
Forward and Backward SimulationsPart I: Untimed SystemsNancy LynchMITLaboratory for Computer ScienceCambridge, MA 02139, USAlynch@theory.lcs.mit.edu Frits VaandragerCWIP.O. Box 94079, NL-1090 GB Amsterdamfritsv@cwi.nlUniversity of AmsterdamProgramming Research GroupKruislaan 403, NL-1098 SJ AmsterdamOctober 31, 1994AbstractA uni�ed, comprehensive presentation of simulation techniques for veri�cation of con-current systems is given, in terms of a simple untimed automaton model. In particular,(1) re�nements, (2) forward and backward simulations, (3) hybrid forward-backwardand backward-forward simulations, and (4) history and prophecy relations are de�ned.History and prophecy relations are abstract versions of the history and prophecy vari-ables of Abadi and Lamport, as well as the auxiliary variables of Owicki and Gries.Relationships between the di�erent types of simulations, as well as soundness andcompleteness results, are stated and proved. Finally, it is shown how invariants can beincorporated into all the simulations.Even though many results are presented here for the �rst time, this paper canalso be read as a survey (in a simple setting) of the research literature on simulationtechniques.The development for untimed automata is designed to support a similar develop-ment for timed automata. In Part II of this paper, it is shown how the results of thispaper can be carried over to the setting of timed automata.1991 Mathematics Subject Classi�cation: 68Q60, 68Q68.1991 CR Categories: F.1.1, F.3.1.Keywords and Phrases: Simulations, automata, re�nement mappings, forward sim-ulations, backward simulations, forward-backward simulations, backward-forward sim-ulations, history variables, prophecy variables, history relations, prophecy relations,veri�cation, invariants.Notes: This work was supported by ONR contracts N00014-85-K-0168 and N00014-91-J-1988, by NSF grants CCR-8915206 and CCR-9225124, by DARPA contracts N00014-89-J-1988 and N00014-92-J-4033, and ONR-AFOSR contract F49620-94-1-0199.

Part of this work took place while the second author was employed by the Ecoledes Mines, CMA, Sophia Antipolis, France. The second author also received partialsupport from the ESPRIT Basic Research Action 7166, CONCUR2. An earlier verionof this paper (Part I+II) appeared as [36].Contents1 Introduction 22 Untimed Automata and Their Behaviors 62.1 Automata : 62.2 Restricted Kinds of Automata : 72.3 Trace Properties : 83 Basic Simulations 103.1 Re�nements : 103.2 Forward Simulations : 113.3 Backward Simulations : 133.4 Combined Forward and Backward Simulations : : : : : : : : : : : : : : : : : 154 Hybrid Simulations 164.1 Forward-Backward Simulations : 164.2 Backward-Forward Simulations : 195 Auxiliary Variable Constructions 225.1 History Relations : 235.2 Prophecy Relations : 265.3 Completeness of History and Prophecy Relations : : : : : : : : : : : : : : : 286 Including Invariants 297 Conclusions and Related Work 31A Mathematical Preliminaries 38A.1 Sequences : 39A.2 Sets, Relations and Functions : 39A.3 A Basic Graph Lemma : 40B Glossary of Conventions 401 IntroductionMuch of the current work in veri�cation of concurrent systems, is based on the use of sim-ulation techniques. A simulation proof involves establishing a correspondence known as asimulation between the states of two systems, A and B, where one (A) is regarded as an2

implementation and the other (B) is regarded as a speci�cation. The correspondence isgenerally de�ned in terms of individual states and transitions, rather than in terms of entireexecutions. The existence of a simulation is used to show that any behavior that can beexhibited by A can also be exhibited by B; thus, if B solves some problem of interest, sodoes A. Typically, system A contains more details than B, or is an optimized or distributedversion of B. Simulation techniques work for timing-based as well as untimed systems.The research literature contains a large number of di�erent types of simulations. Al-though all have the same general goals, there are many variations, some signi�cant and somenot, in their de�nitions and properties. An obstacle to the use of simulations in practice isthat there has been, so far, no uni�ed, comprehensive presentation of simulation methods.Our goal is to provide such a presentation: to identify the most important types of simula-tions, to express them in a common framework, to clarify the relationships between them,and to identify those properties that are signi�cant for veri�cation purposes. We present ourresults for the untimed setting in this paper, and extend them to the timed setting in PartII [38].Speci�cally, in this paper, we present forward and backward simulation techniques forproving trace inclusion relationships between concurrent systems. We describe all the sim-ulation techniques in terms of a simple and general untimed automaton model that in-cludes internal actions. Among the kinds of simulations we de�ne are re�nements, forwardsimulations, backward simulations, and hybrid versions that we call forward-backward andbackward-forward simulations. We also de�ne history relations and prophecy relations, whichare abstract versions of the history and prophecy variables, respectively, of Abadi and Lam-port [1]. We prove implication relationships among the di�erent types of simulations, as wellas soundness and completeness theorems. Finally, we show how invariants can be incorpo-rated into all of the simulations.The simplest kind of simulations we consider are re�nements. Re�nements are similar tothe homomorphism between automata in the sense of classical automata theory [10], and tothe data re�nements that are used in program development to replace abstract mathematicaldata structures by concrete structures that are more easily implemented [40, 15, 30, 18].Lamport [28] advocates the use of re�nements to prove that one concurrent program moduleimplements another. A re�nement from an automaton A to another automaton B is afunction from states of A to states of B such that (a) the image of every start state of Ais a start state of B, and (b) every step of A has a corresponding sequence of steps of Bthat begins and ends with the images of the respective beginning and ending states of thegiven step, and that has the same external actions. This notion of re�nement implies thatthe traces of A are also traces of B. We give soundness and partial completeness results forre�nements.We next consider forward simulations and backward simulations, generalizations of re�ne-ments that allow a set of states of B to correspond to a single state of A. Forward simulationsare similar to the simulations of [44, 19, 21], the possibilities mappings of [33, 35], the down-ward simulations of [17, 23, 13], the forward simulations of [22], and the history measuresof [25]. The correspondence conditions (a) and (b) for re�nements are generalized so that(a) every start state of A has some image that is a start state of B, and (b) every step of A3

and every state of B corresponding to the beginning state of the step yield a correspondingsequence of steps of B ending with an image of the ending state of the given step. Again,we give soundness and partial completeness results.Backward simulations are similar to the upward simulations of [17, 23, 13], the prophecymappings of [39], the backwards simulations of [21], and the prophecy measures of [25]. Inthe case of a backward simulation, conditions (a) and (b) for re�nements are generalized sothat (a) all images of every start state of A are start states of B, and (b) every step of A andevery state of B corresponding to the ending state of the step yield a corresponding sequenceof steps of B beginning with an image of the beginning state of the given step. Again, wegive soundness and partial completeness results.Next, we consider two combinations of forward and backward simulations, which wecall forward-backward and backward-forward simulations, respectively. These are are essen-tially compositions of one forward and one backward simulation, in the two possible orders.The de�nition of a forward-backward simulation has been inspired by the work of Klarlundand Schneider [24, 25] for the case without internal actions. Forward-backward simula-tions are also similar to the subset-simulations of [22], and the simple failure simulationsof [9]. Our new notion of a backward-forward simulation is suggested by symmetry withforward-backward simulations. We give soundness and completeness results; while some ofthe results for backward-forward simulations are symmetric with those for forward-backwardsimulations, others (notably, certain completeness results) are di�erent.The �nal simulations we consider are history relations and prophecy relations. These arenew and abstract versions of the history and prophecy variables of Abadi and Lamport [1].The basic concept of history variables goes back at least as far as Lucas [32]. Owicki andGries [43] de�ned history variables (which they called auxiliary variables) and used themin verifying parallel programs. Subsequently, Abadi and Lamport [1] gave a more abstract,language independent de�nition of history variables, and also introduced the dual conceptof a prophecy variable. Several authors observed that history and prophecy variables areclosely related to forward and backward simulations, respectively, [39, 22, 25]. Inspired bythis, we de�ne in this paper the even more abstract notions of history and prophecy relations,and show their equivalence with the history resp. prophecy variables of [1]. According to ourde�nitions, a history relation is simply a forward simulation whose inverse is a re�nement,while a prophecy relation is simply a backward simulation whose inverse is a re�nement. Weprove some simple new characterizations; e.g., a forward simulation fromA to B is equivalentto the combination of a history relation from A to some C and a re�nement from C to B,and analogously for a backward simulation and a prophecy relation. We also give a simplenew proof of a completeness result of Abadi and Lamport.Finally, we address the issue of integrating invariants into simulation proofs. Our maindevelopment is carried out without mention of invariants, for the sake of simplicity. How-ever, in actual veri�cation examples using simulations, it is almost always the case that apreliminary collection of invariants is proved, then used where needed in proving the stepcorrespondence. We state results showing how invariants can be used in conjunction withall the types of simulations.We have crafted the development in this paper to be compatible with a similar devel-opment for timed systems; this work appears in Part II [38]. There, we de�ne a new type4

of automaton called a timed automaton, and use it to de�ne timed versions of all the sim-ulations in this paper. Happily, the results for the timed setting turn out to be analogousto those for the untimed setting. In nearly all cases, the results for the timed setting arederived from those for the untimed setting, while in the few remaining cases, new proofsanalogous to those in this paper are presented.The usefulness of re�nement mappings, history variables, and forward simulations inproving correctness has been well demonstrated. Abstraction mappings, which are essentiallyre�nement mappings, comprise a basic proof method for implementations of abstract datatypes [30, 18]. They are also widely used in the veri�cation of concurrent and reactivesystems. Some typical examples can be found in [28, 14]. There is also a long tradition ofusing history variables in program veri�cation [32, 6, 43, 45]. Often history variables are usedtogether with re�nements, see for instance [27]. Forward simulations combine re�nementmappings with history variables. Typical examples of their use appear in [19, 31, 34, 29, 42].Bisimulations, which combine in a single relation forward simulations in two directions, playa vital role in the theory of process algebras [44, 41, 4]. Backward simulations have so farbeen much less widely used. Abadi and Lamport [1] demonstrate the usefulness of prophecyvariables (and hence backward simulations), with some simple examples, while [29] containsa somewhat more practical example. There has not been much work on applying the hybridforward and backward methods.We consider the main contribution of this paper to be the uni�ed presentation, in terms ofa simple and general automaton model, of a wide range of important simulation techniques,together with their basic soundness and completeness properties. Some features of ourpresentation are: (a) It parallels and supports a similar development for timed systems. (b)We present the simulations in a \bottom-up" order, starting with simple ones such as forwardand backward simulations and building up to more complicated simulations such as forward-backward simulations and history relations. The proofs of many of the results for complicatedsimulations rest on the results for the simpler simulations. (c) We separate out the treatmentof invariants. We make no mention of invariants (or even of state reachability) in our maindevelopment, but only incorporate them at the end. The results involving invariants can beproved using the results without invariants.In addition, there are several new de�nitions and theorems, notably, (a) the abstractde�nitions of history and prophecy relations, and the accompanying characterization andcompleteness theorems, and (b) the de�nition and properties of backward-forward simula-tions.The rest of this paper is organized as follows. Section 2 contains basic de�nitions andresults for untimed automata. Section 3 contains the development of the basic simulationtechniques: re�nements, forward simulations and backward simulations. Section 4 containsthe development of the hybrid techniques: forward-backward and backward-forward simula-tions. Section 5 contains the results on history and prophecy relations. Section 6 shows howinvariants can be included in the simulations. Section 7 contains some conclusions and a5

