
Hybrid I/O Automata

?

Nan
y Lyn
h

1

MIT Laboratory for Computer S
ien
e, Cambridge, MA 02139, USA

Roberto Segala

2

Dipartimento di Informati
a, Universit�a di Verona, Strada Le Grazie 15, 37134

Verona, Italy

Frits Vaandrager

3

Nijmeegs Instituut voor Informati
a en Informatiekunde, University of Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstra
t

Hybrid systems are systems that exhibit a
ombination of dis
rete and
ontinu-

ous behavior. Typi
al hybrid systems in
lude
omputer
omponents, whi
h operate

in dis
rete program steps, and real-world
omponents, whose behavior over time

intervals evolves a

ording to physi
al
onstraints. Important examples of hybrid

systems in
lude automated transportation systems, roboti
s systems, pro
ess
on-

trol systems, systems of embedded devi
es, and mobile
omputing systems. Su
h

systems
an be very
omplex, and very diÆ
ult to des
ribe and analyze.

This paper presents theHybrid Input/Output Automaton (HIOA)modeling frame-

work, a basi
 mathemati
al framework to support des
ription and analysis of hybrid

systems. An important feature of this model is its support for de
omposing hybrid

system des
riptions. In parti
ular, the framework in
ludes a notion of external be-

havior for a hybrid I/O automaton, whi
h
aptures its dis
rete and
ontinuous

intera
tions with its environment. The framework also de�nes what it means for

one HIOA to implement another, based on an in
lusion relationship between their

external behavior sets, and de�nes a notion of simulation, whi
h provides a suf-

�
ient
ondition for demonstrating implementation relationships. The framework

also in
ludes a
omposition operation for HIOAs, whi
h respe
ts the implementa-

tion relation and a notion of re
eptiveness, whi
h implies that an HIOA does not

blo
k the passage of time. The framework is intended to support analysis methods

from both
omputer s
ien
e and
ontrol theory.

This work is a simpli�
ation of our earlier HIOA model. The main simpli�
ation

in the new model is a
learer separation between the me
hanisms used to model dis-

rete and
ontinuous intera
tion between
omponents. In parti
ular, the new model

removes the dual use of external variables for dis
rete and
ontinuous intera
tion.

Preprint submitted to Elsevier S
ien
e 13 January 2003

1 Introdu
tion

1.1 Overview

Re
ent years have seen a rapid growth of interest in hybrid systems|systems

that intermix dis
rete and
ontinuous behavior [28,70,12,9,62,10,34,73,80,51,20℄.

Typi
al hybrid systems in
lude
omputer
omponents, whi
h operate in dis-

rete program steps, and real-world
omponents, whose behavior over time

intervals evolves a

ording to physi
al
onstraints. Su
h systems are used in

many appli
ation domains, in
luding automated transportation, avioni
s, au-

tomotive
ontrol, roboti
s, pro
ess
ontrol, embedded devi
es,
onsumer ele
-

troni
s, and mobile
omputing.

Hybrid systems
an be very
omplex, and therefore very diÆ
ult to des
ribe

and reason about. At the same time, be
ause they involve real-world a
tivity,

they often have stringent safety requirements. This
ombination of fa
tors

leads to a need for rigorous mathemati
al models for des
ribing hybrid systems

and their properties, and for pra
ti
al analysis methods based on these models.

In this paper, we present a basi
 mathemati
al framework to support de-

s
ription and analysis of hybrid systems: the Hybrid Input/Output Automaton

modeling framework. A Hybrid I/O Automaton (HIOA) is a kind of nonde-

terministi
, possibly in�nite-state, state ma
hine. The state of an HIOA is

divided into state variables, and it may also have additional input variables

and output variables. The state
an
hange in two ways: instantaneously by

the o

urren
e of a dis
rete transition, or a

ording to some traje
tory when

time passes. Formally, a dis
rete transition is a triple
onsisting of a sour
e

?

An extended abstra
t of this paper appeared as [52℄.

Email addresses: lyn
h�theory.l
s.mit.edu (Nan
y Lyn
h),

segala�s
i.univr.it (Roberto Segala), fvaan�
s.kun.nl (Frits Vaandrager).

