
Hybrid I/O Automata�Nany Lynh1y Roberto Segala2zFrits Vaandrager3x1 MIT Laboratory for Computer Siene, Cambridge, MA 02139, USAlynh�theory.ls.mit.edu2 Dipartimento di Matematia, Universit�a di BolognaPiazza di Porta San Donato 5, 40127 Bologna, Italysegala�s.unibo.it3 Computing Siene Institute, University of NijmegenP.O. Box 9010, 6500 GL Nijmegen, The Netherlandsfvaan�s.kun.nlJuly 4, 2001AbstratHybrid systems are systems that exhibit a ombination of disrete and ontinuous be-havior. Typial hybrid systems inlude omputer omponents, whih operate in disreteprogram steps, and real-world omponents, whose behavior over time intervals evolves a-ording to physial onstraints. Important examples of hybrid systems inlude automatedtransportation systems, robotis systems, proess ontrol systems, systems of embeddeddevies, and mobile omputing systems. Suh systems an be very omplex, and verydiÆult to desribe and analyze.This paper presents the Hybrid Input/Output Automaton (HIOA) modeling framework,a basi mathematial framework to support desription and analysis of hybrid systems. Animportant feature of this model is its support for deomposing hybrid system desriptions.�An extended abstrat of this paper appeared as [46℄.ySupported by PATH 1784-18454LD; AFOSR F49620-00-1-0097, F49620-97-1-0337, and SA2796PO 1-0000243658; NTT MIT9904-12; NSF ACI-9876931, CCR-9909114, and CCR-9804665; multi-sponsored on-sortium projet Oxygen; DARPA F33615-01-C-1850.zSupported by MURST projet TOSCA.xSupported by Esprit Projet 26270, Veri�ation of Hybrid Systems (VHS), GBE/SIOA projet 612-14-004,Stepwise Re�nement of Hybrid Systems, and PROGRESS projet TES4199, Veri�ation of Hard and SoftlyTimed Systems (HaaST). 1



In partiular, the framework inludes a notion of external behavior for a hybrid I/O au-tomaton, whih aptures its disrete and ontinuous interations with its environment. Theframework also de�nes what it means for one HIOA to implement another, based on aninlusion relationship between their external behavior sets, and de�nes a notion of simula-tion, whih provides a suÆient ondition for demonstrating implementation relationships.The framework also inludes a omposition operation for HIOAs, whih respets externalbehavior, and a notion of reeptiveness , whih says that an HIOA does not blok the pas-sage of time. The framework is intended to support analysis methods from both omputersiene and ontrol theory.This work is a simpli�ation of an earlier version of the HIOA model [47, 48℄. Themain simpli�ation in the new model is a learer separation between the mehanisms usedto model disrete and ontinuous interation between omponents. In partiular, the newmodel removes the dual use of external variables for disrete and ontinuous interation.Keywords & phrases: Hybrid system, I/O automaton, hybrid automaton, hybrid I/Oautomaton, simulation relation, omposition, reeptiveness.
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In this paper, we present a basi mathematial framework to support desription and anal-ysis of hybrid systems: the Hybrid Input/Output Automaton modeling framework. A HybridI/O Automaton (HIOA) is a kind of nondeterministi, possibly in�nite-state, state mahine.The state of an HIOA is divided into state variables, and it may also have additional inputvariables and output variables. The state an hange in two ways: Disrete transitions, whihare labeled by disrete ations, hange the state instantaneously. Trajetories are funtionsthat desribe the evolution of the state variables, along with the input and output variables,over intervals of time. Trajetories may be ontinuous or disontinuous funtions.HIOAs are intended to be used to model all omponents of hybrid systems, inluding phys-ial omponents, ontrollers, sensors, atuators, omputer software, ommuniation servies,and humans that interat with the rest of the system. The framework is very general: forexample, we do not require that trajetories be expressible using systems of equations of a par-tiular form, and we do not require that disrete transitions be expressible using a partiularlogial language. Partiular kinds of systems of equations and partiular logial languages anbe used to de�ne speial ases of the general model.The most important feature of the hybrid I/O automaton framework is its support fordeomposing hybrid system desription and analysis; this is important beause many hybridsystems are too omplex to understand all at one. A key to this deomposition is that theframework inludes a rigorously-de�ned notion of external behavior for hybrid I/O automata,whih aptures their disrete and ontinuous interations with their environment. The exter-nal behavior of eah HIOA is de�ned by a simple mathematial objet alled a trae. Theframework also inludes notions of abstration and parallel omposition.For abstration, the framework inludes notions of implementation and simulation, whihan be used to view hybrid systems at multiple levels of abstration, starting from a high-levelversion that desribes required properties, and ending with a low-level version that desribes adetailed design or implementation. In partiular, the HIOA framework de�nes what it meansfor one HIOA, A, to implement another HIOA, B, namely, any trae that an be exhibitedby A is also allowed by B. In this ase, A might be more deterministi than B, in termsof either disrete transitions or trajetories. For instane, B might be allowed to perform anoutput ation at an arbitrary time before noon, whereas A produes the same output sometimebetween 10 and 11AM. Or B might allow an output variable y to evolve with :y 2 [0; 2℄, whereasA might ensure that :y = 1.The notion of a simulation relation from A to B provides a suÆient ondition for demon-strating that A implements B. A simulation relation is de�ned to satisfy three onditions, onerelating start states, one relating disrete transitions, and one relating trajetories of A and B.For parallel omposition, the framework provides a omposition operation, by whih HIOAsmodeling individual hybrid system omponents an be ombined to produe a model for a largerhybrid system. The model for the omposed system an desribe interations among the om-ponents, inluding joint partiipation in disrete transitions and trajetories. Compositionrequires ertain \ompatibility" onditions, namely, that eah output variable and output a-tion be ontrolled by at most one automaton, and that internal variables and ations of one5



automaton annot be shared by any other automaton. The omposition operation respetstraes, for example, if A1 implements A2 then the omposition of A1 and B implements theomposition of A2 and B. Composition also satis�es projetion results saying that a traeof a omposition of HIOAs projets to give traes of the individual HIOAs, and pasting re-sults saying that ompatible behaviors of omponents are \pastable" to give behaviors of theomposition. Suh results are essential if the models are to be used for ompositional designand veri�ation of systems. In addition, the framework inludes hiding operations for outputations and variables, whih respet the implementation relationship.An interesting ompliation that arises in the hybrid setting is the possibility that a statemahine ould \prevent time from passing", for example, by bloking it entirely, or by shedul-ing in�nitely many disrete ations to happen in a �nite amount of time|so-alled Zenobehavior . The HIOA framework inludes a notion of reeptiveness, whih says that an HIOAdoes not ontribute to produing Zeno behavior, and whih (under suitable ompatibilityonditions) is preserved by omposition. We also give simple suÆient onditions for theseompatibility onditions to hold.The generality of the HIOA framework means that a large olletion of analysis methods,derived from both disrete and ontinuous analysis methods, an be applied to systems modeledas HIOAs. For example, indutive methods for proving invariant assertions and simulationrelationships (see, e.g, [50, 64℄), whih are ommonly used in omputer siene for reasoningabout disrete systems, an be extended to the hybrid setting and expressed by theoremsabout HIOAs. Other disrete analysis methods that should be extendible inlude provingprogress using well-founded sets (see, e.g., [21℄), assume-guarantee ompositional reasoning(e.g., [30, 12℄), and deduing properties within temporal logi and other logial formalisms.All of these methods ould be supported by interative theorem proving software. Automatimethods based on state-spae searhing and based on deision proedures for automata onin�nite paths (see, e.g., [12℄), should also be extendible; however, these methods will applyonly to speial ases of the general model.Likewise, key methods used in ontrol theory for reasoning about ontinuous systems, suhas stability analysis using Lyapunov funtions (e.g., [71℄) and robust ontrol tehniques (e.g.,[18℄), should be extendible to hybrid systems using HIOAs.1.2 Evolution of the HIOA Framework:The HIOA framework has evolved from two earlier input/output automaton models: the basiI/O automaton model of Lynh and Tuttle [49, 54℄ and the timed I/O automaton modelof Lynh, Vaandrager et al. [52, 66℄. Basi I/O automata onsist essentially of states, startstates, and disrete transitions. They have been used fairly extensively to desribe and analyzeasynhronous distributed algorithms|see, for example, [42℄.Timed I/O automata add expliit time-passage steps, whih allow time to pass in disretejumps. In the simplest ases, time-passage steps involve just the passage of time, with no6



other hanges to the state. However, in general, they are al lowed to hange the state inmore elaborate ways, inluding hanging variables that represent physial quantities. TimedI/O automata have been used mainly to desribe timing-based distributed algorithms andommuniation protools (e.g., [70, 39, 67, 68, 14, 69, 20℄). Timed I/O automata have alsobeen used in a few ases to model simple hybrid system \hallenge problems", inluding theGeneralized Railroad Crossing problem [25, 26℄ In these examples, the time-passage stepsinlude disrete hanges to physial quantities suh as train position and water level. Thesehanges represent the umulative hanges in these quantities over intervals of elapsed time.An early version of the HIOA modeling framework appeared in [47, 48℄. It augmented timedI/O automata by adding input and output variables and expliit trajetories; the trajetoriesdesribe the evolution of the state and external variables over intervals of time, rather thanjust their umulative hanges. This version of the HIOA framework was used to desribe andanalyze many hybrid systems examples, inluding automated transportation systems [53, 43,75, 73, 74, 44, 36, 38℄, intelligent vehile highway systems [17, 41℄, airraft ontrol systems[40, 37℄, automotive ontrol systems [19℄, and onsumer eletronis systems [8℄.We summarize the results of these modeling e�orts briey. In these examples, HIOAs wereused to model system omponents of many di�erent kinds, inluding real-world omponents,omputer programs, ommuniation hannels, sensors, atuators, and humans (for example, pi-lots interating with airraft ontrol systems). Individual omponent automata were generallyhighly nondeterministi, and often allowed for bounded unertainty in the values of quantitiesrepresented in the state. Component states often inluded timing information, for example,the urrent time and deadlines for the performane of ertain ations. Composition was usedto ombine the omponent HIOAs into models of the omplete systems. Levels of abstrationwere used to desribe several kinds of relationships between HIOAs, for example: the relation-ship between a detailed view of a system and a more abstrat view; the relationship between adesription of a system in terms of higher derivatives (e.g., aeleration) and a desription interms of lower derivatives (e.g., veloity or position); and the relationship between a versionof a system that inludes periodi sampling and orretion and a version in whih adjustmentis ontinuous, but within an envelope of unertainty.The examples were analyzed using a variety of methods inluding invariant assertions, sim-ulation relations, ompositional reasoning, di�erential equations and integration. Many of theinvariants and simulation relations involved timing data and data representing real-world quan-tities. Invariants and simulation relations were proved using indutive arguments on the lengthof exeutions, as is usual in the purely disrete setting. However, unlike in the disrete setting,the proofs in the hybrid setting inluded two di�erent kinds of indutive steps: for disretesteps and trajetories. Arguments about disrete steps involved the sort of algebrai dedutionthat is typial in the disrete setting, whereas arguments about trajetories involved manip-ulation of di�erential equations and integrals. For example, a tehnique involving \positiveinvariant sets", derived from ontrol theory, was used in [℄ for showing that ertain propertiesof the state are preserved during trajetories.In general, the formal HIOA framework proved to be adequate for these examples. How-7



ever, it was not ideal, beause it introdued some ompliations that proved to be distrating.The main soure of ompliation seemed to be the fat that the model has two mehanismsfor modeling disrete ommuniation: shared ations and shared variables. Also, it uses thesame mehanism|shared variables|to model both disrete and ontinuous interation be-tween omponents. This intertwining of mehanisms led to some tehnialities, for example,eah automaton had to inlude a speial environment ation e, whih is assoiated with disretehanges to input variables. To simplify matters, we were led to develop the new version of theHIOA model presented in this paper. The new version has a learer separation between themehanisms used to model disrete and ontinuous ativity. And it has only one mehanismfor disrete ommuniation: shared ations.In the literature on disrete state mahine models, both shared ations and shared variablesare popular mehanisms for modeling interations between system omponents. The sharedation approah is used, for example, in the extensive researh literature on proess algebras(e.g., [29, 59, 60℄), and in the work on I/O automata (e.g., [49, 43℄). The shared variableapproah is used, for example, in the temporal logi and model-heking ommunities (e.g.,[57, 34, 5℄). The expressive power of shared ation and shared variable ommuniation issimilar, and translations between speial ases of these two types of models have been developed[33, 13℄. Choosing between these two forms of ommuniation seems to be generally a matterof ustom and onveniene. One advantage of the shared-ation approah is that it leads tosimple mathematial notions of external behavior of state mahines, based on sequenes ofations (whih are usually alled \traes").The new HIOA framework presented in this paper uses (only) shared ations for disreteommuniation, and uses shared variables for ontinuous ommuniation. Disrete eventsare not allowed to make hanges to shared variables, and the speial environment ation eis eliminated. Beause the new model maintains a learer separation between mehanismsfor desribing disrete and ontinuous ativity, it is simpler overall|in its de�nitions, resultstatements, and proofs| than the earlier HIOA model of [47, 48℄.Another simpli�ation in the new framework appears in the de�nitions and results involvingreeptiveness. In the original HIOA model of [47, 48℄, and in other work that dealt withreeptiveness [16, 1, 66℄ for disrete systems, reeptiveness was de�ned in terms of two-playergames between the system and its environment. In suh a game, the goal of the system isto onstrut an in�nite, non-Zeno exeution, and the goal of the environment is to preventthis from happening. The simpli�ation in this material in the new model is a result of ourmodeling of the game itself as an HIOA.1.3 Other Related WorkBesides the models already disussed above, other preursors to the new HIOA model inludethe phase transition system models of [56, 2, 32℄ and Braniky's hybrid ontrol systems [10, 11℄.Phase transition systems are similar to HIOAs in their ombined treatment of disrete andontinuous ativity, for example, they have notions similar to our trajetories and hybrid8



sequenes. However, this work does not address system deomposition issues suh as externalbehavior, implementation relationships, and omposition, whih are emphasized in this paper.Braniky's hybrid ontrol systems are also similar to ours in their modeling of disrete andontinuous ativity. This work has a ontrol theory avor, fousing on standard on�gurationsinluding plant, ontroller, sensor and atuator, and fousing on stability results. Again,system deomposition issues are not addressed.System deomposition issues, inluding levels of abstration, ompositionality, and reep-tiveness have been addressed by Alur and Henzinger [6℄ in their work on hybrid reative mod-ules. A major di�erene between this work and ours is that reative modules ommuniate viashared variables and not via shared ations. Another di�erene is that hybrid reative modulesinlude an additional layer of struture tailored to modeling synhronous systems|struturethat is not present in the HIOA model. In [6℄, a de�nition of reeptiveness based on two-playergames, similar to the de�nition in [47, 48℄, is proposed, and is shown to be preserved by par-allel omposition. However, in [6℄, no irular dependenies (\feedbak loops") are allowedamong the ontinuous variables of di�erent omponents, a restrition that greatly simpli�esthe analysis.1.4 Paper OrganizationThe rest of this paper is organized as follows. Setion 2 ontains mathematial preliminar-ies. Setion 3 de�nes notions that are useful for desribing the behavior of hybrid systems,most importantly, trajetories and hybrid sequenes. Setion 4 de�nes hybrid automata (HAs),whih ontain all of the struture of HIOAs exept for the lassi�ation of external ations andvariables as inputs or outputs. It also de�nes external behavior for HAs and implementationand simulation relationships between HAs. Setion 5 presents omposition and hiding oper-ations for HAs. Setion 6 de�nes hybrid I/O automata (HIOAs) by adding an input/outputlassi�ation to HAs, and extends the theory of HAs to HIOAs. It also introdues a \strongompatibility" ondition that ensures that HIOAs are omposable, and desribes situationsin whih strong ompatibility is guaranteed to hold. Setion 7 presents the theory of re-eptiveness, inluding a main theorem stating that reeptiveness is preserved by omposition(assuming strong ompatibility). Setion 8 presents some onlusions. Examples derived fromearlier work on hybrid system modeling are inluded throughout.2 Mathematial PreliminariesIn this setion, we give basi mathematial de�nitions that will be used as a foundation for ourde�nitions of hybrid automata and hybrid I/O automata. These de�nitions involve funtions,sequenes, partial orders, and time. The automata de�nitions appear later, in Setions 4 and6. Sine most of the de�nitions here are reasonably standard, we enourage the reader to skipahead to Setion 3 and return to this setion as needed.9