discussion of related work. Finally, Appendix A contains some mathematical preliminaries,and Appendix B gives a glossary of conventions used in the paper.2 Untimed Automata and Their BehaviorsIn this section, we present the basic de�nitions and results for untimed automata. We alsode�ne certain restricted kinds of automata that are useful in our proofs, and de�ne varioussets of traces that automata can generate.2.1 AutomataWe begin with the de�nition of an (untimed) automaton. An automaton A consists of:� a set states(A) of states,� a nonempty set start(A) � states(A) of start states,� a set acts(A) of actions that includes a special element � , and� a set steps(A) � states(A) � acts(A) � states(A) of steps.All these components should be completely self-explanatory.We let s; s0; u; u0,.. range over states, and a,.. over actions. We let ext(A), the externalactions, denote acts(A) � f�g. We call � the internal action. The term event refers to anoccurrence of an action in a sequence. If
 is a sequence of actions then b
 is the sequenceobtained by deleting all � events from
. We write s0 a�!A s, or just s0 a�! s if A is clearfrom the context, as a shorthand for (s0; a; s) 2 steps(A). In this paper (Part I), A, B,..range over automata.An execution fragment of A is a �nite or in�nite alternating sequence, s0a1s1a2s2 � � �, ofstates and actions of A, beginning with a state, and if it is �nite also ending with a state,such that for all i, si ai+1�! si+1. We denote by frag�(A), frag!(A) and frag(A) the sets of �nite,in�nite, and all execution fragments of A, respectively. An execution of A is an executionfragment that begins with a start state. We denote by execs�(A), execs!(A) and execs(A)the sets of �nite, in�nite, and all executions of A, respectively. A state s of A is reachable ifs = last(�) for some �nite execution � of A.Suppose � = s0a1s1a2s2 � � � is an execution fragment of A. Let
 be the sequence con-sisting of the actions in �:
 = a1a2 : : :. Then trace(�) is de�ned to be the sequence
̂. A�nite or in�nite sequence � of external actions is a trace of A if A has an execution � with� = trace(�). We write traces�(A), traces!(A) and traces(A) for the sets of �nite, in�niteand all traces of A, respectively. These notions induce three preorders (i.e., re
exive andtransitive relations). For A and B automata, we de�ne A ��T B �= traces�(A) � traces�(B),A �!T B �= traces!(A) � traces!(B), and A �T B �= traces(A) � traces(B). Recall thatthe kernel of a preorder v is the equivalence � de�ned by x � y �= x v y ^ y v x. Wedenote by ��T, �!T and �T, the respective kernels of the preorders ��T, �!T and �T.6

Suppose A is an automaton, s0 and s are states of A, and � is a �nite sequence overext(A). We say that (s0; �; s) is a move of A, and write s0 �=)As, or just s0 �=) s when A isclear, if A has a �nite execution fragment � with �rst(�) = s0, trace(�) = � and last(�) = s.Example 2.1 The automata A1 and A2 of Figure 1 illustrate the di�erence between ��Tand �T. Each has a linear sequence of states. A1 has a single start state, and a step fromeach state to its right neighbor, while A2 has all states as start states, and a step fromeach state to its left neighbor. Every �nite sequence of a's is a trace of each of A1 and A2;in addition, the sequence consisting of in�nitely many a's is a trace of A1 but not of A2.Therefore, A1 ��T A2, A2 �T A1, and A1 6�T A2.- q q q q- - -a a a � � �A1 ��T6�T�T ? ? ? ?q q q q� � �a a a � � �A2Figure 1: ��T versus �T.2.2 Restricted Kinds of AutomataNow we describe three restricted kinds of automata that are useful in our proofs.First, automaton A is deterministic if jstart(A)j = 1 , and for any state s0 and any �nitesequence � over ext(A), there is at most one state s such that s0 �=) s. A deterministicautomaton is characterized uniquely by the properties that jstart(A)j = 1 , every � step is ofthe form (s; �; s) for some s, and for all states s0 and all actions a there is at most one states such that s0 a�!A s.Second, A has �nite invisible nondeterminism (�n) if start(A) is �nite, and for any states0 and any �nite sequence � over ext(A), there are only �nitely many states s such thats0 �=)As.Third, A is a forest if, for each state s of A, there is a unique execution that leads to s.A forest is characterized uniquely by the property that all states of A are reachable, startstates have no incoming steps and each of the other states has exactly one incoming step.The relation after(A) consists of the pairs (�; s) for which there is a �nite execution ofA with trace � and last state s.after(A) �= f(�; s) j 9� 2 execs �(A) : trace(�) = � and last(�) = sg:We also de�ne past(A) to be the inverse of after(A), past(A) �= after(A)�1; this relates astate s of A to the traces of �nite executions of A that lead to s.Lemma 2.21. If A is deterministic then after(A) is a function from traces�(A) to states(A).7

2. If A has �n then after(A) is image-�nite.13. If A is a forest then past(A) is a function from states(A) to traces�(A).Example 2.3 In Figure 1, automaton A1 is deterministic (and so has �n), and is a forest.Automaton A2 has none of these three properties.2.3 Trace PropertiesIn this subsection, we de�ne \trace properties", the structures that are used as externalbehaviors for automata. We also prove some basic properties of trace properties and somelemmas relating trace properties to automata.A trace property P is a pair (K;L), where K is a set and L is a nonempty, pre�x closedset of (�nite or in�nite) sequences over K. We will refer to the constituents of P as sort(P)and traces(P), respectively. Also, we write traces�(P) �= K� \ L and traces!(P) �= K! \ L.For P and Q trace properties, we de�ne P ��T Q �= traces�(P) � traces�(Q), P �!T Q �=traces!(P) � traces!(Q), and P �T Q �= traces(P) � traces(Q). With ��T, �!T and �T,we denote the kernels of the preorders ��T, �!T and �T, respectively. A trace property Pis limit-closed if an in�nite sequence is in traces(P) whenever all its �nite pre�xes are.Lemma 2.4 Suppose P and Q are trace properties with Q limit-closed. Then P ��T Q ,P �T Q.The behavior of an automaton A, beh(A), is de�ned by beh(A) �= (ext(A); traces(A)).Lemma 2.51. beh(A) is a trace property.2. If A has �n then beh(A) is limit-closed.3. A ��T B , beh(A) ��T beh(B), A �!T B , beh(A) �!T beh(B), and A �T B ,beh(A) �T beh(B).Proof: It is easy to see that beh(A) is a trace property.For Part 2, suppose A has �n. We use Lemma A.1 to show that beh(A) is limit-closed.Suppose � is an in�nite sequence over ext(A) such that all �nite pre�xes of � are in traces(A).Consider the digraph G whose nodes are pairs (
; s) 2 after(A), where
 is a �nite pre�xof �; there is an edge from node (
 0; s0) to node (
; s) exactly if
 is of the form
0a, wherea 2 ext(A), and where s0 a=)As. Then G satis�es the hypotheses of Lemma A.1, whichimplies that there is an in�nite path in G starting at a root. This corresponds directly toan execution � having trace(�) = �. Hence, � 2 traces(A).Part 3 is immediate from the de�nitions.1See Appendix A for the de�nition of image-�nite.8

Proposition 2.6 If B has �n then A ��T B , A �T B.Proof: Immediate from Lemma 2.4 and Lemma 2.5.Example 2.7 Recall that, in Figure 1, A1 ��T A2 but A1 6�T A2. This is consistent withLemma 2.6, because A2 does not have �n.We close this section with the construction of the canonical automaton2 for a given traceproperty. For P a trace property, the associated canonical automaton can(P) is the structureA given by� states(A) = traces�(P),� start(A) = f�g,� acts(A) = sort(P) [f�g, and� for �0; � 2 states(A) and a 2 acts(A), �0 a�!A � , a 2 ext(A) ^ � 0 a = �.Lemma 2.81. can(P) is a deterministic forest.2. beh(can(P)) ��T P .3. beh(can(P)) �T P .4. If P is limit-closed then beh(can(P)) �T P .Proof: Parts 1 and 2 follow easily from the de�nitions. Since can(P) is deterministic itcertainly has �n, so it follows by Lemma 2.5 that beh(can(P)) is limit-closed. Now 3 and 4follow by combination of 2 and Lemma 2.4.Lemma 2.91. can(beh(A)) is a deterministic forest.2. can(beh(A)) ��T A.3. can(beh(A)) �T A.4. If A has �n then can(beh(A)) �T A.Proof: By combining Lemma 2.5 and Lemma 2.8.2This notion is due to He Jifeng [13]. 9

3 Basic SimulationsIn this section, we develop the basic simulation techniques for untimed automata: re�nementsand forward and backward simulations.3.1 Re�nementsThe simplest type of simulation we consider is a re�nement. A re�nement from A to B is afunction r from states of A to states of B that satis�es the following two conditions:1. If s 2 start(A) then r(s) 2 start(B).2. If s0 a�!A s then r(s0) â=)Br(s).We write A �R B if there exists a re�nement from A to B.This notion is similar to that of a homomorphism in classical automata theory; see forinstance Ginzberg [10]. Besides our additional treatment of internal actions, a di�erencebetween the two notions is that the classical notion involves a mapping between the actionsets of the automata, whereas our re�nements do not.Example 3.1 Figure 2 presents some examples of automata that are and are not relatedby �R. Automata A3 and A4 have the same traces, A3 �R A4 and A4 6�R A3. Likewise,automata A5 and A6 have the same traces, A5 �R A6 and A6 6�R A5.?qq?a���
?aA3 �T�R6�R ?q���
?aA4 ? ?q q? ?q qa a0A5 �T�R6�R ?qq q����� AAAAUa a0A6Figure 2: Re�nements.The following technical lemma is a straightforward consequence of the de�nition of are�nement.Lemma 3.2 Suppose r is a re�nement from A to B and s0 �=)As. Then r(s0) �=)Br(s).Proposition 3.3 �R is a preorder (i.e., is transitive and re
exive).Proof: The identity function id(states(A)) is a re�nement from A to itself. This impliesthat �R is re
exive. Using Lemma 3.2, transitivity follows from the observation that if r is10