1

Supported by PATH 1784-18454LD; AFOSR F49620-00-1-0097, F49620-97-1-

0337, and SA2796PO 1-0000243658; NTT MIT9904-12; NSF ACI-9876931, CCR-

9909114, and CCR-9804665; multi-sponsored
onsortium proje
t Oxygen; DARPA

F33615-01-C-1850.

2

Supported by MURST proje
t TOSCA.

3

Supported by Esprit Proje
t 26270, Veri�
ation of Hybrid Systems (VHS),

GBE/SION proje
t 612-14-004, Stepwise Re�nement of Hybrid Systems, and

PROGRESS proje
t TES4199, Veri�
ation of Hard and Softly Timed Systems

(HaaST).

2

state, an a
tion (for syn
hronization with other automata), and a target state.

Traje
tories are fun
tions that des
ribe the evolution of the state variables,

along with the input and output variables, over intervals of time. Traje
tories

may be
ontinuous or dis
ontinuous fun
tions.

HIOAs are intended to be used to model all
omponents of hybrid systems,

in
luding physi
al
omponents,
ontrollers, sensors, a
tuators,
omputer soft-

ware,
ommuni
ation servi
es, and humans that intera
t with the rest of the

system. The framework is very general: for example, we do not require that

traje
tories be expressible using systems of equations of a parti
ular form,

and we do not require that dis
rete transitions be expressible using a parti
-

ular logi
al language. Parti
ular kinds of systems of equations and parti
ular

logi
al languages
an be used to de�ne spe
ial
ases of the general model.

The most important feature of the hybrid I/O automaton framework is its sup-

port for de
omposing hybrid system des
ription and analysis; this is important

be
ause many hybrid systems are too
omplex to understand all at on
e. A

key to this de
omposition is that the framework in
ludes a rigorously-de�ned

notion of external behavior for hybrid I/O automata, whi
h
aptures their

dis
rete and
ontinuous intera
tions with their environment. The external be-

havior of ea
h HIOA is de�ned by a simple mathemati
al obje
t
alled a tra
e.

The framework also in
ludes notions of abstra
tion and parallel
omposition.

For abstra
tion, the framework in
ludes notions of implementation and simu-

lation, whi
h
an be used to view hybrid systems at multiple levels of abstra
-

tion, starting from a high-level version that des
ribes required properties, and

ending with a low-level version that des
ribes a detailed design or implementa-

tion. In parti
ular, the HIOA framework de�nes what it means for one HIOA,

A, to implement another HIOA, B, namely, any tra
e that
an be exhibited

by A is also allowed by B. In this
ase, A might be more deterministi
 than B,

in terms of either dis
rete transitions or traje
tories. For instan
e, B might be

allowed to perform an output a
tion at an arbitrary time before noon, whereas

A produ
es the same output sometime between 10 and 11AM. Or B might

allow an output variable y to evolve with

:

y

2 [0; 2℄, whereas A might ensure

that

:

y

= 1.

The notion of a simulation relation fromA to B provides a suÆ
ient
ondition

for demonstrating that A implements B. A simulation relation is de�ned to

satisfy three
onditions, one relating start states, one relating dis
rete transi-

tions, and one relating traje
tories of A and B.

For parallel
omposition, the framework provides a
omposition operation, by

whi
h HIOAs modeling individual hybrid system
omponents
an be
ombined

to produ
e a model for a larger hybrid system. The model for the
omposed

system
an des
ribe intera
tions among the
omponents, in
luding joint par-

3

ti
ipation in dis
rete transitions and traje
tories. Composition requires
ertain

\
ompatibility"
onditions, namely, that ea
h output variable and output a
-

tion be
ontrolled by at most one automaton, and that internal variables and

a
tions of one automaton
annot be shared by any other automaton. The

omposition operation respe
ts the implementation relation, for example, if

A

1

implements A

2

then the
omposition of A

1

and B implements the
ompo-

sition of A

2

and B. Composition also satis�es proje
tion results saying that

a tra
e of a
omposition of HIOAs proje
ts to give tra
es of the individual

HIOAs, and pasting results saying that
ompatible behaviors of
omponents

are \pastable" to give behaviors of the
omposition. Su
h results are essential

if the models are to be used for
ompositional design and veri�
ation of sys-

tems. In addition, the framework in
ludes hiding operations for output a
tions

and variables, whi
h respe
t the implementation relationship.