2.1 FuntionsIf f is a funtion, then we denote the domain and range of f by dom(f) and range(f ), respe-tively. If also S is a set, then we write f dS for the restrition of f to S, that is, the funtiong with dom(g) = dom(f) \ S suh that g() = f() for eah  2 dom(g).We say that two funtions f and g are ompatible if f d dom(g) = g d dom(f). If f andg are ompatible funtions then we write f [ g for the unique funtion h with dom(h) =dom(f)[dom(g) satisfying the ondition: for eah  2 dom(h), if  2 dom(f) then h() = f()and if  2 dom(g) then h() = g(). More generally, if F is a set of pairwise ompatiblefuntions then we write SF for the unique funtion h with dom(h) = Sfdom(f) j f 2 Fgsatisfying the ondition: for eah f 2 F and  2 dom(f), h() = f().If f is a funtion whose range is a set of funtions and S is a set, then we write f # S forthe funtion g with dom(g) = dom(f) suh that g() = f() dS for eah  2 dom(g). Therestrition operation # is extended to sets of funtions by pointwise extension. Also, if f isa funtion whose range is a set of funtions, all of whih have a partiular element d in theirdomain, then we write f # d for the funtion g with dom(g) = dom(f) suh that g() = f()(d)for eah  2 dom(g).We say that two funtions f and g whose ranges are sets of funtions are pointwise om-patible if for eah  2 dom(f) \ dom(g), f() and g() are ompatible. If f and g havethe same domain and are pointwise ompatible, then we denote by f _[g the funtion h withdom(h) = dom(f) suh that h() = f() [ g() for eah .2.2 SequenesLet S be any set. A sequene over S is a funtion from a downward losed subset of the naturalnumbers to S. Thus, the domain of a sequene is either the set of all natural numbers, or isof the form f0; : : : ; kg, for some natural number k. In the �rst ase we say that the sequeneis in�nite, and in the seond ase �nite. The sets of �nite and in�nite sequenes over S aredenoted by S� and S!, respetively. Conatenation of a �nite sequene with a �nite or in�nitesequene is denoted by juxtaposition. We use � to denote the empty sequene, that is, thesequene with the empty domain. The sequene ontaining one element  2 S is abbreviatedas . We say that a sequene � is a pre�x of a sequene �, denoted by � � �, if � = � d dom(�).Thus, � � � if either � = �, or � is �nite and � = ��0 for some sequene �0. If � is a nonemptysequene then head (�) denotes the �rst element of � and tail(�) denotes � with its �rst elementremoved. Moreover, if � is �nite, then last(�) denotes the last element of � and init(�) denotes� with its last element removed.2.3 Partial OrdersWe reall some basi de�nitions and results regarding partial orders, and in partiular, ompletepartial orders (pos) from [24, 27℄. A partial order is a set S together with a binary relation10



v that is reexive, antisymmetri, and transitive.A subset P � S is bounded (above) if there is an x 2 S suh that y v x for eah y 2 P ;in this ase, x is an upper bound for P . A least upper bound (lub) for a subset P � S is anupper bound x for P suh that x � y for every upper bound y for P . If P has a lub, then it isneessarily unique, and we denote it by FP . A subset P � S is direted if every �nite subsetQ of P has an upper bound in P . A poset S is omplete, and hene is a omplete partial order(po) if every direted subset P of S has a lub in S.We say that P 0 � S dominates P � S, denoted by P v P 0, if for every x 2 P there issome x0 2 P 0 suh that x v x0. We use the following two simple lemmas, adapted from [27℄[Lemmas 3.1.1 and 3.1.2℄.Lemma 2.1 If P; P 0 are direted subsets of a po S and P v P 0 then FP v FP 0.Lemma 2.2 Let P = fxij j i 2 I; j 2 Jg be a doubly indexed subset of a po S. Let Pi denotethe set fxij j j 2 Jg for eah i 2 I. Suppose1. P is direted,2. eah Pi is direted with lub xi, and3. the set fxi j i 2 Ig is direted.Then tP = tfxi j i 2 Ig.A �nite or in�nite sequene of elements, x0; x1; x2; : : :, of a partially ordered set (S;v)is alled a hain if xi v xi+1 for eah non-�nal index i. We de�ne the limit of the hain,limi!1 xi, to be the lub of the set fx0; x1; x2; : : :g if S ontains suh a bound; otherwise, thelimit is unde�ned. Sine a hain is a speial ase of a direted set, eah hain of a po has alimit.A funtion f : S ! S0 between posets S and S0 is monotone if f(x) v f(y) whenever x v y.If f is monotone and P is a direted set, then the set f(P ) = ff(x) j x 2 Pg is direted as well.If f is monotone and f(FP ) = F f(P ) for every direted P , then f is said to be ontinuous.An element x of a po S is ompat if, for every direted set P suh that x v FP , there issome y 2 P suh that x v y. We de�ne K(S) to be the set of ompat elements of S. A poS is algebrai if every x 2 S is the lub of the set fa 2 K(S) j a v xg. A simple example of analgebrai po is the set of �nite or in�nite sequenes over some given domain, equipped withthe pre�x ordering. Here the ompat elements are the �nite sequenes.
11



2.4 TimeThroughout this paper, we �x a time axis T, whih is a subgroup of (R;+), the real numberswith addition. We assume that every in�nite, monotone, bounded sequene of elements of Thas a limit in T. The reader may �nd it onvenient to think of T as the set R of real numbers,but the set Z of integers and the singleton set f0g are also examples of allowed time axes. Wede�ne T�0 �= ft 2 T j t � 0g.An interval J is a nonempty, onvex subset of T. We denote intervals as usual: [t1; t2℄ =ft 2 T j t1 � t � t2g, et. An interval J is left-losed (right-losed) if it has a minimum (resp.,maximum) element, and left-open (right-open) otherwise. We write minJ and maxJ for theminimum and maximum elements, respetively, of an interval J (if they exist), and inf J andsupJ for the in�mum and supremum, respetively, of J in T [ f�1;1g. For K � T andt 2 T, we de�ne K+ t �= ft0+ t j t0 2 Kg. Similarly, for a funtion f with domain K, we de�nef+ t to be the funtion with domain K+ t satisfying, for eah t0 2 K+ t, (f+ t) (t0) = f(t0� t).3 Desribing Hybrid BehaviorIn this setion, we give basi de�nitions that are useful for desribing disrete and ontinuousbehavior of a system or system omponent, inluding disrete and ontinuous hanges to thesystem's state, and disrete and ontinuous ow of information into and out of the system.The key notions are stati and dynami types for variables, trajetories, and hybrid sequenes.3.1 Stati and Dynami TypesWe assume a universal set V of variables. A variable represents either a loation within thestate of a system or a loation where information ows from one system omponent to another.For eah variable v, we assume both a (stati) type, whih gives the set of values it may takeon, and a dynami type, whih gives the set of trajetories it may follow. Formally, for eahvariable v we assume the following:� type(v), the (stati) type of v. This is a set of values.� dtype(v), the dynami type of v. This is a set of funtions from left-losed intervals of Tto type(v) that satis�es the following properties:1. (Closure under time shift)For eah f 2 dtype(v) and t 2 T, f + t 2 dtype(v).2. (Closure under subinterval)For eah f 2 dtype(v) and eah left-losed interval J � dom(f), f d J 2 dtype(v).12



3. (Closure under pasting)Let f0; f1; f2; : : : be a sequene of funtions in dtype(v) suh that, for eah index isuh that fi is not the �nal funtion in the sequene, dom(fi) is right-losed andmax(dom(fi)) = min(dom(fi+1)). Then the funtion f de�ned by f(t) �= fi(t),where i is the smallest index suh that t 2 dom(fi), is in dtype(v).The pasting-losure property is useful for modeling \disontinuities" in the evolution of vari-ables aused by disrete transitions. Dynami types provide a onvenient way of desribingrestritions on system behavior over time intervals, for example, restritions on the behaviorof system input variables.Example 3.1 Disrete variables: Let v be any variable and let C be the set of onstantfuntions from a left-losed interval to type(v). Then C is losed under time shift and subin-terval. If the dynami type of v is obtained by losing C under the pasting operation, then vis alled a disrete variable. This is essentially the same as the de�nition of a disrete variablein [56℄.Example 3.2 Standard real-valued funtion lasses: If we take T = R and type(v) =R, then other examples of dynami types an be obtained by taking the pasting losure ofstandard funtion lasses from real analysis, suh as the set of ontinuous funtions, the set ofdi�erentiable funtions, the set of funtions that are di�erentiable k times (for any partiulark), the set of smooth funtions, the set of integrable funtions, the set of Lp funtions (for anyp), the set of measurable loally essentially bounded funtions [71℄, or the set of all funtions.Standard funtion lasses are losed under time shift and subinterval, but not under pasting.A natural way of de�ning a dynami type is as the pasting losure of a lass of funtions thatis losed under time shift and subinterval. In suh a ase, it follows that the new lass is losedunder all three operations.Example 3.3 Pasting losure of the ontinuous funtions: Figure 1 shows an exampleof an element f in a dynami type based on (more preisely, equal to the pasting losureof) a sublass of the ontinuous funtions. Funtion f is de�ned on the interval [0; 4) and isobtained by pasting together four piees. At the boundary points between these piees, f takesthe value spei�ed by the leftmost piee, whih makes f ontinuous from the left. Note that fis unde�ned at time 4.In pratie, most interesting dynami types are pasting losures of sublasses of the on-tinuous funtions. Note that funtions in suh dynami types are ontinuous from the left.Elsewhere in the literature on hybrid systems (e.g., [31℄), funtions that are ontinuous fromthe right are onsidered. To some extent, the hoie of how to de�ne funtion values at disonti-nuities is arbitrary. An advantage of our hoie is a nie orrespondene between onatenationand pre�x ordering of trajetories and hybrid sequenes (see Lemmas 3.5 and 3.7).13



0 4Figure 1: Example of a funtion in a dynami type based on ontinuous funtions.In this paper, we will oasionally be slightly sloppy and say that the dynami type ofa variable v is the funtion lass F , even though F in not losed under the three requiredoperations. In suh a ase, we mean that the dynami type of v is the funtion lass thatresults from losing F under the three operations.3.2 TrajetoriesIn this subsetion, we de�ne the notion of a trajetory, de�ne operations on trajetories, andprove simple properties of trajetories and their operations. A trajetory is used to model theevolution of a olletion of variables over an interval of time.3.2.1 Basi De�nitionsLet V be a set of variables, that is, a subset of V. A valuation v for V is a funtion thatassoiates with eah variable v 2 V a value in type(v). We write val(V ) for the set of valuationsfor V . Let J be a left-losed interval of T with left endpoint equal to 0. Then a J-trajetoryfor V is a funtion � : J ! val(V ), suh that for eah v 2 V , � # v 2 dtype(v). A trajetoryfor V is a J-trajetory for V , for any J . We write trajs(V ) for the set of all trajetories for V .A trajetory for V with domain [0; 0℄ is alled a point trajetory for V . If v is a valuationfor V then }(v) denotes the point trajetory for V that maps 0 to v. We say that a J-trajetory is �nite if J is a �nite interval, losed if J is a (�nite) losed interval, open if J is aright-open interval, and full if J = T�0. If T is a set of trajetories, then �nite(T ), losed(T ),14



open(T ), and full(T ) denote the subsets of T onsisting of all the �nite, losed, open, and fulltrajetories in T , respetively.If � is a trajetory then �:ltime , the limit time of � , is the supremum of dom(�). Also, wede�ne �:fval , the �rst valuation of � , to be �(0), and if � is losed, we de�ne �:lval , the lastvaluation of � , to be �(�:ltime). For � a trajetory and t 2 T�0, we de�ne� � t �= � d[0; t℄;� � t �= � d[0; t);� � t �= (� d[t;1))� t:Note that, sine dynami types are losed under time shift and subintervals, the result ofapplying the above operations is always a trajetory, exept when the result is a funtion withan empty domain. By onvention, we also write � �1 �= � and � �1 �= � .3.2.2 Pre�x OrderingTrajetory � is a pre�x of trajetory �, denoted by � � �, if � an be obtained by restriting� to a subset of its domain. Formally, if � and � are trajetories for V , then � � � i�� = � d dom(�). Alternatively, � � � i� there exists a t 2 T�0 [ f1g suh that � = � � t or� = � � t. If � � � then learly dom(�) � dom(�). If T is a set of trajetories for V , thenpref (T ) denotes the pre�x losure of T , de�ned by:pref (T ) �= f� 2 trajs(V ) j 9� 2 T : � � �g:We say that T is pre�x losed if T = pref (T ).The following lemma gives a simple domain-theoreti haraterization of the set of traje-tories over a given set V of variables:Lemma 3.4 Let V be a set of variables. The set trajs(V ) of trajetories for V , together withthe pre�x ordering �, is an algebrai po. Its ompat elements are the losed trajetories.Proof: It is trivial to hek that (trajs(V );�) is a partial order. In order to prove that it is apo, assume that T is a direted subset of trajs(V ). We prove that T has a least upper bound.It is routine to hek that a set of trajetories is direted i� it is totally ordered by pre�x. SoT is totally ordered. Using this, it follows that the trajetories in T are pairwise ompatiblefuntions. Therefore, funtion ST is de�ned.We now prove that S T is a trajetory for V . If S T 2 T then this is immediate. Otherwise,let t 2 T [ f1g be the supremum of the limit times of all trajetories in T . There exists anin�nite asending hain t0; t1; t2; : : : of limit times of trajetories in T suh that t = limi!1 tiand all the ti's are di�erent. For eah i, let �i be a trajetory in T with ti = �i:ltime . Next15



