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ular, the dual use of external variables for dis
rete and 
ontin-uous 
ommuni
ation. We present a new HIOA model that is simplerthan the earlier model, due to a 
learer separation between dis
rete and
ontinuous a
tivity.1 Introdu
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s, and 
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s. Motivated by a desire to des
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h appli
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omputer s
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ient 
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In this paper, we present a new hybrid I/O automaton model that is 
on-siderably simpler than the earlier model, yet supports similar des
ription andanalysis methods and similar re
eptivity theorems. The main simpli�
ation is a
learer separation between the notions of dis
rete and 
ontinuous 
ommuni
a-tion. We arrived at this separation as a result of re
onsidering the relationshipbetween the 
omputer s
ien
e notion of shared variable 
ommuni
ation and the
ontrol theory notion of 
ontinuous 
ow a
ross 
omponent boundaries.Levels of abstra
tion, 
ompositionality, and re
eptiveness for hybrid systemshave also been addressed by Alur and Henzinger [2, 3℄ in their work on rea
tivemodules. However, rea
tive modules 
ommuni
ate only via shared variables, andnot via shared a
tions. In [3℄, a de�nition of re
eptiveness similar to the one in[15, 16℄ is proposed, and is shown to be preserved by 
omposition. However, in [3℄,no 
ir
ular dependen
ies (\feedba
k loops") are allowed among the 
ontinuousvariables of the 
omponents, a restri
tion that greatly simpli�es the analysis.The rest of this paper is organized as follows. Se
tion 2 de�nes notions thatare useful for des
ribing the behavior of hybrid systems: traje
tories and hy-brid sequen
es. Se
tion 3 
ontains the theory for the hybrid automaton (HA)model, whi
h has all of the stru
ture of the HIOA model ex
ept for the divisionof external a
tions and variables into inputs and outputs. Se
tion 4 introdu
esinputs and outputs, and presents the basi
 theory for HIOAs. Se
tion 5 presentsthe new theory of re
eptiveness, in
luding the main theorem, Theorem 7, statingthat re
eptiveness is preserved by 
omposition under 
ertain 
ompatibility 
ondi-tions. Se
tion 6 des
ribes suÆ
ient 
onditions for these 
ompatibility 
onditionsto hold, and in parti
ular, des
ribes Lips
hitz automata.2 Des
ribing Hybrid BehaviorIn this se
tion, we give basi
 de�nitions that are useful for des
ribing dis
rete and
ontinuous system behavior, in
luding dis
rete and 
ontinuous state 
hanges,and dis
rete and 
ontinuous 
ow of information over 
omponent boundaries.Throughout this paper, we �x a time axis T, whi
h is a 
ompa
t subgroup of(R;+), the real numbers with addition.2.1 Stati
 and Dynami
 TypesWe assume a universal set V of variables. A variable represents either a lo
ationwithin the state of a system 
omponent, or a lo
ation where information 
owsfrom one system 
omponent to another. For ea
h variable, we assume both a(stati
) type, whi
h gives the set of values it may assume, and a dynami
 type,whi
h gives the set of traje
tories it may follow. Our motivation for introdu
ingdynami
 types is that this allows us to de�ne input enabling for hybrid I/Oautomata: if v is an input variable of HIOA A then, roughly speaking, we requirethat A a

epts ea
h input signal on v, as long as it respe
ts the dynami
 typeof v. Sin
e we are in a hybrid setting where dis
rete transitions may 
hange thestate at any time, elements of a dynami
 type may 
ontain (
ountably many)\dis
ontinuities". Formally, we assume for ea
h variable v:



{ type(v), the (stati
) type of v. This is a set of values.{ dtype(v), the dynami
 type of v. This is a set of fun
tions from left-
losedintervals of T to type(v) that is 
losed under the following operations:1. (Time shift) For ea
h f 2 dtype(v) and t 2 T, f + t 2 dtype(v). Heref + t is the fun
tion given by (f + t) (t0) = f(t0 � t).2. (Subinterval) For ea
h f 2 dtype(v) and ea
h left-
losed interval J �dom(f), f d J 2 dtype(v). Here f d J is the fun
tion obtained byrestri
ting the domain of f to J .3. (Pasting) For ea
h sequen
e f0; f1; f2; : : : of fun
tions in dtype(v) su
hthat (a) the domain of ea
h fi, ex
ept possibly for the last one, is right-
losed, (b) for ea
h non�nal index i, max(dom(fi)) = min(dom(fi+1)),the fun
tion f given by f(t) �= fi(t), where i is the smallest index witht 2 dom(fi), is in dtype(v).Example 1. For any variable v, the set C of 
onstant fun
tions from a left-
losedinterval to type(v) is 
losed under time shift and subintervals. If the dynami
type of v is obtained by 
losing C under the pasting operation, then v is 
alleda dis
rete variable, as in [19℄. If we take T = R and type(v) = R, then otherexamples of dynami
 types 
an be obtained by taking the pasting 
losure of theset of 
ontinuous or smooth fun
tions, the set of integrable fun
tions, or the setof measurable lo
ally essentially bounded fun
tions. The set of all fun
tions fromleft-
losed intervals of R to R is also a dynami
 type.In pra
ti
e, dynami
 types are often de�ned via pasting 
losure of a 
lass of
ontinuous fun
tions. In these 
ases the elements of dynami
 types are 
ontinuousfrom the left. Elsewhere in the literature on hybrid systems one often en
ountersfun
tions that are 
ontinuous from the right (see, e.g., [8℄). To some extent,the 
hoi
e of how to de�ne fun
tion values at dis
ontinuities is arbitrary. Anadvantage of our 
hoi
e is a ni
e 
orresponden
e between 
on
atenation andpre�x ordering of traje
tories (see Lemma 2). In the rest of this paper, when wesay that the dynami
 type of a variable v equals S, we a
tually mean that thedynami
 type of v is obtained by applying the above 
losure operations to S.2.2 Traje
toriesIn this subse
tion, we de�ne the notion of a traje
tory, de�ne operations ontraje
tories, and prove simple properties of traje
tories and their operations. Atraje
tory is used to model the evolution of a 
olle
tion of variables over aninterval of time.Basi
 De�nitions Let V be a set of variables, that is, a subset of V. A valuationv for V is a fun
tion that asso
iates to ea
h variable v 2 V a value in type(v).We write val(V ) for the set of valuations for V . Let J be a left-
losed intervalof T with left endpoint equal to 0. Then a J-traje
tory for V is a fun
tion� : J ! val(V ), su
h that for ea
h v 2 V , � # v 2 dtype(v). Here � # v is thefun
tion with domain J de�ned by (� # v)(t) = �(t)(v).



We say that a J-traje
tory is �nite if J is a �nite interval, 
losed if J is a(�nite) 
losed interval, and full if J = T�0. A traje
tory for V is a J-traje
toryfor V , for any J . We write trajs(V ) for the set of all traje
tories for V . ForT a set of traje
tories, �nite(T ), 
losed(T ) and full(T ) denote the subsets of�nite, 
losed and full traje
tories in T , respe
tively. A traje
tory with domain[0; 0℄ is 
alled a point traje
tory. If v is a valuation then }(v) denotes the pointtraje
tory that maps 0 to v.If � is a traje
tory then �:ltime , the limit time of � , is the supremum ofdom(�). Similarly, we de�ne �:fval , the �rst valuation of � , to be �(0), and if� is 
losed, we de�ne �:lval , the last valuation of � , to be �(�:ltime). For � atraje
tory and t 2 T�0, we de�ne � � t �= � d [0; t℄, � � t �= � d [0; t), and� � t �= (� d [t;1))� t. Note that the result of applying the above operations isalways a traje
tory, ex
ept when the result is a fun
tion with an empty domain.By 
onvention, � �1 �= � and � �1 �= � .Pre�x Ordering Traje
tory � is a pre�x of traje
tory �, denoted by � � �,if � 
an be obtained by restri
ting � to a non-empty, downward 
losed subsetof its domain. Formally, � � � i� � = � d dom(�). For T a set of traje
toriesfor V , pref (T ) denotes the pre�x 
losure of T . We say that T is pre�x 
losed ifT = pref (T ).The following lemma gives a simple domain theoreti
 
hara
terization of theset of traje
tories over a given set V . (See [7℄ for basi
 de�nitions and results on
omplete partially ordered sets, (
po's)).Lemma 1. Let V be a set of variables. Then the set trajs(V ) of traje
toriesfor V , together with the pre�x ordering �, is an algebrai
 