a re�nement from A to B and r0 is a re�nement from B to C, then r0 � r 3 is a re�nementfrom A to C.The important property of re�nements for veri�cation is that they are sound for the traceinclusion preorder.Theorem 3.4 (Soundness of re�nements) A �R B) A �T B.Proof: Suppose A �R B. Let r be a re�nement from A to B, and let e be a functionthat maps each move (s0; �; s) of B to a �nite execution fragment of B from s0 to s withtrace �. Suppose � 2 traces(A). Then there exists an execution � = s0a1s1a2s2 � � � ofA with � = trace(�). By the �rst condition in the de�nition of a re�nement, r(s0) is astart state of B, and by the second condition, r(si) dai+1=)Br(si+1) for all i. For i � 0, de�ne�i = e((r(si); dai+1; r(si+1))). Next de�ne sequence �0 to be the (in�nitary) concatenation�0tail(�1)tail(�2) � � �. By construction, �0 is an execution of B with trace(�0) = trace(�) =� 2 traces(B).Re�nements alone are not complete for �T or ��T. We do have a (very) partial com-pleteness result, however, which slightly generalizes a similar result of [25] in that it alsoallows for � -steps in the A automaton.Theorem 3.5 (Partial completeness of re�nements) Suppose A is a forest, B is determin-istic and A ��T B. Then A �R B.Proof: The relation r �= after(B) � past(A) is a re�nement from A to B.3.2 Forward SimulationsA forward simulation from A to B is a relation f over states(A) and states(B) that satis�es:1. If s 2 start(A) then f [s] \ start(B) 6= ;.2. If s0 a�!A s and u0 2 f [s0], then there exists a state u 2 f [s] such that u0 â=)Bu.We write A �F B if there exists a forward simulation from A to B.Example 3.6 Let A3; A4; A5; A6 be as in Figure 2. Then A4 �F A3 and A6 6�F A5.Proposition 3.7 A �R B) A �F B.Proof: Any re�nement relation is a forward simulation.The following lemma is the analogue of Lemma 3.2 for forward simulations.Lemma 3.8 Suppose f is a forward simulation from A to B and s0 �=)As. If u0 2 f [s0], thenthere exists a state u 2 f [s] such that u0 �=)Bu.3See Appendix A for the de�nition of the composition operator.11

Proposition 3.9 �F is a preorder.Proof: For re
exivity, observe that the identity function id(states(A)) is a forward simula-tion from A to itself. For transitivity, use Lemma 3.8 to show that if f and f 0 are forwardsimulations from A to B and from B to C, respectively, f 0 � f is a forward simulation fromA to C.Theorem 3.10 (Soundness of forward simulations, [35, 20, 47]) A �F B) A �T B.Proof: Versions of this proof appear in the cited papers. The proof is similar to that ofTheorem 3.4.Also the following result is well-known and variants of it have appeared in many papers(for instance in [19, 47]).Theorem 3.11 (Partial completeness of forward simulations) Suppose B is deterministicand A ��T B. Then A �F B.Proof: The relation f �= after(B) � past(A) is a forward simulation from A to B.The following Prop. 3.12 is mainly of technical interest; in particular, it is the only oneof our results for which we have not been able to prove an analogue in the timed case.It might also have some implications for veri�cation: if one guesses that a relation f is aforward simulation from a forest A to an automaton B, then one might try to restrict f toa re�nement r. Since such a re�nement must exist (if f is in fact a forward simulation) andsince re�nements are usually easier to verify than forward simulations, this may lead to asimpler proof.Proposition 3.12 Suppose A is a forest and A �F B. Then A �R B.Proof: Let f be a forward simulation from A to B. We construct a choice function r forf , and prove that r is a re�nement from A to B.For n � 0, let Layern be the set of states s of A for which the (unique) executionleading to it contains n actions. Then the sets Layern (n � 0) partition the set states(A)and Layer0 = start(A). We de�ne functions rn : Layern ! states(B) inductively suchthat rn(s) 2 f [s]. By Condition 1 in the de�nition of a forward simulation, there exists afunction r0 : Layer0 ! start(B) satisfying r0(s) 2 f [s]. Suppose that ri has been de�nedfor i � n. By Condition 2 in the de�nition of a forward simulation, there exists a functionrn+1 : Layern+1 ! states(B) such that if s is in Layern+1 and s0 a�!A s is the uniqueincoming step of s, we have rn(s0) â=)Brn+1(s) and rn+1(s) 2 f [s]. By construction, theunion r of the functions rn is a re�nement from A to B with r(s) 2 f [s].Proposition 3.12 allows us to give an alternative proof of the partial completeness resultfor re�nements (Theorem 3.5): if A is a forest, B is deterministic and A ��T B, then A �F Bby Theorem 3.11, and then A �R B follows using Prop. 3.12.12

3.3 Backward SimulationsIn many respects, backward simulations are the dual of forward simulations. Whereas a for-ward simulation requires that some state in the image of each start state should be a startstate, a backward simulation requires that all states in the image of a start state be startstates. Also, a forward simulation requires that forward steps in the source automaton canbe simulated from related states in the target automaton, whereas the corresponding con-dition for a backward simulations requires that backward steps can be simulated. However,the two notions are not completely dual: the de�nition of a backward simulation contains anonemptiness condition, and also, in order to imply soundness in general, backward simula-tions also require a �nite image condition. The mismatch is due to the asymmetry in ourautomata between the future and the past: from any given state, all the possible historiesare �nite executions, whereas the possible futures can be in�nite.A backward simulation from A to B is a total4 relation b over states(A) and states(B)that satis�es:1. If s 2 start(A) then b[s] � start(B).2. If s0 a�!A s and u 2 b[s], then there exists a state u0 2 b[s0] such that u0 â=)Bu.We write A �B B if there exists a backward simulation from A to B, and A �iB B if thereexists an image-�nite backward simulation from A to B.Example 3.13 Let A1; A2 be as in Figure 1. Then A1 �B A2 but A1 6�iB A2. IfA3; A4; A5; A6 are as in Figure 2, then A4 6�B A3 and A6 �iB A5.Proposition 3.14 A �R B) A �iB B.The following lemma is useful in the proofs of the preorder properties and of soundness.Lemma 3.15 Suppose b is a backward simulation from A to B and s0 �=)As. If u 2 b[s],then there exists a state u0 2 b[s0] such that u0 �=)Bu.Proposition 3.16 �B and �iB are preorders.Proof: The identity function id(states(A)) is a backward simulation from A to itself. UsingLemma 3.15 one can easily show that if b is backward simulation from A to B and b0 is abackward simulation from B to C, b0 � b is a backward simulation from A to C. Moreover,if both b and b0 are image-�nite, then b0 � b is image-�nite too.Theorem 3.17 (Soundness of backward simulations)1. A �B B) A ��T B.2. A �iB B) A �T B.4See Appendix A for the de�nition of a total relation.13

Proof: Suppose b is a backward simulation from A to B and suppose � 2 traces�(A). Thenthere is a move s0 �=)As, where s0 is a start state of A. Since b is a backward simulation it isa total relation, so there exists a state u 2 b[s]. By Lemma 3.15, there exists u0 2 b[s0] withu0 �=)Bu. By the �rst condition of the de�nition of a backward simulation, u0 2 start(B).Therefore, � 2 traces�(B), which shows the �rst part of the proposition.For the second part, suppose that b is image-�nite. We have already established A ��T B,so it is su�cient to show A �!T B. Suppose that � 2 traces!(A), and let � = s0a1s1a2 � � �be an in�nite execution of A with trace(�) = �.Consider the digraph G whose nodes are pairs (u; i) such that (si; u) 2 b and in whichthere is an edge from (u0; i0) to (u; i) exactly if i = i0 + 1 and u0 bai=)Bu. Then G satis�es thehypotheses of Lemma A.1, which implies that there is an in�nite path in G starting at aroot. This corresponds directly to an execution �0 of B having trace(�0) = trace(�) = �.Hence, � 2 traces(B).Jonsson [22] considers a weaker image-�niteness condition for backward simulations.Translated into our setting, the key observation of Jonsson is that in order to prove A �T B,it is enough to give a backward simulation b from A to B with the property that each in�-nite execution of A contains in�nitely many states s with b[s] �nite. We do not explore thisextension in this paper, primarily because it lacks a key feature of simulation techniques.Namely, it fails to reduce reasoning about executions to reasoning about individual statesand steps.The following partial completeness result slightly generalizes a similar result of Jonsson[21] in that it also allows for � -steps in the B automaton.Theorem 3.18 (Partial completeness of backward simulations) Suppose A is a forest andA ��T B. Then1. A �B B, and2. if B has �n then A �iB B.Proof: We de�ne a relation b over states(A) and states(B). Suppose s is a state of A.Since A is a forest there is a unique trace leading up to s, say �. Now de�neb[s] = fu j 9� 2execs�(B) : trace(�) = � ^ last(�) = u ^8�0 2execs�(B) : [�0 < �) trace(�0) 6=�]g:By letting b[s] consist only of those states of B which can be reached via a minimal executionwith trace �, we achieve that, if s is a start state, all the states in b[s] are start states ofB. It is also the case that b satis�es the other conditions in the de�nition of a backwardsimulation.Lemma 2.2 implies that b is image-�nite if B has �n.The next proposition is the dual of Prop. 3.12, and provides us with yet another proofof the partial completeness result for re�nements (Theorem 3.5), now using Theorem 3.18.Unlike Prop. 3.12, Prop. 3.19 does have an analogue in the timed case.14

Proposition 3.19 Suppose all states of A are reachable, B is deterministic and A �B B.Then A �R B.Proof: Let b be a backward simulation from A to B and let s be a reachable state of A. Wewill prove that b[s] contains exactly one element. Because all states of A are reachable, itfollows that b is functional. But any functional backward simulation trivially is a re�nement,and so we obtain A �R B.Since b is a backward simulation, it is a total relation, so we know b[s] contains at leastone element. Suppose that both u1 2 b[s] and u2 2 b[s]; we prove u1 = u2. Since s isreachable, there exists a start state s0 and a trace � such that s0 �=)As. By Lemma 3.15,there exist states u01; u02 2 b[s0] such that u01 �=)Bu1 and u02 �=)Bu2. Since b is a backwardsimulation and s0 is a start state of A, u01 and u02 are start states of B. But B is deterministicand deterministic automata have only a single start state so u01 = u02. Now the fact that Bis deterministic also implies u1 = u2.The following proposition is mainly of technical interest. It is used as a lemma in thetechnical report version of this paper, [37], to complete the classi�cation of weak simulations(see Section 6).Proposition 3.20 Suppose all states of A are reachable, B has �n and A �B B. ThenA �iB B.Proof: Let b be a backward simulation from A to B and let s be a state of A. Since s isreachable we can �nd a trace � 2 past(A)[s]. From the fact that b is a backward simulationit follows that b[s] � after(B)[�]. But since B has �n, after(B)[�] is �nite by Lemma 2.2.This implies that b is image-�nite.Example 3.21 Figure 3 shows that the reachability assumptions in Prop. 3.19 and Prop. 3.20are essential. There is a backward simulation from A7 to A8, but even though A8 is deter-ministic there is no image-�nite backward simulation.?q q���
?aA7 �B6�iB ?q q q q q� � �a a a � � �A8Figure 3: �B and �iB are di�erent, even for automata with �n.3.4 Combined Forward and Backward SimulationsSeveral authors have observed that forward and backward simulations together give a com-plete proof method for ��T (see [17, 13, 21, 22, 23, 25]): if A ��T B then there exists an15