de�ne, for eah i, � 0i = �i+1� ti. Then, by onstrution, the trajetories � 00; � 01; � 02; : : : are losedand pairwise ompatible, and Si � 0i = ST . Let � 000 ; � 001 ; � 002 ; : : : be the sequene of funtionsde�ned by � 000 �= � 00;� 00i �= � 0i d[� 0i�1:ltime;1) if i > 0:By onstrution, the � 00i 's are losed, pairwise ompatible, and Si � 00i = Si � 0i . Using the as-sumption that dynami types are losed under pasting, it follows that Si � 00i (and hene ST )is a trajetory.Now we show that S T is a lub for T . It follows immediately from the onstrution of STthat S T is an upper bound for T . Suppose that � 0 is also an upper bound for T . We provethat ST � � 0. Sine eah � 2 T satis�es dom(�) � dom(� 0), also S�2T dom(�) � dom(� 0).By de�nition of ST , dom(ST ) = S�2T dom(�). Hene dom(S T ) � dom(� 0). Let t be anelement of dom(S T ). Then t is in the domain of some � 2 T . Sine � is a pre�x of both STand � 0, (S T )(t) = � 0(t). Thus, � 0ddom(S T ) = S T , that is, ST � � 0. It follows that trajs(V )is a po.We leave it to the reader to hek that the losed trajetories are the ompat elements inthis po, and that the po is algebrai.3.2.3 ConatenationThe onatenation of two trajetories is obtained by taking the union of the �rst trajetoryand the funtion obtained by shifting the domain of the seond trajetory until the start timeagrees with the limit time of the �rst trajetory; the last valuation of the �rst trajetory, whihmay not be the same as the �rst valuation of the seond trajetory, is the one that appears inthe onatenation. Formally, suppose � and � 0 are trajetories for V , with � losed. Then theonatenation � _ � 0 is the funtion given by� _ � 0 �= � [ (� 0 d(0;1) + �:ltime):Beause dynami types are losed under time shift and pasting, it follows that � _ � 0 is atrajetory for V . Observe that � _ � 0 is �nite (resp., losed, full) if and only if � 0 is �nite(resp., losed, full). Observe also that onatenation is assoiative.The following lemma, whih is easy to prove, shows the lose onnetion between onate-nation and the pre�x ordering.Lemma 3.5 Let � and � be trajetories for V with � losed. Then� � � , 9� 0 : � = � _ � 0:16



Note that if � � �, then the trajetory � 0 suh that � = � _ � 0 is unique exept that it hasan arbitrary value for � 0:fval . Note also that the \(" impliation in Lemma 3.5 would nothold if the �rst valuation of the seond argument, rather than the last valuation of the �rstargument, were used in the onatenation.We extend the de�nition of onatenation to any (�nite or ountably in�nite) number ofarguments. Let �0; �1; �2; : : : be a (�nite or in�nite) sequene of trajetories suh that �i islosed for eah non�nal index i. De�ne trajetories � 00; � 01; � 02; : : : indutively by� 00 �= �0;� 0i+1 �= � 0i _ �i+1 for non�nal i:Lemma 3.5 implies that for eah non�nal i, � 0i � � 0i+1. We de�ne the onatenation �0_�1_�2 � � �to be the limit of the hain � 00; � 01; � 02; : : :; existene of this limit follows from Lemma 3.4.3.3 Hybrid SequenesIn this subsetion, we introdue the notion of a hybrid sequene, whih is used to model a om-bination of hanges that our instantaneously and hanges that our over intervals of time.Our de�nition is parameterized by a set A of ations, whih are used to model instantaneoushanges and instantaneous synhronizations with the environment, and a set V of variables,whih are used to model hanges over intervals of time and ontinuous interation with theenvironment. We also de�ne some speial kinds of hybrid sequenes and some operations onhybrid sequenes, and give basi properties.3.3.1 Basi De�nitionsFix a set A of ations and a set V of variables. An (A; V )-sequene is a �nite or in�nitealternating sequene � = �0 a1 �1 a2 �2 : : :, where1. eah �i is a trajetory in trajs(V ),2. eah ai is an ation in A,3. if � is a �nite sequene then it ends with a trajetory, and4. if �i is not the last trajetory in � then dom(�i) is losed.A hybrid sequene is an (A; V )-sequene for some A and V .Sine the trajetories in a hybrid sequene an be point trajetories, our notion of hybridsequene allows a sequene of disrete ations to our at the same real time, with orrespondinghanges of variable values. An alternative approah is desribed in [61℄, where state hangesat a single real time are modeled using a notion of \superdense time". Spei�ally, hybrid17



behavior is modeled in [61℄ using funtions from an extended time domain, whih inludesountably many elements for eah real time, to states.If � is a hybrid sequene, with notation as above, then we de�ne the limit time of �,�:ltime , to be Pi �i:ltime . A hybrid sequene � is de�ned to be:� time-bounded if �:ltime is �nite.� admissible if �:ltime =1.� losed if � is a �nite sequene and the domain of its �nal trajetory is a losed interval.� Zeno if � is neither losed nor admissible, that is, if � is time-bounded and is eitheran in�nite sequene, or else a �nite sequene ending with a trajetory whose domain isright-open.For any hybrid sequene �, we de�ne the �rst valuation of �, �:fval , to be �0:fval . Also, if �is losed, we de�ne the last valuation of �, �:lval , to be last(�):lval , that is, the last valuationin the �nal trajetory of �.3.3.2 Pre�x OrderingWe say that (A; V )-sequene � = �0 a1 �1 : : : is a pre�x of (A; V )-sequene � = �0 b1 �1 : : :,denoted by � � �, provided that (at least) one of the following holds:1. � = �.2. � is a �nite sequene ending in some �k; �i = �i and ai+1 = bi+1 for every i, 0 � i < k;and �k � �k.Like the set of trajetories over V , the set of (A; V )-sequenes is a po:Lemma 3.6 Let V be a set of variables and A a set of ations. The set of (A; V )-sequenes,together with the pre�x ordering �, is an algebrai po. Its ompat elements are the losed(A; V )-sequenes.Proof: We leave to the reader the routine hek that � is a partial order. Note that this usesthe fat that � is a partial order on trajetories (Lemma 3.4).In order to prove that we have a po, let S be a direted subset of (A; V )-sequenes. Weprove that S has a least upper bound. It is easy to hek that S is totally ordered by the pre�xordering �. We distinguish two ases. 18



1. There is no �nite upper bound on the number of trajetories that our in the sequenesin S. In this ase, we an onstrut an in�nite sequene �0; �1; �2 : : : of elements of Ssuh that, for eah i, �i ontains at least i ations and i+ 1 trajetories, and �i � �i+1.For eah i 2 N, let �i be the i + 1-st trajetory (the one indexed by i) in �i+1, and fori � 1, let ai be the i-th ation in �i. Let � = �0 a1 �1 a2 �2 : : :. It is easy to verify that� is an upper bound of the set f�i j i 2 Ng and in fat, is the only upper bound of thisset. It follows that � is the lub of S, as needed.2. There is a �nite upper bound k on the number of trajetories that our in the (A; V )-sequenes in S. In this ase, let S0 be the set obtained by removing all sequenes withfewer than k trajetories from S. Sine S0 is totally ordered, init(�) = init(�0) for any�; �0 2 S0. (Reall that init is an ordinary sequene operation|it yields all but the lastelement of the sequene.) Choose any � 2 S0 and let � = init(�). Let T be the set of�nal trajetories of sequenes in S0. Again using the fat that S0 is totally ordered, weobtain that T is totally ordered by the pre�x ordering on trajetories. Let � be the leastupper bound of T (this upper bound exists by Lemma 3.4). It is routine to hek that� � is a least upper bound of S0, and thus of S.We leave it to the reader to hek that the losed (A; V )-sequenes are the ompat elementsin this po, and that the po is algebrai.3.3.3 ConatenationSuppose � and �0 are (A; V )-sequenes with � losed. Then the onatenation � _ �0 is the(A; V )-sequene given by�_ �0 �= init(�) (last (�)_ head (�0)) tail(�0):(Here, init, last, head and tail are ordinary sequene operations.)Lemma 3.7 Let � and � be (A; V )-sequenes with � losed. Then� � � , 9�0 : � = �_ �0:Note that if � � �, then the (A; V )-sequene �0 suh that � = �_ �0 is unique exept that ithas an arbitrary value in val(V ) for �0:fval .As we did for trajetories, we extend the onatenation de�nition for (A; V )-sequenes toany �nite or in�nite number of arguments. Let �0; �1; : : : be a �nite or in�nite sequene of(A; V )-sequenes suh that �i is losed for eah non�nal index i. De�ne (A; V )-sequenes�00; �01; : : : indutively by �00 �= �0;�0i+1 �= �0i _ �i+1 for non�nal i:Lemma 3.7 implies that for eah non�nal i, �0i � �0i+1. We de�ne the onatenation �0_�1 � � �to be the limit of the hain �00; �01; : : :; existene of this limit is ensured by Lemma 3.6.19



3.3.4 RestritionLet A and A0 be sets of ations and let V and V 0 be sets of variables. The (A0; V 0)-restrition ofan (A; V )-sequene �, denoted by � d(A0; V 0), is obtained by �rst projeting all trajetories of� on the variables in V 0, then removing the ations not in A0, and �nally onatenating all ad-jaent trajetories. Formally, we de�ne the (A0; V 0)-restrition �rst for losed (A; V )-sequenesand then extend the de�nition to arbitrary (A; V )-sequenes using a limit onstrution. Thede�nition for losed (A; V )-sequenes is by indution on the length of those sequenes:� d(A0; V 0) = � # V 0 if � is a single trajetory,� a � d(A0; V 0) = ( (� d(A0; V 0)) a (� # V 0) if a 2 V 0;(� d(A0; V 0))_ (� # V 0) otherwise.It is easy to see that the restrition operator is monotone on the set of losed (A; V )-sequenes.Hene, if we apply this operation to a direted set, the result is again a direted set. Togetherwith Lemma 3.6, this allows us to extend the de�nition of restrition to arbitrary (A; V )-sequenes by: � d(A0; V 0) = tf� d(A0; V 0) j � is a losed pre�x of �g:Lemma 3.8 (A0; V 0)-restrition is a ontinuous operation.Proof: This follows by general domain-theoreti arguments. For onveniene, in this proofwe write f(�) as an abbreviation for � d(A0; V 0).First we establish that (A0; V 0)-restrition is monotone for arbitrary (A; V )-sequenes. Let�; �0 be (A; V )-sequenes with � � �0; we show that f(�) � f(�0). Let P and P 0 denote the setof losed pre�xes of � and �0, respetively. By transitivity of the pre�x ordering, it follows thatP 0 dominates P , that is, P v P 0. Sine the restrition operation is monotone on losed (A; V )-sequenes, it follows that f(P ) v f(P 0). Then Lemma 2.1 implies that tf(P ) � tf(P 0).By the de�nition of the restrition operation, this implies that f(�) � f(�0), whih showsmonotoniity.Now we omplete the proof that (A; V )-restrition is ontinuous by assuming that P isany direted set of (A; V )-sequenes and showing that f(tP ) = tf(P ). By the de�nition ofthe restrition operation, f(tP ) = tff(�) j � is a losed pre�x of t Pg. By Lemma 3.6 andthe de�nition of ompat elements, any losed pre�x � of tP is also a pre�x of some � 2 P .Therefore, f(tP ) = tff(�) j � is losed and 9� 2 P : � is a pre�x of �g.Now we apply Lemma 2.2 to the right hand side of this last equation. To do this, we mustshow: 20



1. Q �= ff(�) j � is losed and 9� 2 P : � is a pre�x of �g is a direted set. To see this,onsider any nonempty �nite subset R � Q. Eah element of R is a pre�x of some � 2 P .Therefore, sine P is a direted set, there is some single �0 2 P suh that eah elementof R is a pre�x of �0. Therefore, R is a direted set; sine R is �nite, it has a lub in R,and hene in Q, as needed.2. For eah � 2 P , ff(�) j � is losed and � is a pre�x of �g is a direted set with lubf(�). The �rst part follows beause the set of losed pre�xes of � is a direted set andf is monotone. The seond part follows from the de�nition of restrition.3. The set f(P ) is direted. This follows beause P is a direted set and f is monotone.Then Lemma 2.2 implies that tff(�) j � is losed and 9� 2 P : � is a pre�x of �g = tff(�) j� 2 Pg = tf(P ). Thus, f(tP ) = tf(P ), as needed.The proofs of the following two lemmas are left to the reader.Lemma 3.9 (�0 _ �1 _ � � �) d(A; V ) = �0 d(A; V )_ �1 d(A; V )_ : : :.Lemma 3.10 (� d(A; V )) d(A0; V 0) = � d(A \A0; V \ V 0).4 Hybrid AutomataIn this setion, as a preliminary step toward de�ning hybrid I/O automata, we de�ne a slightlymore general hybrid automaton model. In hybrid automata, ations and variables are lassi�edas external or internal. External ations and variables are not further lassi�ed as input or out-put; the input/output distintion is added later, in Setion 6. We de�ne how hybrid automataexeute and de�ne implementation and simulation relations between hybrid automata.4.1 De�nition of Hybrid AutomataA hybrid automaton is a state mahine whose states are divided into variables, and thatuses other variables for ommuniation with its environment. It also has a set of disreteations, some of whih may be internal and some external. The state of a hybrid automatonmay hange in two ways: by disrete transitions, whih hange the state atomially, andby trajetories, whih desribe the evolution of the state over intervals of time. The disretetransitions are labeled with ations; this will allow us to synhronize the transitions of di�erenthybrid automata when we ompose them in parallel. The evolution desribed by a trajetorymay be desribed by ontinuous or disontinuous funtions.A hybrid automaton (HA) A = (W;X;Q;�; E;H;D;T ) onsists of:21



