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omputer 
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h operate in dis
reteprogram steps, and real-world 
omponents, whose behavior over time intervals evolves a
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ording to physi
al 
onstraints. Important examples of hybrid systems in
lude automatedtransportation systems, roboti
s systems, pro
ess 
ontrol systems, systems of embeddeddevi
es, and mobile 
omputing systems. Su
h systems 
an be very 
omplex, and verydiÆ
ult to des
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In parti
ular, the framework in
ludes a notion of external behavior for a hybrid I/O au-tomaton, whi
h 
aptures its dis
rete and 
ontinuous intera
tions with its environment. Theframework also de�nes what it means for one HIOA to implement another, based on anin
lusion relationship between their external behavior sets, and de�nes a notion of simula-tion, whi
h provides a suÆ
ient 
ondition for demonstrating implementation relationships.The framework also in
ludes a 
omposition operation for HIOAs, whi
h respe
ts externalbehavior, and a notion of re
eptiveness , whi
h says that an HIOA does not blo
k the pas-sage of time. The framework is intended to support analysis methods from both 
omputers
ien
e and 
ontrol theory.This work is a simpli�
ation of an earlier version of the HIOA model [47, 48℄. Themain simpli�
ation in the new model is a 
learer separation between the me
hanisms usedto model dis
rete and 
ontinuous intera
tion between 
omponents. In parti
ular, the newmodel removes the dual use of external variables for dis
rete and 
ontinuous intera
tion.Keywords & phrases: Hybrid system, I/O automaton, hybrid automaton, hybrid I/Oautomaton, simulation relation, 
omposition, re
eptiveness.
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tion1.1 OverviewRe
ent years have seen a rapid growth of interest in hybrid systems|systems that exhibit a
ombination of dis
rete and 
ontinuous behavior [23, 62, 9, 7, 55, 28, 65, 72, 45, 15℄. Typ-i
al hybrid systems in
lude 
omputer 
omponents, whi
h operate in dis
rete program steps,and real-world 
omponents, whose behavior over time intervals evolves a

ording to physi
al
onstraints. Su
h systems are used in many appli
ation domains, in
luding automated trans-portation, avioni
s, automotive 
ontrol, roboti
s, pro
ess 
ontrol, embedded devi
es, 
onsumerele
troni
s, and mobile 
omputing.Hybrid systems 
an be very 
omplex, and therefore very diÆ
ult to des
ribe and reasonabout. At the same time, be
ause they involve real-world a
tivity, they often have stringentsafety requirements. This 
ombination of fa
tors leads to a need for rigorous mathemati
almodels for des
ribing hybrid systems and their properties, and for pra
ti
al analysis methodsbased on these models. 4



In this paper, we present a basi
 mathemati
al framework to support des
ription and anal-ysis of hybrid systems: the Hybrid Input/Output Automaton modeling framework. A HybridI/O Automaton (HIOA) is a kind of nondeterministi
, possibly in�nite-state, state ma
hine.The state of an HIOA is divided into state variables, and it may also have additional inputvariables and output variables. The state 
an 
hange in two ways: Dis
rete transitions, whi
hare labeled by dis
rete a
tions, 
hange the state instantaneously. Traje
tories are fun
tionsthat des
ribe the evolution of the state variables, along with the input and output variables,over intervals of time. Traje
tories may be 
ontinuous or dis
ontinuous fun
tions.HIOAs are intended to be used to model all 
omponents of hybrid systems, in
luding phys-i
al 
omponents, 
ontrollers, sensors, a
tuators, 
omputer software, 
ommuni
ation servi
es,and humans that intera
t with the rest of the system. The framework is very general: forexample, we do not require that traje
tories be expressible using systems of equations of a par-ti
ular form, and we do not require that dis
rete transitions be expressible using a parti
ularlogi
al language. Parti
ular kinds of systems of equations and parti
ular logi
al languages 
anbe used to de�ne spe
ial 
ases of the general model.The most important feature of the hybrid I/O automaton framework is its support forde
omposing hybrid system des
ription and analysis; this is important be
ause many hybridsystems are too 
omplex to understand all at on
e. A key to this de
omposition is that theframework in
ludes a rigorously-de�ned notion of external behavior for hybrid I/O automata,whi
h 
aptures their dis
rete and 
ontinuous intera
tions with their environment. The exter-nal behavior of ea
h HIOA is de�ned by a simple mathemati
al obje
t 
alled a tra
e. Theframework also in
ludes notions of abstra
tion and parallel 
omposition.For abstra
tion, the framework in
ludes notions of implementation and simulation, whi
h
an be used to view hybrid systems at multiple levels of abstra
tion, starting from a high-levelversion that des
ribes required properties, and ending with a low-level version that des
ribes adetailed design or implementation. In parti
ular, the HIOA framework de�nes what it meansfor one HIOA, A, to implement another HIOA, B, namely, any tra
e that 
an be exhibitedby A is also allowed by B. In this 
ase, A might be more deterministi
 than B, in termsof either dis
rete transitions or traje
tories. For instan
e, B might be allowed to perform anoutput a
tion at an arbitrary time before noon, whereas A produ
es the same output sometimebetween 10 and 11AM. Or B might allow an output variable y to evolve with :y 2 [0; 2℄, whereasA might ensure that :y = 1.The notion of a simulation relation from A to B provides a suÆ
ient 
ondition for demon-strating that A implements B. A simulation relation is de�ned to satisfy three 
onditions, onerelating start states, one relating dis
rete transitions, and one relating traje
tories of A and B.For parallel 
omposition, the framework provides a 
omposition operation, by whi
h HIOAsmodeling individual hybrid system 
omponents 
an be 
ombined to produ
e a model for a largerhybrid system. The model for the 
omposed system 
an des
ribe intera
tions among the 
om-ponents, in
luding joint parti
ipation in dis
rete transitions and traje
tories. Compositionrequires 
ertain \
ompatibility" 
onditions, namely, that ea
h output variable and output a
-tion be 
ontrolled by at most one automaton, and that internal variables and a
tions of one5



automaton 
annot be shared by any other automaton. The 
omposition operation respe
tstra
es, for example, if A1 implements A2 then the 
omposition of A1 and B implements the
omposition of A2 and B. Composition also satis�es proje
tion results saying that a tra
eof a 
omposition of HIOAs proje
ts to give tra
es of the individual HIOAs, and pasting re-sults saying that 
ompatible behaviors of 
omponents are \pastable" to give behaviors of the
omposition. Su
h results are essential if the models are to be used for 
ompositional designand veri�
ation of systems. In addition, the framework in
ludes hiding operations for outputa
tions and variables, whi
h respe
t the implementation relationship.An interesting 
ompli
ation that arises in the hybrid setting is the possibility that a statema
hine 
ould \prevent time from passing", for example, by blo
king it entirely, or by s
hedul-ing in�nitely many dis
rete a
tions to happen in a �nite amount of time|so-
alled Zenobehavior . The HIOA framework in
ludes a notion of re
eptiveness, whi
h says that an HIOAdoes not 
ontribute to produ
ing Zeno behavior, and whi
h (under suitable 
ompatibility
onditions) is preserved by 
omposition. We also give simple suÆ
ient 
onditions for these
ompatibility 
onditions to hold.The generality of the HIOA framework means that a large 
olle
tion of analysis methods,derived from both dis
rete and 
ontinuous analysis methods, 
an be applied to systems modeledas HIOAs. For example, indu
tive methods for proving invariant assertions and simulationrelationships (see, e.g, [50, 64℄), whi
h are 
ommonly used in 
omputer s
ien
e for reasoningabout dis
rete systems, 
an be extended to the hybrid setting and expressed by theoremsabout HIOAs. Other dis
rete analysis methods that should be extendible in
lude provingprogress using well-founded sets (see, e.g., [21℄), assume-guarantee 
ompositional reasoning(e.g., [30, 12℄), and dedu
ing properties within temporal logi
 and other logi
al formalisms.All of these methods 
ould be supported by intera
tive theorem proving software. Automati
methods based on state-spa
e sear
hing and based on de
ision pro
edures for automata onin�nite paths (see, e.g., [12℄), should also be extendible; however, these methods will applyonly to spe
ial 
ases of the general model.Likewise, key methods used in 
ontrol theory for reasoning about 
ontinuous systems, su
has stability analysis using Lyapunov fun
tions (e.g., [71℄) and robust 
ontrol te
hniques (e.g.,[18℄), should be extendible to hybrid systems using HIOAs.1.2 Evolution of the HIOA Framework:The HIOA framework has evolved from two earlier input/output automaton models: the basi
I/O automaton model of Lyn
h and Tuttle [49, 54℄ and the timed I/O automaton modelof Lyn
h, Vaandrager et al. [52, 66℄. Basi
 I/O automata 
onsist essentially of states, startstates, and dis
rete transitions. They have been used fairly extensively to des
ribe and analyzeasyn
hronous distributed algorithms|see, for example, [42℄.Timed I/O automata add expli
it time-passage steps, whi
h allow time to pass in dis
retejumps. In the simplest 
ases, time-passage steps involve just the passage of time, with no6



other 
hanges to the state. However, in general, they are al lowed to 
hange the state inmore elaborate ways, in
luding 
hanging variables that represent physi
al quantities. TimedI/O automata have been used mainly to des
ribe timing-based distributed algorithms and
ommuni
ation proto
ols (e.g., [70, 39, 67, 68, 14, 69, 20℄). Timed I/O automata have alsobeen used in a few 
ases to model simple hybrid system \
hallenge problems", in
luding theGeneralized Railroad Crossing problem [25, 26℄ In these examples, the time-passage stepsin
lude dis
rete 
hanges to physi
al quantities su
h as train position and water level. These
hanges represent the 
umulative 
hanges in these quantities over intervals of elapsed time.An early version of the HIOA modeling framework appeared in [47, 48℄. It augmented timedI/O automata by adding input and output variables and expli
it traje
tories; the traje
toriesdes
ribe the evolution of the state and external variables over intervals of time, rather thanjust their 
umulative 
hanges. This version of the HIOA framework was used to des
ribe andanalyze many hybrid systems examples, in
luding automated transportation systems [53, 43,75, 73, 74, 44, 36, 38℄, intelligent vehi
le highway systems [17, 41℄, air
raft 
ontrol systems[40, 37℄, automotive 
ontrol systems [19℄, and 
onsumer ele
troni
s systems [8℄.We summarize the results of these modeling e�orts brie
y. In these examples, HIOAs wereused to model system 
omponents of many di�erent kinds, in
luding real-world 
omponents,
omputer programs, 
ommuni
ation 
hannels, sensors, a
tuators, and humans (for example, pi-lots intera
ting with air
raft 
ontrol systems). Individual 
omponent automata were generallyhighly nondeterministi
, and often allowed for bounded un
ertainty in the values of quantitiesrepresented in the state. Component states often in
luded timing information, for example,the 
urrent time and deadlines for the performan
e of 
ertain a
tions. Composition was usedto 
ombine the 
omponent HIOAs into models of the 
omplete systems. Levels of abstra
tionwere used to des
ribe several kinds of relationships between HIOAs, for example: the relation-ship between a detailed view of a system and a more abstra
t view; the relationship between ades
ription of a system in terms of higher derivatives (e.g., a

eleration) and a des
ription interms of lower derivatives (e.g., velo
ity or position); and the relationship between a versionof a system that in
ludes periodi
 sampling and 
orre
tion and a version in whi
h adjustmentis 
ontinuous, but within an envelope of un
ertainty.The examples were analyzed using a variety of methods in
luding invariant assertions, sim-ulation relations, 
ompositional reasoning, di�erential equations and integration. Many of theinvariants and simulation relations involved timing data and data representing real-world quan-tities. Invariants and simulation relations were proved using indu
tive arguments on the lengthof exe
utions, as is usual in the purely dis
rete setting. However, unlike in the dis
rete setting,the proofs in the hybrid setting in
luded two di�erent kinds of indu
tive steps: for dis
retesteps and traje
tories. Arguments about dis
rete steps involved the sort of algebrai
 dedu
tionthat is typi
al in the dis
rete setting, whereas arguments about traje
tories involved manip-ulation of di�erential equations and integrals. For example, a te
hnique involving \positiveinvariant sets", derived from 
ontrol theory, was used in [℄ for showing that 
ertain propertiesof the state are preserved during traje
tories.In general, the formal HIOA framework proved to be adequate for these examples. How-7



ever, it was not ideal, be
ause it introdu
ed some 
ompli
ations that proved to be distra
ting.The main sour
e of 
ompli
ation seemed to be the fa
t that the model has two me
hanismsfor modeling dis
rete 
ommuni
ation: shared a
tions and shared variables. Also, it uses thesame me
hanism|shared variables|to model both dis
rete and 
ontinuous intera
tion be-tween 
omponents. This intertwining of me
hanisms led to some te
hni
alities, for example,ea
h automaton had to in
lude a spe
ial environment a
tion e, whi
h is asso
iated with dis
rete
hanges to input variables. To simplify matters, we were led to develop the new version of theHIOA model presented in this paper. The new version has a 
learer separation between theme
hanisms used to model dis
rete and 
ontinuous a
tivity. And it has only one me
hanismfor dis
rete 
ommuni
ation: shared a
tions.In the literature on dis
rete state ma
hine models, both shared a
tions and shared variablesare popular me
hanisms for modeling intera
tions between system 
omponents. The shareda
tion approa
h is used, for example, in the extensive resear
h literature on pro
ess algebras(e.g., [29, 59, 60℄), and in the work on I/O automata (e.g., [49, 43℄). The shared variableapproa
h is used, for example, in the temporal logi
 and model-
he
king 
ommunities (e.g.,[57, 34, 5℄). The expressive power of shared a
tion and shared variable 
ommuni
ation issimilar, and translations between spe
ial 
ases of these two types of models have been developed[33, 13℄. Choosing between these two forms of 
ommuni
ation seems to be generally a matterof 
ustom and 
onvenien
e. One advantage of the shared-a
tion approa
h is that it leads tosimple mathemati
al notions of external behavior of state ma
hines, based on sequen
es ofa
tions (whi
h are usually 
alled \tra
es").The new HIOA framework presented in this paper uses (only) shared a
tions for dis
rete
ommuni
ation, and uses shared variables for 
ontinuous 
ommuni
ation. Dis
rete eventsare not allowed to make 
hanges to shared variables, and the spe
ial environment a
tion eis eliminated. Be
ause the new model maintains a 
learer separation between me
hanismsfor des
ribing dis
rete and 
ontinuous a
tivity, it is simpler overall|in its de�nitions, resultstatements, and proofs| than the earlier HIOA model of [47, 48℄.Another simpli�
ation in the new framework appears in the de�nitions and results involvingre
eptiveness. In the original HIOA model of [47, 48℄, and in other work that dealt withre
eptiveness [16, 1, 66℄ for dis
rete systems, re
eptiveness was de�ned in terms of two-playergames between the system and its environment. In su
h a game, the goal of the system isto 
onstru
t an in�nite, non-Zeno exe
ution, and the goal of the environment is to preventthis from happening. The simpli�
ation in this material in the new model is a result of ourmodeling of the game itself as an HIOA.1.3 Other Related WorkBesides the models already dis
ussed above, other pre
ursors to the new HIOA model in
ludethe phase transition system models of [56, 2, 32℄ and Brani
ky's hybrid 
ontrol systems [10, 11℄.Phase transition systems are similar to HIOAs in their 
ombined treatment of dis
rete and
ontinuous a
tivity, for example, they have notions similar to our traje
tories and hybrid8



sequen
es. However, this work does not address system de
omposition issues su
h as externalbehavior, implementation relationships, and 
omposition, whi
h are emphasized in this paper.Brani
ky's hybrid 
ontrol systems are also similar to ours in their modeling of dis
rete and
ontinuous a
tivity. This work has a 
ontrol theory 
avor, fo
using on standard 
on�gurationsin
luding plant, 
ontroller, sensor and a
tuator, and fo
using on stability results. Again,system de
omposition issues are not addressed.System de
omposition issues, in
luding levels of abstra
tion, 
ompositionality, and re
ep-tiveness have been addressed by Alur and Henzinger [6℄ in their work on hybrid rea
tive mod-ules. A major di�eren
e between this work and ours is that rea
tive modules 
ommuni
ate viashared variables and not via shared a
tions. Another di�eren
e is that hybrid rea
tive modulesin
lude an additional layer of stru
ture tailored to modeling syn
hronous systems|stru
turethat is not present in the HIOA model. In [6℄, a de�nition of re
eptiveness based on two-playergames, similar to the de�nition in [47, 48℄, is proposed, and is shown to be preserved by par-allel 
omposition. However, in [6℄, no 
ir
ular dependen
ies (\feedba
k loops") are allowedamong the 
ontinuous variables of di�erent 
omponents, a restri
tion that greatly simpli�esthe analysis.1.4 Paper OrganizationThe rest of this paper is organized as follows. Se
tion 2 
ontains mathemati
al preliminar-ies. Se
tion 3 de�nes notions that are useful for des
ribing the behavior of hybrid systems,most importantly, traje
tories and hybrid sequen
es. Se
tion 4 de�nes hybrid automata (HAs),whi
h 
ontain all of the stru
ture of HIOAs ex
ept for the 
lassi�
ation of external a
tions andvariables as inputs or outputs. It also de�nes external behavior for HAs and implementationand simulation relationships between HAs. Se
tion 5 presents 
omposition and hiding oper-ations for HAs. Se
tion 6 de�nes hybrid I/O automata (HIOAs) by adding an input/output
lassi�
ation to HAs, and extends the theory of HAs to HIOAs. It also introdu
es a \strong
ompatibility" 
ondition that ensures that HIOAs are 
omposable, and des
ribes situationsin whi
h strong 
ompatibility is guaranteed to hold. Se
tion 7 presents the theory of re-
eptiveness, in
luding a main theorem stating that re
eptiveness is preserved by 
omposition(assuming strong 
ompatibility). Se
tion 8 presents some 
on
lusions. Examples derived fromearlier work on hybrid system modeling are in
luded throughout.2 Mathemati
al PreliminariesIn this se
tion, we give basi
 mathemati
al de�nitions that will be used as a foundation for ourde�nitions of hybrid automata and hybrid I/O automata. These de�nitions involve fun
tions,sequen
es, partial orders, and time. The automata de�nitions appear later, in Se
tions 4 and6. Sin
e most of the de�nitions here are reasonably standard, we en
ourage the reader to skipahead to Se
tion 3 and return to this se
tion as needed.9