intermediate automaton C with a forward simulation from A to C and a backward simula-tion from C to B. We prove this below by taking C to be the canonical automaton of A, asde�ned in Section 2. Alternative proofs can be given using di�erent intermediate automata,for example the automaton obtained by applying the classical subset construction on B (see[22, 25]), or the unfolding construction of Section 5.1 on A.Theorem 3.22 (Completeness of forward and backward simulations) If A ��T B then thefollowing are true.1. 9C : A �F C �B B.2. If B has �n then 9C : A �F C �iB B.Proof: Take C = can(beh(A)). By Lemma 2.9, C is a deterministic forest and A ��T C.Since C is deterministic, A �F C by Theorem 3.11, and because C is a forest, C �B Bfollows by Theorem 3.18(1). If B has �n then C �iB B follows by Theorem 3.18(2).4 Hybrid Simulations4.1 Forward-Backward SimulationsForward-backward simulations were introduced by Klarlund and Schneider who call theminvariants in [24] and ND measures in [25]. They also occur in the work of Jonsson [22]under the name subset simulations, and are related to the failure simulations of Gerth [9].Forward-backward simulations combine in a single relation both a forward and a backwardsimulation. Below we present simple proofs of their soundness and completeness by makingthis connection explicit.Formally, a forward-backward simulation from A to B is a relation g over states(A) andN(states(B)) that satis�es:51. If s 2 start(A) then there exists S 2 g[s] such that S � start(B).2. If s0 a�!A s and S0 2 g[s0], then there exists a set S 2 g[s] such that for every u 2 Sthere exists u0 2 S0 with u0 â=)Bu.We write A �FB B if there exists a forward-backward simulation from A to B, and A �iFB Bif there exists an image-set-�nite forward-backward simulation from A to B.The following theorem, which is similar to a result of [22], says that a forward-backwardsimulation is essentially just a combination of a forward and a backward simulation.Theorem 4.11. A �FB B , (9C : A �F C �B B).2. A �iFB B , (9C : A �F C �iB B).5The N() notation is de�ned in Appendix A. 16

Proof: \)" Let g be a forward-backward simulation from A to B, which is image-set-�niteif A �iFB B. De�ne C to be the automaton given by:� states(C) = range(g),� start(C) = range(g) \P(start(B)),� acts(C) = acts(B), and� for S0; S 2 states(C) and a 2 acts(C), S0 a�!C S , 8u 2 S : 9u0 2 S0 : u0 â=)Bu.Then g is a forward simulation from A to C. Also, f(S; u) j S 2 states(C) and u 2 Sg is abackward simulation from C to B, which is image �nite if g is image-set-�nite.\(" Suppose f is a forward simulation from A to C, and b is a backward simulationfrom C to B. Then the relation g over states(A) and N(states(B)) de�ned by g = f(s; b[u]) j(s; u) 2 fg is a forward-backward simulation from A to B. If b is image-�nite then g isimage-set-�nite.Proposition 4.21. A �F B) A �iFB B.2. A �B B) A �FB B.3. A �iB B) A �iFB B.Proof: Immediate from Theorem 4.1, using that �iB and �F are re
exive.In order to show that �FB and �iFB are preorders, we require a de�nition of compositionfor forward-backward simulations, and a transitivity lemma.If g is a relation over X and N(Y) and g0 is a relation over Y and N(Z) then thecomposition g0 � g is a relation over X and N(Z) de�ned as follows.(x; S0) 2 g0 � g , 9S 2 g[x] : 9c 2 S !N(Z) : (c � g0 ^ S0 = [fc(y) j y 2 Sg):Note that in the above de�nition c is a choice function for g0dS. The nonemptiness assump-tions for g and g0 immediately imply the nonemptiness assumption for g0 � g.Lemma 4.3 Suppose g is a forward-backward simulation from A to B, and g0 is a forward-backward simulation from B to C. Then g0 � g is a forward-backward simulation from A toC. Moreover, if g and g0 are image-set-�nite then g0 � g is also image-set-�nite.Proof: For Condition 1 of the de�nition of a forward-backward simulation, suppose s 2start(A). Because g is a forward-backward simulation, there is a set S 2 g[s] with S �start(B). Since g0 is a forward-backward simulation, it is possible to �nd, for each u 2 S, aset Su 2 g0[u] with Su � start(C). Hence all states in the set S0 = SfSu j u 2 Sg are startstates of C. Now let c be the function with domain S given by c(u) = Su. Then c is a choice17

function for g0dS. From the de�nition of � it now follows that (s; S0) 2 g0 � g. This showsthat g0 � g satis�es Condition 1.Now we show Condition 2 of the de�nition of a forward-backward simulation. Supposes0 a�!A s and (s0; S0) 2 g0 � g. By de�nition of g0 � g, there exist U 0 2 g[s0] and a choicefunction c0 for g0dU 0 such that S 0 = Sfc0(u0) j u0 2 U 0g. Because g is a forward-backwardsimulation from A to B, there is a set U 2 g[s] such that for each u 2 U there exists u0 2 U 0with u0 â=)Bu. Consider any particular u 2 U . Choose u0 2 U 0 with u0 â=)Bu. Because g0 is aforward-backward simulation, there exists a set Su 2 g0[u] such that for every v 2 Su thereexists a v0 2 c0(u0) with v0 â=)Cv. De�ne a choice function c for g0dU by taking c(u) to be theset Su.Now consider the set S = Sfc(u) j u 2 Ug. Then (s; S) 2 g0 � g by de�nition. Byconstruction, we can �nd, for each v 2 S, a state v0 2 S 0 with v0 â=)Cv. Thus S has therequired property to show Condition 2.Finally, it is immediate from the de�nitions that, if g and g0 are image-set-�nite, g0 � g isalso image-set-�nite.Proposition 4.4 �FB and �iFB are preorders.Proof: By Lemma 4.3.Theorem 4.5 (Soundness of forward-backward simulations, [24])1. A �FB B) A ��T B.2. A �iFB B) A �T B.Proof: For part 1, suppose A �FB B. By Theorem 4.1, there exists an automaton Cwith A �F C �B B. By soundness of forward simulations, Theorem 3.10, A �T C, and bysoundness of backward simulations, Theorem 3.17, C ��T B. This implies A ��T B. Part 2is similar.Theorem 4.6 (Completeness of forward-backward simulations, [24]) Suppose A ��T B.Then1. A �FB B, and2. if B has �n then A �iFB B.Proof: By Theorem 3.22, there exists an automaton C with A �F C �B B. Moreover, ifB has �n then A �F C �iB B. Then Theorem 4.1 implies the needed conclusions.Example 4.7 The automata A9 and A10 of Figure 4 illustrate the di�erence between �Tand �iFB, and also show that the assumption that B has �n in Theorem 4.6(2) is essential.18

?qqqq???aaa qqqq----
bbbb... A9

�T6�iFB ? ? ?qq?b qqq??ab qqqq???aab � � � ?qqqqq????
aaaa...A10Figure 4: The di�erence between �T and �iFB.4.2 Backward-Forward SimulationsHaving studied forward-backward simulations, we �nd it natural to de�ne and study a dualnotion of backward-formulation simulation.A backward-forward simulation from A to B is a total relation g over states(A) andP(states(B)) that satis�es:1. If s 2 start(A) then, for all S 2 g[s], S \ start(B) 6= ;.2. If s0 a�!A s and S 2 g[s], then there exists a set S0 2 g[s0] such that for every u0 2 S0there exists a u 2 S with u0 â=)Bu.We write A �BF B if there exists a backward-forward simulation from A to B, and A �iBF Bif there exists an image-�nite backward-forward simulation from A to B.As for forward-backward simulations, backward-forward simulations can be characterizedas combinations of forward and backward simulations.Theorem 4.81. A �BF B , (9C : A �B C �F B).2. A �iBF B , (9C : A �iB C �F B).Proof: \)" Let g be a backward-forward simulation from A to B, which is image-�nite ifA �iBF B. De�ne C to be the automaton given by:� states(C) = range(g),� start(C) = range(gdstart(A)), 19

� acts(C) = acts(B), and� for S0; S 2 states(C) and a 2 acts(C), S0 a�!C S , 8u0 2 S0 : 9u 2 S : u0 â=)Bu.Then g is a backward simulation from A to C (and image-�niteness carries over). Also, therelation f(S; u) j S 2 states(C) and u 2 Sg is a forward simulation from C to B.\(" Easy.Proposition 4.91. A �F B) A �iBF B.2. A �B B) A �BF B.3. A �iB B) A �iBF B.Proof: Immediate from Theorem 4.8, using the fact that �iB and �F are re
exive.In order to show the properties of backward-forward simulations, it is useful to relatethem to forward-backward simulations.Theorem 4.101. A �BF B , A �FB B.2. A �iBF B) A �iFB B.Proof: For one direction of 1, suppose that A �BF B. Then by Theorem 4.8, there existsan automaton C with A �B C �F B. By Prop. 4.2, A �FB C and C �FB B. Now A �FB Bfollows by Prop. 4.4. The proof of 2 is similar.For the other direction of 1, suppose that f is a forward-backward simulation from A toB. Given a state s of A, we de�ne g[s] to be exactly the set of subsets S of states(B) such thatS intersects each set in f [s] in at least one element. We claim that g is a backward-forwardsimulation from A to B.1. g is total.Proof: Suppose s 2 states(A). By assumption f is a forward-backward simulation, soall elements of f [s] are non-empty. Hence the set S = S f [s] intersects each element off [s] in at least one element. Thus, by de�nition S is in g[s].2. If s 2 start(A) then, for all S 2 g[s], S \ start(B) 6= ;.Proof: Suppose s 2 start(A) and S 2 g[s]. By assumption f is a forward-backwardsimulation, so there exists a set S0 in f [s] such that S0 � start(B). By de�nition ofg, S intersects S0 in at least one element. Hence S intersects start(B) in at least oneelement. 20