po whose 
ompa
telements are the 
losed traje
tories.Con
atenation The 
on
atenation of two traje
tories is obtained by taking theunion of the �rst traje
tory and the fun
tion obtained by shifting the domainof the se
ond traje
tory until the start time agrees with the limit time of the�rst traje
tory; the last valuation of the �rst traje
tory, whi
h may not be thesame as the �rst valuation of the se
ond traje
tory, is the one that appears inthe 
on
atenation. Formally, let �; � be traje
tories, with � 
losed. Then the
on
atenation is the fun
tion given by � _ � �= � [ (� d (0;1)+ �:ltime). Usingthe 
losure of dynami
 types under time shift and pasting, it follows that � _ �is a traje
tory. Observe that � _ � is �nite (resp. 
losed, full) i� � is �nite (resp.
losed, full). Observe also that 
on
atenation is asso
iative.The following lemma, whi
h is easy to prove, shows the 
lose 
onne
tionbetween 
on
atenation and the pre�x ordering.Lemma 2. Let �; � be traje
tories with � 
losed. Then � � � i� there exists atraje
tory � 0 su
h that � _ � 0.Note that if � � �, then the traje
tory � 0 su
h that � = � _ � 0 is unique ex
eptthat it has an arbitrary value for � 0:fval . Note also that the \(" impli
ation



would not hold if the �rst valuation of the se
ond argument, rather than the lastvaluation of the �rst argument, were used in the 
on
atenation.Using a limit 
onstru
tion, we 
an generalize the de�nition of 
on
atenationfor any (�nite or 
ountably in�nite) number of arguments. Let �0; �1; �2; : : : be a(�nite or in�nite) sequen
e of traje
tories, su
h that �i is 
losed for ea
h non�nalindex i. De�ne traje
tories � 00; � 01; � 02; : : : by � 0i �= �0 _ �1 _ � � � _ �i. We de�nethe 
on
atenation �0 _ �1 _ �2 : : : to be limi!1 � 0i . It is easy to prove that�0 _ �1 _ �2 : : : is a traje
tory.2.3 Hybrid Sequen
esIn this subse
tion, we introdu
e the notion of a hybrid sequen
e, whi
h is usedto model a 
ombination of 
hanges that o

ur instantaneously and 
hanges thato

ur over intervals of time. Our de�nition is parameterized by a set A of a
tions,whi
h are used to model instantaneous 
hanges and instantaneous syn
hroniza-tion with the environment, and a set V of variables, whi
h are used to model
hanges over intervals and 
ontinuous intera
tion. We also de�ne some spe
ialkinds of hybrid sequen
es and operations on hybrid sequen
es.Basi
 De�nitions An (A; V )-sequen
e is a �nite or in�nite alternating sequen
e� = �0 a1 �1 a2 �2 � � �, where (1) ea
h �i is a traje
tory in trajs(V ), (2) ea
h ai isan a
tion in A, (3) if � is a �nite sequen
e then it ends with a traje
tory, and(4) if �i is not the last traje
tory in � then dom(�i) is 
losed. We de�ne a hybridsequen
e to be an (A; V )-sequen
e for some A and V .Sin
e the traje
tories in a hybrid sequen
e 
an be point traje
tories, ournotion of hybrid sequen
e allows a sequen
e of dis
rete a
tions to o

ur at thesame real time, with 
orresponding 
hanges of state.If � is a hybrid sequen
e, with notation as above, then we de�ne the �rstvaluation of �, �:fval , to be �0:fval , and we de�ne the limit time of �, �:ltime ,to be Pi �i:ltime. A hybrid sequen
e � is de�ned to be:{ time-bounded if �:ltime is �nite.{ admissible if �:ltime =1.{ 
losed if � is a �nite sequen
e and the domain of its �nal traje
tory is a
losed interval. In this 
ase we de�ne the last valuation of �, �:lval , to belast(�):lval .{ Zeno if � is neither 
losed nor admissible, that is, if � is time-bounded and iseither an in�nite sequen
e, or else a �nite sequen
e ending with a traje
torywhose domain is right-open.Pre�x Ordering We say that (A; V )-sequen
e � = �0 a1 �1 : : : is a pre�x of(A; V )-sequen
e �0 = � 00 a01 � 01 : : :, denoted by � � �0, if either � = �0, or � is a�nite sequen
e ending in some �k; �i = � 0i , and ai+1 = a0i+1 for every i, 0 � i < k;and �k � � 0k. Like the set of traje
tories over V , the set of (A; V )-sequen
es is a
po.



Lemma 3. The set of (A; V )-sequen
es together with the pre�x ordering � isan algebrai
 