An interesting
ompli
ation that arises in the hybrid setting is the possibil-

ity that a state ma
hine
ould \prevent time from passing", for example, by

blo
king it entirely, or by s
heduling in�nitely many dis
rete a
tions to happen

in a �nite amount of time|so-
alled Zeno behavior . The HIOA framework in-

ludes a notion of re
eptiveness, whi
h says that an HIOA does not
ontribute

to produ
ing Zeno behavior, and whi
h (under suitable
ompatibility
ondi-

tions) is preserved by
omposition. We also give simple suÆ
ient
onditions

for these
ompatibility
onditions to hold.

The generality of the HIOA framework means that a large
olle
tion of analy-

sis methods, derived from both dis
rete and
ontinuous analysis methods,
an

be applied to systems modeled as HIOAs. For example, indu
tive methods

for proving invariant assertions and simulation relationships (see, e.g, [58,72℄),

whi
h are
ommonly used in
omputer s
ien
e for reasoning about dis
rete sys-

tems,
an be extended to the hybrid setting and expressed by theorems about

HIOAs. Other dis
rete analysis methods that should be extendible in
lude

proving progress using well-founded sets (see, e.g., [26℄), assume-guarantee

ompositional reasoning (e.g., [36,16℄), and dedu
ing properties within tem-

poral logi
 and other logi
al formalisms. All of these methods
ould be sup-

ported by intera
tive theorem proving software. Automati
 methods based on

state-spa
e sear
hing and based on de
ision pro
edures for automata on in�-

nite paths (see, e.g., [16℄), should also be extendible; however, these methods

will apply only to spe
ial
ases of the general model.

Likewise, key methods used in
ontrol theory for reasoning about
ontinuous

systems, su
h as stability analysis using Lyapunov fun
tions (e.g., [79℄) and

robust
ontrol te
hniques (e.g., [23℄), should be extendible to hybrid systems

using HIOAs.

4

1.2 Evolution of the HIOA Framework:

The HIOA framework has evolved from two earlier input/output automaton

models: the basi
 I/O automaton model of Lyn
h and Tuttle [55,56℄ and the

timed I/O automaton model of Lyn
h, Vaandrager et al. [60,74℄. Basi
 I/O

automata
onsist essentially of states, start states, and dis
rete transitions.

They have been used fairly extensively to des
ribe and analyze asyn
hronous

distributed algorithms|see, for example, [48℄.

Timed I/O automata add expli
it time-passage steps, whi
h allow time to pass

in dis
rete jumps. In the simplest
ases, time-passage steps involve just the

passage of time, with no other
hanges to the state. However, in general, they

are allowed to
hange the state in more elaborate ways, in
luding
hanging

variables that represent physi
al quantities. Timed I/O automata have been

used mainly to des
ribe timing-based distributed algorithms and
ommuni-

ation proto
ols (e.g., [78,45,75,76,19,77,25℄). Timed I/O automata have also

been used in a few
ases to model simple hybrid system \
hallenge problems",

in
luding the Generalized Railroad Crossing problem [30,31℄. In these exam-

ples, the time-passage steps in
lude
hanges to physi
al quantities su
h as

train position and water level.

An early version of the HIOA modeling framework appeared in [53,54℄. It

augmented timed I/O automata by adding input and output variables and

expli
it traje
tories; the traje
tories des
ribe the evolution of the state and

external variables over intervals of time, rather than just their
umulative

hanges. This version of the HIOA framework was used to des
ribe and analyze

many hybrid systems examples, in
luding automated transportation systems

[61,49,83,81,82,50,42,44℄, intelligent vehi
le highway systems [22,47℄, air
raft

ontrol systems [46,43℄, automotive
ontrol systems [24℄, and
onsumer ele
-

troni
s systems [11℄.

We summarize the results of these modeling e�orts brie
y. In these exam-

ples, HIOAs were used to model system
omponents of many di�erent kinds,

in
luding real-world
omponents,
omputer programs,
ommuni
ation
han-

nels, sensors, a
tuators, and humans (for example, pilots intera
ting with air-

raft
ontrol systems). Individual
omponent automata were generally highly

nondeterministi
, and often allowed for bounded un
ertainty in the values of

quantities represented in the state. Component states often in
luded timing in-

formation, for example, the
urrent time and deadlines for the performan
e of

ertain a
tions. Composition was used to
ombine the
omponent HIOAs into

models of the
omplete systems. Levels of abstra
tion were used to des
ribe

several kinds of relationships between HIOAs, for example: the relationship

between a detailed view of a system and a more abstra
t view; the relation-

ship between a des
ription of a system in terms of higher derivatives (e.g.,

5

a

eleration) and a des
ription in terms of lower derivatives (e.g., velo
ity or

position); and the relationship between a version of a system that in
ludes

periodi
 sampling and
orre
tion and a version in whi
h adjustment is
ontin-

uous, but within an envelope of un
ertainty.