3. If s0 a�!A s and S 2 g[s], then there exists a set S0 2 g[s0] such that for every u0 2 S0there exists a u 2 S with u0 â=)Bu.Proof: Suppose s0 a�!A s and S 2 g[s]. Let f [s0] = fS0i j i 2 Ig. By assumption fis a forward-backward simulation, so there exists, for each i 2 I, a set Si 2 f [s] suchthat for every u 2 Si there exists u0 2 S0i with u0 â=)Bu. By de�nition of g, S intersectseach of the sets Si in at least one element. So choose, for each i, an element ui in theintersection of S and Si. Then, for each i, there exists u0i 2 S0i such that u0i â=)Bui. LetS0 = fu0i j i 2 Ig. Then S0 intersects each element of f [s0] in at least one element, soS0 2 f [s0]. By construction, for every u0 2 S0 there exists a u 2 S with u0 â=)Bu.Hence A �BF B.Example 4.11 In general it is not the case that A �iFB B implies A �iBF B. A coun-terexample is presented in Figure 5. The diagram shows two automata A11 and A12. In thediagram a label > i next to an arc means that in fact there are in�nitely many steps, labeledi+ 1, i+ 2, i+ 3, etc..���
?0?q0q q q q������
 ?BBBBBBNJJJJJĴ1 2 3 4 : : :1 2 3 4A11 �iFB6�iBF - q q q q q- - - -? ? ? ?q q q q0 0 0 0q@@@@R? ����	 ����������� �� �� �� �� �� �� ��� � � �0 0 0 000 10 20 30q�����6 @@@@I HHHHHHHHY!0
! � � �� � �� � �� � �0 1 2 30 0 0 01 2 3 4>0 >1 >2 >3A12Figure 5: The di�erence between �iFB and �iBF.We claim that the relation g given byg[0] = ff0g; f00; 1g; f00; 10; 2g; : : :gg[n] = ff!g; f!0gg for n > 0is an image-set-�nite forward-backward simulation from A11 to A12.However, there is no image-�nite backward-forward simulation from A11 to A12. We seethis as follows. Suppose g is an image-�nite backward-forward simulation fromA11 to A12. Inorder to prove that this assumption leads to a contradiction, we �rst establish that g[0] doesnot contain a �nite subset X of N. First note that by the �rst condition in the de�nition of abackward-forward simulation, all sets in g[0] are nonempty. The proof proceeds by inductionon the maximal element of X. For the induction base, observe that f0g 62 g[0], since 0 hasan incoming 0-step in A11 but not in A12. For the induction step, suppose that we haveestablished that g[0] contains no �nite subset of N with a maximum less than n, and supposeX 2 g[0] with X a �nite subset of N with maximum n. Using that 0 has an incoming 0-step21

in A11, the second condition in the de�nition of a backward-forward simulation gives thatg[0] contains an element of g[0] which is a subset of N with a maximum less than n. Thiscontradicts the induction hypothesis.Pick some state n > 0 of A11 and a set S 0 2 g[n]. Since A11 has a step 0 n�! n, thereexists a set S 2 g[0] such that every state in S has an outgoing n-step. Then S must be asubset of f0; : : : ; n� 1; (n� 1)0g. Since g[0] does not contain the empty set or a �nite subsetof N, it follows that (n� 1)0 2 S. But since n was chosen arbitrarily (besides being positive)it follows that g[0] has an in�nite number of elements. This gives a contradiction with theassumption that g is image-�nite.Proposition 4.12 �BF is a preorder. (However, �iBF is not a preorder.)Proof: The fact that �BF is a preorder, is trivially implied by Theorem 4.10 and Prop. 4.4.The counterexample of Figure 5 tells us that �iBF is not a preorder in general. If we takethe two automata A11 and A12 from the example, then we can �nd an automaton C withA11 �F C �iB A12, using Theorem 3.22. By Prop. 4.9, A11 �iBF C and C �iBF A12. Henceit cannot be that �iBF is transitive, because this would imply A11 �iBF A12.Soundness and completeness results for backward-forward simulations now follow fromthose for forward-backward simulations.Theorem 4.13 (Soundness of backward-forward simulations)1. A �BF B) A ��T B.2. A �iBF B) A �T B.Proof: By Theorem 4.10 and Theorem 4.5.Theorem 4.14 (Completeness of backward-forward simulations) A ��T B) A �BF B.Proof: By Theorem 4.6 and Theorem 4.10.Example 4.11 falsi�es the completeness result that one might expect here. That is, Theo-rem 4.14 does not have a second case saying that if B has �n and A ��T B, then A �iBF B.5 Auxiliary Variable ConstructionsIn this section, we present two new types of relations, history relations and prophecy re-lations, which correspond to the notions of history and prophecy variable of Abadi andLamport [1]. We show that there is a close connection between history relations and forwardsimulations, and also between prophecy relations and backward simulations. Using theseconnections together with the earlier results of this paper, we can easily derive a complete-ness theorem for re�nements similar to the one of Abadi and Lamport [1]. In fact, in thesetting of this paper, the combination of history and prophecy relations and re�nements givesexactly the same veri�cation power as the combination of forward and backward simulations.22

5.1 History RelationsA relation h over states(A) and states(B) is a history relation from A to B if h is a forwardsimulation from A to B and h�1 is a re�nement from B to A. We write A �H B if thereexists a history relation from A to B. Thus A �H B implies A �F B and B �R A.We give an example of a history relation, using the construction of the unfolding ofan automaton; the unfolding of an automaton augments the automaton by rememberinginformation about the past.The unfolding of an automaton A, notation unfold(A), is the automaton B de�ned by� states(B) = execs�(A),� start(B) = the set of �nite executions of A that consist of a single start state,� acts(B) = acts(A), and� for �0; � 2 states(B) and a 2 acts(B), �0 a�!B � , � = �0 a last(�).Proposition 5.1 unfold(A) is a forest and A �H unfold(A).Proof: Clearly, unfold(A) is a forest. The function last which maps each �nite execution ofA to its last state is a re�nement from unfold(A) to A, and the relation last�1 is a forwardsimulation from A to unfold(A).Example 5.2 For the automata of Figure 2, A3 6�H A4, A4 �H A3, A5 6�H A6 and A6 6�H A5.Proposition 5.3 �H is a preorder.Proof: Re
exivity is trivial. For transitivity, suppose h is a history relation from A to Band h0 is a history relation from B to C. Then h is a forward simulation from A to B andh0 is a forward simulation from B to C, so h0 � h is a forward simulation from A to C, byProp. 3.9. Also, since h0�1 is a re�nement from C to B and h�1 is a re�nement from B to A,(h0 � h)�1 = h�1 � h0�1 is a re�nement from C to A by Prop. 3.3. It now follows that h0 � his a history relation from A to C.Although inspired by [39, 22, 25], the notion of a history relation is a new contributionof this paper. It provides a simple and abstract view of the history variables of Abadi andLamport [1] (which in turn are abstractions of the auxiliary variables of Owicki and Gries[43]). Translated into the setting of this paper, history variables can be simply de�ned interms of history relations, as follows.An automaton B is obtained from an automaton A by adding a history variable if thereexists a set V such that� states(B) � states(A) � V , and� the relation f(s; (s; v)) j (s; v) 2 states(B)g is a history relation from A to B.23

Whenever B is obtained from A by adding a history variable, then A �H B by de�nition.The following proposition states that the converse is also true if one is willing to considerautomata up to isomorphism.Two automata A and B are isomorphic, notation A �= B, i� they have the same setsof actions and there exists an isomorphism between them, i.e., a bijective function ' fromstates(A) to states(B) satisfying1. s 2 start(A) i� '(s) 2 start(B).2. s0 a�!A s i� '(s0) a�!B '(s).Proposition 5.4 Suppose A �H B. Then there exists an automaton C that is isomorphicto B and obtained from A by adding a history variable.Proof: Let h be a history relation from A to B. De�ne automaton C by� states(C) = h,� (s; u) 2 start(C) , u 2 start(B),� acts(C) = acts(B), and� for (s0; u0); (s; u) 2 states(C) and a 2 acts(C), (s0; u0) a�!C (s; u) , u0 a�!B u.The function ' that maps a state (s; u) of C to the state u of B is an isomorphism betweenC and B: ' is bijective because h�1 is a function from states of B to states of A, and fromthe de�nition of C it is immediate that ' preserves initial states and steps. In order to seethat C is obtained from A by adding a history variable, let states(B) play the role of the setV required in the de�nition of a history variable. We check that h0 = f(s; (s; v)) j (s; v) 2 hgis a history relation from A to C.1. h0 is a forward simulation from A to C.Proof: Suppose s 2 start(A). Since h is a history relation fromA toB, it is in particulara forward simulation from A to B. Thus there exists a state v 2 start(B) \ h[s]. Byde�nition of C, (s; v) 2 start(C), and by de�nition of h0, (s; v) 2 h0[s].Next suppose s0 a�!A s and (s0; v0) 2 h0[s0]. Then v0 2 h[s0] and so there exists av 2 h[s] such that v0 â=)Bv. This implies (s; v) 2 h0[s] and (s0; v0) â=)C(s; v).2. h0�1 is a re�nement from C to A.Proof: Suppose (s; v) 2 start(C). Then v 2 start(B). Since h is a history relationfrom A to B, h�1 is a re�nement from B to A. This impliesh0�1(s; v) = s = h�1(v) 2 start(A):Next suppose (s0; v0) a�!C (s; v). Then by de�nition of C, v0 a�!B v. Hence, since h�1is a re�nement from B to A,h0�1(s0; v0) = s0 = h�1(v0) â=)Ah�1(v) = s = h0�1(s; v):24

At �rst sight, Prop. 5.4 may look tautological, since history variables are de�ned interms of history relations. However, note that the analogue of Prop. 5.4 does not hold in thesetting of Klarlund and Schneider [25], who de�ne their notion of a history variable in termsof forward simulations rather than history relations. Klarlund and Schneider [25] say thatan automaton B is obtained from an automaton A by adding history information if thereexists a set V such that� states(B) � states(A) � V , and� the relation f(s; (s; v)) j (s; v) 2 states(B)g is a forward simulation from A to B.It is easy to see that even though there is a forward simulation from automaton A5 toautomaton A6 in Figure 2, A6 is not isomorphic to any automaton C obtained from A5 byadding history information. This follows because each such C must have at least two startstates.Prop. 5.4 shows that in our setting history relations do capture the essence of historyvariables. For this reason and also because history relations have nicer theoretical properties,we will state all our results in this subsection in terms of relations, and will not mention theauxiliary variables any further.Theorem 5.5 (Soundness of history relations) A �H B) A �T B.Proof: Immediate from the soundness of re�nements and forward simulations.In fact, a history relation from A to B is just a functional (weak) bisimulation betweenA and B in the sense of Park [44] and Milner [41]. This implies that if there exists a historyrelation from A to B, both automata are observation-equivalent. Hence, history relationspreserve the behavior of automata in a very strong sense.We can now state and prove the completeness results of Sistla [46].Theorem 5.6 (Completeness of history relations and backward simulations, [46]) SupposeA ��T B. Then1. 9C : A �H C �B B, and2. if B has �n then 9C : A �H C �iB B.Proof: Take C = unfold(A). By Prop. 5.1, C is a forest and A �H C. Since A ��T B, alsoC ��T B by the soundness of history relations (Theorem 5.5). Next we can apply the partialcompleteness result for backward simulations (Theorem 3.18) to conclude (1) C �B B, and(2) if B has �n then C �iB B.Suppose R is a relation over states(A) and states(B) with R\ (start(A)� start(B)) 6= ;.(Typically, R will be a forward or a backward simulation.) The superposition sup(A;B ;R)of B onto A via R is the automaton C de�ned by25