po with as 
ompa
t elements the set of 
losed (A; V )-sequen
es.Restri
tion Let A;A0 be sets of a
tions and V; V 0 sets of variables. The (A0; V 0)-restri
tion of an (A; V )-sequen
e is obtained by proje
ting the traje
tories on thevariables in V 0, removing the a
tions not in A0, and 
on
atenating the adja
enttraje
tories.Lemma 4. Restri
tion is a 
ontinuous operation with respe
t to pre�x ordering.Con
atenation Suppose � and �0 are (A; V )-sequen
es, with � 
losed. Thenthe 
on
atenation is the (A; V )-sequen
e given by�_ �0 �= init(�) (last(�) _ head (�0)) tail(�0):(If � is a nonempty sequen
e then head (�) denotes the �rst element of � andtail(�) denotes � with its �rst element removed; if � is �nite, then last(�) denotesthe last element of � and init(�) denotes � with its last element removed.)Lemma 5. Let �; �0 be (A; V )-sequen
es with � 
losed. Then � � �0 i� thereexists and (A; V )-sequen
e �00 su
h that �0 = �_ �00.Note that if � � �0, then the (A; V )-sequen
e �00 su
h that �0 = �_�00 is uniqueex
ept that it has an arbitrary value in val(V ) for �00:fval .Based on Lemma 5 and Lemma 3, we 
an extend 
on
atenation to in�nitelymany (A; V )-sequen
es as follows. Let �1; �2; : : : be an in�nite sequen
e of 
losed(A; V )-sequen
es. Then de�ne the 
on
atenation �1 _ �2 _ � � � to be limi!1 �0i,where �0i = �1 _ �2 _ � � �_ �i.3 Hybrid AutomataAs a preliminary step toward de�ning hybrid I/O automata, we �rst de�ne aslightly more general hybrid automaton model. Hybrid automata 
lassify a
tionsas external and internal, but do not further subdivide the external a
tions intoinput and output a
tions. Likewise, they 
lassify variables as external and inter-nal. The input/output distin
tion is added in Se
tion 4. In addition to de�ninghybrid automata, we here de�ne an implementation relation between hybridautomata and a 
omposition operation.3.1 De�nition of Hybrid AutomataA hybrid automaton (HA) A = (W;X;�;E;H;D; T ) 
onsists of:{ A set W of external variables and a set X of internal variables, disjoint fromea
h other. We 
all a valuation x for X a state, and we refer to val(X) asthe set of states of A. We write V �=W [X . Given a valuation v for V , wedenote by state(v) the state v d X .



{ A nonempty set � � val (X) of start states .{ A set E of external a
tions and a set H of internal a
tions , disjoint fromea
h other. We write A �= E [H and let a; b; : : : range over A.{ A set D � val (X) � A � val (X) of dis
rete transitions. We use x a!A x0as shorthand for (x; a;x0) 2 D. We sometimes drop the subs
ript, and writex a! x0, when A should be 
lear from the 
ontext.{ A set T of traje
tories for V . Given a traje
tory � 2 T we denote �:fval d Xby �:fstate , and, if � is 
losed, �:lval d X by �:lstate . We require that thefollowing axioms hold:T1 (Pre�x 
losure) For every � 2 T and every � 0 � � , � 0 2 T .T2 (SuÆx 
losure) For every � 2 T and every t 2 dom(�), � � t 2 T .T3 (Con
atenation 
losure) Let �0; �1; �2; : : : be a sequen
e of traje
toriesin T su
h that, for ea
h non�nal index i, �i is 
losed and �i:lstate =�i+1:fstate . Then �0 _ �1 _ �2 : : : 2 T .Axioms T1-3 express some natural 
losure properties on the set of traje
toriesthat we need for our results about parallel 
omposition. In a 
omposed system,any traje
tory of any 
omponent may be interrupted at any moment by a dis-
rete transition of another 
omponent. Axiom T1 ensures that the part of thetraje
tory up to the dis
rete transition is a traje
tory, and axiom T2 ensuresthe remainder is a traje
tory. Axiom T3 is required be
ause the environment ofa hybrid automaton, as a result of internal dis
rete transitions, may 
hange its
ontinuous dynami
s repeatedly, and the automaton must be able to follow thisbehavior. Even without performing dis
rete transitions itself, a hybrid automa-ton must be able to follow this type of behavior of its environment. In the earlierde�nition of hybrid automata presented in [15, 16℄, we used a spe
ial stutteringa
tion e in pla
e of axiom T3; this gave rise to te
hni
al 
ompli
ations.Another major di�eren
e between our new de�nition and the earlier one isthat the external variables are no longer 
onsidered to be part of the state; thus,for instan
e, the dis
rete transitions do not depend on the values of these vari-ables. Analogous to the way in whi
h external a
tions 
an be used to modelsyn
hronization of dis
rete transitions of di�erent 
omponents, external vari-ables allow us to model syn
hronization of 
ontinuous a
tivity (\
ow") between
omponents. Be
ause the external a
tions and external variables are not part ofthe state, we think of them as \ephemeral".We often denote the 
omponents of a HA A by WA, XA, �A, EA, et
, andthe 
omponents of a HA Ai by Wi, Xi, �i, Ei, et
. We sometimes omit thesesubs
ripts, where no 
onfusion seems likely.3.2 Exe
utions and Tra
esWe now de�ne exe
ution fragments, exe
utions, tra
e fragments, and tra
es,whi
h are used to des
ribe automaton behavior.An exe
ution fragment of a HA A is an (A; V )-sequen
e � = �0 a1 �1 a2 �2 � � �,where (1) ea
h �i is a traje
tory in T , and (2) if �i is not the last traje
tory in