The examples were analyzed using a variety of methods in
luding invariant as-

sertions, simulation relations,
ompositional reasoning, di�erential equations

and integration. Many of the invariants and simulation relations involved tim-

ing data and data representing real-world quantities. Invariants and simulation

relations were proved using indu
tive arguments on the length of exe
utions, as

is usual in the purely dis
rete setting. However, unlike in the dis
rete setting,

the proofs in the hybrid setting in
luded two di�erent kinds of indu
tive steps:

for dis
rete steps and traje
tories. Arguments about dis
rete steps involved the

sort of algebrai
 dedu
tion that is typi
al in the dis
rete setting, whereas argu-

ments about traje
tories involved manipulation of di�erential equations and

integrals. For example, a te
hnique involving \positive invariant sets", derived

from
ontrol theory, was used in [15℄ for showing that
ertain properties of the

state are preserved during traje
tories.

In general, the formal HIOA framework proved to be adequate for these exam-

ples. However, it was not ideal, be
ause it introdu
ed some
ompli
ations that

proved to be distra
ting. The main sour
e of
ompli
ation seemed to be the

fa
t that the model has two me
hanisms for modeling dis
rete
ommuni
ation:

shared a
tions and shared variables. Also, it uses the same me
hanism|shared

variables|to model both dis
rete and
ontinuous intera
tion between
ompo-

nents. This intertwining of me
hanisms led to some te
hni
alities, for example,

ea
h automaton had to in
lude a spe
ial environment a
tion e, whi
h is asso-

iated with dis
rete
hanges to input variables. To simplify matters, we were

led to develop the new version of the HIOA model presented in this paper. The

new version has a
learer separation between the me
hanisms used to model

dis
rete and
ontinuous a
tivity, and has only one me
hanism for dis
rete

ommuni
ation: shared a
tions.

In the literature on dis
rete state ma
hine models, both shared a
tions and

shared variables are popular me
hanisms for modeling intera
tions between

system
omponents. The shared a
tion approa
h is used, for example, in the

extensive resear
h literature on pro
ess algebras (e.g., [35,66,67℄), and in the

work on I/O automata (e.g., [55,49℄). The shared variable approa
h is used,

for example, in the temporal logi
 and model-
he
king
ommunities (e.g.,

[64,40,7℄). The expressive power of shared a
tion and shared variable
ommu-

ni
ation is similar, and translations between spe
ial
ases of these two types

of models have been developed [39,18℄. Choosing between these two forms of

ommuni
ation seems to be generally a matter of
ustom and
onvenien
e.

One advantage of the shared-a
tion approa
h is that it leads to simple math-

emati
al notions of external behavior of state ma
hines, based on sequen
es

6

of a
tions (whi
h are usually
alled \tra
es").

The new HIOA framework presented in this paper uses (only) shared a
tions

for dis
rete
ommuni
ation, and uses shared variables for
ontinuous
ommu-

ni
ation. Dis
rete events are not allowed to make
hanges to shared variables,

and the spe
ial environment a
tion e is eliminated. Be
ause the new model

maintains a
learer separation between me
hanisms for des
ribing dis
rete and

ontinuous a
tivity, it is simpler overall|in its de�nitions, result statements,

and proofs|than the earlier HIOA model of [53,54℄.

Another simpli�
ation in the new framework appears in the de�nitions and

results involving re
eptiveness. In the original HIOA model of [53,54℄, and in

other work that dealt with re
eptiveness [21,1,74℄ for dis
rete systems, re
ep-

tiveness was de�ned in terms of two-player games between the system and its

environment. In su
h a game, the goal of the system is to
onstru
t an in�nite,

non-Zeno exe
ution, and the goal of the environment is to prevent this from

happening. The simpli�
ation in this material in the new model is a result of

our modeling of the game itself as an HIOA.