� A set W of external variables and a set X of internal variables, disjoint from eah other.We write V �=W [X.� A set Q � val(X) of states.� A nonempty set � � Q of start states.� A set E of external ations and a set H of internal ations, disjoint from eah other.We write A �= E [H.� A set D � Q�A�Q of disrete transitions.We use x a!A x0 as shorthand for (x; a;x0) 2 D. We sometimes drop the subsript andwrite x a! x0, when we think A should be lear from the ontext. We say that a isenabled in x if x a! x0 for some x0.� A set T of trajetories for V suh that �(t) dX 2 Q for every � 2 T and t 2 dom(�).Given a trajetory � 2 T we denote �:fval dX by �:fstate and, if � is losed, we denote�:lval dX by �:lstate . We require that the following axioms hold:T0 (Existene of point trajetories)If v 2 val(V ) and v dX 2 Q then }(v) 2 T .T1 (Pre�x losure)For every � 2 T and every � 0 � � , � 0 2 T .T2 (SuÆx losure)For every � 2 T and every t 2 dom(�), � � t 2 T .T3 (Conatenation losure)Let �0; �1; �2; : : : be a sequene of trajetories in T suh that, for eah non�nal indexi, �i is losed and �i:lstate = �i+1:fstate . Then �0 _ �1 _ �2 � � � 2 T .Axiom T0 asserts the existene of at least some point trajetories. It says that any state anbe augmented with arbitrary values for the external variables to beome a point trajetory.Axioms T1-3 express some other natural onditions on the set of trajetories that we needto onstrut our theory. A key part of this theory is a parallel omposition operation for hy-brid automata. In a omposed system, any trajetory of any omponent automaton may beinterrupted at any time by a disrete transition of another (possibly independent) omponentautomaton. Axiom T1 ensures that the part of the trajetory up to the disrete transition isa trajetory, and axiom T2 ensures that the remainder is a trajetory. Axiom T3 is requiredbeause the environment of a hybrid automaton, as a result of its own internal disrete tran-sitions, may hange its ontinuous dynamis repeatedly, and the automaton must be able tofollow this behavior.Axioms T3 and T0 an be used together to modify the values of the external variablesin the �rst valuation of a trajetory arbitrarily; thus, the values of external variables at left22



endpoints of trajetories are not signi�ant.1The earlier de�nition of hybrid automata in [47, 48℄ used a speial stuttering ation einstead of axiom T3. Another key di�erene between the new de�nition of hybrid automatonand the earlier one is that in [47, 48℄, the external variables were onsidered to be part of thestate. This meant, for example, that disrete transitions ould depend on the values of thesevariables, a situation that introdued ompliations.Hybrid automata that have no external variables are very similar to the timed automatade�ned in [52, 66℄. The main di�erene is that hybrid automata have trajetories as a primitiverather than a derived notion. Also, the state of a timed automaton need not be organized usingvariables with partiular types and dynami types.Notation: We often denote the omponents of an HA A by WA, XA, QA, �A, EA, et., andthe omponents of an HA Ai by Wi, Xi, Qi �i, Ei, et. We sometimes omit these subsripts,where no onfusion seems likely.In the remainder of this subsetion, we give some simple examples of hybrid automata.Notation: In examples we typially speify sets of trajetories using di�erential and algebraiequations and inlusions. Below we explain a few notational onventions that help us doingthis. Suppose the time domain T is R, � is a (�xed) trajetory over some set V , and v 2 V is avariable. With some abuse of notation, we use the variable name v to denote the funtion � # vin dom(�)! type(v), whih gives the value of v at all times during trajetory � . Similarly, weview any expression e ontaining variables from V as a funtion with domain dom(�). Usingthese onventions we an say, for example, that � satis�es the algebrai equationv = e;whih means that the onstraint on the variables expressed by the equation v = e holds foreah state on trajetory � . Suppose that v is a variable and e is a real-valued expressionontaining variables from V . Suppose also that e, when viewed as a funtion, is integrable.Then we say that � satis�es _v = eif, for every t 2 dom(�), v(t) = v(0)+R t0 e(t0)dt0. This interpretation of the di�erential equationmakes sense even at points where v is not di�erentiable. A similar interpretation of di�erentialequations is used by Polderman and Willems [63℄, who all these \weak solutions".1An alternative style of de�nition would assign speial \unde�ned" values to the external variables at leftendpoints of trajetories. Instead of introduing the ompliations of extending domains with speial \unde�ned"values, we hose to allow arbitrary values. 23



Example 4.1 Vehile HA:We desribe an HA Vehile, displayed in Figure 22, whih modelsa vehile that follows a suggested aeleration approximately, within an error of � � 0. The
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velFigure 2: The hybrid automaton Vehile.time domain T is R. The state of the Vehile automaton inludes two real-valued variables veland a, whih represent the atual veloity and aeleration of the vehile, respetively. Inaddition, the automaton has two real-valued external variables, vel-out and a-in, representingreported veloity and suggested aeleration. The dynami type of the variables vel , vel-out ,and a-in is the (pasting losure of the) set of ontinuous funtions. The dynami type of ais the set of integrable funtions.Vehile is de�ned to be the HA suh that W = fa-in; vel-outg, X = fvel ; ag, Q is theset of all valuations of the variables vel and a, and � onsists of the single valuation thatassigns 0 to both state variables. The set of disrete ations is empty, and (therefore) D, theset of disrete steps, is empty. T onsists of all trajetories � that satisfy:_vel = a (1)a(t) 2 [a-in(t)� �; a-in(t) + �℄ for t > 0: (2)vel-out(t) = vel(t) for t > 0: (3)Equation (1) says that the veloity is obtained by integrating the aeleration. Inlusion (2)asserts that, exept possibly for the left endpoint, the atual aeleration is within � of thesuggested aeleration. Equation (3) says that the veloity is reported aurately. We leavethe reader to show that the trajetory axioms T0{T3 are satis�ed; the form of the equationsand inlusions used to de�ne the trajetories should make this lear.2We use an arrow notation beause later on in this paper, in Setion 6, we will view a-in as an inputvariable and vel-out as an output variable. Within the ontext of the present hapter the arrow notation hasno meaning. 24



Example 4.2 Controller HA: Now we desribe an HA Controller , displayed in Figure 3,whih models a ontroller that suggests aelerations for a vehile, with the intention of en-suring that the vehile's veloity does not exeed a pre-spei�ed veloity vmax. The ontroller
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suggestFigure 3: The hybrid automaton Controller .monitors the vehile's veloity, and every time d, for some �xed d > 0, it produes a newsuggested aeleration to be followed for the next time d. The aeleration is hosen in suh away that, if it is followed to within an error of �, the veloity will remain below vmax (providedthe vehile is not going too fast in the �rst plae). We assume that vmax � � d.The omponents of the Controller automaton are as follows: W = fvel-out ; a-ing andX = fvel-sensed ; a-suggested ; lokg. All variables are of type R. The dynami type ofvel-out , vel-sensed , a-in, and lok is the (pasting losure of the) set of ontinuous funtions,and a-suggested is a disrete variable. Q is the set of valuations of X in whih lok � d.� onsists of one valuation, whih assigns 0 to all state variables. E = ; and H ontains thesingle ation suggest . D onsists of the suggest steps spei�ed by3:lok = d (4)vel-sensed+ (a-suggested0 + �)d � vmax (5)lok0 = 0 (6)vel-sensed0 = vel-sensed (7)Equation (4) says that the lok indiates that it is time for the suggested aeleration tobe omputed. Formula (5) says that the new suggested aeleration is hosen so that, if thevehile followed it for the next time d, even with an error of �, the veloity would still remain atmost vmax. Equation (6) says that the lok is reset after the disrete transition. Equation (7)says that the transition does not hange the value of vel-sensed . T onsists of all trajetories3Here we use the standard onvention that v denotes the value of a variable in the start state of a transition,and v0 denotes the value in the end state. 25



that satisfy: _a-suggested = 0 (8)_lok = 1 (9)vel-sensed(t) = vel-out(t) for t > 0: (10)a-in(t) = a-suggested(t) for t > 0: (11)Sine a-suggested is a disrete variable, the reader might think that adding onstraint (8)makes no di�erene. However, if we expand this onstraint using our de�nition of solutions fordi�erential equations, we obtaina-suggested(t) = a-suggested(0) + Z t0 0 dt0 = a-suggested(0);whih means that a-suggested remains onstant throughout the full trajetory. So the e�etof adding di�erential equation (8) is that it rules out the jumps that are allowed by the dynamitype of a-suggested . Equation (9) states that lok has rate 1, and is therefore a lok variablein the sense of the timed automaton model of [4℄. Equation (10) says that the veloity sensedby the ontroller is the same as the veloity reported to the ontroller by its environment.Equation (11) asserts that the aeleration that the ontroller provides to its environment isthe same as the aeleration that it has most reently omputed. Again, we leave the readerto show that the trajetory axioms T0{T3 are satis�ed.4.2 Exeutions and TraesWe now de�ne exeution fragments, exeutions, trae fragments, and traes, whih are used todesribe automaton behavior. An exeution fragment of a hybrid automaton A is an (A; V )-sequene � = �0 a1 �1 a2 �2 : : :, where (1) eah �i is a trajetory in T , and (2) if �i is not the lasttrajetory in � then �i:lstate ai+1! �i+1:fstate . An exeution fragment reords what happensduring a partiular run of a system, inluding all the instantaneous, disrete state hanges andall the hanges to the state and external variables that our while time advanes. We writefragsA for the set of all exeution fragments of A.If � is an exeution fragment, with notation as above, then we de�ne the �rst state of �,�:fstate , to be �:fval dX. An exeution fragment � is de�ned to be an exeution if �:fstate isa start state, that is, �:fstate 2 �. We write exesA for the set of all exeutions of A. If � isa losed (A; V )-sequene then we de�ne the last state of �, �:lstate , to be �:lval dX. A stateof A is reahable if it is the last state of some losed exeution of A.Lemma 4.3 Let �0; �1; : : : be a �nite or in�nite sequene of exeution fragments of A suhthat, for eah non�nal index i, �i is losed and �i:lstate = �i+1:fstate. Then �0 _ �1 _ � � � isan exeution fragment of A. 26



Proof: Follows easily from the de�nitions, using axiom T3.Lemma 4.4 Let � and � be exeution fragments of A with � losed. Then� � � , 9�0 2 fragsA : � = �_ �0:Proof: Impliation \(" follows diretly from the orresponding impliation in Lemma 3.7.Impliation \)" follows from the de�nitions and T2.The external behavior of a hybrid automaton is aptured by the set of \traes" of its exeu-tion fragments, whih reord external ations and the trajetories that desribe the evolutionof external variables. Formally, if � is an exeution fragment, then the trae of �, denoted bytrae(�), is the (E;W )-restrition of �. (Reall that E denotes the external ations and Wthe external variables.) A trae fragment of a hybrid automaton A from a state x of A is thetrae of an exeution fragment of A whose �rst state is x. We write traefragsA(x) for the setof trae fragments of A from x. Also, we de�ne a trae of A to be a trae fragment from astart state, that is, the trae of an exeution of A, and write traesA for the set of traes of A.Hybrid automata A1 and A2 are omparable if they have the same external interfae, thatis, if W1 = W2 and E1 = E2. If A1 and A2 are omparable then we say that A1 implementsA2, denoted by A1 � A2, if the traes of A1 are inluded among those of A2, that is, iftraesA1 � traesA2 .4Example 4.5 Vehile exeution: Sine the Vehile HA of Example 4.1 has no disretesteps, eah of its exeutions is a one-element sequene onsisting of a single trajetory over allthe variables of Vehile. An example of suh an exeution, depited graphially in Figure 4, isthe one onsisting of the trajetory � with �:ltime =1, and suh that:a-in(t) = 0 if t � 1;2 if 1 < t � 3;0 if t > 3:a(t) = � if t � 1;2 + � if 1 < t � 3;0 if t > 3:4In [52, 22, 47, 48℄, de�nitions of the set of traes of an automaton and of one automaton implementinganother are based on losed and admissible exeutions only. The results we obtain in this paper using thenewer, more inlusive de�nition imply orresponding results for the earlier de�nition. For example, we have thefollowing property: If A1 � A2 then the set of traes that arise from losed or admissible exeutions of A1 is asubset of the set of traes that arise from losed or admissible exeutions of A2.27
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5. If i � 3 then �i(t)(a-sugg) = �i(t)(a-in) = 0 and �i(t)(vel-out) = �i(t)(vel-sensed ) =4 + 3�.The assumed bound on vmax implies that the suggested aelerations in this exeution areatually possible suggestions aording to the rule given in the Vehile automaton de�nition.The trae of exeution � onsists of a single trajetory, beause Vehile has no external ations.This trajetory is de�ned by:a-in(t) = 0 if t � 1;2 if 1 < t � 3;0 if t > 3:vel-out(t) = �t if t � 1;(2 + �)t� 2 if 1 < t � 3;4 + 3� if t > 3:4.3 Simulation RelationsIn this setion, we de�ne simulation relations between hybrid automata. Simulation relationsmay be used to show that one HA implements another, in the sense of inlusion of sets oftraes.Let A and B be omparable HAs. A simulation from A to B is a relation R� QA � QBsatisfying the following onditions, for all states xA and xB of A and B, respetively:1. If xA 2 �A then there exists a state xB 2 �B suh that xA R xB.2. If xA R xB and � is an exeution fragment of A onsisting of one disrete step surroundedby two point trajetories, with �:fstate = xA, then B has a losed exeution fragment �with �:fstate = xB, trae(�) = trae(�), and �:lstate R �:lstate .3. If xA R xB and � is an exeution fragment of A onsisting of one trajetory, with�:fstate = xA, then B has a losed exeution fragment � with �:fstate = xB, trae(�) =trae(�), and �:lstate R �:lstate .The de�nition of a simulation from A to B yields a orrespondene for open trajetories ofA:Lemma 4.7 Let A and B be omparable HAs and let R be a simulation from A to B. LetxA and xB be states of A and B, respetively, suh that xA R xB. Let � be an exeutionfragment of A onsisting of a single open trajetory. Then B has an exeution fragment � with�:fstate = xB and trae(�) = trae(�). 29



Proof: Let � be the single open trajetory in �. Using axioms T1 and T2, we onstrutan in�nite sequene �0; �1; : : : of losed trajetories of A suh that � = �0 _ �1 _ � � �. Then,working reursively, we onstrut a sequene �0; �1; : : : of losed exeution fragments of B suhthat �0:fstate = xB and, for eah i, �i:ltime = �i:ltime, �i:lstate R �i:lstate , and trae(�i)is equal to the trae of the exeution fragment onsisting of the single trajetory �i. Thisonstrution uses indution on i, using Property 3 of the de�nition of a simulation relation inthe indution step. Now let � = �0 _ �1 _ � � �. By Lemma 4.3, � is an exeution of B. Clearly,�:fstate = xB. By Lemma 3.9 applied to both � and �, trae(�) = trae(�). Thus � has therequired properties.Theorem 4.8 Let A and B be omparable HAs and let R be a simulation from A to B. LetxA and xB be states of A and B, respetively, suh that xA R xB. Then traefragsA(xA) �traefragsB(xB).Proof: Suppose that Æ is the trae of an exeution fragment of A that starts from xA; we provethat Æ is also a trae of an exeution fragment of B that starts from xB. Let � = �0a1 �1a2 �2 : : :be an exeution fragment of A suh that �:fstate = xA and Æ = trae(�). We onsider ases:1. � is an in�nite sequene.Using axioms T1 and T2, we an write � as an in�nite onatenation �0 _ �1 _ �2 � � �,in whih the exeution fragments �i with i even onsist of a trajetory only, and theexeution fragments �i with i odd onsist of a single disrete step surrounded by twopoint trajetories.We de�ne indutively a sequene �0; �1; : : : of losed exeution fragments of B, suhthat �0:fstate = xB and, for all i, �i:lstate = �i+1:fstate, �i:lstate R �i:lstate , andtrae(�i) = trae(�i). We use Property 3 of the de�nition of a simulation relation forthe onstrution of the �i's with i even, and Property 2 for the onstrution of the �i'swith i odd. Let � = �0 _ �1 _ �2 � � �. By Lemma 4.3, � is an exeution of B. Clearly,�:fstate = xB. By Lemma 3.9, trae(�) = trae(�). Thus � has the required properties.2. � is a �nite sequene ending with a losed trajetory.Similar to the �rst ase.3. � is a �nite sequene ending with an open trajetory.Similar to the �rst ase, using Lemma 4.7.
Corollary 4.9 Let A and B be omparable HAs and let R be a simulation from A to B. ThentraesA � traesB. 30