2.1 Fun
tionsIf f is a fun
tion, then we denote the domain and range of f by dom(f) and range(f ), respe
-tively. If also S is a set, then we write f dS for the restri
tion of f to S, that is, the fun
tiong with dom(g) = dom(f) \ S su
h that g(
) = f(
) for ea
h 
 2 dom(g).We say that two fun
tions f and g are 
ompatible if f d dom(g) = g d dom(f). If f andg are 
ompatible fun
tions then we write f [ g for the unique fun
tion h with dom(h) =dom(f)[dom(g) satisfying the 
ondition: for ea
h 
 2 dom(h), if 
 2 dom(f) then h(
) = f(
)and if 
 2 dom(g) then h(
) = g(
). More generally, if F is a set of pairwise 
ompatiblefun
tions then we write SF for the unique fun
tion h with dom(h) = Sfdom(f) j f 2 Fgsatisfying the 
ondition: for ea
h f 2 F and 
 2 dom(f), h(
) = f(
).If f is a fun
tion whose range is a set of fun
tions and S is a set, then we write f # S forthe fun
tion g with dom(g) = dom(f) su
h that g(
) = f(
) dS for ea
h 
 2 dom(g). Therestri
tion operation # is extended to sets of fun
tions by pointwise extension. Also, if f isa fun
tion whose range is a set of fun
tions, all of whi
h have a parti
ular element d in theirdomain, then we write f # d for the fun
tion g with dom(g) = dom(f) su
h that g(
) = f(
)(d)for ea
h 
 2 dom(g).We say that two fun
tions f and g whose ranges are sets of fun
tions are pointwise 
om-patible if for ea
h 
 2 dom(f) \ dom(g), f(
) and g(
) are 
ompatible. If f and g havethe same domain and are pointwise 
ompatible, then we denote by f _[g the fun
tion h withdom(h) = dom(f) su
h that h(
) = f(
) [ g(
) for ea
h 
.2.2 Sequen
esLet S be any set. A sequen
e over S is a fun
tion from a downward 
losed subset of the naturalnumbers to S. Thus, the domain of a sequen
e is either the set of all natural numbers, or isof the form f0; : : : ; kg, for some natural number k. In the �rst 
ase we say that the sequen
eis in�nite, and in the se
ond 
ase �nite. The sets of �nite and in�nite sequen
es over S aredenoted by S� and S!, respe
tively. Con
atenation of a �nite sequen
e with a �nite or in�nitesequen
e is denoted by juxtaposition. We use � to denote the empty sequen
e, that is, thesequen
e with the empty domain. The sequen
e 
ontaining one element 
 2 S is abbreviatedas 
. We say that a sequen
e � is a pre�x of a sequen
e �, denoted by � � �, if � = � d dom(�).Thus, � � � if either � = �, or � is �nite and � = ��0 for some sequen
e �0. If � is a nonemptysequen
e then head (�) denotes the �rst element of � and tail(�) denotes � with its �rst elementremoved. Moreover, if � is �nite, then last(�) denotes the last element of � and init(�) denotes� with its last element removed.2.3 Partial OrdersWe re
all some basi
 de�nitions and results regarding partial orders, and in parti
ular, 
ompletepartial orders (
pos) from [24, 27℄. A partial order is a set S together with a binary relation10



v that is re
exive, antisymmetri
, and transitive.A subset P � S is bounded (above) if there is an x 2 S su
h that y v x for ea
h y 2 P ;in this 
ase, x is an upper bound for P . A least upper bound (lub) for a subset P � S is anupper bound x for P su
h that x � y for every upper bound y for P . If P has a lub, then it isne
essarily unique, and we denote it by FP . A subset P � S is dire
ted if every �nite subsetQ of P has an upper bound in P . A poset S is 
omplete, and hen
e is a 
omplete partial order(
po) if every dire
ted subset P of S has a lub in S.We say that P 0 � S dominates P � S, denoted by P v P 0, if for every x 2 P there issome x0 2 P 0 su
h that x v x0. We use the following two simple lemmas, adapted from [27℄[Lemmas 3.1.1 and 3.1.2℄.Lemma 2.1 If P; P 0 are dire
ted subsets of a 
po S and P v P 0 then FP v FP 0.Lemma 2.2 Let P = fxij j i 2 I; j 2 Jg be a doubly indexed subset of a 
po S. Let Pi denotethe set fxij j j 2 Jg for ea
h i 2 I. Suppose1. P is dire
ted,2. ea
h Pi is dire
ted with lub xi, and3. the set fxi j i 2 Ig is dire
ted.Then tP = tfxi j i 2 Ig.A �nite or in�nite sequen
e of elements, x0; x1; x2; : : :, of a partially ordered set (S;v)is 
alled a 
hain if xi v xi+1 for ea
h non-�nal index i. We de�ne the limit of the 
hain,limi!1 xi, to be the lub of the set fx0; x1; x2; : : :g if S 
ontains su
h a bound; otherwise, thelimit is unde�ned. Sin
e a 
hain is a spe
ial 
ase of a dire
ted set, ea
h 
hain of a 
po has alimit.A fun
tion f : S ! S0 between posets S and S0 is monotone if f(x) v f(y) whenever x v y.If f is monotone and P is a dire
ted set, then the set f(P ) = ff(x) j x 2 Pg is dire
ted as well.If f is monotone and f(FP ) = F f(P ) for every dire
ted P , then f is said to be 
ontinuous.An element x of a 
po S is 
ompa
t if, for every dire
ted set P su
h that x v FP , there issome y 2 P su
h that x v y. We de�ne K(S) to be the set of 
ompa
t elements of S. A 
poS is algebrai
 if every x 2 S is the lub of the set fa 2 K(S) j a v xg. A simple example of analgebrai
 
po is the set of �nite or in�nite sequen
es over some given domain, equipped withthe pre�x ordering. Here the 
ompa
t elements are the �nite sequen
es.
11



2.4 TimeThroughout this paper, we �x a time axis T, whi
h is a subgroup of (R;+), the real numberswith addition. We assume that every in�nite, monotone, bounded sequen
e of elements of Thas a limit in T. The reader may �nd it 
onvenient to think of T as the set R of real numbers,but the set Z of integers and the singleton set f0g are also examples of allowed time axes. Wede�ne T�0 �= ft 2 T j t � 0g.An interval J is a nonempty, 
onvex subset of T. We denote intervals as usual: [t1; t2℄ =ft 2 T j t1 � t � t2g, et
. An interval J is left-
losed (right-
losed) if it has a minimum (resp.,maximum) element, and left-open (right-open) otherwise. We write minJ and maxJ for theminimum and maximum elements, respe
tively, of an interval J (if they exist), and inf J andsupJ for the in�mum and supremum, respe
tively, of J in T [ f�1;1g. For K � T andt 2 T, we de�ne K+ t �= ft0+ t j t0 2 Kg. Similarly, for a fun
tion f with domain K, we de�nef+ t to be the fun
tion with domain K+ t satisfying, for ea
h t0 2 K+ t, (f+ t) (t0) = f(t0� t).3 Des
ribing Hybrid BehaviorIn this se
tion, we give basi
 de�nitions that are useful for des
ribing dis
rete and 
ontinuousbehavior of a system or system 
omponent, in
luding dis
rete and 
ontinuous 
hanges to thesystem's state, and dis
rete and 
ontinuous 
ow of information into and out of the system.The key notions are stati
 and dynami
 types for variables, traje
tories, and hybrid sequen
es.3.1 Stati
 and Dynami
 TypesWe assume a universal set V of variables. A variable represents either a lo
ation within thestate of a system or a lo
ation where information 
ows from one system 
omponent to another.For ea
h variable v, we assume both a (stati
) type, whi
h gives the set of values it may takeon, and a dynami
 type, whi
h gives the set of traje
tories it may follow. Formally, for ea
hvariable v we assume the following:� type(v), the (stati
) type of v. This is a set of values.� dtype(v), the dynami
 type of v. This is a set of fun
tions from left-
losed intervals of Tto type(v) that satis�es the following properties:1. (Closure under time shift)For ea
h f 2 dtype(v) and t 2 T, f + t 2 dtype(v).2. (Closure under subinterval)For ea
h f 2 dtype(v) and ea
h left-
losed interval J � dom(f), f d J 2 dtype(v).12



3. (Closure under pasting)Let f0; f1; f2; : : : be a sequen
e of fun
tions in dtype(v) su
h that, for ea
h index isu
h that fi is not the �nal fun
tion in the sequen
e, dom(fi) is right-
losed andmax(dom(fi)) = min(dom(fi+1)). Then the fun
tion f de�ned by f(t) �= fi(t),where i is the smallest index su
h that t 2 dom(fi), is in dtype(v).The pasting-
losure property is useful for modeling \dis
ontinuities" in the evolution of vari-ables 
aused by dis
rete transitions. Dynami
 types provide a 
onvenient way of des
ribingrestri
tions on system behavior over time intervals, for example, restri
tions on the behaviorof system input variables.Example 3.1 Dis
rete variables: Let v be any variable and let C be the set of 
onstantfun
tions from a left-
losed interval to type(v). Then C is 
losed under time shift and subin-terval. If the dynami
 type of v is obtained by 
losing C under the pasting operation, then vis 
alled a dis
rete variable. This is essentially the same as the de�nition of a dis
rete variablein [56℄.Example 3.2 Standard real-valued fun
tion 
lasses: If we take T = R and type(v) =R, then other examples of dynami
 types 
an be obtained by taking the pasting 
losure ofstandard fun
tion 
lasses from real analysis, su
h as the set of 
ontinuous fun
tions, the set ofdi�erentiable fun
tions, the set of fun
tions that are di�erentiable k times (for any parti
ulark), the set of smooth fun
tions, the set of integrable fun
tions, the set of Lp fun
tions (for anyp), the set of measurable lo
ally essentially bounded fun
tions [71℄, or the set of all fun
tions.Standard fun
tion 
lasses are 
losed under time shift and subinterval, but not under pasting.A natural way of de�ning a dynami
 type is as the pasting 
losure of a 
lass of fun
tions thatis 
losed under time shift and subinterval. In su
h a 
ase, it follows that the new 
lass is 
losedunder all three operations.Example 3.3 Pasting 
losure of the 
ontinuous fun
tions: Figure 1 shows an exampleof an element f in a dynami
 type based on (more pre
isely, equal to the pasting 
losureof) a sub
lass of the 
ontinuous fun
tions. Fun
tion f is de�ned on the interval [0; 4) and isobtained by pasting together four pie
es. At the boundary points between these pie
es, f takesthe value spe
i�ed by the leftmost pie
e, whi
h makes f 
ontinuous from the left. Note that fis unde�ned at time 4.In pra
ti
e, most interesting dynami
 types are pasting 
losures of sub
lasses of the 
on-tinuous fun
tions. Note that fun
tions in su
h dynami
 types are 
ontinuous from the left.Elsewhere in the literature on hybrid systems (e.g., [31℄), fun
tions that are 
ontinuous fromthe right are 
onsidered. To some extent, the 
hoi
e of how to de�ne fun
tion values at dis
onti-nuities is arbitrary. An advantage of our 
hoi
e is a ni
e 
orresponden
e between 
on
atenationand pre�x ordering of traje
tories and hybrid sequen
es (see Lemmas 3.5 and 3.7).13



0 4Figure 1: Example of a fun
tion in a dynami
 type based on 
ontinuous fun
tions.In this paper, we will o

asionally be slightly sloppy and say that the dynami
 type ofa variable v is the fun
tion 
lass F , even though F in not 
losed under the three requiredoperations. In su
h a 
ase, we mean that the dynami
 type of v is the fun
tion 
lass thatresults from 
losing F under the three operations.3.2 Traje
toriesIn this subse
tion, we de�ne the notion of a traje
tory, de�ne operations on traje
tories, andprove simple properties of traje
tories and their operations. A traje
tory is used to model theevolution of a 
olle
tion of variables over an interval of time.3.2.1 Basi
 De�nitionsLet V be a set of variables, that is, a subset of V. A valuation v for V is a fun
tion thatasso
iates with ea
h variable v 2 V a value in type(v). We write val(V ) for the set of valuationsfor V . Let J be a left-
losed interval of T with left endpoint equal to 0. Then a J-traje
toryfor V is a fun
tion � : J ! val(V ), su
h that for ea
h v 2 V , � # v 2 dtype(v). A traje
toryfor V is a J-traje
tory for V , for any J . We write trajs(V ) for the set of all traje
tories for V .A traje
tory for V with domain [0; 0℄ is 
alled a point traje
tory for V . If v is a valuationfor V then }(v) denotes the point traje
tory for V that maps 0 to v. We say that a J-traje
tory is �nite if J is a �nite interval, 
losed if J is a (�nite) 
losed interval, open if J is aright-open interval, and full if J = T�0. If T is a set of traje
tories, then �nite(T ), 
losed(T ),14



open(T ), and full(T ) denote the subsets of T 
onsisting of all the �nite, 
losed, open, and fulltraje
tories in T , respe
tively.If � is a traje
tory then �:ltime , the limit time of � , is the supremum of dom(�). Also, wede�ne �:fval , the �rst valuation of � , to be �(0), and if � is 
losed, we de�ne �:lval , the lastvaluation of � , to be �(�:ltime). For � a traje
tory and t 2 T�0, we de�ne� � t �= � d[0; t℄;� � t �= � d[0; t);� � t �= (� d[t;1))� t:Note that, sin
e dynami
 types are 
losed under time shift and subintervals, the result ofapplying the above operations is always a traje
tory, ex
ept when the result is a fun
tion withan empty domain. By 
onvention, we also write � �1 �= � and � �1 �= � .3.2.2 Pre�x OrderingTraje
tory � is a pre�x of traje
tory �, denoted by � � �, if � 
an be obtained by restri
ting� to a subset of its domain. Formally, if � and � are traje
tories for V , then � � � i�� = � d dom(�). Alternatively, � � � i� there exists a t 2 T�0 [ f1g su
h that � = � � t or� = � � t. If � � � then 
learly dom(�) � dom(�). If T is a set of traje
tories for V , thenpref (T ) denotes the pre�x 
losure of T , de�ned by:pref (T ) �= f� 2 trajs(V ) j 9� 2 T : � � �g:We say that T is pre�x 
losed if T = pref (T ).The following lemma gives a simple domain-theoreti
 
hara
terization of the set of traje
-tories over a given set V of variables:Lemma 3.4 Let V be a set of variables. The set trajs(V ) of traje
tories for V , together withthe pre�x ordering �, is an algebrai
 
po. Its 
ompa
t elements are the 
losed traje
tories.Proof: It is trivial to 
he
k that (trajs(V );�) is a partial order. In order to prove that it is a
po, assume that T is a dire
ted subset of trajs(V ). We prove that T has a least upper bound.It is routine to 
he
k that a set of traje
tories is dire
ted i� it is totally ordered by pre�x. SoT is totally ordered. Using this, it follows that the traje
tories in T are pairwise 
ompatiblefun
tions. Therefore, fun
tion ST is de�ned.We now prove that S T is a traje
tory for V . If S T 2 T then this is immediate. Otherwise,let t 2 T [ f1g be the supremum of the limit times of all traje
tories in T . There exists anin�nite as
ending 
hain t0; t1; t2; : : : of limit times of traje
tories in T su
h that t = limi!1 tiand all the ti's are di�erent. For ea
h i, let �i be a traje
tory in T with ti = �i:ltime . Next15