1.3 Other Related Work

Besides the models already dis
ussed above, other pre
ursors to the new HIOA

model in
lude the phase transition system models of [63,3,38℄ and Brani
ky's

hybrid
ontrol systems [13,14℄. Phase transition systems are similar to HIOAs

in their
ombined treatment of dis
rete and
ontinuous a
tivity, for example,

they have notions similar to our traje
tories and hybrid sequen
es. However,

work on phase transition system models does not address system de
omposi-

tion issues su
h as external behavior, implementation relationships, and
om-

position, whi
h are emphasized in our paper. Brani
ky's hybrid
ontrol systems

are also similar to ours in their modeling of dis
rete and
ontinuous a
tivity.

This work has a
ontrol theory
avor, fo
using on standard
on�gurations in-

luding plant,
ontroller, sensor and a
tuator, and fo
using on stability results.

Again, system de
omposition issues are not addressed.

System de
omposition issues, in
luding levels of abstra
tion,
ompositionality,

and re
eptiveness have been addressed by Alur and Henzinger [8℄ in their work

on hybrid rea
tive modules. A major di�eren
e between this work and ours is

that rea
tive modules
ommuni
ate via shared variables and not via shared a
-

tions. Another di�eren
e is that hybrid rea
tive modules in
lude an additional

layer of stru
ture tailored to modeling syn
hronous systems|stru
ture that

is not present in the HIOA model. In [8℄, a de�nition of re
eptiveness based

on two-player games, similar to the de�nition in [53,54℄, is proposed, and is

shown to be preserved by parallel
omposition. However, in [8℄, no
ir
ular

7

dependen
ies (\feedba
k loops") are allowed among the
ontinuous variables

of di�erent
omponents, a restri
tion that greatly simpli�es the analysis.

In [6,33℄,
ompositional tra
e-based semanti
s are presented for State
harts-

like languages that support hierar
hi
al design of hybrid systems. These lan-

guages,
alled Charon and Masa

io, respe
tively, allow one to des
ribe hierar-

hi
al state ma
hines that
ommuni
ate with their environment using shared

variables. Communi
ation via shared a
tions is not supported. Besides parallel

omposition and variable hiding, the languages also
ontain other operations

required for the
onstru
tion of hierar
hi
al state ma
hines, su
h as variable

renaming and serial
omposition. The tra
e semanti
s presented in [6,33℄ for

Charon and Masa

io is more
on
rete than the one that we present here:

dis
rete events that do not
hange the observable part of the state are not

eliminated from tra
es. As a
onsequen
e, a system that just lets time pass

and performs a dis
rete \ti
k" step on
e every time unit is not an implemen-

tation of the same system without any dis
rete steps. The two systems are

equivalent a

ording to the tra
e semanti
s of this paper. We believe that our

semanti
s are more intuitively appealing; the pri
e we pay is that the proofs of

our
ompositionality results are more
ompli
ated. [33℄ also
ontains some in-

teresting proof rules for assume-guarantee reasoning. In [6,33℄, Zeno behavior

and the issue of re
eptiveness are not
onsidered.

1.4 Paper Organization

The rest of this paper is organized as follows. Se
tion 2
ontains mathemati-

al preliminaries. Next, Se
tion 3 de�nes notions that are useful for des
ribing

the behavior of hybrid systems, most importantly, traje
tories and hybrid

sequen
es. Se
tion 4 de�nes Hybrid Automata (HAs), whi
h
ontain all of

the stru
ture of HIOAs ex
ept for the
lassi�
ation of external a
tions and

variables as inputs or outputs. It also de�nes external behavior for HAs and

implementation and simulation relationships between HAs. Se
tion 5 presents

omposition and hiding operations for HAs. Se
tion 6 de�nes Hybrid I/O Au-

tomata (HIOAs) by adding an input/output
lassi�
ation to HAs, and extends

the theory of HAs to HIOAs. It also introdu
es a \strong
ompatibility"
on-

dition that ensures that HIOAs are
omposable, and des
ribes situations in

whi
h strong
ompatibility is guaranteed to hold. Se
tion 7 presents the the-

ory of re
eptiveness, in
luding a main theorem stating that re
eptiveness is

preserved by
omposition (assuming strong
ompatibility). Finally, Se
tion 8

presents some
on
lusions. Examples derived from earlier work on hybrid sys-

tem modeling are in
luded throughout. Appendix A lists some notational
on-

ventions used in the paper.