Proof: Suppose � 2 traesA. Then � 2 traefragsA(xA) for some start state xA of A.Property 1 of the de�nition of simulation relation implies the existene of a start state xB ofB suh that xA R xB. Then Theorem 4.8 implies that � 2 traefragsB(xB). Sine xB is a startstate of B, this implies that � 2 traesB, as needed.Example 4.10 Vehile implementation: Now denote the Vehile HA of Example 4.1 byVehile(�), making the unertainty parameter expliit. Assume that 0 � �1 � �2. Let A =Vehile(�1) and B = Vehile(�2). We laim that A � B. We an show this by demonstratingthat the identity mapping is a simulation relation. Sine these HAs have no disrete steps,we need only show Properties 1 and 3 of the de�nition of simulation relation. Property 1is obvious beause the two HAs have the same (unique) start state, whih assigns 0 to bothstate variables. For Property 3, assume that xA R xB and � onsists of one trajetory � ofA with �:fstate = xA. Let � = �. Clearly, � is a losed hybrid sequene, �:fstate = xB,trae(�) = trae(�), and �:lstate R �:lstate . It remains to show that � is an exeutionfragment of B, that is, that � is a trajetory of B. This follows immediately from the de�nitionof trajetories for Vehile(�1) and Vehile(�2); the only interesting point is that, for everyt 2 dom(�), t > 0, we have [a-in(t)� �1; a-in(t) + �1℄ � [a-in(t)� �2; a-in(t) + �2℄.Example 4.11 Controller implementation: Denote the Controller HA of Example 4.2by Controller (vmax), making the maximum veloity parameter expliit. Assume that 0 �vmax1 � vmax2. We laim that Controller (vmax1) � Controller (vmax2); again, we show thisby demonstrating that the identity mapping is a simulation relation. This requires showingall three properties of the de�nition of simulation relation. Properties 1 and 3 are immediate,beause vmax does not appear in the de�nitions of the start states and the trajetories. ForProperty 2, the key is that, if vel-sensed+(a-suggested 0+�)d � vmax1, then also vel-sensed+(a-suggested)0 + �)d � vmax2.5 Operations on Hybrid AutomataIn this setion, we introdue two kinds of operations on hybrid automata: parallel ompositionand hiding.5.1 CompositionWe now introdue the operation of parallel omposition for hybrid automata, whih allows anautomaton representing a omplex system to be onstruted by omposing automata represent-ing individual system omponents. Our omposition operation identi�es external ations withthe same name in di�erent omponent automata, and likewise for external variables. Whenany omponent automaton performs a disrete step involving an ation a, so do all omponent31



automata that have a in their signatures. Likewise, when any omponent automaton performsa trajetory involving a partiular evolution of values for an external variable v, then so do allomponent automata that have v in their signatures. We prove several results that say thatthe omposition operation respets our notions of external behavior and implementation.We de�ne omposition as a partial, binary operation on hybrid automata. Sine internalations of an automaton A1 are intended to be unobservable by any other automaton A2, weallow A1 to be omposed with A2 only if the internal ations of A1 are disjoint from the ationsof A2. Similarly, we require disjointness of the internal variables of A1 and the variables of A2.Formally, we say that hybrid automata A1 and A2 are ompatible if H1 \ A2 = H2 \ A1 = ;and X1 \ V2 = X2 \ V1 = ;.If A1 and A2 are ompatible then their omposition A1kA2 is de�ned to be the strutureA = (W;X;Q;�; E;H;D;T ) where� W =W1 [W2 and X = X1 [X2.� Q = fx 2 val(X) j x dX1 2 Q1 ^ x dX2 2 Q2g.� � = fx 2 Q j x dX1 2 �1 ^ x dX2 2 �2g.� E = E1 [E2 and H = H1 [H2.� For eah x;x0 2 Q and eah a 2 A, x a!A x0 i� for i = 1; 2, either (1) a 2 Ai andx dXi a!i x0 dXi, or (2) a 62 Ai and x dXi = x0 dXi.� T � trajs(V ) is given by � 2 T , � # V1 2 T1 ^ � # V2 2 T2.Theorem 5.1 If A1 and A2 are hybrid automata then A1kA2 is a hybrid automaton.Proof: Let A denote A1kA2 as above. We show that A satis�es the properties of a hybridautomaton (f. Setion 4.1). Disjointness of W and X follows from disjointness of W1 andX1, disjointness of W2 and X2, and ompatibility. Similarly, disjointness of E and H followsfrom disjointness of E1 and H1, disjointness of E2 and H2, and ompatibility. Nonemptinessof � follows from nonemptiness of �1 and �2 and disjointness of X1 and X2. We verify the Tproperties:T0 Let v 2 val(V ) suh that v dX 2 Q and let i 2 f1; 2g. By the de�nition of omposition,v d Vi 2 val(Vi) and v dXi 2 Qi. Sine (v d Vi) dXi = v dXi, it follows that (v dVi) dXi 2Qi. Then T0 applied to Ai implies that }(v d Vi) 2 Ti, that is, }(v) # Vi 2 Ti. Then bythe de�nition of omposition, }(v) 2 T , as needed.T1 Let � 2 T , let � 0 be a trajetory suh that � 0 � � , and let i 2 f1; 2g. By the de�nition ofomposition, � # Vi 2 Ti. By the de�nition of pre�x, � 0 # Vi � � # Vi. By T1 applied toAi, � 0 # Vi 2 Ti. Then by de�nition of omposition, � 0 2 T , as needed.32



T2 Let � 2 T , t 2 dom(�), � 0 = � � t, and i 2 f1; 2g. By the de�nition of omposition, � #Vi 2 Ti. Then by T2 applied to Ai, (� # Vi)� t 2 Ti. Observe that (� # Vi)� t = � 0 # Vi;therefore, � 0 # Vi 2 Ti. Then by the de�nition of omposition, � 0 2 T , as needed.T3 Let �0; �1; �2; : : : be a sequene of trajetories in T suh that, for eah non�nal index j, �j islosed and �j:lstate = �j+1:fstate . Let � denote �0_ �1_ �2 � � �, and let i 2 f1; 2g. By thede�nition of omposition, operation, for eah index j, �j # Vi 2 Ti, and for eah non�nalindex j, �j # Vi is losed and (�j # Vi):lstate = (�j+1 # Vi):fstate . By T3 applied to Ai,�0 # Vi _ �1 # Vi _ �2 # Vi � � � 2 Ti. Observe that � # Vi = �0 # Vi _ �1 # Vi _ �2 # Vi � � �;therefore, � # Vi 2 Ti. Then by the de�nition of omposition, � 2 T , as needed.The following \projetion lemma" says that exeutions of a omposition of HAs projet togive exeutions of the omponent automata. Moreover, ertain properties of the exeutions ofthe omposition imply, or are implied by, similar properties for the omponent exeutions.Lemma 5.2 Let A = A1kA2 and let � be an exeution fragment of A. Then � d(A1; V1) and� d(A2; V2) are exeution fragments of A1 and A2, respetively. Furthermore,1. � is time-bounded i� both � d(A1; V1) and � d(A2; V2) are time-bounded.2. � is admissible i� both � d(A1; V1) and � d(A2; V2) are admissible.3. � is losed i� both � d(A1; V1) and � d(A2; V2) are losed.4. � is Zeno i� at least one of � d(A1; V1) and � d(A2; V2) is Zeno.5. � is an exeution i� both � d(A1; V1) and � d(A2; V2) are exeutions.Proof: Simple appliation of the de�nitions.Example 5.3 Composition and Zeno exeutions: Consider a omposition A = A1kA2in whih the two omponents have no ations or variables in ommon. We desribe a Zenoexeution fragment � of A in whih only one of the projeted exeution fragments is Zeno.Namely, let � = �0 a1 �1 a2 �2 : : :, where �0:ltime = 1 and for all j � 1, �j is a point trajetory.Also, all the ai are ations of A1 but not of A2. Then � d(A1; V1), whih inludes all the aj 's,is a Zeno exeution fragment, whereas � d(A2; V2), whih onsists of the single right-losedtrajetory �0 # V2, is a losed exeution fragment.Example 5.4 Exeution of vehile and ontroller: An example exeution ofVehilekControlleris the in�nite sequene � = �0 suggest �1 suggest �2 : : :, where, for every i:33



1. �i:ltime = 1.2. �i(t)(lok ) = t for every t 2 dom(�i).3. If i = 0 then �i(t)(v) is equal to 0 for v 2 fa-sugg ; a-ing, � for v = a, and �t forv 2 fvel ; vel-out ; vel-sensedg.4. If 1 � i � 2 then �i(t)(v) is equal to 2 for v 2 fa-sugg ; a-ing, 2 + � for v = a, and(2 + �)(i+ t)� 2 for v 2 fvel ; vel-out ; vel-sensedg.5. If i � 3 then �i(t)(v) is equal to 0 for v 2 fa-sugg ; a-in; ag and 4 + 3� for v 2fvel ; vel-out ; vel-sensedg.This exeution is admissible. Its projetions on the Vehile and Controller automata are givenby the admissible exeutions in Examples 4.5 and 4.6, respetively.The following lemma says that we obtain the same result for an exeution fragment � of aomposition if we �rst extrat the trae and then restrit to one of the omponents, or if we�rst restrit to the omponent and then take the trae.Lemma 5.5 Let A = A1kA2, and let � be an exeution fragment of A. Then, for i = 1; 2,trae(�) d(Ei;Wi) = trae(� d(Ai; Vi)).Proof: Reall that trae(�) = � d(E;W ). The result follows straightforwardly using Lemma 3.10and the observation that W \Wi =Wi = Vi \Wi and E \Ei = Ei = Ai \Ei.The following fundamental theorem relates the set of traes of a omposed automaton tothe sets of traes of the omponent automata. It is expressed in terms of equality between twosets of traes. Set inlusion in one diretion expresses the idea that a trae of a omposition\projets" to yield traes of the omponents. Set inlusion in the other diretion expresses theidea that traes of omponents an be \pasted together" to yield a trae of the omposition.Theorem 5.6 Let A = A1kA2. Then traesA is exatly the set of (E;W )-sequenes whoserestritions to A1 and A2 are traes of A1 and A2, respetively.That is, traesA = f� j � is an (E;W )-sequene and � d(Ei;Wi) 2 traesAi ; i = 1; 2g.Proof: For one diretion, suppose that � is a trae of A. Then by de�nition, � is an (E;W )-sequene. Let � be an exeution of A suh that � = trae(�). Let i 2 f1; 2g. Then Lemma 5.5implies that � d(Ei;Wi) = trae(� d(Ai; Vi)). Sine, by Lemma 5.2, � d(Ai; Vi) is an exeutionof Ai, � d(Ei;Wi) is a trae of Ai.Conversely, let � be an (E;W )-sequene suh that � d(Ei;Wi) is a trae of Ai, i = 1; 2.Then there are exeutions �1 and �2 of A1 and A2, respetively, suh that, for i = 1; 2,trae(�i) = � d(Ei;Wi). Deompose �1 into �01 _ �11 _ �21 _ � � �, deompose �2 into �02 _34



�12 _ �22 _ � � �, and deompose � into �0 _ �1 _ �2 _ . . . in suh a way that for eah j, (1)trae(�ji ) = �j d(Ei;Wi) for i 2 f1; 2g, (2) �ji is either a trajetory or a trajetory followedby an ation and a point trajetory, i 2 f1; 2g, and (3) if both �j1 and �j2 onsist of ationssurrounded by point trajetories then these ations are idential. Axioms T1 and T2 implythat suh deompositions exist.5Now we de�ne a sequene of exeution fragments of A, �0; �1; : : :, suh that:1. �0:fstate 2 �A,2. For every non�nal j, �j :lstate = �j+1:fstate , and3. For every j, trae(�j) = �j .By Lemma 4.3, the onatenation �0_�1_ � � � is an exeution of A. Moreover, by Lemma 3.9,the trae of this exeution is �. To de�ne eah �j , we distinguish the following ases:1. Eah of �j1 and �j2 is a trajetory.Then suppose that �j1 = �1 and �j2 = �2. De�ne �j to be the funtion � with domaindom(�1) suh that �(t) = �1(t) [ �2(t) for every t. (Compatibility of �1 and �2 followshere, and in the remaining three ases, from the fats that �j1 = �j d(E1;W1) and �j2 =�j d(E2;W2).)2. �j1 is a trajetory and �j2 is an ation surrounded by point trajetories.Then �j1 must be a point trajetory as well. Let �j1 = }(v1) and �j2 = }(v2)a}(v02).Then de�ne �j to be }(v1 [ v2) a }(v1 [ v02).3. �j1 is an ation surrounded by point trajetories and �j2 is a trajetory.This is symmetri with the previous ase.4. Eah of �j1 and �j2 is an ation (the same in both ases) surrounded by point trajetories.Let �j1 = }(v1)a}(v01) and �j2 = }(v2)a}(v02). De�ne �j to be }(v1 [ v2) a }(v01 [ v02).It is straightforward to verify that the �j fragments satisfy the required properties.The following theorem desribes a basi substitutivity property:Theorem 5.7 Suppose A1;A2 and B are HAs with A1 � A2, and suppose that eah of A1and A2 is ompatible with B. Then A1kB � A2kB.5See [51℄ for a detailed existene proof for similar deompositions.
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Proof: Let � 2 traesA1kB. By Theorem 5.6, � d(E1;W1) 2 traesA1 and � d(EB;WB) 2traesB. Sine A1 � A2, � d(E1;W1) 2 traesA2 . Sine A1 and A2 have the same externalinterfae, (E1;W1) = (E2;W2). Thus, � d(E2;W2) 2 traesA2 . It follows from Theorem 5.6that � 2 traesA2kB.Example 5.8 Invariant for ombined vehile and ontroller: Consider the Vehile andController automata of Examples 4.1 and 4.2 (for the same �). These two HAs are ompatible;let A be their omposition. In the omposed automaton A, it turns out that the veloity isalways less than or equal to vmax, that is, in all reahable states of A,vel � vmax (12)This statement may be proved by indution on the length of losed exeution fragments of A.In the proof, we use the fat that lok � d, whih follows from the de�nition of Q. We alsouse assertions (3) and (11), whih by de�nition are valid for any state on any trajetory of A.In addition, we require the following auxiliary invariants:vel+ (a-suggested+ �)(d� lok) � vmax (13)lok > 0 ) a � a-suggested+ � (14)vel-sensed = vel (15)0 � lok (16)Here the interesting assertion is (13), whih says, essentially, that the veloity will stay �vmax if the vehile aelerates at the urrently suggested aeleration plus � until the nextrealulation. The main invariant (12) and the auxiliary invariants (13)-(16) an all be provedtogether. All are easily seen to be true in the initial state. There are two kinds of indutivesteps, for disrete suggest transitions and for trajetories. Disrete transitions are easily seen topreserve all the assertions; the most interesting property to show is invariant (13), whih holdsbeause of the onstraints on the new suggested aeleration, the fat that vel-sensed = vel ,and the fat that, in the new state, lok = 0.Trajetories also preserve all the assertions; now the interesting thing to show is the on-juntion of (12) and (13). Depending on whether or not a-suggested + � � 0, it suÆesto show only (12) or only (13). For example, suppose a-suggested + � � 0; we show theauxiliary invariant (13). The trajetory guarantees that vel 0 � vel + (a-suggested + �)t andlok 0 = lok+t, where t is the limit time of the trajetory and unprimed and primed instanesof the variables are used to indiate their values at the beginning and end of the trajetory,respetively. The inequality is based on the integral de�nition of vel in terms of a and therelationship between a and a-suggested . Thenvel0 + (a-suggested0 + �)(d� lok0)= vel0 + (a-suggested+ �)(d� lok� t)= vel0 � (a-suggested+ �)t+ (a-suggested+ �)(d� lok)36