de�ne, for ea
h i, � 0i = �i+1� ti. Then, by 
onstru
tion, the traje
tories � 00; � 01; � 02; : : : are 
losedand pairwise 
ompatible, and Si � 0i = ST . Let � 000 ; � 001 ; � 002 ; : : : be the sequen
e of fun
tionsde�ned by � 000 �= � 00;� 00i �= � 0i d[� 0i�1:ltime;1) if i > 0:By 
onstru
tion, the � 00i 's are 
losed, pairwise 
ompatible, and Si � 00i = Si � 0i . Using the as-sumption that dynami
 types are 
losed under pasting, it follows that Si � 00i (and hen
e ST )is a traje
tory.Now we show that S T is a lub for T . It follows immediately from the 
onstru
tion of STthat S T is an upper bound for T . Suppose that � 0 is also an upper bound for T . We provethat ST � � 0. Sin
e ea
h � 2 T satis�es dom(�) � dom(� 0), also S�2T dom(�) � dom(� 0).By de�nition of ST , dom(ST ) = S�2T dom(�). Hen
e dom(S T ) � dom(� 0). Let t be anelement of dom(S T ). Then t is in the domain of some � 2 T . Sin
e � is a pre�x of both STand � 0, (S T )(t) = � 0(t). Thus, � 0ddom(S T ) = S T , that is, ST � � 0. It follows that trajs(V )is a 
po.We leave it to the reader to 
he
k that the 
losed traje
tories are the 
ompa
t elements inthis 
po, and that the 
po is algebrai
.3.2.3 Con
atenationThe 
on
atenation of two traje
tories is obtained by taking the union of the �rst traje
toryand the fun
tion obtained by shifting the domain of the se
ond traje
tory until the start timeagrees with the limit time of the �rst traje
tory; the last valuation of the �rst traje
tory, whi
hmay not be the same as the �rst valuation of the se
ond traje
tory, is the one that appears inthe 
on
atenation. Formally, suppose � and � 0 are traje
tories for V , with � 
losed. Then the
on
atenation � _ � 0 is the fun
tion given by� _ � 0 �= � [ (� 0 d(0;1) + �:ltime):Be
ause dynami
 types are 
losed under time shift and pasting, it follows that � _ � 0 is atraje
tory for V . Observe that � _ � 0 is �nite (resp., 
losed, full) if and only if � 0 is �nite(resp., 
losed, full). Observe also that 
on
atenation is asso
iative.The following lemma, whi
h is easy to prove, shows the 
lose 
onne
tion between 
on
ate-nation and the pre�x ordering.Lemma 3.5 Let � and � be traje
tories for V with � 
losed. Then� � � , 9� 0 : � = � _ � 0:16



Note that if � � �, then the traje
tory � 0 su
h that � = � _ � 0 is unique ex
ept that it hasan arbitrary value for � 0:fval . Note also that the \(" impli
ation in Lemma 3.5 would nothold if the �rst valuation of the se
ond argument, rather than the last valuation of the �rstargument, were used in the 
on
atenation.We extend the de�nition of 
on
atenation to any (�nite or 
ountably in�nite) number ofarguments. Let �0; �1; �2; : : : be a (�nite or in�nite) sequen
e of traje
tories su
h that �i is
losed for ea
h non�nal index i. De�ne traje
tories � 00; � 01; � 02; : : : indu
tively by� 00 �= �0;� 0i+1 �= � 0i _ �i+1 for non�nal i:Lemma 3.5 implies that for ea
h non�nal i, � 0i � � 0i+1. We de�ne the 
on
atenation �0_�1_�2 � � �to be the limit of the 
hain � 00; � 01; � 02; : : :; existen
e of this limit follows from Lemma 3.4.3.3 Hybrid Sequen
esIn this subse
tion, we introdu
e the notion of a hybrid sequen
e, whi
h is used to model a 
om-bination of 
hanges that o

ur instantaneously and 
hanges that o

ur over intervals of time.Our de�nition is parameterized by a set A of a
tions, whi
h are used to model instantaneous
hanges and instantaneous syn
hronizations with the environment, and a set V of variables,whi
h are used to model 
hanges over intervals of time and 
ontinuous intera
tion with theenvironment. We also de�ne some spe
ial kinds of hybrid sequen
es and some operations onhybrid sequen
es, and give basi
 properties.3.3.1 Basi
 De�nitionsFix a set A of a
tions and a set V of variables. An (A; V )-sequen
e is a �nite or in�nitealternating sequen
e � = �0 a1 �1 a2 �2 : : :, where1. ea
h �i is a traje
tory in trajs(V ),2. ea
h ai is an a
tion in A,3. if � is a �nite sequen
e then it ends with a traje
tory, and4. if �i is not the last traje
tory in � then dom(�i) is 
losed.A hybrid sequen
e is an (A; V )-sequen
e for some A and V .Sin
e the traje
tories in a hybrid sequen
e 
an be point traje
tories, our notion of hybridsequen
e allows a sequen
e of dis
rete a
tions to o

ur at the same real time, with 
orresponding
hanges of variable values. An alternative approa
h is des
ribed in [61℄, where state 
hangesat a single real time are modeled using a notion of \superdense time". Spe
i�
ally, hybrid17



behavior is modeled in [61℄ using fun
tions from an extended time domain, whi
h in
ludes
ountably many elements for ea
h real time, to states.If � is a hybrid sequen
e, with notation as above, then we de�ne the limit time of �,�:ltime , to be Pi �i:ltime . A hybrid sequen
e � is de�ned to be:� time-bounded if �:ltime is �nite.� admissible if �:ltime =1.� 
losed if � is a �nite sequen
e and the domain of its �nal traje
tory is a 
losed interval.� Zeno if � is neither 
losed nor admissible, that is, if � is time-bounded and is eitheran in�nite sequen
e, or else a �nite sequen
e ending with a traje
tory whose domain isright-open.For any hybrid sequen
e �, we de�ne the �rst valuation of �, �:fval , to be �0:fval . Also, if �is 
losed, we de�ne the last valuation of �, �:lval , to be last(�):lval , that is, the last valuationin the �nal traje
tory of �.3.3.2 Pre�x OrderingWe say that (A; V )-sequen
e � = �0 a1 �1 : : : is a pre�x of (A; V )-sequen
e � = �0 b1 �1 : : :,denoted by � � �, provided that (at least) one of the following holds:1. � = �.2. � is a �nite sequen
e ending in some �k; �i = �i and ai+1 = bi+1 for every i, 0 � i < k;and �k � �k.Like the set of traje
tories over V , the set of (A; V )-sequen
es is a 
po:Lemma 3.6 Let V be a set of variables and A a set of a
tions. The set of (A; V )-sequen
es,together with the pre�x ordering �, is an algebrai
 
po. Its 
ompa
t elements are the 
losed(A; V )-sequen
es.Proof: We leave to the reader the routine 
he
k that � is a partial order. Note that this usesthe fa
t that � is a partial order on traje
tories (Lemma 3.4).In order to prove that we have a 
po, let S be a dire
ted subset of (A; V )-sequen
es. Weprove that S has a least upper bound. It is easy to 
he
k that S is totally ordered by the pre�xordering �. We distinguish two 
ases. 18



1. There is no �nite upper bound on the number of traje
tories that o

ur in the sequen
esin S. In this 
ase, we 
an 
onstru
t an in�nite sequen
e �0; �1; �2 : : : of elements of Ssu
h that, for ea
h i, �i 
ontains at least i a
tions and i+ 1 traje
tories, and �i � �i+1.For ea
h i 2 N, let �i be the i + 1-st traje
tory (the one indexed by i) in �i+1, and fori � 1, let ai be the i-th a
tion in �i. Let � = �0 a1 �1 a2 �2 : : :. It is easy to verify that� is an upper bound of the set f�i j i 2 Ng and in fa
t, is the only upper bound of thisset. It follows that � is the lub of S, as needed.2. There is a �nite upper bound k on the number of traje
tories that o

ur in the (A; V )-sequen
es in S. In this 
ase, let S0 be the set obtained by removing all sequen
es withfewer than k traje
tories from S. Sin
e S0 is totally ordered, init(�) = init(�0) for any�; �0 2 S0. (Re
all that init is an ordinary sequen
e operation|it yields all but the lastelement of the sequen
e.) Choose any � 2 S0 and let � = init(�). Let T be the set of�nal traje
tories of sequen
es in S0. Again using the fa
t that S0 is totally ordered, weobtain that T is totally ordered by the pre�x ordering on traje
tories. Let � be the leastupper bound of T (this upper bound exists by Lemma 3.4). It is routine to 
he
k that� � is a least upper bound of S0, and thus of S.We leave it to the reader to 
he
k that the 
losed (A; V )-sequen
es are the 
ompa
t elementsin this 
po, and that the 
po is algebrai
.3.3.3 Con
atenationSuppose � and �0 are (A; V )-sequen
es with � 
losed. Then the 
on
atenation � _ �0 is the(A; V )-sequen
e given by�_ �0 �= init(�) (last (�)_ head (�0)) tail(�0):(Here, init, last, head and tail are ordinary sequen
e operations.)Lemma 3.7 Let � and � be (A; V )-sequen
es with � 
losed. Then� � � , 9�0 : � = �_ �0:Note that if � � �, then the (A; V )-sequen
e �0 su
h that � = �_ �0 is unique ex
ept that ithas an arbitrary value in val(V ) for �0:fval .As we did for traje
tories, we extend the 
on
atenation de�nition for (A; V )-sequen
es toany �nite or in�nite number of arguments. Let �0; �1; : : : be a �nite or in�nite sequen
e of(A; V )-sequen
es su
h that �i is 
losed for ea
h non�nal index i. De�ne (A; V )-sequen
es�00; �01; : : : indu
tively by �00 �= �0;�0i+1 �= �0i _ �i+1 for non�nal i:Lemma 3.7 implies that for ea
h non�nal i, �0i � �0i+1. We de�ne the 
on
atenation �0_�1 � � �to be the limit of the 
hain �00; �01; : : :; existen
e of this limit is ensured by Lemma 3.6.19



3.3.4 Restri
tionLet A and A0 be sets of a
tions and let V and V 0 be sets of variables. The (A0; V 0)-restri
tion ofan (A; V )-sequen
e �, denoted by � d(A0; V 0), is obtained by �rst proje
ting all traje
tories of� on the variables in V 0, then removing the a
tions not in A0, and �nally 
on
atenating all ad-ja
ent traje
tories. Formally, we de�ne the (A0; V 0)-restri
tion �rst for 
losed (A; V )-sequen
esand then extend the de�nition to arbitrary (A; V )-sequen
es using a limit 
onstru
tion. Thede�nition for 
losed (A; V )-sequen
es is by indu
tion on the length of those sequen
es:� d(A0; V 0) = � # V 0 if � is a single traje
tory,� a � d(A0; V 0) = ( (� d(A0; V 0)) a (� # V 0) if a 2 V 0;(� d(A0; V 0))_ (� # V 0) otherwise.It is easy to see that the restri
tion operator is monotone on the set of 
losed (A; V )-sequen
es.Hen
e, if we apply this operation to a dire
ted set, the result is again a dire
ted set. Togetherwith Lemma 3.6, this allows us to extend the de�nition of restri
tion to arbitrary (A; V )-sequen
es by: � d(A0; V 0) = tf� d(A0; V 0) j � is a 
losed pre�x of �g:Lemma 3.8 (A0; V 0)-restri
tion is a 
ontinuous operation.Proof: This follows by general domain-theoreti
 arguments. For 
onvenien
e, in this proofwe write f(�) as an abbreviation for � d(A0; V 0).First we establish that (A0; V 0)-restri
tion is monotone for arbitrary (A; V )-sequen
es. Let�; �0 be (A; V )-sequen
es with � � �0; we show that f(�) � f(�0). Let P and P 0 denote the setof 
losed pre�xes of � and �0, respe
tively. By transitivity of the pre�x ordering, it follows thatP 0 dominates P , that is, P v P 0. Sin
e the restri
tion operation is monotone on 
losed (A; V )-sequen
es, it follows that f(P ) v f(P 0). Then Lemma 2.1 implies that tf(P ) � tf(P 0).By the de�nition of the restri
tion operation, this implies that f(�) � f(�0), whi
h showsmonotoni
ity.Now we 
omplete the proof that (A; V )-restri
tion is 
ontinuous by assuming that P isany dire
ted set of (A; V )-sequen
es and showing that f(tP ) = tf(P ). By the de�nition ofthe restri
tion operation, f(tP ) = tff(�) j � is a 
losed pre�x of t Pg. By Lemma 3.6 andthe de�nition of 
ompa
t elements, any 
losed pre�x � of tP is also a pre�x of some � 2 P .Therefore, f(tP ) = tff(�) j � is 
losed and 9� 2 P : � is a pre�x of �g.Now we apply Lemma 2.2 to the right hand side of this last equation. To do this, we mustshow: 20



1. Q �= ff(�) j � is 
losed and 9� 2 P : � is a pre�x of �g is a dire
ted set. To see this,
onsider any nonempty �nite subset R � Q. Ea
h element of R is a pre�x of some � 2 P .Therefore, sin
e P is a dire
ted set, there is some single �0 2 P su
h that ea
h elementof R is a pre�x of �0. Therefore, R is a dire
ted set; sin
e R is �nite, it has a lub in R,and hen
e in Q, as needed.2. For ea
h � 2 P , ff(�) j � is 
losed and � is a pre�x of �g is a dire
ted set with lubf(�). The �rst part follows be
ause the set of 
losed pre�xes of � is a dire
ted set andf is monotone. The se
ond part follows from the de�nition of restri
tion.3. The set f(P ) is dire
ted. This follows be
ause P is a dire
ted set and f is monotone.Then Lemma 2.2 implies that tff(�) j � is 
losed and 9� 2 P : � is a pre�x of �g = tff(�) j� 2 Pg = tf(P ). Thus, f(tP ) = tf(P ), as needed.The proofs of the following two lemmas are left to the reader.Lemma 3.9 (�0 _ �1 _ � � �) d(A; V ) = �0 d(A; V )_ �1 d(A; V )_ : : :.Lemma 3.10 (� d(A; V )) d(A0; V 0) = � d(A \A0; V \ V 0).4 Hybrid AutomataIn this se
tion, as a preliminary step toward de�ning hybrid I/O automata, we de�ne a slightlymore general hybrid automaton model. In hybrid automata, a
tions and variables are 
lassi�edas external or internal. External a
tions and variables are not further 
lassi�ed as input or out-put; the input/output distin
tion is added later, in Se
tion 6. We de�ne how hybrid automataexe
ute and de�ne implementation and simulation relations between hybrid automata.4.1 De�nition of Hybrid AutomataA hybrid automaton is a state ma
hine whose states are divided into variables, and thatuses other variables for 
ommuni
ation with its environment. It also has a set of dis
retea
tions, some of whi
h may be internal and some external. The state of a hybrid automatonmay 
hange in two ways: by dis
rete transitions, whi
h 
hange the state atomi
ally, andby traje
tories, whi
h des
ribe the evolution of the state over intervals of time. The dis
retetransitions are labeled with a
tions; this will allow us to syn
hronize the transitions of di�erenthybrid automata when we 
ompose them in parallel. The evolution des
ribed by a traje
torymay be des
ribed by 
ontinuous or dis
ontinuous fun
tions.A hybrid automaton (HA) A = (W;X;Q;�; E;H;D;T ) 
onsists of:21