8

2 Mathemati
al Preliminaries

In this se
tion, we give basi
 mathemati
al de�nitions that will be used as a

foundation for our de�nitions of hybrid automata and hybrid I/O automata.

These de�nitions involve fun
tions, sequen
es, partial orders, and time. The

automata de�nitions appear later, in Se
tions 4 and 6. Sin
e most of the

de�nitions here are reasonably standard, we en
ourage the reader to skip ahead

to Se
tion 3 and return to this se
tion as needed.

2.1 Fun
tions

If f is a fun
tion, then we denote the domain and range of f by dom(f) and

range(f), respe
tively. If also S is a set, then we write f dS for the restri
tion of

f to S, that is, the fun
tion g with dom(g) = dom(f)\S su
h that g(
) = f(
)

for ea
h
 2 dom(g).

We say that two fun
tions f and g are
ompatible if f d dom(g) = g d dom(f). If

f and g are
ompatible fun
tions then we write f [g for the unique fun
tion h

with dom(h) = dom(f)[dom(g) satisfying the
ondition: for ea
h
 2 dom(h),

if
 2 dom(f) then h(
) = f(
) and if
 2 dom(g) then h(
) = g(
). More

generally, if F is a set of pairwise
ompatible fun
tions then we write

S

F

for the unique fun
tion h with dom(h) =

S

fdom(f) j f 2 Fg satisfying the

ondition: for ea
h f 2 F and
 2 dom(f), h(
) = f(
).

If f is a fun
tion whose range is a set of fun
tions and S is a set, then we write

f # S for the fun
tion g with dom(g) = dom(f) su
h that g(
) = f(
) dS for

ea
h
 2 dom(g). The restri
tion operation # is extended to sets of fun
tions

by pointwise extension. Also, if f is a fun
tion whose range is a set of fun
tions,

all of whi
h have a parti
ular element d in their domain, then we write f # d

for the fun
tion g with dom(g) = dom(f) su
h that g(
) = f(
)(d) for ea
h

 2 dom(g).

We say that two fun
tions f and g whose ranges are sets of fun
tions are point-

wise
ompatible if for ea
h
 2 dom(f)\dom(g), f(
) and g(
) are
ompatible.

If f and g have the same domain and are pointwise
ompatible, then we denote

by f

_

[g the fun
tion h with dom(h) = dom(f) su
h that h(
) = f(
) [g(
)

for ea
h
 2 dom(h).

9

2.2 Sequen
es

Let S be any set. A sequen
e over S is a fun
tion from a downward
losed

subset of the natural numbers to S. Thus, the domain of a sequen
e is either

the set of all natural numbers, or is of the form f0; : : : ; kg, for some natural

number k. In the �rst
ase we say that the sequen
e is in�nite, and in the

se
ond
ase �nite. The sets of �nite and in�nite sequen
es over S are denoted

by S

�

and S

!

, respe
tively. Con
atenation of a �nite sequen
e with a �nite or

in�nite sequen
e is denoted by juxtaposition. We use � to denote the empty

sequen
e, that is, the sequen
e with the empty domain. The sequen
e
ontain-

ing one element
 2 S is abbreviated as
. We say that a sequen
e � is a pre�x

of a sequen
e �, denoted by � � �, if � = � d dom(�). Thus, � � � if either

� = �, or � is �nite and � = ��

0

for some sequen
e �

0

. If � is a nonempty

sequen
e then head(�) denotes the �rst element of � and tail(�) denotes �

with its �rst element removed. Moreover, if � is �nite, then last(�) denotes

the last element of � and init(�) denotes � with its last element removed.

2.3 Partial Orders

We re
all some basi
 de�nitions and results regarding partial orders (posets),

and in parti
ular,
omplete partial orders (
pos) from [29,32℄. A partial order

(poset) is a set S together with a binary relation v that is re
exive, antisym-

metri
, and transitive. In the sequel, we usually denote posets by the set S

without expli
it mention to the binary relation v.

A subset P � S is bounded (above) if there is a
 2 S su
h that d v
 for ea
h

d 2 P ; in this
ase,
 is an upper bound for P . A least upper bound (lub) for

a subset P � S is an upper bound
 for P su
h that
 v e for every upper

bound e for P . If P has a lub, then it is ne
essarily unique, and we denote it

by

F

P . A subset P � S is dire
ted if every �nite subset Q of P has an upper

bound in P . A poset S is
omplete, and hen
e is a
omplete partial order (
po)

if every dire
ted subset P of S has a lub in S.