� vel+ (a-suggested+ �)(d� lok) (beause of what the trajetory guarantees)� vmax (by indutive hypothesis)Note that, beause of the two kinds of indutive steps, the indutive proof divides leanly intoseparate parts that involve disrete and ontinuous reasoning.5.2 HidingWe de�ne two hiding operations for hybrid automata, whih hide external ations and ex-ternal variables, respetively, and we prove that these operations respet the implementationrelationship. The hiding operations relassify external ations or external variables as internalations or variables.� If E � EA, then AtHide(E;A) is the HA B that is equal to A exept that EB = EA�Eand HB = HA [E.� If W �WA, then VarHide(W;A) is the HA B given by{ WB =WA �W .{ XB = XA [W .{ QB = fx 2 val(XB) j x dXA 2 QAg.{ �B = fx 2 val(XB) j x dXA 2 �Ag.{ DB = fx; a;x0) 2 val(XB)�AB � val(XB) j (x dXA; a;x0 dXA) 2 DAg.{ EB = EA, HB = HA, and TA = TB.Lemma 5.9 Let E � EA and W �WA. Then AtHide(E;A) and VarHide(W;A) are HAs.Proof: This is a straightforward appliation of the de�nitions.The following lemma haraterizes the traes of the automata that result from applyingthe hiding operations:Lemma 5.10 Let A be an HA.1. If E � EA then traesAtHide(E;A) = f� d(EA �E; VA) j � 2 traesAg.2. If W �WA then traesVarHide(W;A) = f� d(AA;WA �W ) j � 2 traesAg.Proof: First observe that AtHide(E;A) and VarHide(W;A) have the same set of exeutionsas A. Then apply Lemma 3.10. 37



Theorem 5.11 Suppose A and B are HAs with A � B, and suppose E � EA and W �WA.Then AtHide(E;A) � AtHide(E;B) and VarHide(W;A) � VarHide(W;B).Proof: Straightforward, using Lemma 5.10.Example 5.12 Implementing a veloity spei�ation: In the omposition of the Vehileand Controller automata de�ned in Example 5.8, we may hide the a-in variable used forommuniation between the two omponents. Thus, we de�neA = VarHide(fa-ing;VehilekController ):In the resulting automaton A, the only form of output is the variable vel-out .We may express the orretness ofA by showing that it implements an abstrat spei�ationautomaton VSpe that simply represents, in automaton form, the onstraint that the vehile'sveloity is at most vmax. VSpe has one external variable vel-out , one state variable vel , andits state set onsists of all valuations for vel . Both variables have type R and dynami typeequal to the (pasting losure of the) ontinuous funtions. Initially, vel � vmax. VSpe has noations. The trajetories of VSpe are those that satisfy:vel � vmax (17)vel-out(t) = vel(t) for t > 0: (18)We may argue that A implements VSpe using a simulation relation R. Most of the work hasalready been done by proving invariants, in Example 5.8. Relation R relates states xA of Aand xB of B �= VSpe exatly if xA is a reahable state of A and xB(vel) = xA(vel). It is easyto see that R satis�es the start ondition of the simulation relation de�nition. The disretestep ondition follows beause disrete ations of A do not hange vel . For the trajetoryondition, assume xA R xB and � is a trajetory of A with �rst state xA. The de�nition of Rimplies that xA is a reahable state of A. Therefore all states in trajetory � are also reahablestates of A. Therefore, the invariant x(vel) � vmax, whih was proved for A in Example 5.8,is also true of all states in � . Now de�ne the orresponding exeution fragment of B to onsistof the single trajetory � 0 suh that � 0 # vel = � 0 # vel-out = � # vel . This satis�es all therequired properties.Example 5.13 Sensor and disrete ontroller: We desribe how to implement theController of Example 4.2, whih reeives ontinuous information about the vehile's veloitythrough vel-out and suggests aelerations, using two other omponents: a \sensor", whih pe-riodially samples the ontinuous veloity information and produes disrete veloity reports,and a \disrete ontroller", whih uses the disrete veloity reports and immediately suggestsaelerations.The Sensor automaton has state variables lok and vel-sensed , both initially 0, and exter-nal variable vel-out . All variables have type R and dynami type equal to the (pasting losure38



of the) ontinuous funtions. The set Q of states onsists of all valuations in whih lok � d.Sensor also has external ations report (v), v 2 R. D onsists of the report (v) steps spei�edby: lok = d (19)lok0 = 0 (20)v = vel-sensed (21)That is, when the lok reahes d, the Sensor may reset the lok to 0 and report the urrentveloity. T onsists of trajetories that satisfy: _lok = 1 (22)vel-sensed(t) = vel-out(t) for t > 0 (23)That is, the lok inreases at rate 1 and the veloity sensed is exatly what is seen in vel-out .The DisreteController automaton has state variables vel-reported and a-suggested , bothdisrete variables of type R, initially 0, a disrete Boolean state variable stable , initially true,and one external variable a-in, of type R and dynami type equal to (the pasting losure of)the ontinuous funtions. The state onsists of all valuations of the internal variables. TheDisreteController also has external ations report (v), v 2 R and an internal ation suggest .D inludes report (v) steps that satisfy:vel-reported0 = v (24)stable0 = false (25)and suggest steps that satisfy: stable = false (26)stable0 = true (27)vel-reported + (a-suggested0 + �)d � vmax: (28)That is, a new veloity report sets the ag that triggers the DisreteController to realulatethe suggested aeleration. Trajetories satisfy:stable = true for t > 0 (29)a-in = a-suggested for t > 0 (30)stable and a-suggested are unhanged. (31)That is, the DisreteController does not allow time to pass if stable = false ; it must perform asuggest ation after reeiving a report input and before time an pass. The DisreteControllerdoes not hange the suggested aeleration during a trajetory, and submits it aurately toits environment. Now de�neA = AtHide(freport (v) j v 2 Rg;SensorkDisreteController ):39



We laim that A implements B �= Controller . We may argue this using the simulation relationR that relates states xA of A and xB of Controller provided that xA is a reahable state ofA, xB(vel-sensed) = xA(vel-sensed), xB(a-suggested) = xA(a-suggested) and xB(lok ) =xA(lok ) if xA(stable) = true, else d. A key to the argument is that a suggest step ours inB when suggest ours in A, rather than when a report ours.Sine A � Controller , Theorem 5.7 implies that AkVehile � ControllerkVehile. ThenTheorem 5.11 implies that VarHide(fa-ing;AkVehile) � VarHide(fa-ing;ControllerkVehile).Sine, by Example 5.12, VarHide(fa-ing;ControllerkVehile) � VSpe, transitivity of imple-mentation implies that VarHide(fa-ing;AkVehile) implements VSpe.6 Hybrid I/O AutomataIn this setion we re�ne the hybrid automaton model of Setion 4 by distinguishing betweeninput and output ations and between input and output variables. The results on simulationrelations and operations for hybrid automata presented in Setions 4.3 and 5 an be extendedto this new setting.6.1 De�nition of Hybrid I/O AutomataA hybrid I/O automaton (HIOA) A is a tuple (H; U; Y; I;O) where� H = (W;X;Q;�; E;H;D;T ) is a hybrid automaton.� U and Y partition W into input and output variables, respetively.Variables in Z �= X [ Y are alled loally ontrolled ; as before we write V �=W [X.� I and O partition E into input and output ations, respetively.Ations in L �= H [O are alled loally ontrolled ; as before we write A �= E [H.� The following additional axioms are satis�ed:E1 (Input ation enabling)For every x 2 Q and every a 2 I, there exists x0 2 Q suh that x a! x0.E2 (Input trajetory enabling)For every x 2 Q and every � 2 trajs(U ), there exists � 2 T suh that �:fstate =x; � # U � �, and either1. � # U = �, or2. � is losed and some l 2 L is enabled in �:lstate .40



Input ation enabling is the input enabling ondition of ordinary I/O automata. Input traje-tory enabling is a new, orresponding ondition for interation over time intervals. It says thatan HIOA should be able to aept any input trajetory, that is, any trajetory for the inputvariables, either by letting time advane for the entire duration of the input trajetory, or byreating with a loally ontrolled ation after some part of the input trajetory has ourred.It will often be onvenient for us to onsider automata in whih inputs and outputs aredistinguished, but that do not neessarily satisfy the properties E1 or E2. We all suh anautomaton a pre-HIOA.Notation: As we did for HAs, we often denote the omponents of an HIOA (or pre-HIOA) AbyHA; UA; YA; : : : ;WA;XA; QA;�A, et., and the omponents of an HIOAAi byHi; Ui; Yi; : : : ;Wi;Xi; Qi;�i, et. We sometimes omit these subsripts, where no onfusion is likely. We abusenotation slightly by referring to an HIOA (or pre-HIOA) A as an HA when we intend to referto HA.Example 6.1 Vehile and ontroller HIOAs: The Vehile HA of Example 4.1 an beonverted into an HIOA by lassifying a-in as an input variable and vel-out as an outputvariable. Property E1, input ation enabling, holds vauously. It is also easy to see that E2holds, in fat, the �rst alternative always holds|from any state, the Vehile automaton anaept any input trajetory.Similarly, the Controller HA of Example 4.2 an be onverted into an HIOA by lassifyingvel-out as an input variable and a-in as an output variable. Again, E1 holds vauously.To see E2, onsider a state x and an input trajetory �. The de�nition of Q implies thatx(lok ) � d. Then the de�nition of the Controller trajetories implies that there is sometrajetory � onsistent with � that either spans all of � or stops short, at a valuation v inwhih lok = d. Then the de�nition of the suggest transitions implies that suggest is enabledin v dX, as needed.Example 6.2 Sensor and disrete ontroller HIOAs: The Sensor automaton fromExample 5.13 an be onverted into an HIOA by lassifying vel-out as an input variable andthe report ations as output ations. The argument that Sensor is atually an HIOA is similarto the argument for the Controller in Example 6.1.Similarly, the DisreteController automaton from Example 5.13 an be onverted into anHIOA by lassifying the report ations as input ations and the a-in variable as an outputvariable. It is straightforward to verify E1. E2 is not ompletely trivial, even though theautomaton has no input variables: from any state x, we must onsider \null" input trajetories,whih map a time interval to the empty valuation (the valuation for no variables). If x(stable) =true, then the DisreteController an aept the entire input trajetory, and if x(stable) =false, then suggest is enabled in x. This implies E2.41



6.2 Exeutions, Traes, and Simulation RelationsAn exeution of a pre-HIOA A is de�ned to be an exeution ofHA, and a trae of A is a trae ofHA. Two pre-HIOAs A1 and A2 are omparable if their inputs and outputs oinide, that is, ifI1 = I2, O1 = O2, U1 = U2, and Y1 = Y2. IfA1 andA2 are omparable, then A1 � A2 is de�nedto mean that the traes of A1 are inluded among those of A2: A1 � A2 �= traesA1 � traesA2 .Lemma 6.3 Let A1 and A2 be two omparable pre-HIOAs. Then H1 and H2 are omparableand A1 � A2 i� H1 � H2.Proof: Immediate from the de�nitions.The de�nition of simulation for pre-HIOAs is the same as for HAs. Formally, if A1 and A2are two omparable pre-HIOAs, then a simulation from A1 to A2 is a simulation from H1 toH2.Theorem 6.4 If A1 and A2 are omparable pre-HIOAs and there is a simulation from A1 toA2, then A1 � A2.Proof: Immediate from the de�nition of simulation, Theorem 4.8, and Lemma 6.3.6.3 CompositionThe de�nition of omposition for HIOAs is based on the orresponding de�nition for HAs,but also takes the input/output struture into aount. Just as for HAs, we allow an HIOAA1 to be omposed with an HIOA A2 only if the sets of internal ations and variables of A1are disjoint from the sets of ations and variables, respetively, of A2. In addition, in orderthat the omposition operation might satisfy ertain desirable properties (see, for example,Theorem 7.12), we require that at most one omponent automaton should \ontrol" any givenation or variable; that is, we allow A1 and A2 to be omposed only if the sets of outputations of A1 and A2 are disjoint and the sets of output variables of A1 and A2 are disjoint.Formally, we say that pre-HIOAs A1 and A2 are ompatible if, for i 6= j,Xi \ Vj = Yi \ Yj = Hi \Aj = Oi \Oj = ;:Lemma 6.5 If A1 and A2 are ompatible pre-HIOAs, then H1 and H2 are ompatible HAs.Proof: Follows immediately from the de�nitions.If A1 and A2 are ompatible pre-HIOAs then their omposition A1kA2 is de�ned to be thetuple A = (H; U; Y; I;O) where 42



� H = H1kH2,� U = (U1 [ U2)� (Y1 [ Y2), Y = Y1 [ Y2,� I = (I1 [ I2)� (O1 [O2), O = O1 [O2.Thus, an external ation or variable of the omposition is lassi�ed as an output if it is anoutput of one of the omponent automata, and otherwise it is lassi�ed as an input.Example 6.6 Interfaes for ompositions of vehile, ontroller, sensor, and disreteontroller automata: When the Vehile and Controller HIOAs desribed in Example 6.1are omposed, the external interfae of the omposed struture onsists of U = I = O = ; andY = fa-in ; vel-outg.When the Sensor and DisreteController desribed in Example 6.2 are omposed, theexternal interfae of the omposed struture onsists of U = fvel-outg, Y = fa-ing, I = ;,and O = freport (v) j v 2 Rg.The omposition of two HIOAs (or pre-HIOAs) is guaranteed to be a pre-HIOA:Theorem 6.7 If A1 and A2 are pre-HIOAs then A1kA2 is a pre-HIOA.Proof: Let A denote A1kA2. Lemma 5.1 implies that H = H1kH2 is an HA. By onstrution,U and Y form a partition of W , and I and O form a partition of E. This suÆes.Composition of pre-HIOAs satis�es the following substitutivity result:Theorem 6.8 Suppose A1 and A2 are omparable pre-HIOAs with A1 � A2. Suppose that Bis a pre-HIOA that is ompatible with eah of A1 and A2. Then A1kB � A2kB.Proof: The fat that A1 and A2 are omparable and the de�nition of omposition for pre-HIOAs implies that that A1kB and A2kB are omparable.Sine A1 and A2 are omparable and A1 � A2, Lemma 6.3 implies that HA1 and HA2are omparable and HA1 � HA2 . Lemma 6.5 implies that HA1 and HB are ompatible HAsand HA2 and HB are ompatible HAs. Theorem 5.7 then implies that HA1kHB � HA2kHB.By the de�nition of omposition, it follows that HA1kB � HA2kB. Then the de�nition ofimplementation for pre-HIOAs implies that A1kB � A2kB.We would like to show that the omposition of two HIOAs is an HIOA; however, this isnot true in general. Property E1 is preserved by omposition:Lemma 6.9 If A1 and A2 are pre-HIOAs that satisfy E1, then the omposition A1kA2 alsosatis�es E1. 43