� then �i:lstate ai+1! �i+1:fstate . An exe
ution fragment re
ords all the instanta-neous, dis
rete state 
hanges that o

ur during a spe
i�
 evolution of a system,as well as the state 
hanges and external variable 
hanges that o

ur while timeadvan
es. We write fragsA for the set of all exe
ution fragments of A.If � is an exe
ution fragment, with notation as above, then we de�ne the �rststate of �, �:fstate , to be state(�:fval ), or equivalently, �0:fstate . An exe
utionfragment � is de�ned to be an exe
ution if �:fstate is a start state, that is, is in�. We write exe
sA for the set of all exe
utions of A.If � is a 
losed exe
ution fragment then we de�ne the last state of �, �:lstate ,to be state(�:lval ), or equivalently, last(�):lstate . A state of A is rea
hable if itis the last state of some 
losed exe
ution of A.Lemma 6. Let � and �0 be exe
ution fragments of A with � 
losed, and su
hthat �:lstate = �0:fstate. Then �_ �0 is an exe
ution fragment of A.Lemma 7. Let � and �0 be exe
ution fragments of A with � 
losed. Then � � �0i� there is an exe
ution fragment �00 su
h that �0 = �_ �00.The tra
e of an exe
ution fragment re
ords the external a
tions and theevolution of external variables. Formally, if � is an exe
ution fragment, then thetra
e of �, denoted by tra
e(�), is the (E;W )-restri
tion of �. A tra
e fragmentof a hybrid automaton A from a state x of A is a tra
e that arises from anexe
ution fragment of A whose �rst state is x. We write tra
efragsA(x) for theset of tra
e fragments of A from x. Also, we de�ne a tra
e of A to be a tra
efragment from an initial state, that is, a tra
e that arises from an exe
ution ofA, and write tra
esA for the set of tra
es of A.Hybrid automata A1 and A2 are 
omparable if they have the same externala
tions and variables, that is, if W1 = W2 and E1 = E2. If A1 and A2 are
omparable then we say that A1 implements A2, denoted by A1 � A2, if thetra
es of A1 are in
luded among those of A2, that is, if tra
esA1 � tra
esA2 .3.3 Simulation RelationsLet A and B be 
omparable HAs. A simulation from A to B is a relation R �val(XA)� val (XB) satisfying the following 
onditions, for all states xA and xBof A and B, respe
tively:1. If xA 2 �A then there exists a state xB 2 �B su
h that xA R xB .2. If xA R xB , xA a!A x0A and � = tra
e(}(xA) a }(x0A)), then B has a
losed exe
ution fragment � with �:fstate = xB , tra
e(�) = tra
e(�), andx0A R �:lstate .3. If xA R xB and � is a 
losed traje
tory of A with xA = �:fstate and x0A =�:lstate , then B has a 
losed exe
ution fragment � with �:fstate = xB ,tra
e(�) = tra
e(�), and x0A R �:lstate .Lemma 8. Let A and B be 
omparable HAs, and let R be a simulation fromA to B. Let xA and xB be states of A and B, respe
tively, su
h that xA R xB.Then tra
efragsA(xA) � tra
efragsB(xB).



