 proposed-valsj;`
from the specification of safe-agreement. By part
3(c) of the definition of f and the fact that (s; u) 2 f ,w 2 u:snap-set(j) if w = s:sim-mem-local(j)t for
some t with s:sim-steps(j)t = s:sim-steps(j)i, ands:status(j)t 6= idle. This follows from Lemma 6.5
because w 2 proposed-valsj;`. The corresponding
execution fragment is (u; snap-succeedj ; u0), whereu0 is the same as u except that u0:sim-state(j) =
trans-snap(u:sim-state(j); w) = s0:sim-state(j)i andu0:snap-set(j) = ;, which is well defined because the
preconditions of snap-succeedj hold in u.

Finally, it is easy to verify that (s0; u0) 2 f :
we need only to check conditions 3(a) and 3(c)
of the definition of f . Clearly 3(a) holds.
For 3(c) observe that u0:snap-set(j) = ;. If
nextop(u0:sim-state(j)) 6= “snap” then 3(c) holds.

But if nextop(u0:sim-state(j)) = “snap” 3(c) also
holds, since i is the only one achieving the maximum
of maxkfs0:sim-steps(j)kg, and s0:status(j)i = idle.

The case where � does not increase the maximum
value of sim-steps(j) is simple. Here no steps are
simulated and u = u0. To see that (s0; u0) 2 f , we
need to check only that parts 3(a) and 3(c) of the
definition of f hold. This follows easily from the
fact that (s; u) 2 f , and that the maximum value of
sim-steps(j) does not change.

Corollary 6.7 Every trace of Q with safe agreement mod-
ules is a trace of DelayedSpec; therefore, every trace of Q
with safe agreement modules is a trace of SimpleSpec.

Corollary 6.7 and Lemma 6.1 yield the safety require-
ments. The liveness argument is then reasonably straight-
forward, based on the fact that each process of Q can be in
the unsafe region of code for at most one process of P 0.
Theorem 6.8 Suppose that P 0 solves D0 and guaranteesf -failure termination, and suppose that D �G;Hf D0. ThenQwith abstract safe agreement modules solvesD and guar-
antees f -failure termination.

Theorem 6.9 Suppose that P 0 solves D0 and guaranteesf -failure termination, and suppose that D �G;Hf D0. ThenP solves D and guarantees f -failure termination.

By translations back-and-forth between read/write shared
memory and snapshot shared memory, we also obtain the
same result for read/write shared memory systems.

7 Discussion

We have presented a precise description of a version
of the Borowsky-Gafni fault-tolerant simulation algorithm,
plus a careful description of what it accomplishes, plus a
proof of correctness. In particular, we have defined a notion
of fault-tolerant reducibility between decision problems,
and showed that the algorithm implements this reducibil-
ity. The reducibility is specific to the simulation algorithm;
it is not intended as a general notion of reducibility between
decision problems. An important moral of this work is that
one must be careful in applying the simulation – it does not
work for all pairs of problems, but only for those that satisfy
the reducibility.

Our formulation of the Borowsky-Gafni simulation al-
gorithm is not the most general version possible. Some in-
teresting extensions that appear simple are: (a) Allow each
process i ofQ to simulate only a (statically determined) sub-
set of the processes of P 0 rather than all the processes of P 0.

(b) Allow more complicated rules for determining the sim-
ulated inputs of P 0 and the actual outputs of Q; these rules
can include f -fault-tolerant distributed protocols among the
processes of Q. More sophisticated extensions are required
in applications in [4, 5], where algorithms with access to set
consensus objects need to be simulated2.

We believe that an important contribution of this paper
is providing the basis for the development of an interest-
ing variety of extensions to the Borowsky-Gafni simulation
algorithm.

Reducibilities between problems have proved to be use-
ful elsewhere in computer science (e.g., in recursive func-
tion theory and complexity theory of sequential algorithms),
for classifying problems according to their solvability and
computational complexity. One would expect that reducibil-
ities would also be useful in distributed computing theory,
e.g., for classifying decision problems according to their
solvability in fault-prone asynchronous systems. Our re-
ducibility appears somewhat too specially tailored to the
Borowsky-Gafni simulation algorithm to serve as a useful
general notion of reducibility. Further research is needed
to determine the limitations of this reducibility, and to de-
fine a more general-purpose notion of reducibility between
decision problems. This latter does not seem to be an easy
problem.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and
N. Shavit, “Atomic Snapshots of Shared Memory,”
Journal of the ACM, Vol. 40, No. 4, September 1993,
873–890.

[2] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David
Peleg, and Rudiger Reischuk, “Renaming in an asyn-
chronous environment,” Journal of the ACM, Vol. 37,
No. 3, July 1990, 524–548.

[3] E. Borowsky and E. Gafni, “Generalized FLP impos-
sibility result for t-resilient asynchronous computa-
tions,” in Proceedings of the 1993 ACM Symposium
on Theory of Computing, May 1993, 91–100.