Proof: Let A = A1kA2. Assume that A1 and A2 satisfy E1. We verify that A satis�es E1.Consider x 2 Q and a 2 I. We distinguish three ases.1. a 2 I1 \ I2. By de�nition of omposition, x dXi 2 Qi for i 2 f1; 2g. Then by E1 appliedto Ai, there exists a state x0i of Ai suh that (x dXi) a!i x0i. Let x0 �= x01 [ x02. Weknow that x0 is well de�ned sine, by ompatibility, X1 \X2 = ;. Then by de�nition ofomposition, x0 2 Q and x a! x0.2. a 2 I1 � I2. By de�nition of omposition, s dX1 2 Q1. By E1 applied to A1, thereexists a state x01 of A1 suh that (x dX1) a!1 x01. Let x0 �= x01 [ (x dX2). We know thatx0 is well de�ned sine, by ompatibility, X1 \ X2 = ;. Then by de�nition of parallelomposition, x0 2 Q and x a! x0.3. a 2 I2 � I1. Symmetri to the previous ase.However, E2 is not neessarily preserved by omposition:Example 6.10 HIOAs whose omposition does not satisfy E2: Suppose that A1 hasno disrete ations, one state variable x1, one output variable v1 and one input variable v2.All variables are of type R and dynami type the (pasting losure of the) ontinuous funtions.The set Q1 of states onsists of all valuations of x1. In the unique start state, x1 = 0. Thetrajetories are all those funtions that satisfy the onditions x1(t) = v2(t) for t > 0 andv1(t) = x1(t) + 1 for t > 0. It is easy to hek that A1 is an HIOA. De�ne A2 symmetrially,with state variable x2, output variable v2 and input variable v1; A2's trajetories are thosethat satisfy x2(t) = v1(t) for t > 0 and v2(t) = x2(t) + 1 for t > 0.The omposition pre-HIOA A1kA2 does not satisfy E2. Satisfying E2 would require (sinethe omposition has no disrete ations) that the omposition inlude at least one trajetorywith limit time 1 starting from the initial state. However, no suh trajetory exists, beausethe ombined onstraints are inonsistent for every t > 0.As a tehnial way out of the diÆulty, we de�ne a stronger notion of ompatibility. Namely,we say that ompatible pre-HIOAs A1 and A2 are strongly ompatible if A1kA2 satis�es axiomE2. Strong ompatibility says that any input trajetory � of the omposition must be aept-able by the omposition: the two omponent automata are able to evolve together, followingthe input trajetory �, in suh a way that either they aept all of � or else they aept partof �, up to a point where one of them an interrupt with a loally ontrolled ation.Theorem 6.11 If A1 and A2 are strongly ompatible HIOAs, then A1kA2 is an HIOA.Proof: Lemma 6.7 implies that the omposition is a pre-HIOA. Lemma 6.9 implies that theomposition satis�es E1. Property E2 follows immediately from strong ompatibility.44



6.4 HidingThe de�nitions of variable and ation hiding extend to any pre-HIOA A. For input/outputautomata, we onsider hiding outputs only (but not inputs), by onverting them to internalations.1. If O � OA, then AtHide(O;A) is the pre-HIOA B that is equal to A exept thatOB = OA �O and HB = HA [O.2. If Y � YA then VarHide(Y;A) is the pre-HIOA B given by:� HB = VarHide(Y;HA).� YB = YA � Y .� UB = UA, IB = IA, and OB = OA.Lemma 6.12 Suppose A is a pre-HIOA, O � OA and Y � YA. Then:1. AtHide(O;A) and VarHide(Y;A) are pre-HIOAs.2. If A satis�es E1 then so do AtHide(O;A) and VarHide(Y;A).3. If A satis�es E2 then so do AtHide(O;A) and VarHide(Y;A).Lemma 6.13 Let A be a pre-HIOA.1. If O � OA then traesAtHide(O;A) = f� d(OA �O;VA) j � 2 traesAg.2. If Y � YA then traesVarHide(Y;A) = f� d(AA; YA � Y ) j � 2 traesAg.Proof: Straightforward appliation of the de�nitions.Theorem 6.14 Suppose A and B are pre-HIOAs with A � B, and suppose O � OA andY � YA.Then AtHide(O;A) � AtHide(O;B) and VarHide(Y;A) � VarHide(Y;B).Proof: Straightforward, using Proposition 5.10.Example 6.15 Interfaes for automata with hiding: In Example 5.13, we de�ned the HAB �= VarHide(fa-ing;AkVehile), whereA �= AtHide(freport (v) j v 2 Rg;SensorkDisreteController ).This models the three-way omposition of the sensor, disrete ontroller, and vehile, with theinternal report ations and aeleration suggestions hidden. If we interpret the three automataas HIOAs, then these de�nitions still make sense beause the ations and variables that arehidden are outputs. The external interfae for A is given by UA = fvel-outg, YA = fa-ing,and IA = OA = ;, and the external interfae for B is given by UB = IB = OB = ; andYB = fvel-outg. 45



6.5 SuÆient Conditions for Strong CompatibilityCheking strong ompatibility of two HIOAs an be diÆult beause it requires heking om-patibility between the ontinuous dynamis of two systems. However, for ertain restritedlasses of HIOAs, strong ompatibility is implied by ompatibility, whih is easy to hek.Example 6.16 HIOAs for whih ompatibility implies strong ompatibility: It isroutine to verify that two HIOAs without input variables are strongly ompatible if and only ifthey are ompatible. In the lassial ontrol theory setting, a system without input variablesis uninteresting beause it annot be ontrolled. However, in the hybrid setting, suh a systeman still interat with its environment via disrete input ations. Linear hybrid automata [3, 2℄,for instane, have no input variables.Symmetrially, two HIOAs without output variables are strongly ompatible if and only ifthey are ompatible. The same equivalene holds if one of the HIOAs has no input variablesand the other has no output variables, or if one has no external variables at all.The following theorem generalizes all the laims in Example 6.16. It applies to pairs ofHIOAs that annot mutually a�et eah other beause the output variables of one are disjointfrom the input variables of the other.Theorem 6.17 Let A1 and A2 be two ompatible HIOAs suh that U1\Y2 = ;. Then A1 andA2 are strongly ompatible.Proof: Let A denote A1kA2. We need to show that A satis�es E2. Let x be a state of Aand let � be a trajetory in trajs(U ). Sine U1 \ Y2 = ;, the de�nition of omposition impliesthat U1 � U . By E2 applied to A1, there exists a trajetory �1 2 T1 with �1:fstate = x dX1that is pointwise ompatible with � and suh that either dom(�1) = dom(�), or else dom(�1) �dom(�), �1 is losed, and a loally ontrolled ation of A1 is enabled in �1:lstate .Let �2 be ((� d dom(�1)) _[ �1) # U2. That is, �2 is an input trajetory for A2. Eah inputvariable of A2 is either an input variable of A or an output variable of A1; the valuations in �2for those that are inputs of A are obtained from �, whereas the valuations for those that areoutput variables of A1 are obtained from �1. By E2 applied to A2, there exists a trajetory�2 2 T2 with �2:fstate = x dX2 that is pointwise ompatible with �2 and suh that eitherdom(�2) = dom(�2), or else dom(�2) � dom(�2), �2 is losed, and a loally ontrolled ationof A2 is enabled in �2:lstate .In the seond ase, (�1 d dom(�2)) _[ �2 is a trajetory of T that starts from x, is pointwiseompatible with �, is losed, and enables a loally ontrolled ation of A (in partiular, of A2)in its last state. In the �rst ase, �1 _[ �2 is a trajetory of T that starts from x, is pointwiseompatible with �, and either spans all of � or is losed and enables a loally ontrolled ationof A (in partiular, of A1) in its last state. This shows that A satis�es E2.46



We an also onsider HIOAs that do not exhibit any dependenies between inputs andoutputs during a trajetory. In partiular, the values of the input variables should a�etneither the values of the output variables nor the amount of time that elapses until a loallyontrolled ation is enabled. Formally, we say that an HIOA A is oblivious if it satis�es thefollowing axiom:OBL Let � 2 T and � 2 trajs(U ) suh that dom(�) = dom(�). Then there exists � 0 2 T suhthat:1. � 0 # U = �.2. � 0 # Y = � # Y .3. If � is losed and some loally ontrolled ation is enabled in �:lstate then someloally ontrolled ation is enabled in � 0:lstate .Theorem 6.18 Let A1 and A2 be two ompatible HIOAs and suppose that A1 is oblivious.Then A1 and A2 are strongly ompatible.Proof: Let A denote A1kA2. We need to show that A satis�es E2. Let x be a state of Aand let � be a trajetory in trajs(U ). Let �1 be any trajetory of trajs(U1 ) that is pointwiseompatible with � and suh that dom(�1) = dom(�). By E2 applied to A1, there exists atrajetory �1 2 T1 with �1:fstate = x dX1 that is pointwise ompatible with �1 and suh thateither dom(�1) = dom(�1), or else dom(�1) � dom(�1), �1 is losed, and a loally ontrolledation of A1 is enabled in �1:lstate .Let �2 be ((� d dom(�1)) _[ �1) # U2. By E2 applied to A2, there exists a trajetory �2 2 T2with �2:fstate = x dX2 that is pointwise ompatible with �2 and suh that either dom(�2) =dom(�2), or else dom(�2) � dom(�2), �2 is losed, and a loally ontrolled ation of A2 isenabled in �2:lstate .Let �01 be ((� d dom(�2)) _[�2) # U1. By OBL applied to A1, there exists a trajetory � 01 2 T1suh that � 01 # U1 = �01, � 01 # Y1 = (�1 d dom(�2)) # Y1, and if �1 d dom(�2) is losed and someloally ontrolled ation of A1 is enabled in its last state, then some loally ontrolled ation isalso enabled in � 01:lstate . If follows that � 01 and �2 are pointwise ompatible, and that � 01 _[ �2 isa trajetory in T that starts from x and is pointwise ompatible with �. We laim that � 01 _[ �2satis�es the requirements for E2. We onsider ases:1. dom(�2) � dom(�2).Then � 01 _[ �2 is losed and enables a loally ontrolled ation (of A2) in its last state,whih satis�es the requirements for E2.2. dom(�2) = dom(�2)(= dom(�1)).We onsider two subases. First, if dom(�1) � dom(�), then �1 is losed and enablessome loally ontrolled ation (of A1) in its last state. By axiom OBL, some loally47



ontrolled ation is also enabled in � 01 _[ �2:lstate , whih suÆes for E2. On the otherhand, if dom(�1) = dom(�), then � 01 _[ �2 spans all of �, whih again suÆes for E2.
Example 6.19 Oblivious ontroller: The Controller HIOA of Example 4.2 and 6.1 satis�esOBL. During any trajetory � of Controller , veloity information arrives in vel-out but doesnot a�et the Controller 's output; the output is only hanged when a (loally ontrolled)suggest transition ours. Enabling of the suggest ation is not a�eted by hanges in vel-out ,but only by the value of lok .Beause Controller is oblivious and ompatible with the Vehile HIOA, Theorem 6.18implies that Vehile and Controller are strongly ompatible. It follows that their omposition,VehilekController , is an HIOA.Example 6.20 Plant and ontroller: Figure 5 displays a standard senario studied inontrol theory involving a plant P ontrolled by a digital ontroller C. The interfae from the

A6
-

P
?D

�
C

ControlMeasurement

Input symbol Output symbol

Figure 5: Hybrid Control System.ontroller to the plant is given by a digital/analog onverter D, while the interfae from theplant to the ontroller is given by an analog/digital onverter A. The ontroller C monitorsthe input variables and hanges its output variables only at the lok tiks via some disretetransitions. Thus, C satis�es OBL. The output variables of A are disjoint from the input48



variables of both P and D, and the output variables of P are disjoint from the input variablesof D. Thus, if P; C;A;D are pairwise ompatible, then P and A are strongly ompatible (byTheorem 6.17), PkA and D are strongly ompatible (by Theorem 6.17), and ((PkA)kD) andC are strongly ompatible (by Theorem 6.18). Hene, ((PkA)kD)kC is an HIOA.Example 6.21 Lipshitz HIOAs: We may de�ne a sublass of HIOAs alled LipshitzHIOAs, in whih some of the state variables are disrete \mode" variables, and in whih, foreah mode, the rest of the variables evolve aording to a system of di�erential equations basedon globally Lipshitz funtions. We may restrit this lass further by imposing a bound onthe range of the input variables (by restriting their dynami types), thus obtaining the setof input-bounded Lipshitz HIOAs. Then it is possible to show that two ompatible input-bounded Lipshitz HIOAs are strongly ompatible, whih implies that the omposition of twoompatible input-bounded Lipshitz HIOAs is a (Lipshitz) HIOA. A areful development willbe reserved for another paper.7 Reeptive Hybrid I/O AutomataIn this setion, we de�ne the notion of \reeptiveness" for HIOAs. An HIOA will be de�nedto be reeptive provided that it admits a \strategy" for resolving its nondeterministi hoiesthat never generates in�nitely many loally ontrolled ations in �nite time. This notionhas two important onsequenes: First, a reeptive HIOA provides some response from anystate, for any sequene of disrete input ations and input trajetories. This implies that theautomaton has a nontrivial set of exeution fragments, in fat, it has exeution fragments thataommodate any inputs from the environment. The automaton annot simply stop at somepoint and refuse to allow time to elapse; it must allow time to pass to in�nity if the environmentdoes so. Seond, reeptiveness is losed under omposition. Previous studies of reeptivenessproperties inlude [16, 1, 66, 48℄.We de�ne reeptiveness by �rst de�ning what it means for an HIOA to be \progressive".A progressive HIOA never generates in�nitely many loally ontrolled ations in �nite time.Thus, in all of its exeution fragments, it allows time to pass to in�nity provided that itsenvironment also does so. We then de�ne a \strategy" for resolving nondeterministi hoies,and de�ne reeptiveness in terms of the existene of a progressive strategy.The treatment of reeptiveness in this paper is simpler than that in previous papers. Onereason is that we address only the generation of admissible exeutions here, rather than gen-eral liveness properties. Also, we formulate strategies as restrited automata, rather thanintroduing separate de�nitions based on two-player games.
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7.1 Progressive HIOAsWe say that an exeution fragment of a pre-HIOA is loally-Zeno if it is Zeno and ontainsin�nitely many loally ontrolled ations, or equivalently, if it has �nite limit time and ontainsin�nitely many loally ontrolled ations. A pre-HIOA A is progressive if it has no loally-Zenoexeution fragments.The following lemma says that any progressive pre-HIOA that satis�es E2, and thereforeany HIOA, is apable of following any input trajetory.Lemma 7.1 Let A be a progressive pre-HIOA that satis�es property E2, let x be a state of A,and let � 2 trajs(U ). Then there exists an exeution fragment � of A suh that �:fstate = xand � d(I; U) = �.Proof: We onstrut a �nite or in�nite sequene �0; �1; : : : of exeution fragments of A suhthat:1. �0:fstate = x.2. For every non�nal index i, �i:lstate = �i+1:fstate .3. For every i, (�0 _ �1 _ � � �_ �i) d(I; U) � �.The onstrution is arried out reursively. To de�ne �0, we begin with state x and use E2either to span all of � or to span a pre�x of � and then perform a loally ontrolled ation. Fori > 0 (assuming that we have not already spanned all of �), we de�ne �i by beginning with�i�1:lstate , and using E2 either to span the entire suÆx of � starting from �0_ � � �_�i�1:ltime ,or to span a pre�x of that suÆx and then perform a loally ontrolled ation.Now we onsider two ases:1. The onstrution ends after a �nite number of stages, having spanned all of �, say with�k as the last exeution fragment in the sequene.In this ase, the onatenation �0 _ �1 _ � � �_ �k satis�es the onditions of the lemma.2. The onstrution proeeds through in�nitely many stages.In this ase, the exeution fragment � �= �0 _ �1 _ � � � ontains in�nitely many loallyontrolled ations. Sine A is progressive, it must be the ase that �:ltime = 1, andtherefore � d(I; U):ltime =1. Sine the set of trajetories for U is a po, � d(I; U) � �.Sine � d(I; U) � �, and � d(I; U):ltime =1, it follows that � d(I; U) = �, as needed.The following theorem says that a progressive HIOA is apable of following not just indi-vidual input trajetories, but entire input hybrid sequenes.50