� states(C) = R,� start(C) = R \ (start(A)� start(B)),� acts(C) = acts(A) \ acts(B), and� for (s0; u0); (s; u) 2 states(C) and a 2 acts(C),(s0; u0) a�!C (s; u) , s0 â=)As ^ u0 â=)Bu:Lemma 5.7 Suppose f is a forward simulation from A to B. Let C = sup(A;B ; f) andlet �1 and �2 be the projection functions that map states of C to their �rst and secondcomponents, respectively. Then ��11 is a history relation from A to C and �2 is a re�nementfrom C to B.The following theorem gives a precise and compact formulation of the folklore result thatforward simulations are the same as history variables combined with re�nements.Theorem 5.8 A �F B , (9C : A �H C �R B).Proof: For the implication \)", suppose A �F B. Let f be a forward simulation fromA to B. Take C = sup(A;B ; f). The result follows by Lemma 5.7. For the implication\(", suppose that A �H C �R B. Then A �F C by the de�nition of history relations, andC �F B because any re�nement is a forward simulation. Now A �F B follows by the factthat �F is a preorder.5.2 Prophecy RelationsNow we will present prophecy relations and show that they correspond to backward simula-tions, very similarly to the way in which history relations correspond to forward simulations.A relation p over states(A) and states(B) is a prophecy relation from A to B if p is abackward simulation from A to B and p�1 is a re�nement from B to A. We write A �P B ifthere exists a prophecy relation fromA to B, and A �iP B if there is an image-�nite prophecyrelation from A to B. Thus A �iP B implies A �iB B and A �P B, and A �P B impliesA �B B and B �R A. We give an example of a prophecy relation, using the constructionof the guess of an automaton. This new construction is a kind of dual to the unfoldingconstruction of the previous subsection in that the states contain information about thefuture rather than about the past.6The guess of an automaton A, notation guess(A), is the automaton B de�ned by6Just as the unfolding operation gives rise to a forest, the guess construction leads to the dual notion of abackward forest, i.e., an automaton with the property that for each state there is a unique maximal executionthat starts in it. Also, similar to the partial completeness result for backward simulations that requires oneof the automata to be a forest, there is a partial completeness result for forward simulations that involvesbackward forests. Since the guess construction appears to be useful only in proving �nite trace inclusion, wedecided not to work out the forward/backward duality completely at this point.26

� states(B) = frag�(A),� start(B) = execs �(A),� acts(B) = acts(A), and� for �0; � 2 states(B) and a 2 acts(B), �0 a�!B � , �rst(�0) a � = �0.Proposition 5.9 A �P guess(A).Proof: The function �rst which maps each execution fragment of A to its �rst state is are�nement from guess(A) to A, and the relation �rst�1 is a backward simulation from A toguess(A).Example 5.10 For the automata of Figure 2 we have A3 6�P A4, A4 6�P A3, A5 6�P A6and A6 �iP A5. The di�erence between �P and �iP is illustrated by the automata ofFigure 3: A7 �P A8 but A7 6�iP A8. The automata A1 and A2 of Figure 1 cannot be useddirectly to show the di�erence between �P and �iP since neither A1 �P A2 nor A2 �P A1.However, we obtain a counterexample by unfolding the A2 automaton: A1 �P unfold(A2)but A1 6�iP unfold(A2).Proposition 5.11 �P and �iP are preorders.The following proposition sheds some more light on the relationship between �P and �iP.Proposition 5.12 Suppose all states of A are reachable, B has �n and A �P B. ThenA �iP B.Proof: Let p be a prophecy relation from A to B. Then p is a backward simulation. Nowthe proof of Prop. 3.20 implies that p is image-�nite. Thus A �iP B.We will now show that prophecy relations capture the essence of prophecy variables, justas history relations capture the essence of history variables.An automaton B is obtained from an automaton A by adding a prophecy variable if thereexists a set V such that� states(B) � states(A) � V , and� the relation f(s; (s; v)) j (s; v) 2 states(B)g is a prophecy relation from A to B.A prophecy variable is bounded if the underlying prophecy relation is image-�nite.Proposition 5.13 Suppose A �P B. Then there exists an automaton C that is isomorphicto B and obtained from A by adding a prophecy variable, which is bounded if A �iP B.Again, we will state all further results in this subsection in terms of relations, and notmention the auxiliary variables any further. 27

Theorem 5.14 (Soundness of prophecy relations)1. A �P B) A ��T B.2. A �iP B) A �T B.Proof: Immediate from the soundness of re�nements and backward simulations.Lemma 5.15 Suppose b is a backward simulation from A to B. Let C = sup(A;B ; b)and let �1 and �2 be the projection functions that map states of C to their �rst and secondcomponents, respectively. Then ��11 is a prophecy relation from A to C and �2 is a re�nementfrom C to B. If b is image-�nite then so is ��11 .Theorem 5.161. A �B B , (9C : A �P C �R B).2. A �iB B , (9C : A �iP C �R B).Proof: The proof of 1 is analogous to that of Theorem 5.8, using Lemma 5.15. Statement2 can be proved similarly.The following result is dual to Sistla's completeness result.Theorem 5.17 (Completeness of prophecy relations and forward simulations) A ��T B)9C : A �P C �F B.Proof: A ��T B) (By Theorem 4.14)A �BF B) (By Theorem 4.8)9D : A �B D �F B) (By Theorem 5.16)9C;D : A �P C �R D �F B) (By Propositions 3.7 and 3.9)9C : A �P C �F B:5.3 Completeness of History and Prophecy RelationsWe �nish this section with versions of the completeness results of Abadi and Lamport [1].Theorem 5.18 (Completeness of history relations, prophecy relations and re�nements, [1])Suppose A ��T B. Then1. 9C;D : A �H C �P D �R B, and2. if B has �n then 9C;D : A �H C �iP D �R B.Proof: By Sistla's result (Theorem 5.6), there exists an automaton C with A �H C �B B.Next, Theorem 5.16 yields the required automaton D with C �P D �R B, which proves 1.Now statement 2 is routine.Similarly, we obtain the dual result:Theorem 5.19 A ��T B) 9C;D : A �P C �H D �R B.28

6 Including InvariantsFor the sake of simplicity, our entire development so far has been carried out without anymention of invariants; in fact, all considerations involving reachability of the various stateshave been ignored. However, in actual veri�cation examples using simulations, it is almostalways the case that a preliminary collection of invariants is proved, then used in provingthe step correspondence. In this section, we show how to integrate invariants into simulationproofs.We de�ne an invariant of an automaton A to be any superset of the set of reachablestates of A, i.e., a property that is true of all the reachable states of A.7 One way to provethat a property is an invariant is by induction on the length of a �nite execution that leadsto the state in question. More usually, a batch of invariants is proved together, by induction.In fact, invariants are most often proved in several batches, where each batch is proved byinduction, assuming that those in the previous batches are true.We now de�ne versions of all our simulations that use invariants. We call these simula-tions \weak", although that is is bit of a misnomer in the case of some of the simulations.8Let A and B be automata with invariants IA and IB, respectively.A weak re�nement from A to B, with respect to IA and IB, is a function r from states(A)to states(B) that satis�es the following two conditions:1. If s 2 start(A) then r(s) 2 start(B).2. If s0 a�!A s, s0; s 2 IA, and r(s0) 2 IB, then r(s0) â=)Br(s).A weak forward simulation from A to B, with respect to IA and IB, is a relation f overstates(A) and states(B) that satis�es:1. If s 2 start(A) then f [s] \ start(B) 6= ;.2. If s0 a�!A s, s0; s 2 IA, and u0 2 f [s0] \ IB, then there exists a state u 2 f [s] such thatu0 â=)Bu.Thus, weak re�nements and weak forward simulations are weaker than ordinary re�ne-ments and forward simulations in that they allow use of invariants for all the hypothesizedstates.A weak backward simulation from A to B, with respect to IA and IB, is a relation b overstates(A) and states(B) that satis�es:1. If s 2 start(A) then b[s]\ IB � start(B).2. If s0 a�!A s, s0; s 2 IA, and u 2 b[s] \ IB, then there exists a state u0 2 b[s0] \ IB suchthat u0 â=)Bu.3. If s 2 IA then b[s] \ IB 6= ;.7Sometimes, the term \invariant" is used with a slightly di�erent meaning, to denote a property thatholds initially and is preserved by all transitions.8This usage of the term \weak" has nothing to do with Milner's usage [41]; he uses it to indicate whetheror not internal steps are abstracted away. 29

Thus, weak backward simulations allow use of invariants in all the hypothesized states.However, they also require additional proof obligations: in the second and third properties,it is necessary to show that the state produced satis�es IB. So, strictly speaking, they arenot weaker than ordinary backward simulations.A weak forward-backward simulation from A to B, with respect to IA and IB, is a relationg over states(A) and P(states(B)) that satis�es:1. If s 2 start(A) then there exists S 2 g[s] such that S \ IB � start(B).2. If s0 a�!A s, s0; s 2 IA and S0 2 g[s0], then there exists a set S 2 g[s] such that for everyu 2 S \ IB there exists u0 2 S0 \ IB with u0 â=)Bu.3. If s 2 IA and S 2 g[s] then S \ IB 6= ;.A weak backward-forward simulation from A to B, with respect to IA and IB, is a relationg over states(A) and P(states(B)) that satis�es:1. If s 2 start(A) then, for all S 2 g[s], S \ start(B) 6= ;.2. If s0 a�!A s, s0; s 2 IA and S 2 g[s], then there exists a set S0 2 g[s0] such that for everyu0 2 S0 \ IB there exists a u 2 S \ IB with u0 â=)Bu.3. If s 2 IA then g[s] 6= ;.A relation h over states(A) and states(B) is a weak history relation from A to B, withrespect to IA ad IB, provided that h is a weak forward simulation from A to B, with respectto IA and IB, and h�1 is a weak re�nement from B to A, with respect to IB and IA.A relation p over states(A) and states(B) is a weak prophecy relation from A to B, withrespect to IA and IB, provided that p is a weak backward simulation from A to B, withrespect to IA and IB, and p�1 is a weak re�nement from B to A, with respect to IB and IA.We write A �wR B, A �wF B, A �wB B, A �wiB B, A �wFB B, A �wiFB B, A �wBF B,A �wiBF B, A �wH B, A �wP B and A �wiP B to denote the existence of a weak re�nement,weak forward simulation, weak backward simulation, weak image-�nite backward simulation,etc., from A to B, with respect to some invariants IA and IB.Proposition 6.1 The relations �wR, �wF, �wB, �wiB, �wFB, �wiFB, �wBF, �wH, �wP and�wiP are all preorders. (However, �wiBF is not a preorder.)Theorem 6.2 (Soundness of weak simulations)1. If A �wR B, A �wF B, A �wiB B, A �wiFB B, A �wiBF B, A �wH B, or A �wiP B,then A �T B.2. If A �wB B, A �wFB B, A �wBF B, or A �wP B, then A ��T B.Proposition 6.1 and Theorem 6.2 can be proved analogously to the way we proved thecorresponding results for the non-weak case. Alternatively, it is possible to derive theseresults as consequences of the corresponding results for the non-weak case. We do this in atechnical report version of this paper, [37]. 30