Theorem 1. Let A and B be 
omparable HAs, and let R be a simulation fromA to B. Then tra
esA � tra
esB.3.4 CompositionWe now introdu
e the operation of 
omposition for hybrid automata, whi
hallows an automaton representing a 
omplex system to be 
onstru
ted by 
om-posing automata representing individual system 
omponents. We prove that the
omposition operation respe
ts our implementation relationship (in
lusion of setsof tra
es). Our 
omposition operation identi�es a
tions and variables with thesame name in di�erent 
omponent automata. When any 
omponent automatonperforms a step involving an a
tion a, so do all 
omponent automata that havea in their signatures. Common variables are shared among the 
omponents.We de�ne 
omposition as a partial, binary operation on hybrid automata.Sin
e internal a
tions of an automaton A1 are intended to be unobservable byany other automaton A2, we do not allow A1 to be 
omposed with A2 unlessthe internal a
tions of A1 are disjoint from the a
tions of A2. Also, we requiredisjointness of the internal variables of A1 and the variables of A2. Formally,we say that hybrid automata A1 and A2 are 
ompatible if for i 6= j, Xi \ Vj =Hi \ Aj = ;. If A1 and A2 are 
ompatible then their 
omposition A1kA2 isde�ned to be the stru
ture A = (W;X;�;E;H;D; T ) where{ W =W1 [W2, X = X1 [X2, E = E1 [ E2, H = H1 [H2.{ � = fx 2 val(X) j x d X1 2 �1 ^ x d X2 2 �2g.{ For ea
h x;x0 2 val(X) and ea
h a 2 A, x a!A x0 i� for i = 1; 2, either (1)a 2 Ai and x d Xi a!i x0 d Xi, or (2) a 62 Ai and x d Xi = x0 d Xi.{ T � trajs(V ) is given by � 2 T , � # V1 2 T1 ^ � # V2 2 T2.Proposition 1. A1kA2 is a hybrid automaton.Theorem 2. Suppose A1;A2 and B are HAs with A1 � A2, and suppose thatea
h of A1 and A2 is 
ompatible with B. Then A1kB � A2kB.In the full version of this paper, we de�ne two natural hiding operations onHAs, whi
h hide external a
tions and external variables, respe
tively, and provethat these operations also respe
t the implementation preorder.4 Hybrid I/O AutomataIn this se
tion we spe
ialize the hybrid automaton model of Se
tion 3 by addinga distin
tion between input and output.4.1 De�nition of Hybrid I/O AutomataA hybrid I/O automaton (HIOA) A is a tuple (H; U; Y; I; O) where{ H = (W;X;�;E;H;D; T ) is a hybrid automaton.



{ U and Y partitionW into input and output variables, respe
tively. Variablesin Z �= X [ Y are 
alled lo
ally 
ontrolled ; as before we write V �=W [X .{ I and O partition E into input and output a
tions , respe
tively. A
tions inL �= H [O are 
alled lo
ally 
ontrolled ; as before we write A �= E [H .{ The following additional axioms are satis�ed:E1 (Input a
tion enabling)For all x 2 val (X) and all a 2 I there exists x0 su
h that x a! x0.E2 (Input 
ow enabling)For all x 2 val(X) and � 2 trajs(U ), there exists � 2 T su
h that�:fstate = x; � # U � �, and either1. � # U = �, or2. there exist t 2 dom(�) and l 2 L su
h that l is enabled from �(t).Input a
tion enabling is the input enabling 
ondition of ordinary I/O automata.Input 
ow enabling is a new 
orresponding 
ondition for 
ontinuous intera
tion.It says that an HIOA should be able to a

ept any 
ontinuous input 
ow, eitherby letting time advan
e for the entire duration of the input 
ow, or by rea
tingwith a lo
ally 
ontrolled a
tion after some part of the input 
ow has o

urred.An exe
ution of an HIOA A is an exe
ution of HA. Similarly, a tra
e of Ais a tra
e of HA. Two HIOAs A1 and A2 are 
omparable if their inputs andoutputs 
oin
ide, that is, if I1 = I2, O1 = O2, U1 = U2, and Y1 = Y2. If A1 andA2 are 
omparable, then A1 � A2 is de�ned to mean that the tra
es of A1 arein
luded among those of A2: A1 � A2 �= tra
esA1 � tra
esA2 . If A1 and A2 are
omparable HIOAs then H1 and H2 are 
omparable and A1 � A2 i� H1 � H2.The de�nition of simulation for HIOAs is the same as for HAs, and thesoundness result 
arries over immediately to the enri
hed setting.4.2 CompositionThe de�nition of 
omposition for HIOAs builds on the 
orresponding de�nitionfor HAs, but also takes the input/output stru
ture into a

ount. Just as in thede�nition of 
ompatibility for HAs, we do not allow an HIOA A1 to be 
omposedwith an HIOA A2 unless the internal a
tions and variables of A1 are disjointfrom the a
tions and variables, respe
tively, of A2. In addition, in order thatthe 
omposition operation might satisfy ni
e properties (su
h as Theorem 7), werequire that at most one 
omponent automaton \
ontrols" any given a
tion orvariable; that is, we do not allow A1 and A2 to be 
omposed unless the sets ofoutput a
tions of A1 and A2 are disjoint and the sets of output variables of A1and A2 are disjoint.If A1 and A2 are 
ompatible then their 
omposition A1kA2 is de�ned to bethe tuple A = (H; U; Y; I; O) where H = H1kH2, U = (U1 [ U2) � (Y1 [ Y2),Y = Y1 [ Y2, I = (I1 [ I2)� (O1 [ O2), and O = O1 [ O2.The de�nition of 
ompatibility given above is not quite strong enough toimply that the 
omposition of two HIOAs is a
tually an HIOA. Thus, we de-�ne a stronger notion and say that 
ompatible HIOAs A1 and A2 are strongly
ompatible if A1kA2 satis�es axiom E2. Strong 
ompatibility implies that the