Theorem 7.2 Let A be a progressive HIOA, let x be a state of A, and let � be an (I; U)-sequene. Then there exists an exeution fragment � of A suh that �:fstate = x and � d(I; U) =�.Proof: Let � = �0 a1 �1 a2 �2 : : :. We de�ne a �nite or in�nite sequene �0; �1; : : : of exeutionfragments of A suh that:1. �0:fstate = x.2. For every non�nal index i, �i:lstate = �i+1:fstate .3. For every i, (�0 _ �1 _ � � �_ �i) d(I; U) = �0 a1 �1 a2 �2 : : : �i.The onstrution is arried out reursively. To de�ne �0, we begin with x and use Lemma 7.1to span �0. For i > 0, we de�ne �i by starting with �i�1:lstate , using property E1 to performation ai and move to a new state, and then using Lemma 7.1 to span �i.Let � = �0 _ �1 _ � � �. Then we use Lemma 3.8 to onlude that � d(I; U) = �, as needed.The property asserted in Theorem 7.2 has been alled I/O feasibility elsewhere in theliterature [51℄. Thus, we de�ne a pre-HIOA to be I/O feasible provided that, for eah statex and eah (I; U)-sequene �, there is some exeution fragment � suh that �:fstate = x and� d(I; U) = �. Theorem 7.2 may then be restated as:Corollary 7.3 Every progressive HIOA is I/O feasible.I/O feasibility implies that any �nite exeution fragment an be extended to an admissi-ble exeution in response to any admissible input from the environment. A related, weakerproperty that has also been studied is feasibility [℄. In terms of our model, we may say thata pre-HIOA is feasible provided that, for eah state x, there is some admissible exeutionfragment � suh that �:fstate = x.Feasibility implies that any �nite exeution fragment an be extended to some admissibleexeution fragment|no onstraints are imposed on the inputs. Observe that any I/O feasibleHIOA must be feasible, as long as the dynami type of eah input variable inludes at leastone admissible trajetory. Feasibility should be regarded as a minimal liveness requirementthat any reasonable HIOA should satisfy. I/O feasibility is a strengthened version of feasibilitythat takes inputs into aount.Closure under omposition is easy to show:Theorem 7.4 If A1 and A2 are ompatible progressive pre-HIOAs, then their omposition isalso progressive. 51



Proof: Let A be A1kA2. Suppose for the sake of ontradition that A has a loally-Zenoexeution fragment �. Then � ontains either in�nitely many loally ontrolled ations ofA1 or in�nitely many loally ontrolled ations of A2. Suppose without loss of generalitythat � ontains in�nitely many loally ontrolled ations of A1. Then, by Lemma 5.2 andthe de�nition of restrition, � d(A1; V1) is a time-bounded exeution fragment of A1 within�nitely many loally ontrolled ations, that is, a loally-Zeno exeution fragment of A1.This ontradits the assumption that A1 is progressive.Example 7.5 Progressive and non-progressive pre-HIOAs: The Vehile HIOA is obvi-ously progressive beause it has no disrete ations. The Controller and Sensor HIOAs are pro-gressive beause their loally ontrolled ations are separated in time. The DisreteControllerHIOA is not progressive, beause if report inputs arrive in a Zeno fashion, theDisreteControllermay respond by performing suggest internal ations in a Zeno fashion. However, the ompo-sition SensorkDisreteController is progressive.Consider a more nondeterministi version of Sensor , NSensor , that is allowed to performreport ations for any value of lok (� d), rather than just for lok = d. Formally, NSensoris idential to Sensor exept that ondition 19 is dropped. NSensor is not progressive, beauseit may perform in�nitely many report ations in �nite time. Also, the omposition of NSensorwith DisreteController is not progressive.7.2 StrategiesIn this subsetion, we de�ne the notion of a \strategy", whih provides a way to resolve someof the nondeterministi hoies in a pre-HIOA. We will use strategies in the next subsetionto de�ne reeptiveness.We de�ne a strategy for a pre-HIOA A to be an HIOA A0 that di�ers from A only in thatD0 � D and T 0 � T . That is, we require:� D0 � D.� T 0 � T .� W = W 0, X = X 0, Q = Q0, � = �0, E = E0, H = H 0, U = U 0, Y = Y 0, I = I 0, andO = O0.Our strategies are nondeterministi and memoryless. They serve to hoose some of the evolu-tions that are possible from eah state x of A. The fat that the state set Q0 of A0 is the sameas the state set Q of A implies that A0 hooses evolutions from every state of A.Strategy notions have been used elsewhere in de�ning reeptiveness, for example, in [16, 1,66℄; in this earlier work, strategies have been formalized using two-player games rather thanrestrited automata. 52



Lemma 7.6 If A0 is a strategy for A, then every exeution fragment of A0 is also an exeutionfragment of A.Theorem 7.7 Let A1 and A2 be two ompatible pre-HIOAs with strongly ompatible strategiesA01 and A02, respetively. Then A01kA02 is a strategy for A1kA2.Proof: Let A denote A1kA2 and let A0 denote A01kA02. Sine A01 and A02 are stronglyompatible, Theorem 6.11 implies that A0 is an HIOA. From the de�nitions of ompositionand strategy, A0 di�ers from A only in that D0 � D and T 0 � T . Then the de�nition ofstrategy implies that A0 is a strategy for A.Lemma 7.8 Let A1 and A2 be two ompatible pre-HIOAs with strongly ompatible strategiesA01 and A02, respetively. Then A1 and A2 are strongly ompatible.Proof: Let A denote A1kA2 and let A0 denote A01kA02. Theorem 7.7 implies that A0 is astrategy for A. Sine A01 and A02 are strongly ompatible, their omposition A0 satis�es E2.We show that also A satis�es E2.Let x 2 Q and let � 2 trajs(U ). Then sine A0 is a strategy for A, we have Q0 = Q andU 0 = U , and so x 2 Q0 and � 2 trajs(U 0). Sine A0 satis�es E2, there exists � 2 T 0 suh that�:fstate = x, � # U 0 � �, and either � # U 0 = �, or else � is losed and some l 2 L0 is enabled(in A0) in �:lstate .Sine A0 is a strategy for A, it follows that also � 2 T , � # U � �, and either � # U = �,or else � is losed and some l 2 L is enabled (in A) in �:lstate . Therefore, A satis�es E2, thatis, A1 and A2 are strongly ompatible.Example 7.9 Strategy for nondeterministi sensor: The Sensor HIOA, as de�ned inExample 5.13, is a strategy for the NSensor HIOA de�ned in Example 7.5.7.3 Reeptive HIOAsFinally, we de�ne a pre-HIOA to be reeptive if it has a progressive strategy.Example 7.10 Reeptive and non-reeptive HIOAs: The NSensor HIOA of Example 7.5is not progressive, but it is reeptive. That is beause the original Sensor HIOA, as de�ned inExample 5.13, is a progressive strategy for NSensor .The DisreteController HIOA is not reeptive: beause any strategy for DisreteControllermust satisfy E1 and E2, suh a strategy must be able to perform disrete steps in responseto any report input, and so must be apable of performing in�nitely many suggest ations in�nite time. 53



Consider a variant NDController of DisreteController that has its own lok and maywait any amount of time, up to a �xed d' (> 0), to respond to eah report input with a newsuggest . (Several reports may our in suession; a single suggest may be used to handle allof them, as long as it ours within time d' of the �rst of these reports.) NDController isnot progressive, beause it has the option of responding immediately to reports, and thus maygenerate in�nitely many suggestions in �nite time. It is reeptive, however, using a progressivestrategy that always waits the maximum allowed time before generating a suggestion.The two most important general properties of reeptive HIOAs are expressed by the follow-ing two theorems. The �rst expresses nontriviality|that any reeptive HIOA (or pre-HIOA)an respond to any inputs from the environment. The seond theorem shows that reeptivenessis preserved by omposition.Theorem 7.11 Every reeptive pre-HIOA is I/O feasible.Proof: Let A be a reeptive pre-HIOA. By de�nition of reeptive, there exists a progressivestrategy A0 for A. Sine A0 is a progressive HIOA, Corollary 7.3 implies that A0 is I/O feasible.We show that also A is I/O feasible.Let x 2 Q and let � be an (I; U)-sequene. Then sine A0 is a strategy for A, we haveQ0 = Q, I 0 = I, and U 0 = U , and so x 2 Q0 and � is an (I 0; U 0)-sequene. Sine A0 is I/Ofeasible, there is some exeution fragment � of A0 suh that �:fstate = x and � d(I 0; U 0) = �.By Lemma 7.6, � is also an exeution fragment of A. Sine A0 is a strategy for A, it followsthat � d(I; U) = �. Therefore, A is I/O feasible.Finally, we have our theorem about omposability of reeptive HIOAs:Theorem 7.12 Let A1 and A2 be two ompatible reeptive HIOAs with strongly ompatibleprogressive strategies A01 and A02, respetively. Then A1kA2 is a reeptive HIOA satisfying withprogressive strategy A01kA02.Proof: Let A and A0 denote A1kA2 and A01kA02, respetively. The fat that A is an HIOAfollows from Lemma 7.8 and Theorem 6.11. Theorem 7.7 implies that A0 is a strategy for A.Theorem 7.4 and the fat that A01 and A02 are progressive implies that A0 is progressive. Thus,A is a reeptive HIOA and A0 is a progressive strategy for A.Example 7.13 Composition of reeptive sensor and reeptive disrete ontroller:As noted in Example 7.10, both NSensor and NDController are reeptive, using progres-sive strategies that always wait the maximum allowed amount of time. These two strategiesare strongly ompatible, by Theorem 6.17. Therefore, by Theorem 7.12, the ompositionNSensorkNDController is a reeptive HIOA with a progressive strategy that is the omposi-tion of the two progressive strategies for the two piees.54



8 ConlusionsIn this paper, we have de�ned a new hybrid I/O automaton (HIOA) modeling frameworkfor desribing and reasoning about the behavior of hybrid systems. Many future researhdiretions remain.First, the expressive and analytial power of the new model should be tested further byusing it to desribe and analyze many more examples. These should inlude many of theexamples that have been used as illustrations elsewhere in the hybrid systems literature. Theautomated transportation examples studied using the previous version of the HIOA modelshould be revisited using the new model to see what hanges arise, and new and more ambitiousase studies should be attempted.It would be interesting to de�ne and prove formal relationships between the HA and HIOAmodels of this paper and other models of hybrid systems, inluding those of [56, 2, 10, 6, 11, 32℄.Also, one an de�ne a timed input/output automaton model by simply restriting the HIOAmodel of this paper so that it does not inlude any external variables. It remains to onsiderthe formal relationship between this model and other timed automaton models, for example,those of [1, 4, 52, 66, 58℄.It would also be useful to inorporate additional analysis methods, inluding assume-guarantee reasoning [12, 30℄ and a variety of methods from ontrol theory, into the HIOAframework. Control theory methods to onsider should inlude Lyapunov stability analysismethods [71℄ and robust ontrol methods [18℄. Results about these methods should be formu-lated in terms of HIOAs, and the methods should be extended where neessary in order toaommodate a ombination of disrete and ontinuous behavior.Other extensions of the HIOA framework are also desirable. In some prior work (e.g.,[16, 1, 66℄), strategies are used to desribe how a system interats with its environment toguarantee that the outome of the interation satis�es a target liveness property. In this paper,we do not onsider general liveness properties, but only the speial ase of admissibility. Itremains to extend the theory to more general liveness properties. Another important extensionwould be the addition of probabilities, whih would make it possible to model and analyzeprobabilisti hybrid systems. Suh an extension ould be used, for example, to prove boundson the probability of errors in safety-ritial real-time systems. This extension appears to bea very hallenging problem.Other future work involves developing language and tool support for manipulating repre-sentations of hybrid I/O automata.Referenes[1℄ M. Abadi and L. Lamport. Composing spei�ations. ACM Transations on ProgrammingLanguages and Systems, 1(15):73{132, 1993.55
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A Notational Conventionsa; b ationf; g; h funtioni; j indexl loally ontrolled ationt time pointu input variablev variablew external variablex internal variabley output variablez loal variableA set of ationsE set of external ationsF set of funtionsH set of internal (hidden) ationsI set of input ationsJ intervalK set of time pointsL set of loally ontrolled ationsO set of output ationsP set of elements in poQ set of automaton statesR (simulation) relationS setT set of trajetoriesU set of input variablesV set of variablesW set of external (Duth: waarneembare) variablesX set of internal variablesY set of output variablesZ set of loal variablesx statev valuation
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A, B, C hybrid (I/O) automatonD set of disrete transitionsH hybrid automatonT set of trajetoriesN the natural numbersR the real numbersT the time axisZ the integersV the universe of variables�; �; Æ (A; V )-sequene sequene� the empty sequene� projetion funtion�; � sequene� , � trajetory� set of start states
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