[4] E. Borowsky and E. Gafni, “The implication of the
Borowsky-Gafni simulation on the set consensus hi-
erarchy,” Technical Report 930021, UCLA Computer
Science Dept., 1993.

[5] E. Borowsky and E. Gafni, “A Computability Theorem
for t-Resilient Computation Using Any Set Consensus
Objects,” manuscript, November 30, 1994.

2It is argued in [4] that this type of extension of the basic (read/write)
Borowsky-Gafni simulation algorithm is simple, by using a variant of the
safe-agreement algorithm.

[6] S. Chaudhuri, “Agreement is harder than consensus:
set consensus problems in totally asynchronous sys-
tems,” In Proceedings of the Ninth Annual ACM Sym-
posium on Principles of Distributed Computing, Au-
gust 1990, 311–234.

[7] M.J. Fischer, N.A. Lynch, M.S. Paterson, “Impossibil-
ity of distributed consensus with one faulty process,”
Journal of the ACM, Vol. 32, No. 2, April 1985, 374–
382.

[8] M.P. Herlihy and N. Shavit, “The asynchronous com-
putability theorem for t-resilient tasks,” In Proceed-
ings of the 1993 ACM Symposium on Theory of Com-
puting, May 1993, 111–120.

[9] N.A. Lynch, Distributed Algorithms, Morgan Kauf-
mann Publishers, Inc. 1996.

[10] N.A. Lynch, M.R. Tuttle, “An Introduction to in-
put/output automata,” TM-373, MIT Laboratory for
Computer Science, November 1988.

[11] Nancy Lynch and Frits Vaandrager. “Forward and
Backward Simulations – Part I: Untimed Systems,” In-
formation and Computation, Vol. 121, No. 2, Septem-
ber 1995, 214–233.

[12] M. Saks and F. Zaharoglou,“Wait-free k-set agreement
is impossible: The topology of public knowledge,” In
Proceedings of the 1993 ACM Symposium on Theory
of Computing, May 1993, 101–110.

A A Safe Agreement Module Implementation

In the following code, we do not explicitly represent the
stopi actions. We use the convention that the stopi action
just puts process i in a special “stopped” state, from which
no further non-input steps are enabled, and after which any
input causes no changes.

SafeAgreement:
Shared variables:x, a length n snapshot value; for each i, x(i) has compo-

nents:
level 2 f0; 1; 2g, initially 0
val 2 V [fnullg, initially null

Actions of i:
Input:

propose(v)i, v 2 V
Output:

safei
agree(v)i Internal:

update1i
snap1i
update2i
waiti

States of i:

input 2 V [fnullg, initially null
output 2 V [fnullg, initially null
x-local, a snapshot value; for each j, x-local(j) has com-
ponents:

level 2 f0; 1; 2g, initially 0
val 2 V [fnullg, initially null

status 2fidle; update1; snap1; update2; safe;wait; reportg,
initially idle

Transitions of i:
propose(v)i

Effect:
input := v
status := update1

update1i
Precondition:

status = update1
Effect:x(i):level := 1x(i):val := input

status := snap1

snap1i
Precondition:

status = snap1
Effect:

x-local := x
status := update2

update2i
Precondition:

status = update2
Effect:

if 9j : x-local(j):level = 2
then x(i):level := 0
else x(i):level := 2
status := safe

safei
Precondition:

status = safe
Effect:

status := wait

waiti
Precondition:

status = wait
Effect:

if 6 9j : x(j):level = 1
and 9j : x(j):level = 2 thenk := minfj : x(j):level = 2 g

output := x(k):val
status := report

agree(v)i
Precondition:

status = reportv = output
Effect:

status := idle

Tasks of i:
All actions comprise a single task.

Theorem A.1 SafeAgreement is a safe agreement module.

Proof: Well-formedness and validity are easy to see. We
argue agreement, using an operational argument. Suppose
that process i is the first to perform a successful wait step,
i.e., one that causes it to decide, and suppose that it decides
on the val of process k. Let � be the successful waiti step;
then at step �, process i sees that x(j):level 6= 1 for all j,
and k is the smallest index such that x(k):level = 2.

We claim that no process j subsequently setsx(j):level := 2. Suppose for the sake of contradiction
that process j does subsequently set x(j):level := 2 in an
update2j step, �. Since x(j):level 6= 1 when � occurs,
it must be that process j must perform an update1j and a
snap1j after � and before �. But then process j must seex(k):level = 2 when it performs its snap1j , which causes
it to back off, setting x(j):level := 0. This is a contra-
diction, which implies that no process j subsequently setsx(j):level := 2. But this implies that any process that does
a successful wait step will also see k as the smallest index
such that x(k):level = 2, and will therefore also decide onk’s val.

The wait-free progress property is immediate, because
process i proceeds without any delay until it performs its
safei output action.

To see the safe termination property, assume that there
is no j such that proposej occurs and safej does not occur.
Then there is no j such that x(j):level remains equal to 1
forever, so eventually all the level values are in f0; 2g. Then
any non-failing process i will succeed in any subsequent
waiti statement, and so eventually performs an agreei output
action.