We say that P

0

� S dominates P � S, denoted by P v P

0

, if for every
 2 P

there is some

0

2 P

0

su
h that
 v

0

. We use the following two simple lemmas,

adapted from [32℄ [Lemmas 3.1.1 and 3.1.2℄.

Lemma 2.1 If P; P

0

are dire
ted subsets of a
po S and P v P

0

then

F

P v

F

P

0

.

Lemma 2.2 Let P = f

ij

j i 2 I; j 2 Jg be a doubly indexed subset of a
po

S. Let P

i

denote the set f

ij

j j 2 Jg for ea
h i 2 I. Suppose

10

(1) P is dire
ted,

(2) ea
h P

i

is dire
ted with lub

i

, and

(3) the set f

i

j i 2 Ig is dire
ted.

Then tP = tf

i

j i 2 Ig.

A �nite or in�nite sequen
e of elements,

0

;

1

;

2

; : : :, of a poset S is
alled a

hain if

i

v

i+1

for ea
h non-�nal index i. We de�ne the limit of the
hain,

lim

i!1

i

, to be the lub of the set f

0

;

1

;

2

; : : :g if S
ontains su
h a bound;

otherwise, the limit is unde�ned. Sin
e a
hain is a spe
ial
ase of a dire
ted

set, ea
h
hain of a
po has a limit.

A fun
tion f : S ! S

0

between posets S and S

0

is monotone if f(
) v f(d)

whenever
 v d. If f is monotone and P is a dire
ted set, then the set f(P) =

ff(
) j
 2 Pg is dire
ted as well. If f is monotone and f(

F

P) =

F

f(P) for

every dire
ted set P , then f is said to be
ontinuous.

An element
 of a
po S is
ompa
t if, for every dire
ted set P su
h that

 v

F

P , there is some d 2 P su
h that
 v d. We de�ne K(S) to be the set

of
ompa
t elements of S. A
po S is algebrai
 if every
 2 S is the lub of the

set fd 2 K(S) j d v
g. A simple example of an algebrai

po is the set of

�nite or in�nite sequen
es over some given domain, equipped with the pre�x

ordering. Here the
ompa
t elements are the �nite sequen
es.

2.4 Time

Throughout this paper, we �x a time axis T, whi
h is a subgroup of (R;+),

the real numbers with addition. We assume that every in�nite, monotone,

bounded sequen
e of elements of T has a limit in T. The reader may �nd it

onvenient to think of T as the set R of real numbers, but the set Z of integers

and the singleton set f0g are also examples of allowed time axes. We de�ne

T

�0

�

= ft 2 T j t � 0g.

An interval J is a nonempty,
onvex subset of T. We denote intervals as usual:

[t

1

; t

2

℄ = ft 2 T j t

1

� t � t

2

g, et
. An interval is left-
losed (right-
losed)

if it has a minimum (resp., maximum) element, and left-open (right-open)

otherwise. An interval is
losed if it is both left-
losed and right-
losed, and

open if it is both left-open and right-open. We write min(J) and max(J) for

the minimum and maximum elements, respe
tively, of an interval J (if they

exist), and inf(J) and sup(J) for the in�mum and supremum, respe
tively, of

J in T[f�1;1g. For K � T and t 2 T, we de�ne K + t

�

= ft

0

+ t j t

0

2 Kg.

Similarly, for a fun
tion f with domain K, we de�ne f + t to be the fun
tion

with domain K + t satisfying, for ea
h t

0

2 K + t, (f + t) (t

0

) = f(t

0

� t).

11

3 Des
ribing Hybrid Behavior

In this se
tion, we give basi
 de�nitions that are useful for des
ribing dis
rete

and
ontinuous behavior of a system or system
omponent, in
luding dis
rete

and
ontinuous
hanges to the system's state, and dis
rete and
ontinuous

ow of information into and out of the system. The key notions are stati
 and

dynami
 types for variables, traje
tories, and hybrid sequen
es.