rea
tion of the 
omposed automaton to any input 
ow � must be the result of adeliberate rea
tion by either A1 or A2. That is, either both A1 and A2 a

ept �in its entirety, or one of the two rea
ts with a lo
ally 
ontrolled a
tion. No \timedeadlo
k" is allowed due to in
ompatible rea
tions of A1 and A2.Proposition 2. The 
omposition of two strongly 
ompatible HIOAs is an HIOA.Theorem 3. Suppose A1;A2 and B are HIOAs with A1 � A2, and ea
h of A1and A2 is strongly 
ompatible with B. Then A1kB � A2kB.5 Re
eptive Hybrid I/O AutomataIn this se
tion we adapt the notion of re
eptiveness [20℄ to our new framework.Informally speaking, a system is re
eptive provided that it admits a strategy forresolving its nondeterministi
 
hoi
es that never generates in�nitely many lo
ally
ontrolled a
tions in �nite time. An important 
onsequen
e of this de�nition isthat a re
eptive HIOA has some response de�ned for any sequen
e of dis
reteand 
ontinuous input. We show that re
eptiveness is 
losed under 
omposition.Be
ause of the improvements in our new model, the treatment of re
eptivenessin this paper is simpler than that in [20℄; however, we only address admissibilityhere, and not general liveness properties as in [20℄.An exe
ution fragment of an HIOA is lo
ally-Zeno if it is Zeno and 
ontainsin�nitely many lo
ally 
ontrolled a
tions. An HIOA A is lo
ally-Zeno if it hasat least one lo
ally-Zeno exe
ution fragment. In the rest of the paper we will beinterested mainly in non-lo
ally-Zeno HIOAs, that is, HIOAs that are not lo
ally-Zeno. We use non-lo
ally-Zeno HIOAs as the basis for de�ning re
eptiveness.Theorem 4. Let A1, A2 be strongly 
ompatible non-lo
ally-Zeno HIOAs. ThenA1kA2 is also non-lo
ally-Zeno.Theorem 5. Let A be a non-lo
ally-Zeno HIOA. Then, for ea
h (I; U)-sequen
e� and ea
h state x, there is an exe
ution fragment � of A su
h that (1) �:fstate =x, (2) � d (I; U) = �.The property stated in Theorem 5 is known in the literature as I/O feasi-bility [17℄; it implies that any �nite exe
ution 
an be extended to an admissibleexe
ution, no matter what the environment does.A strategy for an HIOA A is an HIOA A0 that di�ers fromA only in that D0 �D and T 0 � T . A strategyA0 for an HIOA A 
an be viewed as a nondeterministi
memoryless strategy in the sense of [5, 20℄ that 
hooses some of the evolutionsthat are possible from ea
h of the states of A. The fa
t that the states of A andA0 are the same ensures that A0 
hooses evolutions for every state x of A.We say that an HIOA is re
eptive if it has a non-lo
ally-Zeno strategy.Theorem 6. A re
eptive HIOA is I/O feasible.Theorem 7. Let A1 and A2 be two 
ompatible re
eptive HIOAs with two strongly
ompatible non-lo
ally-Zeno strategies A01 and A02, respe
tively. Then A1kA2 isa re
eptive HIOA with non-lo
ally-Zeno strategy A01kA02.