� A set W of external variables and a set X of internal variables, disjoint from ea
h other.We write V �=W [X.� A set Q � val(X) of states.� A nonempty set � � Q of start states.� A set E of external a
tions and a set H of internal a
tions, disjoint from ea
h other.We write A �= E [H.� A set D � Q�A�Q of dis
rete transitions.We use x a!A x0 as shorthand for (x; a;x0) 2 D. We sometimes drop the subs
ript andwrite x a! x0, when we think A should be 
lear from the 
ontext. We say that a isenabled in x if x a! x0 for some x0.� A set T of traje
tories for V su
h that �(t) dX 2 Q for every � 2 T and t 2 dom(�).Given a traje
tory � 2 T we denote �:fval dX by �:fstate and, if � is 
losed, we denote�:lval dX by �:lstate . We require that the following axioms hold:T0 (Existen
e of point traje
tories)If v 2 val(V ) and v dX 2 Q then }(v) 2 T .T1 (Pre�x 
losure)For every � 2 T and every � 0 � � , � 0 2 T .T2 (SuÆx 
losure)For every � 2 T and every t 2 dom(�), � � t 2 T .T3 (Con
atenation 
losure)Let �0; �1; �2; : : : be a sequen
e of traje
tories in T su
h that, for ea
h non�nal indexi, �i is 
losed and �i:lstate = �i+1:fstate . Then �0 _ �1 _ �2 � � � 2 T .Axiom T0 asserts the existen
e of at least some point traje
tories. It says that any state 
anbe augmented with arbitrary values for the external variables to be
ome a point traje
tory.Axioms T1-3 express some other natural 
onditions on the set of traje
tories that we needto 
onstru
t our theory. A key part of this theory is a parallel 
omposition operation for hy-brid automata. In a 
omposed system, any traje
tory of any 
omponent automaton may beinterrupted at any time by a dis
rete transition of another (possibly independent) 
omponentautomaton. Axiom T1 ensures that the part of the traje
tory up to the dis
rete transition isa traje
tory, and axiom T2 ensures that the remainder is a traje
tory. Axiom T3 is requiredbe
ause the environment of a hybrid automaton, as a result of its own internal dis
rete tran-sitions, may 
hange its 
ontinuous dynami
s repeatedly, and the automaton must be able tofollow this behavior.Axioms T3 and T0 
an be used together to modify the values of the external variablesin the �rst valuation of a traje
tory arbitrarily; thus, the values of external variables at left22



endpoints of traje
tories are not signi�
ant.1The earlier de�nition of hybrid automata in [47, 48℄ used a spe
ial stuttering a
tion einstead of axiom T3. Another key di�eren
e between the new de�nition of hybrid automatonand the earlier one is that in [47, 48℄, the external variables were 
onsidered to be part of thestate. This meant, for example, that dis
rete transitions 
ould depend on the values of thesevariables, a situation that introdu
ed 
ompli
ations.Hybrid automata that have no external variables are very similar to the timed automatade�ned in [52, 66℄. The main di�eren
e is that hybrid automata have traje
tories as a primitiverather than a derived notion. Also, the state of a timed automaton need not be organized usingvariables with parti
ular types and dynami
 types.Notation: We often denote the 
omponents of an HA A by WA, XA, QA, �A, EA, et
., andthe 
omponents of an HA Ai by Wi, Xi, Qi �i, Ei, et
. We sometimes omit these subs
ripts,where no 
onfusion seems likely.In the remainder of this subse
tion, we give some simple examples of hybrid automata.Notation: In examples we typi
ally spe
ify sets of traje
tories using di�erential and algebrai
equations and in
lusions. Below we explain a few notational 
onventions that help us doingthis. Suppose the time domain T is R, � is a (�xed) traje
tory over some set V , and v 2 V is avariable. With some abuse of notation, we use the variable name v to denote the fun
tion � # vin dom(�)! type(v), whi
h gives the value of v at all times during traje
tory � . Similarly, weview any expression e 
ontaining variables from V as a fun
tion with domain dom(�). Usingthese 
onventions we 
an say, for example, that � satis�es the algebrai
 equationv = e;whi
h means that the 
onstraint on the variables expressed by the equation v = e holds forea
h state on traje
tory � . Suppose that v is a variable and e is a real-valued expression
ontaining variables from V . Suppose also that e, when viewed as a fun
tion, is integrable.Then we say that � satis�es _v = eif, for every t 2 dom(�), v(t) = v(0)+R t0 e(t0)dt0. This interpretation of the di�erential equationmakes sense even at points where v is not di�erentiable. A similar interpretation of di�erentialequations is used by Polderman and Willems [63℄, who 
all these \weak solutions".1An alternative style of de�nition would assign spe
ial \unde�ned" values to the external variables at leftendpoints of traje
tories. Instead of introdu
ing the 
ompli
ations of extending domains with spe
ial \unde�ned"values, we 
hose to allow arbitrary values. 23



Example 4.1 Vehi
le HA:We des
ribe an HA Vehi
le, displayed in Figure 22, whi
h modelsa vehi
le that follows a suggested a

eleration approximately, within an error of � � 0. The
acc-in vel-out

Vehicle

acc

velFigure 2: The hybrid automaton Vehi
le.time domain T is R. The state of the Vehi
le automaton in
ludes two real-valued variables veland a

, whi
h represent the a
tual velo
ity and a

eleration of the vehi
le, respe
tively. Inaddition, the automaton has two real-valued external variables, vel-out and a

-in, representingreported velo
ity and suggested a

eleration. The dynami
 type of the variables vel , vel-out ,and a

-in is the (pasting 
losure of the) set of 
ontinuous fun
tions. The dynami
 type of a

is the set of integrable fun
tions.Vehi
le is de�ned to be the HA su
h that W = fa

-in; vel-outg, X = fvel ; a

g, Q is theset of all valuations of the variables vel and a

, and � 
onsists of the single valuation thatassigns 0 to both state variables. The set of dis
rete a
tions is empty, and (therefore) D, theset of dis
rete steps, is empty. T 
onsists of all traje
tories � that satisfy:_vel = a

 (1)a

(t) 2 [a

-in(t)� �; a

-in(t) + �℄ for t > 0: (2)vel-out(t) = vel(t) for t > 0: (3)Equation (1) says that the velo
ity is obtained by integrating the a

eleration. In
lusion (2)asserts that, ex
ept possibly for the left endpoint, the a
tual a

eleration is within � of thesuggested a

eleration. Equation (3) says that the velo
ity is reported a

urately. We leavethe reader to show that the traje
tory axioms T0{T3 are satis�ed; the form of the equationsand in
lusions used to de�ne the traje
tories should make this 
lear.2We use an arrow notation be
ause later on in this paper, in Se
tion 6, we will view a

-in as an inputvariable and vel-out as an output variable. Within the 
ontext of the present 
hapter the arrow notation hasno meaning. 24



Example 4.2 Controller HA: Now we des
ribe an HA Controller , displayed in Figure 3,whi
h models a 
ontroller that suggests a

elerations for a vehi
le, with the intention of en-suring that the vehi
le's velo
ity does not ex
eed a pre-spe
i�ed velo
ity vmax. The 
ontroller
vel-out acc-in

Controller

clock

vel-sensed

acc-suggested

suggestFigure 3: The hybrid automaton Controller .monitors the vehi
le's velo
ity, and every time d, for some �xed d > 0, it produ
es a newsuggested a

eleration to be followed for the next time d. The a

eleration is 
hosen in su
h away that, if it is followed to within an error of �, the velo
ity will remain below vmax (providedthe vehi
le is not going too fast in the �rst pla
e). We assume that vmax � � d.The 
omponents of the Controller automaton are as follows: W = fvel-out ; a

-ing andX = fvel-sensed ; a

-suggested ; 
lo
kg. All variables are of type R. The dynami
 type ofvel-out , vel-sensed , a

-in, and 
lo
k is the (pasting 
losure of the) set of 
ontinuous fun
tions,and a

-suggested is a dis
rete variable. Q is the set of valuations of X in whi
h 
lo
k � d.� 
onsists of one valuation, whi
h assigns 0 to all state variables. E = ; and H 
ontains thesingle a
tion suggest . D 
onsists of the suggest steps spe
i�ed by3:
lo
k = d (4)vel-sensed+ (a

-suggested0 + �)d � vmax (5)
lo
k0 = 0 (6)vel-sensed0 = vel-sensed (7)Equation (4) says that the 
lo
k indi
ates that it is time for the suggested a

eleration tobe 
omputed. Formula (5) says that the new suggested a

eleration is 
hosen so that, if thevehi
le followed it for the next time d, even with an error of �, the velo
ity would still remain atmost vmax. Equation (6) says that the 
lo
k is reset after the dis
rete transition. Equation (7)says that the transition does not 
hange the value of vel-sensed . T 
onsists of all traje
tories3Here we use the standard 
onvention that v denotes the value of a variable in the start state of a transition,and v0 denotes the value in the end state. 25



that satisfy: _a

-suggested = 0 (8)_
lo
k = 1 (9)vel-sensed(t) = vel-out(t) for t > 0: (10)a

-in(t) = a

-suggested(t) for t > 0: (11)Sin
e a

-suggested is a dis
rete variable, the reader might think that adding 
onstraint (8)makes no di�eren
e. However, if we expand this 
onstraint using our de�nition of solutions fordi�erential equations, we obtaina

-suggested(t) = a

-suggested(0) + Z t0 0 dt0 = a

-suggested(0);whi
h means that a

-suggested remains 
onstant throughout the full traje
tory. So the e�e
tof adding di�erential equation (8) is that it rules out the jumps that are allowed by the dynami
type of a

-suggested . Equation (9) states that 
lo
k has rate 1, and is therefore a 
lo
k variablein the sense of the timed automaton model of [4℄. Equation (10) says that the velo
ity sensedby the 
ontroller is the same as the velo
ity reported to the 
ontroller by its environment.Equation (11) asserts that the a

eleration that the 
ontroller provides to its environment isthe same as the a

eleration that it has most re
ently 
omputed. Again, we leave the readerto show that the traje
tory axioms T0{T3 are satis�ed.4.2 Exe
utions and Tra
esWe now de�ne exe
ution fragments, exe
utions, tra
e fragments, and tra
es, whi
h are used todes
ribe automaton behavior. An exe
ution fragment of a hybrid automaton A is an (A; V )-sequen
e � = �0 a1 �1 a2 �2 : : :, where (1) ea
h �i is a traje
tory in T , and (2) if �i is not the lasttraje
tory in � then �i:lstate ai+1! �i+1:fstate . An exe
ution fragment re
ords what happensduring a parti
ular run of a system, in
luding all the instantaneous, dis
rete state 
hanges andall the 
hanges to the state and external variables that o

ur while time advan
es. We writefragsA for the set of all exe
ution fragments of A.If � is an exe
ution fragment, with notation as above, then we de�ne the �rst state of �,�:fstate , to be �:fval dX. An exe
ution fragment � is de�ned to be an exe
ution if �:fstate isa start state, that is, �:fstate 2 �. We write exe
sA for the set of all exe
utions of A. If � isa 
losed (A; V )-sequen
e then we de�ne the last state of �, �:lstate , to be �:lval dX. A stateof A is rea
hable if it is the last state of some 
losed exe
ution of A.Lemma 4.3 Let �0; �1; : : : be a �nite or in�nite sequen
e of exe
ution fragments of A su
hthat, for ea
h non�nal index i, �i is 
losed and �i:lstate = �i+1:fstate. Then �0 _ �1 _ � � � isan exe
ution fragment of A. 26



Proof: Follows easily from the de�nitions, using axiom T3.Lemma 4.4 Let � and � be exe
ution fragments of A with � 
losed. Then� � � , 9�0 2 fragsA : � = �_ �0:Proof: Impli
ation \(" follows dire
tly from the 
orresponding impli
ation in Lemma 3.7.Impli
ation \)" follows from the de�nitions and T2.The external behavior of a hybrid automaton is 
aptured by the set of \tra
es" of its exe
u-tion fragments, whi
h re
ord external a
tions and the traje
tories that des
ribe the evolutionof external variables. Formally, if � is an exe
ution fragment, then the tra
e of �, denoted bytra
e(�), is the (E;W )-restri
tion of �. (Re
all that E denotes the external a
tions and Wthe external variables.) A tra
e fragment of a hybrid automaton A from a state x of A is thetra
e of an exe
ution fragment of A whose �rst state is x. We write tra
efragsA(x) for the setof tra
e fragments of A from x. Also, we de�ne a tra
e of A to be a tra
e fragment from astart state, that is, the tra
e of an exe
ution of A, and write tra
esA for the set of tra
es of A.Hybrid automata A1 and A2 are 
omparable if they have the same external interfa
e, thatis, if W1 = W2 and E1 = E2. If A1 and A2 are 
omparable then we say that A1 implementsA2, denoted by A1 � A2, if the tra
es of A1 are in
luded among those of A2, that is, iftra
esA1 � tra
esA2 .4Example 4.5 Vehi
le exe
ution: Sin
e the Vehi
le HA of Example 4.1 has no dis
retesteps, ea
h of its exe
utions is a one-element sequen
e 
onsisting of a single traje
tory over allthe variables of Vehi
le. An example of su
h an exe
ution, depi
ted graphi
ally in Figure 4, isthe one 
onsisting of the traje
tory � with �:ltime =1, and su
h that:a

-in(t) = 0 if t � 1;2 if 1 < t � 3;0 if t > 3:a

(t) = � if t � 1;2 + � if 1 < t � 3;0 if t > 3:4In [52, 22, 47, 48℄, de�nitions of the set of tra
es of an automaton and of one automaton implementinganother are based on 
losed and admissible exe
utions only. The results we obtain in this paper using thenewer, more in
lusive de�nition imply 
orresponding results for the earlier de�nition. For example, we have thefollowing property: If A1 � A2 then the set of tra
es that arise from 
losed or admissible exe
utions of A1 is asubset of the set of tra
es that arise from 
losed or admissible exe
utions of A2.27



= acc

= vel

= acc-in

1

2

3

4

1 2 3Figure 4: An exe
ution of the Vehi
le.vel(t) = vel-out(t) = �t if t � 1;(2 + �)t� 2 if 1 < t � 3;4 + 3� if t > 3:Any �nite pre�x of � would also yield an exe
ution of Vehi
le. The tra
e of � is the one-elementsequen
e obtained by proje
ting � on the set fa

-in; vel-outg.Example 4.6 Controller exe
ution: In the Controller HA of Example 4.2, suppose d = 1,so the suggested a

eleration is re
al
ulated at times 1, 2, et
. Also suppose that vmax � 4+4�.Then an example exe
ution of Controller is the in�nite sequen
e � = �0 suggest �1 suggest �2 : : :,where, for every i:1. �i:ltime = 1.2. �i(t)(
lo
k ) = t for every t 2 dom(�i).3. If i = 0 then �i(t)(v) = 0 for v 2 fa

-sugg ; a

-ing and �i(t)(v) = �t for v 2 fvel-out ; vel-sensedg.4. If 1 � i � 2 then �i(t)(a

-sugg) = �i(t)(a

-in) = 2 and �i(t)(vel-out) = �i(t)(vel-sensed ) =(2 + �)(i+ t)� 2. 28



5. If i � 3 then �i(t)(a

-sugg) = �i(t)(a

-in) = 0 and �i(t)(vel-out) = �i(t)(vel-sensed ) =4 + 3�.The assumed bound on vmax implies that the suggested a

elerations in this exe
ution area
tually possible suggestions a

ording to the rule given in the Vehi
le automaton de�nition.The tra
e of exe
ution � 
onsists of a single traje
tory, be
ause Vehi
le has no external a
tions.This traje
tory is de�ned by:a

-in(t) = 0 if t � 1;2 if 1 < t � 3;0 if t > 3:vel-out(t) = �t if t � 1;(2 + �)t� 2 if 1 < t � 3;4 + 3� if t > 3:4.3 Simulation RelationsIn this se
tion, we de�ne simulation relations between hybrid automata. Simulation relationsmay be used to show that one HA implements another, in the sense of in
lusion of sets oftra
es.Let A and B be 
omparable HAs. A simulation from A to B is a relation R� QA � QBsatisfying the following 
onditions, for all states xA and xB of A and B, respe
tively:1. If xA 2 �A then there exists a state xB 2 �B su
h that xA R xB.2. If xA R xB and � is an exe
ution fragment of A 
onsisting of one dis
rete step surroundedby two point traje
tories, with �:fstate = xA, then B has a 
losed exe
ution fragment �with �:fstate = xB, tra
e(�) = tra
e(�), and �:lstate R �:lstate .3. If xA R xB and � is an exe
ution fragment of A 
onsisting of one traje
tory, with�:fstate = xA, then B has a 
losed exe
ution fragment � with �:fstate = xB, tra
e(�) =tra
e(�), and �:lstate R �:lstate .The de�nition of a simulation from A to B yields a 
orresponden
e for open traje
tories ofA:Lemma 4.7 Let A and B be 
omparable HAs and let R be a simulation from A to B. LetxA and xB be states of A and B, respe
tively, su
h that xA R xB. Let � be an exe
utionfragment of A 
onsisting of a single open traje
tory. Then B has an exe
ution fragment � with�:fstate = xB and tra
e(�) = tra
e(�). 29