7 Conclusions and Related WorkIn this paper, we have given a uni�ed, comprehensive presentation of simulation proof meth-ods for untimed automata, including re�nements, forward and backward simulations andcombinations thereof, and history and prophecy relations. We have given relationships be-tween all of these kinds of simulations, plus soundness and completeness results.We summarize the basic implications between the various simulation techniques of thispaper in a diagram. Suppose M;N 2 fT, �T, R, F, (i)B, (i)FB, (i)BF, H, (i)Pg, where the(i) indicates that i is optional. Then A �M B) A �N B for all automata A and B if andonly if there is a path from �M to �N in Figure 6 consisting of thin lines only. If B has �n,then A �M B) A �N B for all automata A and B if and only if there is a path from �Mto �N consisting of thin lines and thick lines. In the technical report version of this paper,[37], this classi�cation is extended to include the various weak simulations as well.�iP �P�R �iB �B�H �F �iBF �BF�iFB �FB�T ��T
-- -- - ---

? ????
????666�Figure 6: Classi�cation of basic relations between automata.The classi�cation of Figure 6 has been established for a speci�c automaton model (la-beled transition systems with multiple start states but without �nal states) and a speci�cbehavioral preorder (inclusion of �nite and in�nite traces with hiding of internal actions).We have chosen this model because of its simplicity and because it is used both in the theoryof I/O automata [35, 20] and in the theory of process algebras [4, 16, 41], two importantapproaches toward speci�cation and veri�cation of concurrent systems. Simulations tech-niques play an important role in many other models of computation, and variants of most ofthe simulations that we discuss here have been proposed in the literature for other modelsand other notions of behavior. If one attempts to classify all the simulations that have beende�ned for any given approach, then typically one will get a picture very similar to ourFigure 6. Still, it is in most cases di�cult, if not impossible, to formally derive results about31

simulations in one approach from the corresponding results in another approach: althoughthe general picture is the same, the details are frequently di�erent, and one should alwaysbe careful with claims that simulation proof methods carry over from one setting to another.We give some examples.1. In this paper we follow an action-based approach, in which the behavior of a systemis a sequence of (visible) actions. Another popular approach, followed for instancein [1], is based on states: the behavior of a system is a sequence of states (up tostuttering). These di�erent approaches are, in some sense, equivalent. In [5], forinstance, translations are presented between an action based model of labeled transitionsystems (LTS's) and a state base model of Kripke structures (KS's). These translationsshow that the concept of internal actions in action-based approaches is the same, insome sense, as the concept of stuttering in state-based approaches. However, if onetakes our history variables and maps them to the state based world via the translationof [5], one gets something which is slightly di�erent from the history variables of [1],due to a subtle di�erence in the treatment of internal actions/stuttering. By slightlyrestricting our history and prophecy relations one can obtain history and prophecyvariables that do correspond exactly to those of [1]. However, doing this either destroysthe classi�cation of Figure 6, or forces us to change the de�nitions of all the othersimulations as well, with the result that the correspondence with previous work onsimulations in action-based approaches (for instance, [19, 21, 22, 34, 35, 39]) gets lost.2. In classical automata theory, there is a complete duality between past and futuresince besides start states there are also �nal states, and traces correspond to �niteexecutions from a start state to a �nal state. In our automata there are no �nal statesand traces correspond to possibly in�nite executions from start states. As a resultforward and backward simulations are not completely dual in our setting, unlike inclassical automata theory.3. There are a few results that depend on whether invariants are included in the de�nitionsof the simulations. For example, the implicationA �B B ^ B has �n) A �iB Bis not valid in our setting (Example 3.21), but does hold in the context of [39] becausethere reachability conditions are included in the de�nition of backward simulations (cf.Prop. 3.20).4. Simulation techniques have not only been used to prove trace inclusion, but also forproving several other preorders from Van Glabbeek's [11, 12] linear time | branchingtime spectrum. In [23, 13] for instance, proof methods based on forward and backwardsimulations are presented and proved to be sound and complete for the failure preorderof CSP [16]. In the de�nitions of these simulations additional clauses are present whichfor instance require that related states have the same initial actions.5. All the automata studied in this paper have been untimed. In Part II [38], the simu-lation de�nitions and the results of this paper are extended to timed systems. In fact,32

many of the results for the timed case are obtained as consequences of the analogousresults for the untimed case. However, there are several results that do carry over, butcan not be proved from the untimed results. Furthermore, the implicationA �F B ^ A is a forest) A �R Bof Prop. 3.12 does not carry over to the timed setting.6. As far as the classi�cation of simulations is concerned, our work is closely related to andextends that of Jonsson [22]. Jonsson, however, has a more powerful notion of backwardsimulation that can also handle automata with in�nite invisible nondeterminism. Wepreferred not to use this notion since it fails to reduce reasoning about entire executionsto reasoning about individual states and transitions.7. This paper is related to the work of [17, 18, 3, 7, 48] on data re�nement. In [17],an operation is a binary relation over some universal set �. A data type is a triple(AI ;AO ;AF), where AI and AF are the initialization and �nalization operation, re-spectively, and AO = fAO j j j 2 Jg is an indexed set of operations. An automaton Acan be encoded as a data type by de�ningAI �= �� start(A)AOa �= f(s0; s) j s0 a�!A sg; for all a 2 acts(A)AF �= states(A) ��Here acts(A) plays the role of the index set J . In [17], a downward simulation from(AI ; fAO j j j 2 Jg;AF) to (BI ; fBO j j j 2 Jg;BF) is de�ned to be any relation Rfor which the following inequations hold:BI � R � AIBO j � R � R � AO j for all j 2 JBF � R � AFIt is easy to verify that in a setting without � -steps, a relation f � states(A) �states(B) is a forward simulations from A to B i� f�1 is a downward simulation fromthe data type encoding B to the data type encoding A. A similar correspondencecan be established between our backward simulations and the upward simulations of[17]. Just as forward and backward simulations provide a sound and complete proofmethod for trace inclusion between automata, downward and upward simulations o�era sound and complete proof method for re�nement between data types. Surprisinglyhowever, the de�nition of re�nement between data types is completely di�erent fromthe de�nition of trace inclusion between automata: informally, one data type is re�nedby another if any program that uses the former would function at least as well usingthe latter. Even more surprising (at least for us) is the fact that the requirementsof totality and �nite invisible nondeterminism that we used to prove soundness ofbackward simulations, also play a role in the soundness result of upward simulationsin case iteration and recursion can be used in the formation of programs [17]. Clearly,33

an important topic for future research is to study the connection between automatabased simulation techniques and methods for data re�nement. A speci�c questionhere concerns the relationship between forward-backward simulations and the singlecomplete rule for data re�nement of [7].The present paper provides complete proof methods for trace inclusion between automatawith �nite invisible nondeterminism. Such automata express the class of safety properties[2]. For simplicity, we have not considered liveness properties here. Simulation techniquesthat deal with liveness are for instance described in [21, 22, 1, 8]. The results of [1, 8] aremore general than ours because safety and liveness issues are separated through the use ofautomata that are equipped with additional liveness properties.History variables were �rst de�ned at the syntactic level for speci�c (parallel) program-ming languages. Owicki and Gries [43], for instance, de�ne an auxiliary variable set for astatement S to be a set of variables AV that appears in S only in assignments x := E, wherex is in AV . One of the contributions of Abadi and Lamport [1] is a language independent,semantic de�nition of this important concept. In this paper we have simpli�ed their de�-nition and the proof of their completeness theorem by observing that history variables areequivalent to history relations, and the dual prophecy variables are equivalent to prohecyrelations. Several authors have observed that forward and backward simulations are closelyrelated to history and prophecy variables, respectively, [39, 22, 25].9 Still we believe that,through Theorems 5.8 and 5.16, our paper is the �rst to establish an exact correspondencein a general setting of transition systems.In this paper we have only discussed simulation techniques at the semantic level of au-tomata. We have not paid any attention to the syntax that is used to de�ne these automata.Since some of our methods require the introduction of intermediate automata, this meansthat if one wants to use these methods for any given language, one has to check whetherthis language is su�ently expressive to describe the intermediate automata. Also, one hasto check whether the language used for specifying relations is su�ciently expressive to de�nethe various simulation relations that are required in a correctness proof. We leave it is atopic for future research to �nd syntactic formulations of our results.Re�nements, history variables and forward simulations have been used extensively andsuccessfully for verifying concurrent algorithms. Backward simulations and prophecy vari-ables have also been shown to be of practical value in a few cases. Additional work remainsto determine the practical utility of backward simulations, prophecy variables and relations,and the hybrid methods of this paper. This will involve applying these techniques to a widerange of examples.References[1] M. Abadi and L. Lamport. The existence of re�nement mappings. Theoretical ComputerScience, 82(2):253{284, 1991.9Note however that [39] contains some minor
aws (Propositions 7.1, 7.6 and 8.1 are incorrect), and thatthe auxiliary variables of [25] have the peculiar property that adding them may change the visible behaviorof an automaton. 34

[2] B. Alpern and F.B. Schneider. De�ning liveness. Information Processing Letters, 21:181{185, 1985.[3] R.J.R. Back and J. von Wright. Re�nement calculus, part I: Sequential nondeterministicprograms. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, ProceedingsREX Workshop on Stepwise Re�nement of Distributed Systems: Models, Formalism,Correctness, Mook, The Netherlands, May/June 1989, volume 430 of Lecture Notes inComputer Science, pages 42{66. Springer-Verlag, 1990.[4] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in TheoreticalComputer Science 18. Cambridge University Press, 1990.[5] R. De Nicola and F.W. Vaandrager. Three logics for branching bisimulation (ex-tended abstract). In Proceedings 5th Annual Symposium on Logic in Computer Science,Philadelphia, USA, pages 118{129. IEEE Computer Society Press, 1990. Full version toappear in JACM. Available as Rapporto di Ricerca SI-92/07, Dipartimento di Scienzedell'Informazione, Universit�a degli Studi di Roma \La Sapienza", November 1992.[6] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall International, EnglewoodCli�s, 1976.[7] P.H.B. Gardiner and C.C. Morgan. A single complete rule for data re�nement. Journalof Formal Aspects of Computing Science, 5:367{382, 1993.[8] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N. Lynch. Liveness in timed anduntimed systems. In S. Abiteboul and E. Shamir, editors, Proceedings 21th ICALP,Jerusalem, volume 820 of Lecture Notes in Computer Science. Springer-Verlag, 1994. Afull version appears as MIT Technical Report number MIT/LCS/TR-587.[9] R. Gerth. Foundations of compositional program re�nement (�rst version). In J.W.de Bakker, W.P. de Roever, and G. Rozenberg, editors, Proceedings REX Workshop onStepwise Re�nement of Distributed Systems: Models, Formalism, Correctness, Mook,The Netherlands, May/June 1989, volume 430 of Lecture Notes in Computer Science,pages 777{808. Springer-Verlag, 1990.[10] A. Ginzburg. Algebraic Theory of Automata. Academic Press, New York { London,1968.[11] R.J. van Glabbeek. The linear time { branching time spectrum. In J.C.M. Baeten andJ.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notesin Computer Science, pages 278{297. Springer-Verlag, 1990.[12] R.J. van Glabbeek. The linear time { branching time spectrum II (the semantics ofsequential systems with silent moves). In E. Best, editor, Proceedings CONCUR 93,Hildesheim, Germany, volume 715 of Lecture Notes in Computer Science, pages 66{81.Springer-Verlag, 1993. 35