6 SuÆ
ient Conditions for Strong CompatibilityIn order to apply Theorem 7, one has to establish that two strategies are strongly
ompatible. This is diÆ
ult in general sin
e it requires 
he
king 
ompatibilitybetween the 
ontinuous dynami
s of two systems. However, for 
ertain restri
ted
lasses of HIOAs, strong 
ompatibility follows dire
tly from 
ompatibility.6.1 HIOAs with Restri
tions on Input VariablesOur �rst example is the 
lass of HIOAs without input variables. It is routine toverify that two HIOAs without input variables are strongly 
ompatible i� theyare 
ompatible. From the perspe
tive of 
lassi
al 
ontrol theory a system withoutinput variables is uninteresting be
ause it 
annot be 
ontrolled; in a hybridsetting, however, a system without input variables 
an still intera
t with itsenvironment via dis
rete input a
tions. Linear hybrid automata [1℄, for instan
e,have no input variables.Another example is the 
lass of autisti
 HIOAs|those for whi
h the valuesof output variables do not depend on the values of input variables. Formally,an HIOA A is 
alled autisti
 if for all � 2 T and all � 2 trajs(U ) su
h thatdom(�) = dom(�) there exists � 0 2 T su
h that � 0 # U = � and � 0 # Y = � # Y .6.2 Lips
hitz HIOAsIn this se
tion, we de�ne Lips
hitz HIOAs , based on systems of di�erential equa-tions using Lips
hitz fun
tions. We give examples of 
onditions on 
lasses ofLips
hitz HIOAs that imply strong 
ompatibility. The ideas are derived frommethods in the literature on 
ontrol theory [21℄. In 
ontrol theory, 
ontinuoussystem behavior is typi
ally de�ned using di�erential equations of the form:D �= � :x = f(x; u)y = g(x)where u; y, and x are the ve
tors of input, output, and state variables, respe
-tively, together with a starting 
ondition of the form x(0) = x0.To ensure that the system's behavior is de�ned, the di�erential equationsmust admit a solution for ea
h possible starting 
ondition. The following theoremfrom 
al
ulus gives suÆ
ient 
onditions for a solution to exist.Theorem 8 (Lo
al existen
e). If f is globally Lips
hitz and u is C1, then forea
h starting 
ondition x(0) = x0 there is a unique solution to the equations ofD, de�ned on a maximal neighborhood of 0, su
h that x(0) = x0.Observe that, sin
e the set of globally Lips
hitz fun
tions is 
losed under 
om-position, the lo
al existen
e theorem is valid also when the variables u are theresult of a globally Lips
hitz fun
tion applied to a C1 fun
tion.Suppose two intera
ting systems are des
ribed by sets of equations D1 andD2 of the form given above. Then their 
ombined behavior 
an be des
ribed by



the union of the sets of equations D1 and D2. It is easy to show that, if thefun
tions o

urring in D1 and D2 are globally Lips
hitz, and D1 and D2 donot have any 
ommon output and state variables, then the union of these twosets of equations is expressible in the same form with fun
tions that are globallyLips
hitz. Thus, in this 
ase no additional ma
hinery is needed to prove thatthe behavior of the intera
ting systems is well de�ned. We de�ne a set D ofequations to be Lips
hitz if fun
tions f and g are globally Lips
hitz.To extend the above ideas to the hybrid 
ase we de�ne the notion of a Lips-
hitz HIOA. An HIOA A is Lips
hitz if there is a subset M of its state variables(we 
all these the mode variables) su
h that:L1 The dynami
 type of ea
h variable in M is pie
ewise 
onstant.L2 The dynami
 type of ea
h variable not in M is a subset of the set of real-valued fun
tions de�ned on left-
losed intervals of the reals that 
an beexpressed in the form h(
(�)) where h is a globally Lips
hitz fun
tion and 
is a C1 fun
tion, 
losed under pasting.L3 The values of the M variables are 
onstant in ea
h traje
tory of T .L4 For ea
h valuation m of M there is a Lips
hitz system of equations Dmwith input variables U , output variables Y , and state variables X �M su
hthat the following holds: If traje
tory � of T starts from a state x withx dM =m, then � d V �M is expressible as the 
on
atenation of 
ountablymany traje
tories �0; �1; : : :, where ea
h �i is a solution to Dm.De�ne a Lips
hitz HIOA to be input bounded if for ea
h input variable uthere exists a positive real value B su
h that every fun
tion in the dynami
 typeof u has range in [�B;B℄.Lemma 9. Compatible input-bounded Lips
hitz HIOAs are strongly 
ompatible.Theorem 9. The 
omposition of two 
ompatible input-bounded Lips
hitz HIOAsis a Lips
hitz HIOA.Theorem 10. Let A1 and A2 be 
ompatible re
eptive HIOAs with non-lo
ally-Zeno, input-bounded, Lips
hitz strategies. Then A1kA2 is a re
eptive HIOA witha non-lo
ally-Zeno input-bounded Lips
hitz strategy.Theorem 11. The 
omposition of two 
ompatible re
eptive input-bounded Lip-s
hitz HIOAs is a re
eptive input-bounded Lips
hitz HIOA.The 
on
lusion that we derive from Theorem 11 is that 
ompatibility impliesstrong 
ompatibility if we des
ribe the 
ontinuous behaviors of HIOAs by meansof di�erential equations of the form of D with fun
tions f and g globally Lip-s
hitz. In general, any 
hoi
e of 
onditions on f; g; and u that guarantees lo
alexisten
e of unique solutions, 
ontinuity of solutions, and that is preserved byintera
tion between systems, 
an be used to de�ne a 
lass of automata for whi
hstrong 
ompatibility follows from 
ompatibility.
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