Proof: Let � be the single open traje
tory in �. Using axioms T1 and T2, we 
onstru
tan in�nite sequen
e �0; �1; : : : of 
losed traje
tories of A su
h that � = �0 _ �1 _ � � �. Then,working re
ursively, we 
onstru
t a sequen
e �0; �1; : : : of 
losed exe
ution fragments of B su
hthat �0:fstate = xB and, for ea
h i, �i:ltime = �i:ltime, �i:lstate R �i:lstate , and tra
e(�i)is equal to the tra
e of the exe
ution fragment 
onsisting of the single traje
tory �i. This
onstru
tion uses indu
tion on i, using Property 3 of the de�nition of a simulation relation inthe indu
tion step. Now let � = �0 _ �1 _ � � �. By Lemma 4.3, � is an exe
ution of B. Clearly,�:fstate = xB. By Lemma 3.9 applied to both � and �, tra
e(�) = tra
e(�). Thus � has therequired properties.Theorem 4.8 Let A and B be 
omparable HAs and let R be a simulation from A to B. LetxA and xB be states of A and B, respe
tively, su
h that xA R xB. Then tra
efragsA(xA) �tra
efragsB(xB).Proof: Suppose that Æ is the tra
e of an exe
ution fragment of A that starts from xA; we provethat Æ is also a tra
e of an exe
ution fragment of B that starts from xB. Let � = �0a1 �1a2 �2 : : :be an exe
ution fragment of A su
h that �:fstate = xA and Æ = tra
e(�). We 
onsider 
ases:1. � is an in�nite sequen
e.Using axioms T1 and T2, we 
an write � as an in�nite 
on
atenation �0 _ �1 _ �2 � � �,in whi
h the exe
ution fragments �i with i even 
onsist of a traje
tory only, and theexe
ution fragments �i with i odd 
onsist of a single dis
rete step surrounded by twopoint traje
tories.We de�ne indu
tively a sequen
e �0; �1; : : : of 
losed exe
ution fragments of B, su
hthat �0:fstate = xB and, for all i, �i:lstate = �i+1:fstate, �i:lstate R �i:lstate , andtra
e(�i) = tra
e(�i). We use Property 3 of the de�nition of a simulation relation forthe 
onstru
tion of the �i's with i even, and Property 2 for the 
onstru
tion of the �i'swith i odd. Let � = �0 _ �1 _ �2 � � �. By Lemma 4.3, � is an exe
ution of B. Clearly,�:fstate = xB. By Lemma 3.9, tra
e(�) = tra
e(�). Thus � has the required properties.2. � is a �nite sequen
e ending with a 
losed traje
tory.Similar to the �rst 
ase.3. � is a �nite sequen
e ending with an open traje
tory.Similar to the �rst 
ase, using Lemma 4.7.
Corollary 4.9 Let A and B be 
omparable HAs and let R be a simulation from A to B. Thentra
esA � tra
esB. 30



Proof: Suppose � 2 tra
esA. Then � 2 tra
efragsA(xA) for some start state xA of A.Property 1 of the de�nition of simulation relation implies the existen
e of a start state xB ofB su
h that xA R xB. Then Theorem 4.8 implies that � 2 tra
efragsB(xB). Sin
e xB is a startstate of B, this implies that � 2 tra
esB, as needed.Example 4.10 Vehi
le implementation: Now denote the Vehi
le HA of Example 4.1 byVehi
le(�), making the un
ertainty parameter expli
it. Assume that 0 � �1 � �2. Let A =Vehi
le(�1) and B = Vehi
le(�2). We 
laim that A � B. We 
an show this by demonstratingthat the identity mapping is a simulation relation. Sin
e these HAs have no dis
rete steps,we need only show Properties 1 and 3 of the de�nition of simulation relation. Property 1is obvious be
ause the two HAs have the same (unique) start state, whi
h assigns 0 to bothstate variables. For Property 3, assume that xA R xB and � 
onsists of one traje
tory � ofA with �:fstate = xA. Let � = �. Clearly, � is a 
losed hybrid sequen
e, �:fstate = xB,tra
e(�) = tra
e(�), and �:lstate R �:lstate . It remains to show that � is an exe
utionfragment of B, that is, that � is a traje
tory of B. This follows immediately from the de�nitionof traje
tories for Vehi
le(�1) and Vehi
le(�2); the only interesting point is that, for everyt 2 dom(�), t > 0, we have [a

-in(t)� �1; a

-in(t) + �1℄ � [a

-in(t)� �2; a

-in(t) + �2℄.Example 4.11 Controller implementation: Denote the Controller HA of Example 4.2by Controller (vmax), making the maximum velo
ity parameter expli
it. Assume that 0 �vmax1 � vmax2. We 
laim that Controller (vmax1) � Controller (vmax2); again, we show thisby demonstrating that the identity mapping is a simulation relation. This requires showingall three properties of the de�nition of simulation relation. Properties 1 and 3 are immediate,be
ause vmax does not appear in the de�nitions of the start states and the traje
tories. ForProperty 2, the key is that, if vel-sensed+(a

-suggested 0+�)d � vmax1, then also vel-sensed+(a

-suggested)0 + �)d � vmax2.5 Operations on Hybrid AutomataIn this se
tion, we introdu
e two kinds of operations on hybrid automata: parallel 
ompositionand hiding.5.1 CompositionWe now introdu
e the operation of parallel 
omposition for hybrid automata, whi
h allows anautomaton representing a 
omplex system to be 
onstru
ted by 
omposing automata represent-ing individual system 
omponents. Our 
omposition operation identi�es external a
tions withthe same name in di�erent 
omponent automata, and likewise for external variables. Whenany 
omponent automaton performs a dis
rete step involving an a
tion a, so do all 
omponent31



automata that have a in their signatures. Likewise, when any 
omponent automaton performsa traje
tory involving a parti
ular evolution of values for an external variable v, then so do all
omponent automata that have v in their signatures. We prove several results that say thatthe 
omposition operation respe
ts our notions of external behavior and implementation.We de�ne 
omposition as a partial, binary operation on hybrid automata. Sin
e internala
tions of an automaton A1 are intended to be unobservable by any other automaton A2, weallow A1 to be 
omposed with A2 only if the internal a
tions of A1 are disjoint from the a
tionsof A2. Similarly, we require disjointness of the internal variables of A1 and the variables of A2.Formally, we say that hybrid automata A1 and A2 are 
ompatible if H1 \ A2 = H2 \ A1 = ;and X1 \ V2 = X2 \ V1 = ;.If A1 and A2 are 
ompatible then their 
omposition A1kA2 is de�ned to be the stru
tureA = (W;X;Q;�; E;H;D;T ) where� W =W1 [W2 and X = X1 [X2.� Q = fx 2 val(X) j x dX1 2 Q1 ^ x dX2 2 Q2g.� � = fx 2 Q j x dX1 2 �1 ^ x dX2 2 �2g.� E = E1 [E2 and H = H1 [H2.� For ea
h x;x0 2 Q and ea
h a 2 A, x a!A x0 i� for i = 1; 2, either (1) a 2 Ai andx dXi a!i x0 dXi, or (2) a 62 Ai and x dXi = x0 dXi.� T � trajs(V ) is given by � 2 T , � # V1 2 T1 ^ � # V2 2 T2.Theorem 5.1 If A1 and A2 are hybrid automata then A1kA2 is a hybrid automaton.Proof: Let A denote A1kA2 as above. We show that A satis�es the properties of a hybridautomaton (
f. Se
tion 4.1). Disjointness of W and X follows from disjointness of W1 andX1, disjointness of W2 and X2, and 
ompatibility. Similarly, disjointness of E and H followsfrom disjointness of E1 and H1, disjointness of E2 and H2, and 
ompatibility. Nonemptinessof � follows from nonemptiness of �1 and �2 and disjointness of X1 and X2. We verify the Tproperties:T0 Let v 2 val(V ) su
h that v dX 2 Q and let i 2 f1; 2g. By the de�nition of 
omposition,v d Vi 2 val(Vi) and v dXi 2 Qi. Sin
e (v d Vi) dXi = v dXi, it follows that (v dVi) dXi 2Qi. Then T0 applied to Ai implies that }(v d Vi) 2 Ti, that is, }(v) # Vi 2 Ti. Then bythe de�nition of 
omposition, }(v) 2 T , as needed.T1 Let � 2 T , let � 0 be a traje
tory su
h that � 0 � � , and let i 2 f1; 2g. By the de�nition of
omposition, � # Vi 2 Ti. By the de�nition of pre�x, � 0 # Vi � � # Vi. By T1 applied toAi, � 0 # Vi 2 Ti. Then by de�nition of 
omposition, � 0 2 T , as needed.32



T2 Let � 2 T , t 2 dom(�), � 0 = � � t, and i 2 f1; 2g. By the de�nition of 
omposition, � #Vi 2 Ti. Then by T2 applied to Ai, (� # Vi)� t 2 Ti. Observe that (� # Vi)� t = � 0 # Vi;therefore, � 0 # Vi 2 Ti. Then by the de�nition of 
omposition, � 0 2 T , as needed.T3 Let �0; �1; �2; : : : be a sequen
e of traje
tories in T su
h that, for ea
h non�nal index j, �j is
losed and �j:lstate = �j+1:fstate . Let � denote �0_ �1_ �2 � � �, and let i 2 f1; 2g. By thede�nition of 
omposition, operation, for ea
h index j, �j # Vi 2 Ti, and for ea
h non�nalindex j, �j # Vi is 
losed and (�j # Vi):lstate = (�j+1 # Vi):fstate . By T3 applied to Ai,�0 # Vi _ �1 # Vi _ �2 # Vi � � � 2 Ti. Observe that � # Vi = �0 # Vi _ �1 # Vi _ �2 # Vi � � �;therefore, � # Vi 2 Ti. Then by the de�nition of 
omposition, � 2 T , as needed.The following \proje
tion lemma" says that exe
utions of a 
omposition of HAs proje
t togive exe
utions of the 
omponent automata. Moreover, 
ertain properties of the exe
utions ofthe 
omposition imply, or are implied by, similar properties for the 
omponent exe
utions.Lemma 5.2 Let A = A1kA2 and let � be an exe
ution fragment of A. Then � d(A1; V1) and� d(A2; V2) are exe
ution fragments of A1 and A2, respe
tively. Furthermore,1. � is time-bounded i� both � d(A1; V1) and � d(A2; V2) are time-bounded.2. � is admissible i� both � d(A1; V1) and � d(A2; V2) are admissible.3. � is 
losed i� both � d(A1; V1) and � d(A2; V2) are 
losed.4. � is Zeno i� at least one of � d(A1; V1) and � d(A2; V2) is Zeno.5. � is an exe
ution i� both � d(A1; V1) and � d(A2; V2) are exe
utions.Proof: Simple appli
ation of the de�nitions.Example 5.3 Composition and Zeno exe
utions: Consider a 
omposition A = A1kA2in whi
h the two 
omponents have no a
tions or variables in 
ommon. We des
ribe a Zenoexe
ution fragment � of A in whi
h only one of the proje
ted exe
ution fragments is Zeno.Namely, let � = �0 a1 �1 a2 �2 : : :, where �0:ltime = 1 and for all j � 1, �j is a point traje
tory.Also, all the ai are a
tions of A1 but not of A2. Then � d(A1; V1), whi
h in
ludes all the aj 's,is a Zeno exe
ution fragment, whereas � d(A2; V2), whi
h 
onsists of the single right-
losedtraje
tory �0 # V2, is a 
losed exe
ution fragment.Example 5.4 Exe
ution of vehi
le and 
ontroller: An example exe
ution ofVehi
lekControlleris the in�nite sequen
e � = �0 suggest �1 suggest �2 : : :, where, for every i:33



1. �i:ltime = 1.2. �i(t)(
lo
k ) = t for every t 2 dom(�i).3. If i = 0 then �i(t)(v) is equal to 0 for v 2 fa

-sugg ; a

-ing, � for v = a

, and �t forv 2 fvel ; vel-out ; vel-sensedg.4. If 1 � i � 2 then �i(t)(v) is equal to 2 for v 2 fa

-sugg ; a

-ing, 2 + � for v = a

, and(2 + �)(i+ t)� 2 for v 2 fvel ; vel-out ; vel-sensedg.5. If i � 3 then �i(t)(v) is equal to 0 for v 2 fa

-sugg ; a

-in; a

g and 4 + 3� for v 2fvel ; vel-out ; vel-sensedg.This exe
ution is admissible. Its proje
tions on the Vehi
le and Controller automata are givenby the admissible exe
utions in Examples 4.5 and 4.6, respe
tively.The following lemma says that we obtain the same result for an exe
ution fragment � of a
omposition if we �rst extra
t the tra
e and then restri
t to one of the 
omponents, or if we�rst restri
t to the 
omponent and then take the tra
e.Lemma 5.5 Let A = A1kA2, and let � be an exe
ution fragment of A. Then, for i = 1; 2,tra
e(�) d(Ei;Wi) = tra
e(� d(Ai; Vi)).Proof: Re
all that tra
e(�) = � d(E;W ). The result follows straightforwardly using Lemma 3.10and the observation that W \Wi =Wi = Vi \Wi and E \Ei = Ei = Ai \Ei.The following fundamental theorem relates the set of tra
es of a 
omposed automaton tothe sets of tra
es of the 
omponent automata. It is expressed in terms of equality between twosets of tra
es. Set in
lusion in one dire
tion expresses the idea that a tra
e of a 
omposition\proje
ts" to yield tra
es of the 
omponents. Set in
lusion in the other dire
tion expresses theidea that tra
es of 
omponents 
an be \pasted together" to yield a tra
e of the 
omposition.Theorem 5.6 Let A = A1kA2. Then tra
esA is exa
tly the set of (E;W )-sequen
es whoserestri
tions to A1 and A2 are tra
es of A1 and A2, respe
tively.That is, tra
esA = f� j � is an (E;W )-sequen
e and � d(Ei;Wi) 2 tra
esAi ; i = 1; 2g.Proof: For one dire
tion, suppose that � is a tra
e of A. Then by de�nition, � is an (E;W )-sequen
e. Let � be an exe
ution of A su
h that � = tra
e(�). Let i 2 f1; 2g. Then Lemma 5.5implies that � d(Ei;Wi) = tra
e(� d(Ai; Vi)). Sin
e, by Lemma 5.2, � d(Ai; Vi) is an exe
utionof Ai, � d(Ei;Wi) is a tra
e of Ai.Conversely, let � be an (E;W )-sequen
e su
h that � d(Ei;Wi) is a tra
e of Ai, i = 1; 2.Then there are exe
utions �1 and �2 of A1 and A2, respe
tively, su
h that, for i = 1; 2,tra
e(�i) = � d(Ei;Wi). De
ompose �1 into �01 _ �11 _ �21 _ � � �, de
ompose �2 into �02 _34



�12 _ �22 _ � � �, and de
ompose � into �0 _ �1 _ �2 _ . . . in su
h a way that for ea
h j, (1)tra
e(�ji ) = �j d(Ei;Wi) for i 2 f1; 2g, (2) �ji is either a traje
tory or a traje
tory followedby an a
tion and a point traje
tory, i 2 f1; 2g, and (3) if both �j1 and �j2 
onsist of a
tionssurrounded by point traje
tories then these a
tions are identi
al. Axioms T1 and T2 implythat su
h de
ompositions exist.5Now we de�ne a sequen
e of exe
ution fragments of A, �0; �1; : : :, su
h that:1. �0:fstate 2 �A,2. For every non�nal j, �j :lstate = �j+1:fstate , and3. For every j, tra
e(�j) = �j .By Lemma 4.3, the 
on
atenation �0_�1_ � � � is an exe
ution of A. Moreover, by Lemma 3.9,the tra
e of this exe
ution is �. To de�ne ea
h �j , we distinguish the following 
ases:1. Ea
h of �j1 and �j2 is a traje
tory.Then suppose that �j1 = �1 and �j2 = �2. De�ne �j to be the fun
tion � with domaindom(�1) su
h that �(t) = �1(t) [ �2(t) for every t. (Compatibility of �1 and �2 followshere, and in the remaining three 
ases, from the fa
ts that �j1 = �j d(E1;W1) and �j2 =�j d(E2;W2).)2. �j1 is a traje
tory and �j2 is an a
tion surrounded by point traje
tories.Then �j1 must be a point traje
tory as well. Let �j1 = }(v1) and �j2 = }(v2)a}(v02).Then de�ne �j to be }(v1 [ v2) a }(v1 [ v02).3. �j1 is an a
tion surrounded by point traje
tories and �j2 is a traje
tory.This is symmetri
 with the previous 
ase.4. Ea
h of �j1 and �j2 is an a
tion (the same in both 
ases) surrounded by point traje
tories.Let �j1 = }(v1)a}(v01) and �j2 = }(v2)a}(v02). De�ne �j to be }(v1 [ v2) a }(v01 [ v02).It is straightforward to verify that the �j fragments satisfy the required properties.The following theorem des
ribes a basi
 substitutivity property:Theorem 5.7 Suppose A1;A2 and B are HAs with A1 � A2, and suppose that ea
h of A1and A2 is 
ompatible with B. Then A1kB � A2kB.5See [51℄ for a detailed existen
e proof for similar de
ompositions.
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Proof: Let � 2 tra
esA1kB. By Theorem 5.6, � d(E1;W1) 2 tra
esA1 and � d(EB;WB) 2tra
esB. Sin
e A1 � A2, � d(E1;W1) 2 tra
esA2 . Sin
e A1 and A2 have the same externalinterfa
e, (E1;W1) = (E2;W2). Thus, � d(E2;W2) 2 tra
esA2 . It follows from Theorem 5.6that � 2 tra
esA2kB.Example 5.8 Invariant for 
ombined vehi
le and 
ontroller: Consider the Vehi
le andController automata of Examples 4.1 and 4.2 (for the same �). These two HAs are 
ompatible;let A be their 
omposition. In the 
omposed automaton A, it turns out that the velo
ity isalways less than or equal to vmax, that is, in all rea
hable states of A,vel � vmax (12)This statement may be proved by indu
tion on the length of 
losed exe
ution fragments of A.In the proof, we use the fa
t that 
lo
k � d, whi
h follows from the de�nition of Q. We alsouse assertions (3) and (11), whi
h by de�nition are valid for any state on any traje
tory of A.In addition, we require the following auxiliary invariants:vel+ (a