[13] J. He. Process simulation and re�nement. Journal of Formal Aspects of ComputingScience, 1:229{241, 1989.[14] L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link pro-tocol. In H. Barendregt and T. Nipkow, editors, Proceedings International WorkshopTYPES'93, Nijmegen, The Netherlands, May 1993, volume 806 of Lecture Notes inComputer Science, pages 127{165. Springer-Verlag, 1994. Full version available as Re-port CS-R9420, CWI, Amsterdam, March 1994.[15] C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271{281,1972.[16] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-glewood Cli�s, 1985.[17] C.A.R. Hoare, J. He, and J.W. Sanders. Prespeci�cation in data re�nement. InformationProcessing Letters, 25:71{76, 1987.[18] C.B. Jones. Systematic Software Development using VDM. Prentice-Hall International,Englewood Cli�s, 1986.[19] B. Jonsson. Compositional Veri�cation of Distributed Systems. PhD thesis, Departmentof Computer Systems, Uppsala University, 1987. DoCS 87/09.[20] B. Jonsson. Modular veri�cation of asynchronous networks. In Proceedings of the6th Annual ACM Symposium on Principles of Distributed Computing, pages 152{166,August 1987.[21] B. Jonsson. On decomposing and re�ning speci�cations of distributed systems. In J.W.de Bakker, W.P. de Roever, and G. Rozenberg, editors, Proceedings REX Workshop onStepwise Re�nement of Distributed Systems: Models, Formalism, Correctness, Mook,The Netherlands, May/June 1989, volume 430 of Lecture Notes in Computer Science,pages 361{387. Springer-Verlag, 1990.[22] B. Jonsson. Simulations between speci�cations of distributed systems. In J.C.M. Baetenand J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, volume 527 of LectureNotes in Computer Science, pages 346{360. Springer-Verlag, 1991.[23] M.B. Josephs. A state-based approach to communicating processes. Distributed Com-puting, 3:9{18, 1988.[24] N. Klarlund and F.B. Schneider. Verifying safety properties using in�nite-state au-tomata. Technical Report 89-1039, Department of Computer Science, Cornell Univer-sity, Ithaca, New York, 1989.[25] N. Klarlund and F.B. Schneider. Proving nondeterministically speci�ed safety propertiesusing progress measures. Information and Computation, 107(1):151{170, November1993. 36

[26] D.E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.Addison-Wesley, Reading, Massachusetts, 1973. Second edition.[27] S.S. Lam and A.U. Shankar. Protocol veri�cation via projections. IEEE Transactionson Software Engineering, 10(4):325{342, July 1984.[28] L. Lamport. Specifying concurrent program modules. ACM Transactions on Program-ming Languages and Systems, 5(2):190{222, 1983.[29] B.W. Lampson, N.A. Lynch, and J.F. S�gaard-Andersen. Correctness of at-most-oncemessage delivery protocols. In FORTE'93 - Sixth International Conference on FormalDescription Techniques, pages 387{402, Boston, MA, October 1993.[30] B.L. Liskov and J.V. Guttag. Abstraction and Speci�cation in Program Development.MIT Press and McGraw Hill, 1986.[31] P. Loewenstein and D.L. Dill. Veri�cation of a multiprocessor cache protocol using sim-ulation relations and higher-order logic (summary). In E.M. Clarke and R.P. Kurshan,editors, Proceedings of the 2nd International Conference on Computer-Aided Veri�ca-tion, New Brunswick, NJ, USA, volume 531 of Lecture Notes in Computer Science,pages 302{311. Springer-Verlag, 1991.[32] P. Lucas. Two constructive realizations of the block concept and their equivalence.Technical Report 25.085, IBM Laboratory, Vienna, June 1968.[33] N.A. Lynch. Concurrency control for resilient nested transactions. Report TR-285,MIT, February 1983.[34] N.A. Lynch. Multivalued possibilities mappings. In J.W. de Bakker, W.P. de Roever,and G. Rozenberg, editors, Proceedings REX Workshop on Stepwise Re�nement of Dis-tributed Systems: Models, Formalism, Correctness, Mook, The Netherlands, May/June1989, volume 430 of Lecture Notes in Computer Science, pages 519{543. Springer-Verlag,1990.[35] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms.In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Com-puting, pages 137{151, August 1987. A full version is available as MIT Technical ReportMIT/LCS/TR-387.[36] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-basedsystems. In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors,Proceedings REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands,June 1991, volume 600 of Lecture Notes in Computer Science, pages 397{446. Springer-Verlag, 1992.[37] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part I: Untimedsystems. Report CS-R9313, CWI, Amsterdam, March 1993. Also, MIT/LCS/TM-486,Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,MA. 37

[38] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part II: Timing-based systems. Report CS-R9314, CWI, Amsterdam,March 1993. Also, MIT/LCS/TM-487, Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-bridge, MA.[39] M. Merritt. Completeness theorems for automata. In J.W. de Bakker, W.P. de Roever,and G. Rozenberg, editors, Proceedings REX Workshop on Stepwise Re�nement of Dis-tributed Systems: Models, Formalism, Correctness, Mook, The Netherlands, May/June1989, volume 430 of Lecture Notes in Computer Science, pages 544{560. Springer-Verlag,1990.[40] R. Milner. An algebraic de�nition of simulation between programs. In Proceedings 2ndJoint Conference on Arti�cial Intelligence, pages 481{489. BCS, 1971. Also availableas Report No. CS-205, Computer Science Department, Stanford University, February1971.[41] R. Milner. Communication and Concurrency. Prentice-Hall International, EnglewoodCli�s, 1989.[42] T. Nipkow. Formal veri�cation of data type re�nement | theory and practice. In J.W.de Bakker, W.P. de Roever, and G. Rozenberg, editors, Proceedings REX Workshop onStepwise Re�nement of Distributed Systems: Models, Formalism, Correctness, Mook,The Netherlands, May/June 1989, volume 430 of Lecture Notes in Computer Science,pages 561{591. Springer-Verlag, 1990.[43] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. ActaInformatica, 6(4):319{340, 1976.[44] D.M.R. Park. Concurrency and automata on in�nite sequences. In P. Deussen, editor,5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages 167{183.Springer-Verlag, 1981.[45] J.C. Reynolds. The Craft of Programming. Prentice-Hall International, EnglewoodCli�s, 1981.[46] A.P. Sistla. Proving correctness with respect to nondeterministic safety speci�cations.Information Processing Letters, 39(1):45{49, July 1991.[47] E.W. Stark. Proving entailment between conceptual state speci�cations. TheoreticalComputer Science, 56:135{154, 1988.[48] J. von Wright. The lattice of data re�nement. Acta Informatica, 31:105{135, 1994.A Mathematical PreliminariesThis appendix contains some basic mathematical notation, plus a compactness lemma.38

A.1 SequencesLet K be any set. The sets of �nite and in�nite sequences of elements of K are denotedby K� and K!, respectively. The symbol � denotes the empty sequence and the sequencecontaining one element k 2 K is denoted by k. Concatenation of a �nite sequence with a�nite or in�nite sequence is denoted by juxtaposition. We say that a sequence � is a pre�x ofa sequence �, denoted by � � �, if either � = �, or � is �nite and � = ��0 for some sequence�0. A set L of sequences is pre�x closed if, whenever some sequence is in L, all its pre�xesare also.If � is a nonempty sequence then �rst(�) denotes the �rst element of �, and tail(�)denotes the sequence obtained from � by removing �rst(�). Moreover, if � is �nite, thenlast(�) denotes the last element of �.If � is a sequence over K and K 0 � K, then �dK 0 denotes the projection of � on K 0,i.e., the subsequence of � consisting of the elements of K 0. If L is a set of sequences, LdK 0is de�ned as f�dK 0 j � 2 Lg.A.2 Sets, Relations and FunctionsA relation over setsX and Y is de�ned to be any subset ofX�Y . IfR is a relation overX andY , then we de�ne the domain of R to be domain(R) �= fx 2 X j (x; y) 2 R for some y 2 Y g,and the range of R to be range(R) �= fy 2 Y j (x; y) 2 R for some x 2 Xg. A relation Rover X and Y is total over X if domain(R) = X. If X is any set, we let id(X) denote theidentity relation over X and X, i.e., f(x; x) j x 2 Xg.Suppose that R and R0 are relations over X and Y and over Y and Z, respectively. Thenthe composition of R and R0, denoted by R0 �R (pronounce R0 after R) is the relation overX and Z de�ned by(x; z) 2 R0 �R , 9y 2 Y : ((x; y) 2 R ^ (y; z) 2 R0):For all relations R, R0 and R00, R � (R0 �R00) = (R � R0) �R00. Also, for any relation R overX and Y , id(Y) �R = R � id(X) = R.If R is a relation over X and Y , then the inverse of R, written R�1, is de�ned to be therelation over Y and X consisting of those pairs (y; x) such that (x; y) 2 R. For any pair ofrelations R and R0, (R0 �R)�1 = R�1 � (R0)�1.If R is a relation over X and Y , and Z is a set, then RdZ is the relation over X \Z andY given by RdZ �= R \ (Z � Y). If R is a relation over X and Y and x 2 X, we de�neR[x] = fy 2 Y j (x; y) 2 Rg. We say that a relation R over X and Y is a function from Xto Y if jR[x]j = 1 for all x 2 X; in this case, we write R(x) to denote the unique element ofR[x]. We write X ! Y for the set of functions from X to Y . A function c from X to Y is achoice function for a relation R over X and Y provided that c � R (i.e., c(x) 2 R[x] for allx 2 X).If X is a set, P(X) denotes the powerset of X, i.e., the set of subsets of X, and N(X)the set of nonempty subsets of X, i.e., the set P(X) � f;g. We say that a relation R overX and Y is image-�nite if R[x] is �nite for all x in X. If R is a relation over X and P(Y),then we say that R is image-set-�nite if every set in the range of R is �nite.39

A.3 A Basic Graph LemmaWe require the following lemma, a generalization of K�onig's Lemma [26]. If G is a digraph,then a root of G is de�ned to be a node with no incoming edges.Lemma A.1 Let G be an in�nite digraph that satis�es the following properties.1. G has �nitely many roots.2. Each node of G has �nite outdegree.3. Each node of G is reachable from some root of G.Then there is an in�nite path in G starting from some root.Proof: The usual proof for K�onig's Lemma extends to this case.B Glossary of Conventionsa Actionsb Backward simulationsc Choice functionsf Forward simulationsg Forward-backward and backward-forward simulationsh History relationsi Indicesn Natural numbersp Prophecy relationsr Re�nementss; u StatesA;B;C;D AutomataG DigraphsI InvariantsK Sets of symbolsL Sets of sequencesP;Q Trace propertiesR RelationsS;U Sets of statesX;Y;Z Sets� Execution fragments� Sequences of external actions (traces)
 Sequences of actions� The empty sequence� Projections�; � Sequences� The internal action 40