-suggested+ �)(d� 
lo
k) � vmax (13)
lo
k > 0 ) a

 � a

-suggested+ � (14)vel-sensed = vel (15)0 � 
lo
k (16)Here the interesting assertion is (13), whi
h says, essentially, that the velo
ity will stay �vmax if the vehi
le a

elerates at the 
urrently suggested a

eleration plus � until the nextre
al
ulation. The main invariant (12) and the auxiliary invariants (13)-(16) 
an all be provedtogether. All are easily seen to be true in the initial state. There are two kinds of indu
tivesteps, for dis
rete suggest transitions and for traje
tories. Dis
rete transitions are easily seen topreserve all the assertions; the most interesting property to show is invariant (13), whi
h holdsbe
ause of the 
onstraints on the new suggested a

eleration, the fa
t that vel-sensed = vel ,and the fa
t that, in the new state, 
lo
k = 0.Traje
tories also preserve all the assertions; now the interesting thing to show is the 
on-jun
tion of (12) and (13). Depending on whether or not a

-suggested + � � 0, it suÆ
esto show only (12) or only (13). For example, suppose a

-suggested + � � 0; we show theauxiliary invariant (13). The traje
tory guarantees that vel 0 � vel + (a

-suggested + �)t and
lo
k 0 = 
lo
k+t, where t is the limit time of the traje
tory and unprimed and primed instan
esof the variables are used to indi
ate their values at the beginning and end of the traje
tory,respe
tively. The inequality is based on the integral de�nition of vel in terms of a

 and therelationship between a

 and a

-suggested . Thenvel0 + (a

-suggested0 + �)(d� 
lo
k0)= vel0 + (a

-suggested+ �)(d� 
lo
k� t)= vel0 � (a

-suggested+ �)t+ (a

-suggested+ �)(d� 
lo
k)36



� vel+ (a

-suggested+ �)(d� 
lo
k) (be
ause of what the traje
tory guarantees)� vmax (by indu
tive hypothesis)Note that, be
ause of the two kinds of indu
tive steps, the indu
tive proof divides 
leanly intoseparate parts that involve dis
rete and 
ontinuous reasoning.5.2 HidingWe de�ne two hiding operations for hybrid automata, whi
h hide external a
tions and ex-ternal variables, respe
tively, and we prove that these operations respe
t the implementationrelationship. The hiding operations re
lassify external a
tions or external variables as internala
tions or variables.� If E � EA, then A
tHide(E;A) is the HA B that is equal to A ex
ept that EB = EA�Eand HB = HA [E.� If W �WA, then VarHide(W;A) is the HA B given by{ WB =WA �W .{ XB = XA [W .{ QB = fx 2 val(XB) j x dXA 2 QAg.{ �B = fx 2 val(XB) j x dXA 2 �Ag.{ DB = fx; a;x0) 2 val(XB)�AB � val(XB) j (x dXA; a;x0 dXA) 2 DAg.{ EB = EA, HB = HA, and TA = TB.Lemma 5.9 Let E � EA and W �WA. Then A
tHide(E;A) and VarHide(W;A) are HAs.Proof: This is a straightforward appli
ation of the de�nitions.The following lemma 
hara
terizes the tra
es of the automata that result from applyingthe hiding operations:Lemma 5.10 Let A be an HA.1. If E � EA then tra
esA
tHide(E;A) = f� d(EA �E; VA) j � 2 tra
esAg.2. If W �WA then tra
esVarHide(W;A) = f� d(AA;WA �W ) j � 2 tra
esAg.Proof: First observe that A
tHide(E;A) and VarHide(W;A) have the same set of exe
utionsas A. Then apply Lemma 3.10. 37



Theorem 5.11 Suppose A and B are HAs with A � B, and suppose E � EA and W �WA.Then A
tHide(E;A) � A
tHide(E;B) and VarHide(W;A) � VarHide(W;B).Proof: Straightforward, using Lemma 5.10.Example 5.12 Implementing a velo
ity spe
i�
ation: In the 
omposition of the Vehi
leand Controller automata de�ned in Example 5.8, we may hide the a

-in variable used for
ommuni
ation between the two 
omponents. Thus, we de�neA = VarHide(fa

-ing;Vehi
lekController ):In the resulting automaton A, the only form of output is the variable vel-out .We may express the 
orre
tness ofA by showing that it implements an abstra
t spe
i�
ationautomaton VSpe
 that simply represents, in automaton form, the 
onstraint that the vehi
le'svelo
ity is at most vmax. VSpe
 has one external variable vel-out , one state variable vel , andits state set 
onsists of all valuations for vel . Both variables have type R and dynami
 typeequal to the (pasting 
losure of the) 
ontinuous fun
tions. Initially, vel � vmax. VSpe
 has noa
tions. The traje
tories of VSpe
 are those that satisfy:vel � vmax (17)vel-out(t) = vel(t) for t > 0: (18)We may argue that A implements VSpe
 using a simulation relation R. Most of the work hasalready been done by proving invariants, in Example 5.8. Relation R relates states xA of Aand xB of B �= VSpe
 exa
tly if xA is a rea
hable state of A and xB(vel) = xA(vel). It is easyto see that R satis�es the start 
ondition of the simulation relation de�nition. The dis
retestep 
ondition follows be
ause dis
rete a
tions of A do not 
hange vel . For the traje
tory
ondition, assume xA R xB and � is a traje
tory of A with �rst state xA. The de�nition of Rimplies that xA is a rea
hable state of A. Therefore all states in traje
tory � are also rea
hablestates of A. Therefore, the invariant x(vel) � vmax, whi
h was proved for A in Example 5.8,is also true of all states in � . Now de�ne the 
orresponding exe
ution fragment of B to 
onsistof the single traje
tory � 0 su
h that � 0 # vel = � 0 # vel-out = � # vel . This satis�es all therequired properties.Example 5.13 Sensor and dis
rete 
ontroller: We des
ribe how to implement theController of Example 4.2, whi
h re
eives 
ontinuous information about the vehi
le's velo
itythrough vel-out and suggests a

elerations, using two other 
omponents: a \sensor", whi
h pe-riodi
ally samples the 
ontinuous velo
ity information and produ
es dis
rete velo
ity reports,and a \dis
rete 
ontroller", whi
h uses the dis
rete velo
ity reports and immediately suggestsa

elerations.The Sensor automaton has state variables 
lo
k and vel-sensed , both initially 0, and exter-nal variable vel-out . All variables have type R and dynami
 type equal to the (pasting 
losure38



of the) 
ontinuous fun
tions. The set Q of states 
onsists of all valuations in whi
h 
lo
k � d.Sensor also has external a
tions report (v), v 2 R. D 
onsists of the report (v) steps spe
i�edby: 
lo
k = d (19)
lo
k0 = 0 (20)v = vel-sensed (21)That is, when the 
lo
k rea
hes d, the Sensor may reset the 
lo
k to 0 and report the 
urrentvelo
ity. T 
onsists of traje
tories that satisfy: _
lo
k = 1 (22)vel-sensed(t) = vel-out(t) for t > 0 (23)That is, the 
lo
k in
reases at rate 1 and the velo
ity sensed is exa
tly what is seen in vel-out .The Dis
reteController automaton has state variables vel-reported and a

-suggested , bothdis
rete variables of type R, initially 0, a dis
rete Boolean state variable stable , initially true,and one external variable a

-in, of type R and dynami
 type equal to (the pasting 
losure of)the 
ontinuous fun
tions. The state 
onsists of all valuations of the internal variables. TheDis
reteController also has external a
tions report (v), v 2 R and an internal a
tion suggest .D in
ludes report (v) steps that satisfy:vel-reported0 = v (24)stable0 = false (25)and suggest steps that satisfy: stable = false (26)stable0 = true (27)vel-reported + (a

-suggested0 + �)d � vmax: (28)That is, a new velo
ity report sets the 
ag that triggers the Dis
reteController to re
al
ulatethe suggested a

eleration. Traje
tories satisfy:stable = true for t > 0 (29)a

-in = a

-suggested for t > 0 (30)stable and a

-suggested are un
hanged. (31)That is, the Dis
reteController does not allow time to pass if stable = false ; it must perform asuggest a
tion after re
eiving a report input and before time 
an pass. The Dis
reteControllerdoes not 
hange the suggested a

eleration during a traje
tory, and submits it a

urately toits environment. Now de�neA = A
tHide(freport (v) j v 2 Rg;SensorkDis
reteController ):39



We 
laim that A implements B �= Controller . We may argue this using the simulation relationR that relates states xA of A and xB of Controller provided that xA is a rea
hable state ofA, xB(vel-sensed) = xA(vel-sensed), xB(a

-suggested) = xA(a

-suggested) and xB(
lo
k ) =xA(
lo
k ) if xA(stable) = true, else d. A key to the argument is that a suggest step o

urs inB when suggest o

urs in A, rather than when a report o

urs.Sin
e A � Controller , Theorem 5.7 implies that AkVehi
le � ControllerkVehi
le. ThenTheorem 5.11 implies that VarHide(fa

-ing;AkVehi
le) � VarHide(fa

-ing;ControllerkVehi
le).Sin
e, by Example 5.12, VarHide(fa

-ing;ControllerkVehi
le) � VSpe
, transitivity of imple-mentation implies that VarHide(fa

-ing;AkVehi
le) implements VSpe
.6 Hybrid I/O AutomataIn this se
tion we re�ne the hybrid automaton model of Se
tion 4 by distinguishing betweeninput and output a
tions and between input and output variables. The results on simulationrelations and operations for hybrid automata presented in Se
tions 4.3 and 5 
an be extendedto this new setting.6.1 De�nition of Hybrid I/O AutomataA hybrid I/O automaton (HIOA) A is a tuple (H; U; Y; I;O) where� H = (W;X;Q;�; E;H;D;T ) is a hybrid automaton.� U and Y partition W into input and output variables, respe
tively.Variables in Z �= X [ Y are 
alled lo
ally 
ontrolled ; as before we write V �=W [X.� I and O partition E into input and output a
tions, respe
tively.A
tions in L �= H [O are 
alled lo
ally 
ontrolled ; as before we write A �= E [H.� The following additional axioms are satis�ed:E1 (Input a
tion enabling)For every x 2 Q and every a 2 I, there exists x0 2 Q su
h that x a! x0.E2 (Input traje
tory enabling)For every x 2 Q and every � 2 trajs(U ), there exists � 2 T su
h that �:fstate =x; � # U � �, and either1. � # U = �, or2. � is 
losed and some l 2 L is enabled in �:lstate .40



Input a
tion enabling is the input enabling 
ondition of ordinary I/O automata. Input traje
-tory enabling is a new, 
orresponding 
ondition for intera
tion over time intervals. It says thatan HIOA should be able to a

ept any input traje
tory, that is, any traje
tory for the inputvariables, either by letting time advan
e for the entire duration of the input traje
tory, or byrea
ting with a lo
ally 
ontrolled a
tion after some part of the input traje
tory has o

urred.It will often be 
onvenient for us to 
onsider automata in whi
h inputs and outputs aredistinguished, but that do not ne
essarily satisfy the properties E1 or E2. We 
all su
h anautomaton a pre-HIOA.Notation: As we did for HAs, we often denote the 
omponents of an HIOA (or pre-HIOA) AbyHA; UA; YA; : : : ;WA;XA; QA;�A, et
., and the 
omponents of an HIOAAi byHi; Ui; Yi; : : : ;Wi;Xi; Qi;�i, et
. We sometimes omit these subs
ripts, where no 
onfusion is likely. We abusenotation slightly by referring to an HIOA (or pre-HIOA) A as an HA when we intend to referto HA.Example 6.1 Vehi
le and 
ontroller HIOAs: The Vehi
le HA of Example 4.1 
an be
onverted into an HIOA by 
lassifying a

-in as an input variable and vel-out as an outputvariable. Property E1, input a
tion enabling, holds va
uously. It is also easy to see that E2holds, in fa
t, the �rst alternative always holds|from any state, the Vehi
le automaton 
ana

ept any input traje
tory.Similarly, the Controller HA of Example 4.2 
an be 
onverted into an HIOA by 
lassifyingvel-out as an input variable and a

-in as an output variable. Again, E1 holds va
uously.To see E2, 
onsider a state x and an input traje
tory �. The de�nition of Q implies thatx(
lo
k ) � d. Then the de�nition of the Controller traje
tories implies that there is sometraje
tory � 
onsistent with � that either spans all of � or stops short, at a valuation v inwhi
h 
lo
k = d. Then the de�nition of the suggest transitions implies that suggest is enabledin v dX, as needed.Example 6.2 Sensor and dis
rete 
ontroller HIOAs: The Sensor automaton fromExample 5.13 
an be 
onverted into an HIOA by 
lassifying vel-out as an input variable andthe report a
tions as output a
tions. The argument that Sensor is a
tually an HIOA is similarto the argument for the Controller in Example 6.1.Similarly, the Dis
reteController automaton from Example 5.13 
an be 
onverted into anHIOA by 
lassifying the report a
tions as input a
tions and the a

-in variable as an outputvariable. It is straightforward to verify E1. E2 is not 
ompletely trivial, even though theautomaton has no input variables: from any state x, we must 
onsider \null" input traje
tories,whi
h map a time interval to the empty valuation (the valuation for no variables). If x(stable) =true, then the Dis
reteController 
an a

ept the entire input traje
tory, and if x(stable) =false, then suggest is enabled in x. This implies E2.41



6.2 Exe
utions, Tra
es, and Simulation RelationsAn exe
ution of a pre-HIOA A is de�ned to be an exe
ution ofHA, and a tra
e of A is a tra
e ofHA. Two pre-HIOAs A1 and A2 are 
omparable if their inputs and outputs 
oin
ide, that is, ifI1 = I2, O1 = O2, U1 = U2, and Y1 = Y2. IfA1 andA2 are 
omparable, then A1 � A2 is de�nedto mean that the tra
es of A1 are in
luded among those of A2: A1 � A2 �= tra
esA1 � tra
esA2 .Lemma 6.3 Let A1 and A2 be two 
omparable pre-HIOAs. Then H1 and H2 are 
omparableand A1 � A2 i� H1 � H2.Proof: Immediate from the de�nitions.The de�nition of simulation for pre-HIOAs is the same as for HAs. Formally, if A1 and A2are two 
omparable pre-HIOAs, then a simulation from A1 to A2 is a simulation from H1 toH2.Theorem 6.4 If A1 and A2 are 
omparable pre-HIOAs and there is a simulation from A1 toA2, then A1 � A2.Proof: Immediate from the de�nition of simulation, Theorem 4.8, and Lemma 6.3.6.3 CompositionThe de�nition of 
omposition for HIOAs is based on the 
orresponding de�nition for HAs,but also takes the input/output stru
ture into a

ount. Just as for HAs, we allow an HIOAA1 to be 
omposed with an HIOA A2 only if the sets of internal a
tions and variables of A1are disjoint from the sets of a
tions and variables, respe
tively, of A2. In addition, in orderthat the 
omposition operation might satisfy 
ertain desirable properties (see, for example,Theorem 7.12), we require that at most one 
omponent automaton should \
ontrol" any givena
tion or variable; that is, we allow A1 and A2 to be 
omposed only if the sets of outputa
tions of A1 and A2 are disjoint and the sets of output variables of A1 and A2 are disjoint.Formally, we say that pre-HIOAs A1 and A2 are 
ompatible if, for i 6= j,Xi \ Vj = Yi \ Yj = Hi \Aj = Oi \Oj = ;:Lemma 6.5 If A1 and A2 are 
ompatible pre-HIOAs, then H1 and H2 are 
ompatible HAs.Proof: Follows immediately from the de�nitions.If A1 and A2 are 
ompatible pre-HIOAs then their 
omposition A1kA2 is de�ned to be thetuple A = (H; U; Y; I;O) where 42



� H = H1kH2,� U = (U1 [ U2)� (Y1 [ Y2), Y = Y1 [ Y2,� I = (I1 [ I2)� (O1 [O2), O = O1 [O2.Thus, an external a
tion or variable of the 
omposition is 
lassi�ed as an output if it is anoutput of one of the 
omponent automata, and otherwise it is 
lassi�ed as an input.Example 6.6 Interfa
es for 
ompositions of vehi
le, 
ontroller, sensor, and dis
rete
ontroller automata: When the Vehi
le and Controller HIOAs des
ribed in Example 6.1are 
omposed, the external interfa
e of the 
omposed stru
ture 
onsists of U = I = O = ; andY = fa

-in ; vel-outg.When the Sensor and Dis
reteController des
ribed in Example 6.2 are 
omposed, theexternal interfa
e of the 
omposed stru
ture 
onsists of U = fvel-outg, Y = fa

-ing, I = ;,and O = freport (v) j v 2 Rg.The 
omposition of two HIOAs (or pre-HIOAs) is guaranteed to be a pre-HIOA:Theorem 6.7 If A1 and A2 are pre-HIOAs then A1kA2 is a pre-HIOA.Proof: Let A denote A1kA2. Lemma 5.1 implies that H = H1kH2 is an HA. By 
onstru
tion,U and Y form a partition of W , and I and O form a partition of E. This suÆ
es.Composition of pre-HIOAs satis�es the following substitutivity result:Theorem 6.8 Suppose A1 and A2 are 
omparable pre-HIOAs with A1 � A2. Suppose that Bis a pre-HIOA that is 
ompatible with ea
h of A1 and A2. Then A1kB � A2kB.Proof: The fa
t that A1 and A2 are 
omparable and the de�nition of 
omposition for pre-HIOAs implies that that A1kB and A2kB are 
omparable.Sin
e A1 and A2 are 
omparable and A1 � A2, Lemma 6.3 implies that HA1 and HA2are 
omparable and HA1 � HA2 . Lemma 6.5 implies that HA1 and HB are 
ompatible HAsand HA2 and HB are 
ompatible HAs. Theorem 5.7 then implies that HA1kHB � HA2kHB.By the de�nition of 
omposition, it follows that HA1kB � HA2kB. Then the de�nition ofimplementation for pre-HIOAs implies that A1kB � A2kB.We would like to show that the 
omposition of two HIOAs is an HIOA; however, this isnot true in general. Property E1 is preserved by 
omposition:Lemma 6.9 If A1 and A2 are pre-HIOAs that satisfy E1, then the 
omposition A1kA2 alsosatis�es E1. 43



Proof: Let A = A1kA2. Assume that A1 and A2 satisfy E1. We verify that A satis�es E1.Consider x 2 Q and a 2 I. We distinguish three 
ases.1. a 2 I1 \ I2. By de�nition of 
omposition, x dXi 2 Qi for i 2 f1; 2g. Then by E1 appliedto Ai, there exists a state x0i of Ai su
h that (x dXi) a!i x0i. Let x0 �= x01 [ x02. Weknow that x0 is well de�ned sin
e, by 
ompatibility, X1 \X2 = ;. Then by de�nition of
omposition, x0 2 Q and x a! x0.2. a 2 I1 � I2. By de�nition of 
omposition, s dX1 2 Q1. By E1 applied to A1, thereexists a state x01 of A1 su
h that (x dX1) a!1 x01. Let x0 �= x01 [ (x dX2). We know thatx0 is well de�ned sin
e, by 
ompatibility, X1 \ X2 = ;. Then by de�nition of parallel
omposition, x0 2 Q and x a! x0.3. a 2 I2 � I1. Symmetri
 to the previous 
ase.However, E2 is not ne
essarily preserved by 
omposition:Example 6.10 HIOAs whose 
omposition does not satisfy E2: Suppose that A1 hasno dis
rete a
tions, one state variable x1, one output variable v1 and one input variable v2.All variables are of type R and dynami
 type the (pasting 
losure of the) 
ontinuous fun
tions.The set Q1 of states 
onsists of all valuations of x1. In the unique start state, x1 = 0. Thetraje
tories are all those fun
tions that satisfy the 
onditions x1(t) = v2(t) for t > 0 andv1(t) = x1(t) + 1 for t > 0. It is easy to 
he
k that A1 is an HIOA. De�ne A2 symmetri
ally,with state variable x2, output variable v2 and input variable v1; A2's traje
tories are thosethat satisfy x2(t) = v1(t) for t > 0 and v2(t) = x2(t) + 1 for t > 0.The 
omposition pre-HIOA A1kA2 does not satisfy E2. Satisfying E2 would require (sin
ethe 
omposition has no dis
rete a
tions) that the 
omposition in
lude at least one traje
torywith limit time 1 starting from the initial state. However, no su
h traje
tory exists, be
ausethe 
ombined 
onstraints are in
onsistent for every t > 0.As a te
hni
al way out of the diÆ
ulty, we de�ne a stronger notion of 
ompatibility. Namely,we say that 
ompatible pre-HIOAs A1 and A2 are strongly 
ompatible if A1kA2 satis�es axiomE2. Strong 
ompatibility says that any input traje
tory � of the 
omposition must be a

ept-able by the 
omposition: the two 
omponent automata are able to evolve together, followingthe input traje
tory �, in su
h a way that either they a

ept all of � or else they a

ept partof �, up to a point where one of them 
an interrupt with a lo
ally 
ontrolled a
tion.Theorem 6.11 If A1 and A2 are strongly 
ompatible HIOAs, then A1kA2 is an HIOA.Proof: Lemma 6.7 implies that the 
omposition is a pre-HIOA. Lemma 6.9 implies that the
omposition satis�es E1. Property E2 follows immediately from strong 
ompatibility.44



6.4 HidingThe de�nitions of variable and a
tion hiding extend to any pre-HIOA A. For input/outputautomata, we 
onsider hiding outputs only (but not inputs), by 
onverting them to internala
tions.1. If O � OA, then A
tHide(O;A) is the pre-HIOA B that is equal to A ex
ept thatOB = OA �O and HB = HA [O.2. If Y � YA then VarHide(Y;A) is the pre-HIOA B given by:� HB = VarHide(Y;HA).� YB = YA � Y .� UB = UA, IB = IA, and OB = OA.Lemma 6.12 Suppose A is a pre-HIOA, O � OA and Y � YA. Then:1. A
tHide(O;A) and VarHide(Y;A) are pre-HIOAs.2. If A satis�es E1 then so do A
tHide(O;A) and VarHide(Y;A).3. If A satis�es E2 then so do A
tHide(O;A) and VarHide(Y;A).Lemma 6.13 Let A be a pre-HIOA.1. If O � OA then tra
esA
tHide(O;A) = f� d(OA �O;VA) j � 2 tra
esAg.2. If Y � YA then tra
esVarHide(Y;A) = f� d(AA; YA � Y ) j � 2 tra
esAg.Proof: Straightforward appli
ation of the de�nitions.Theorem 6.14 Suppose A and B are pre-HIOAs with A � B, and suppose O � OA andY � YA.Then A
tHide(O;A) � A
tHide(O;B) and VarHide(Y;A) � VarHide(Y;B).Proof: Straightforward, using Proposition 5.10.Example 6.15 Interfa
es for automata with hiding: In Example 5.13, we de�ned the HAB �= VarHide(fa

-ing;AkVehi
le), whereA �= A
tHide(freport (v) j v 2 Rg;SensorkDis
reteController ).This models the three-way 
omposition of the sensor, dis
rete 
ontroller, and vehi
le, with theinternal report a
tions and a

eleration suggestions hidden. If we interpret the three automataas HIOAs, then these de�nitions still make sense be
ause the a
tions and variables that arehidden are outputs. The external interfa
e for A is given by UA = fvel-outg, YA = fa

-ing,and IA = OA = ;, and the external interfa
e for B is given by UB = IB = OB = ; andYB = fvel-outg. 45



6.5 SuÆ
ient Conditions for Strong CompatibilityChe
king strong 
ompatibility of two HIOAs 
an be diÆ
ult be
ause it requires 
he
king 
om-patibility between the 
ontinuous dynami
s of two systems. However, for 
ertain restri
ted
lasses of HIOAs, strong 
ompatibility is implied by 
ompatibility, whi
h is easy to 
he
k.Example 6.16 HIOAs for whi
h 
ompatibility implies strong 
ompatibility: It isroutine to verify that two HIOAs without input variables are strongly 
ompatible if and only ifthey are 
ompatible. In the 
lassi
al 
ontrol theory setting, a system without input variablesis uninteresting be
ause it 
annot be 
ontrolled. However, in the hybrid setting, su
h a system
an still intera
t with its environment via dis
rete input a
tions. Linear hybrid automata [3, 2℄,for instan
e, have no input variables.Symmetri
ally, two HIOAs without output variables are strongly 
ompatible if and only ifthey are 
ompatible. The same equivalen
e holds if one of the HIOAs has no input variablesand the other has no output variables, or if one has no external variables at all.The following theorem generalizes all the 
laims in Example 6.16. It applies to pairs ofHIOAs that 
annot mutually a�e
t ea
h other be
ause the output variables of one are disjointfrom the input variables of the other.Theorem 6.17 Let A1 and A2 be two 
ompatible HIOAs su
h that U1\Y2 = ;. Then A1 andA2 are strongly 
ompatible.Proof: Let A denote A1kA2. We need to show that A satis�es E2. Let x be a state of Aand let � be a traje
tory in trajs(U ). Sin
e U1 \ Y2 = ;, the de�nition of 
omposition impliesthat U1 � U . By E2 applied to A1, there exists a traje
tory �1 2 T1 with �1:fstate = x dX1that is pointwise 
ompatible with � and su
h that either dom(�1) = dom(�), or else dom(�1) �dom(�), �1 is 
losed, and a lo
ally 
ontrolled a
tion of A1 is enabled in �1:lstate .Let �2 be ((� d dom(�1)) _[ �1) # U2. That is, �2 is an input traje
tory for A2. Ea
h inputvariable of A2 is either an input variable of A or an output variable of A1; the valuations in �2for those that are inputs of A are obtained from �, whereas the valuations for those that areoutput variables of A1 are obtained from �1. By E2 applied to A2, there exists a traje
tory�2 2 T2 with �2:fstate = x dX2 that is pointwise 
ompatible with �2 and su
h that eitherdom(�2) = dom(�2), or else dom(�2) � dom(�2), �2 is 
losed, and a lo
ally 
ontrolled a
tionof A2 is enabled in �2:lstate .In the se
ond 
ase, (�1 d dom(�2)) _[ �2 is a traje
tory of T that starts from x, is pointwise
ompatible with �, is 
losed, and enables a lo
ally 
ontrolled a
tion of A (in parti
ular, of A2)in its last state. In the �rst 
ase, �1 _[ �2 is a traje
tory of T that starts from x, is pointwise
ompatible with �, and either spans all of � or is 
losed and enables a lo
ally 
ontrolled a
tionof A (in parti
ular, of A1) in its last state. This shows that A satis�es E2.46



We 
an also 
onsider HIOAs that do not exhibit any dependen
ies between inputs andoutputs during a traje
tory. In parti
ular, the values of the input variables should a�e
tneither the values of the output variables nor the amount of time that elapses until a lo
ally
ontrolled a
tion is enabled. Formally, we say that an HIOA A is oblivious if it satis�es thefollowing axiom:OBL Let � 2 T and � 2 trajs(U ) su
h that dom(�) = dom(�). Then there exists � 0 2 T su
hthat:1. � 0 # U = �.2. � 0 # Y = � # Y .3. If � is 
losed and some lo
ally 
ontrolled a
tion is enabled in �:lstate then somelo
ally 
ontrolled a
tion is enabled in � 0:lstate .Theorem 6.18 Let A1 and A2 be two 
ompatible HIOAs and suppose that A1 is oblivious.Then A1 and A2 are strongly 
ompatible.Proof: Let A denote A1kA2. We need to show that A satis�es E2. Let x be a state of Aand let � be a traje
tory in trajs(U ). Let �1 be any traje
tory of trajs(U1 ) that is pointwise
ompatible with � and su
h that dom(�1) = dom(�). By E2 applied to A1, there exists atraje
tory �1 2 T1 with �1:fstate = x dX1 that is pointwise 
ompatible with �1 and su
h thateither dom(�1) = dom(�1), or else dom(�1) � dom(�1), �1 is 
losed, and a lo
ally 
ontrolleda
tion of A1 is enabled in �1:lstate .Let �2 be ((� d dom(�1)) _[ �1) # U2. By E2 applied to A2, there exists a traje
tory �2 2 T2with �2:fstate = x dX2 that is pointwise 
ompatible with �2 and su
h that either dom(�2) =dom(�2), or else dom(�2) � dom(�2), �2 is 
losed, and a lo
ally 
ontrolled a
tion of A2 isenabled in �2:lstate .Let �01 be ((� d dom(�2)) _[�2) # U1. By OBL applied to A1, there exists a traje
tory � 01 2 T1su
h that � 01 # U1 = �01, � 01 # Y1 = (�1 d dom(�2)) # Y1, and if �1 d dom(�2) is 
losed and somelo
ally 
ontrolled a
tion of A1 is enabled in its last state, then some lo
ally 
ontrolled a
tion isalso enabled in � 01:lstate . If follows that � 01 and �2 are pointwise 
ompatible, and that � 01 _[ �2 isa traje
tory in T that starts from x and is pointwise 
ompatible with �. We 
laim that � 01 _[ �2satis�es the requirements for E2. We 
onsider 
ases:1. dom(�2) � dom(�2).Then � 01 _[ �2 is 
losed and enables a lo
ally 
ontrolled a
tion (of A2) in its last state,whi
h satis�es the requirements for E2.2. dom(�2) = dom(�2)(= dom(�1)).We 
onsider two sub
ases. First, if dom(�1) � dom(�), then �1 is 
losed and enablessome lo
ally 
ontrolled a
tion (of A1) in its last state. By axiom OBL, some lo
ally47




ontrolled a
tion is also enabled in � 01 _[ �2:lstate , whi
h suÆ
es for E2. On the otherhand, if dom(�1) = dom(�), then � 01 _[ �2 spans all of �, whi
h again suÆ
es for E2.
Example 6.19 Oblivious 
ontroller: The Controller HIOA of Example 4.2 and 6.1 satis�esOBL. During any traje
tory � of Controller , velo
ity information arrives in vel-out but doesnot a�e
t the Controller 's output; the output is only 
hanged when a (lo
ally 
ontrolled)suggest transition o

urs. Enabling of the suggest a
tion is not a�e
ted by 
hanges in vel-out ,but only by the value of 
lo
k .Be
ause Controller is oblivious and 
ompatible with the Vehi
le HIOA, Theorem 6.18implies that Vehi
le and Controller are strongly 
ompatible. It follows that their 
omposition,Vehi
lekController , is an HIOA.Example 6.20 Plant and 
ontroller: Figure 5 displays a standard s
enario studied in
ontrol theory involving a plant P 
ontrolled by a digital 
ontroller C. The interfa
e from the

A6
-

P
?D

�
C

ControlMeasurement

Input symbol Output symbol

Figure 5: Hybrid Control System.
ontroller to the plant is given by a digital/analog 
onverter D, while the interfa
e from theplant to the 
ontroller is given by an analog/digital 
onverter A. The 
ontroller C monitorsthe input variables and 
hanges its output variables only at the 
lo
k ti
ks via some dis
retetransitions. Thus, C satis�es OBL. The output variables of A are disjoint from the input48



variables of both P and D, and the output variables of P are disjoint from the input variablesof D. Thus, if P; C;A;D are pairwise 
ompatible, then P and A are strongly 
ompatible (byTheorem 6.17), PkA and D are strongly 
ompatible (by Theorem 6.17), and ((PkA)kD) andC are strongly 
ompatible (by Theorem 6.18). Hen
e, ((PkA)kD)kC is an HIOA.Example 6.21 Lips
hitz HIOAs: We may de�ne a sub
lass of HIOAs 
alled Lips
hitzHIOAs, in whi
h some of the state variables are dis
rete \mode" variables, and in whi
h, forea
h mode, the rest of the variables evolve a

ording to a system of di�erential equations basedon globally Lips
hitz fun
tions. We may restri
t this 
lass further by imposing a bound onthe range of the input variables (by restri
ting their dynami
 types), thus obtaining the setof input-bounded Lips
hitz HIOAs. Then it is possible to show that two 
ompatible input-bounded Lips
hitz HIOAs are strongly 
ompatible, whi
h implies that the 
omposition of two
ompatible input-bounded Lips
hitz HIOAs is a (Lips
hitz) HIOA. A 
areful development willbe reserved for another paper.7 Re
eptive Hybrid I/O AutomataIn this se
tion, we de�ne the notion of \re
eptiveness" for HIOAs. An HIOA will be de�nedto be re
eptive provided that it admits a \strategy" for resolving its nondeterministi
 
hoi
esthat never generates in�nitely many lo
ally 
ontrolled a
tions in �nite time. This notionhas two important 
onsequen
es: First, a re
eptive HIOA provides some response from anystate, for any sequen
e of dis
rete input a
tions and input traje
tories. This implies that theautomaton has a nontrivial set of exe
ution fragments, in fa
t, it has exe
ution fragments thata

ommodate any inputs from the environment. The automaton 
annot simply stop at somepoint and refuse to allow time to elapse; it must allow time to pass to in�nity if the environmentdoes so. Se
ond, re
eptiveness is 
losed under 
omposition. Previous studies of re
eptivenessproperties in
lude [16, 1, 66, 48℄.We de�ne re
eptiveness by �rst de�ning what it means for an HIOA to be \progressive".A progressive HIOA never generates in�nitely many lo
ally 
ontrolled a
tions in �nite time.Thus, in all of its exe
ution fragments, it allows time to pass to in�nity provided that itsenvironment also does so. We then de�ne a \strategy" for resolving nondeterministi
 
hoi
es,and de�ne re
eptiveness in terms of the existen
e of a progressive strategy.The treatment of re
eptiveness in this paper is simpler than that in previous papers. Onereason is that we address only the generation of admissible exe
utions here, rather than gen-eral liveness properties. Also, we formulate strategies as restri
ted automata, rather thanintrodu
ing separate de�nitions based on two-player games.
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7.1 Progressive HIOAsWe say that an exe
ution fragment of a pre-HIOA is lo
ally-Zeno if it is Zeno and 
ontainsin�nitely many lo
ally 
ontrolled a
tions, or equivalently, if it has �nite limit time and 
ontainsin�nitely many lo
ally 
ontrolled a
tions. A pre-HIOA A is progressive if it has no lo
ally-Zenoexe
ution fragments.The following lemma says that any progressive pre-HIOA that satis�es E2, and thereforeany HIOA, is 
apable of following any input traje
tory.Lemma 7.1 Let A be a progressive pre-HIOA that satis�es property E2, let x be a state of A,and let � 2 trajs(U ). Then there exists an exe
ution fragment � of A su
h that �:fstate = xand � d(I; U) = �.Proof: We 
onstru
t a �nite or in�nite sequen
e �0; �1; : : : of exe
ution fragments of A su
hthat:1. �0:fstate = x.2. For every non�nal index i, �i:lstate = �i+1:fstate .3. For every i, (�0 _ �1 _ � � �_ �i) d(I; U) � �.The 
onstru
tion is 
arried out re
ursively. To de�ne �0, we begin with state x and use E2either to span all of � or to span a pre�x of � and then perform a lo
ally 
ontrolled a
tion. Fori > 0 (assuming that we have not already spanned all of �), we de�ne �i by beginning with�i�1:lstate , and using E2 either to span the entire suÆx of � starting from �0_ � � �_�i�1:ltime ,or to span a pre�x of that suÆx and then perform a lo
ally 
ontrolled a
tion.Now we 
onsider two 
ases:1. The 
onstru
tion ends after a �nite number of stages, having spanned all of �, say with�k as the last exe
ution fragment in the sequen
e.In this 
ase, the 
on
atenation �0 _ �1 _ � � �_ �k satis�es the 
onditions of the lemma.2. The 
onstru
tion pro
eeds through in�nitely many stages.In this 
ase, the exe
ution fragment � �= �0 _ �1 _ � � � 
ontains in�nitely many lo
ally
ontrolled a
tions. Sin
e A is progressive, it must be the 
ase that �:ltime = 1, andtherefore � d(I; U):ltime =1. Sin
e the set of traje
tories for U is a 
po, � d(I; U) � �.Sin
e � d(I; U) � �, and � d(I; U):ltime =1, it follows that � d(I; U) = �, as needed.The following theorem says that a progressive HIOA is 
apable of following not just indi-vidual input traje
tories, but entire input hybrid sequen
es.50



Theorem 7.2 Let A be a progressive HIOA, let x be a state of A, and let � be an (I; U)-sequen
e. Then there exists an exe
ution fragment � of A su
h that �:fstate = x and � d(I; U) =�.Proof: Let � = �0 a1 �1 a2 �2 : : :. We de�ne a �nite or in�nite sequen
e �0; �1; : : : of exe
utionfragments of A su
h that:1. �0:fstate = x.2. For every non�nal index i, �i:lstate = �i+1:fstate .3. For every i, (�0 _ �1 _ � � �_ �i) d(I; U) = �0 a1 �1 a2 �2 : : : �i.The 
onstru
tion is 
arried out re
ursively. To de�ne �0, we begin with x and use Lemma 7.1to span �0. For i > 0, we de�ne �i by starting with �i�1:lstate , using property E1 to performa
tion ai and move to a new state, and then using Lemma 7.1 to span �i.Let � = �0 _ �1 _ � � �. Then we use Lemma 3.8 to 
on
lude that � d(I; U) = �, as needed.The property asserted in Theorem 7.2 has been 
alled I/O feasibility elsewhere in theliterature [51℄. Thus, we de�ne a pre-HIOA to be I/O feasible provided that, for ea
h statex and ea
h (I; U)-sequen
e �, there is some exe
ution fragment � su
h that �:fstate = x and� d(I; U) = �. Theorem 7.2 may then be restated as:Corollary 7.3 Every progressive HIOA is I/O feasible.I/O feasibility implies that any �nite exe
ution fragment 
an be extended to an admissi-ble exe
ution in response to any admissible input from the environment. A related, weakerproperty that has also been studied is feasibility [℄. In terms of our model, we may say thata pre-HIOA is feasible provided that, for ea
h state x, there is some admissible exe
utionfragment � su
h that �:fstate = x.Feasibility implies that any �nite exe
ution fragment 
an be extended to some admissibleexe
ution fragment|no 
onstraints are imposed on the inputs. Observe that any I/O feasibleHIOA must be feasible, as long as the dynami
 type of ea
h input variable in
ludes at leastone admissible traje
tory. Feasibility should be regarded as a minimal liveness requirementthat any reasonable HIOA should satisfy. I/O feasibility is a strengthened version of feasibilitythat takes inputs into a

ount.Closure under 
omposition is easy to show:Theorem 7.4 If A1 and A2 are 
ompatible progressive pre-HIOAs, then their 
omposition isalso progressive. 51



Proof: Let A be A1kA2. Suppose for the sake of 
ontradi
tion that A has a lo
ally-Zenoexe
ution fragment �. Then � 
ontains either in�nitely many lo
ally 
ontrolled a
tions ofA1 or in�nitely many lo
ally 
ontrolled a
tions of A2. Suppose without loss of generalitythat � 
ontains in�nitely many lo
ally 
ontrolled a
tions of A1. Then, by Lemma 5.2 andthe de�nition of restri
tion, � d(A1; V1) is a time-bounded exe
ution fragment of A1 within�nitely many lo
ally 
ontrolled a
tions, that is, a lo
ally-Zeno exe
ution fragment of A1.This 
ontradi
ts the assumption that A1 is progressive.Example 7.5 Progressive and non-progressive pre-HIOAs: The Vehi
le HIOA is obvi-ously progressive be
ause it has no dis
rete a
tions. The Controller and Sensor HIOAs are pro-gressive be
ause their lo
ally 
ontrolled a
tions are separated in time. The Dis
reteControllerHIOA is not progressive, be
ause if report inputs arrive in a Zeno fashion, theDis
reteControllermay respond by performing suggest internal a
tions in a Zeno fashion. However, the 
ompo-sition SensorkDis
reteController is progressive.Consider a more nondeterministi
 version of Sensor , NSensor , that is allowed to performreport a
tions for any value of 
lo
k (� d), rather than just for 
lo
k = d. Formally, NSensoris identi
al to Sensor ex
ept that 
ondition 19 is dropped. NSensor is not progressive, be
auseit may perform in�nitely many report a
tions in �nite time. Also, the 
omposition of NSensorwith Dis
reteController is not progressive.7.2 StrategiesIn this subse
tion, we de�ne the notion of a \strategy", whi
h provides a way to resolve someof the nondeterministi
 
hoi
es in a pre-HIOA. We will use strategies in the next subse
tionto de�ne re
eptiveness.We de�ne a strategy for a pre-HIOA A to be an HIOA A0 that di�ers from A only in thatD0 � D and T 0 � T . That is, we require:� D0 � D.� T 0 � T .� W = W 0, X = X 0, Q = Q0, � = �0, E = E0, H = H 0, U = U 0, Y = Y 0, I = I 0, andO = O0.Our strategies are nondeterministi
 and memoryless. They serve to 
hoose some of the evolu-tions that are possible from ea
h state x of A. The fa
t that the state set Q0 of A0 is the sameas the state set Q of A implies that A0 
hooses evolutions from every state of A.Strategy notions have been used elsewhere in de�ning re
eptiveness, for example, in [16, 1,66℄; in this earlier work, strategies have been formalized using two-player games rather thanrestri
ted automata. 52



Lemma 7.6 If A0 is a strategy for A, then every exe
ution fragment of A0 is also an exe
utionfragment of A.Theorem 7.7 Let A1 and A2 be two 
ompatible pre-HIOAs with strongly 
ompatible strategiesA01 and A02, respe
tively. Then A01kA02 is a strategy for A1kA2.Proof: Let A denote A1kA2 and let A0 denote A01kA02. Sin
e A01 and A02 are strongly
ompatible, Theorem 6.11 implies that A0 is an HIOA. From the de�nitions of 
ompositionand strategy, A0 di�ers from A only in that D0 � D and T 0 � T . Then the de�nition ofstrategy implies that A0 is a strategy for A.Lemma 7.8 Let A1 and A2 be two 
ompatible pre-HIOAs with strongly 
ompatible strategiesA01 and A02, respe
tively. Then A1 and A2 are strongly 
ompatible.Proof: Let A denote A1kA2 and let A0 denote A01kA02. Theorem 7.7 implies that A0 is astrategy for A. Sin
e A01 and A02 are strongly 
ompatible, their 
omposition A0 satis�es E2.We show that also A satis�es E2.Let x 2 Q and let � 2 trajs(U ). Then sin
e A0 is a strategy for A, we have Q0 = Q andU 0 = U , and so x 2 Q0 and � 2 trajs(U 0). Sin
e A0 satis�es E2, there exists � 2 T 0 su
h that�:fstate = x, � # U 0 � �, and either � # U 0 = �, or else � is 
losed and some l 2 L0 is enabled(in A0) in �:lstate .Sin
e A0 is a strategy for A, it follows that also � 2 T , � # U � �, and either � # U = �,or else � is 
losed and some l 2 L is enabled (in A) in �:lstate . Therefore, A satis�es E2, thatis, A1 and A2 are strongly 
ompatible.Example 7.9 Strategy for nondeterministi
 sensor: The Sensor HIOA, as de�ned inExample 5.13, is a strategy for the NSensor HIOA de�ned in Example 7.5.7.3 Re
eptive HIOAsFinally, we de�ne a pre-HIOA to be re
eptive if it has a progressive strategy.Example 7.10 Re
eptive and non-re
eptive HIOAs: The NSensor HIOA of Example 7.5is not progressive, but it is re
eptive. That is be
ause the original Sensor HIOA, as de�ned inExample 5.13, is a progressive strategy for NSensor .The Dis
reteController HIOA is not re
eptive: be
ause any strategy for Dis
reteControllermust satisfy E1 and E2, su
h a strategy must be able to perform dis
rete steps in responseto any report input, and so must be 
apable of performing in�nitely many suggest a
tions in�nite time. 53



Consider a variant NDController of Dis
reteController that has its own 
lo
k and maywait any amount of time, up to a �xed d' (> 0), to respond to ea
h report input with a newsuggest . (Several reports may o

ur in su

ession; a single suggest may be used to handle allof them, as long as it o

urs within time d' of the �rst of these reports.) NDController isnot progressive, be
ause it has the option of responding immediately to reports, and thus maygenerate in�nitely many suggestions in �nite time. It is re
eptive, however, using a progressivestrategy that always waits the maximum allowed time before generating a suggestion.The two most important general properties of re
eptive HIOAs are expressed by the follow-ing two theorems. The �rst expresses nontriviality|that any re
eptive HIOA (or pre-HIOA)
an respond to any inputs from the environment. The se
ond theorem shows that re
eptivenessis preserved by 
omposition.Theorem 7.11 Every re
eptive pre-HIOA is I/O feasible.Proof: Let A be a re
eptive pre-HIOA. By de�nition of re
eptive, there exists a progressivestrategy A0 for A. Sin
e A0 is a progressive HIOA, Corollary 7.3 implies that A0 is I/O feasible.We show that also A is I/O feasible.Let x 2 Q and let � be an (I; U)-sequen
e. Then sin
e A0 is a strategy for A, we haveQ0 = Q, I 0 = I, and U 0 = U , and so x 2 Q0 and � is an (I 0; U 0)-sequen
e. Sin
e A0 is I/Ofeasible, there is some exe
ution fragment � of A0 su
h that �:fstate = x and � d(I 0; U 0) = �.By Lemma 7.6, � is also an exe
ution fragment of A. Sin
e A0 is a strategy for A, it followsthat � d(I; U) = �. Therefore, A is I/O feasible.Finally, we have our theorem about 
omposability of re
eptive HIOAs:Theorem 7.12 Let A1 and A2 be two 
ompatible re
eptive HIOAs with strongly 
ompatibleprogressive strategies A01 and A02, respe
tively. Then A1kA2 is a re
eptive HIOA satisfying withprogressive strategy A01kA02.Proof: Let A and A0 denote A1kA2 and A01kA02, respe
tively. The fa
t that A is an HIOAfollows from Lemma 7.8 and Theorem 6.11. Theorem 7.7 implies that A0 is a strategy for A.Theorem 7.4 and the fa
t that A01 and A02 are progressive implies that A0 is progressive. Thus,A is a re
eptive HIOA and A0 is a progressive strategy for A.Example 7.13 Composition of re
eptive sensor and re
eptive dis
rete 
ontroller:As noted in Example 7.10, both NSensor and NDController are re
eptive, using progres-sive strategies that always wait the maximum allowed amount of time. These two strategiesare strongly 
ompatible, by Theorem 6.17. Therefore, by Theorem 7.12, the 
ompositionNSensorkNDController is a re
eptive HIOA with a progressive strategy that is the 
omposi-tion of the two progressive strategies for the two pie
es.54



8 Con
lusionsIn this paper, we have de�ned a new hybrid I/O automaton (HIOA) modeling frameworkfor des
ribing and reasoning about the behavior of hybrid systems. Many future resear
hdire
tions remain.First, the expressive and analyti
al power of the new model should be tested further byusing it to des
ribe and analyze many more examples. These should in
lude many of theexamples that have been used as illustrations elsewhere in the hybrid systems literature. Theautomated transportation examples studied using the previous version of the HIOA modelshould be revisited using the new model to see what 
hanges arise, and new and more ambitious
ase studies should be attempted.It would be interesting to de�ne and prove formal relationships between the HA and HIOAmodels of this paper and other models of hybrid systems, in
luding those of [56, 2, 10, 6, 11, 32℄.Also, one 
an de�ne a timed input/output automaton model by simply restri
ting the HIOAmodel of this paper so that it does not in
lude any external variables. It remains to 
onsiderthe formal relationship between this model and other timed automaton models, for example,those of [1, 4, 52, 66, 58℄.It would also be useful to in
orporate additional analysis methods, in
luding assume-guarantee reasoning [12, 30℄ and a variety of methods from 
ontrol theory, into the HIOAframework. Control theory methods to 
onsider should in
lude Lyapunov stability analysismethods [71℄ and robust 
ontrol methods [18℄. Results about these methods should be formu-lated in terms of HIOAs, and the methods should be extended where ne
essary in order toa

ommodate a 
ombination of dis
rete and 
ontinuous behavior.Other extensions of the HIOA framework are also desirable. In some prior work (e.g.,[16, 1, 66℄), strategies are used to des
ribe how a system intera
ts with its environment toguarantee that the out
ome of the intera
tion satis�es a target liveness property. In this paper,we do not 
onsider general liveness properties, but only the spe
ial 
ase of admissibility. Itremains to extend the theory to more general liveness properties. Another important extensionwould be the addition of probabilities, whi
h would make it possible to model and analyzeprobabilisti
 hybrid systems. Su
h an extension 
ould be used, for example, to prove boundson the probability of errors in safety-
riti
al real-time systems. This extension appears to bea very 
hallenging problem.Other future work involves developing language and tool support for manipulating repre-sentations of hybrid I/O automata.Referen
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A Notational Conventionsa; b a
tionf; g; h fun
tioni; j indexl lo
ally 
ontrolled a
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al variablesx statev valuation
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A, B, C hybrid (I/O) automatonD set of dis
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e
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e� the empty sequen
e� proje
tion fun
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