3.1 Stati
 and Dynami
 Types

We assume a universal set V of variables. A variable represents either a lo
ation

within the state of a system or a lo
ation where information
ows from one

system
omponent to another. For ea
h variable v, we assume both a (stati
)

type, whi
h gives the set of values it may take on, and a dynami
 type, whi
h

gives the set of traje
tories it may follow. Formally, for ea
h variable v we

assume the following:

� type(v), the (stati
) type of v. This is a nonempty set of values.

� dtype(v), the dynami
 type of v. This is a set of fun
tions from left-
losed

intervals of T to type(v) that satis�es the following properties:

(1) (Closure under time shift)

For ea
h f 2 dtype(v) and t 2 T, f + t 2 dtype(v).

(2) (Closure under subinterval)

For ea
h f 2 dtype(v) and ea
h left-
losed interval J � dom(f), f dJ 2

dtype(v).

(3) (Closure under pasting)

Let f

0

; f

1

; f

2

; : : : be a sequen
e of fun
tions in dtype(v) su
h that, for ea
h

index i su
h that f

i

is not the �nal fun
tion in the sequen
e, dom(f

i

)

is right-
losed and max(dom(f

i

)) = min(dom(f

i+1

)). Then the fun
tion f

de�ned by f(t)

�

= f

i

(t), where i is the smallest index su
h that t 2 dom(f

i

),

is in dtype(v).

The pasting-
losure property is useful for modeling \dis
ontinuities" in the

evolution of variables
aused by dis
rete transitions. Dynami
 types provide a

onvenient way of des
ribing restri
tions on system behavior over time inter-

vals, for example, restri
tions on the behavior of system input variables.

Example 3.1 (Dis
rete variables) Let v be any variable and let C be

the set of
onstant fun
tions from a left-
losed interval to type(v). Then C is

losed under time shift and subinterval. If the dynami
 type of v is obtained

by
losing C under the pasting operation, then v is
alled a dis
rete variable.

This is essentially the same as the de�nition of a dis
rete variable in [63℄.

12

Example 3.2 (Standard real-valued fun
tion
lasses) If we take T = R

and type(v) = R, then other examples of dynami
 types
an be obtained by

taking the pasting
losure of standard fun
tion
lasses from real analysis, su
h

as the set of
ontinuous fun
tions, the set of di�erentiable fun
tions, the set

of fun
tions that are di�erentiable k times (for any k), the set of smooth

fun
tions, the set of integrable fun
tions, the set of L

p

fun
tions (for any p),

the set of measurable lo
ally essentially bounded fun
tions [79℄, or the set of

all fun
tions.

Standard fun
tion
lasses are
losed under time shift and subinterval, but not

under pasting. A natural way of de�ning a dynami
 type is as the pasting

losure of a
lass of fun
tions that is
losed under time shift and subinterval.

In su
h a
ase, it follows that the new
lass is
losed under all three operations.

0 4

Fig. 1. Example of a fun
tion in a dynami
 type based on
ontinuous fun
tions.

Example 3.3 (Pasting
losure of the
ontinuous fun
tions) Figure 1

shows an example of an element f in a dynami
 type based on (more pre-

isely, equal to the pasting
losure of) a sub
lass of the
ontinuous fun
tions.

Fun
tion f is de�ned on the interval [0; 4) and is obtained by pasting together

four pie
es. At the boundary points between these pie
es, f takes the value

spe
i�ed by the leftmost pie
e, whi
h makes f
ontinuous from the left. Note

that f is unde�ned at time 4.

In pra
ti
e, most interesting dynami
 types are pasting
losures of sub
lasses

of the
ontinuous fun
tions. Note that fun
tions in su
h dynami
 types are

ontinuous from the left. Elsewhere in the literature on hybrid systems (e.g.,

[37℄), fun
tions that are
ontinuous from the right are
onsidered. To some ex-

tent, the
hoi
e of how to de�ne fun
tion values at dis
ontinuities is arbitrary.

An advantage of our
hoi
e is a ni
e
orresponden
e between
on
atenation

and pre�x ordering of traje
tories and hybrid sequen
es (see Lemmas 3.5 and

13

3.7).

In this paper, we will o

asionally be slightly sloppy and say that the dynami

type of a variable v is the fun
tion
lass F , even though F in not
losed under

the three required operations. In su
h a
ase, we mean that the dynami
 type

of v is the fun
tion
lass that results from
losing F under the three operations.

3.2 Traje
tories

In this subse
tion, we de�ne the notion of a traje
tory, de�ne operations on

traje
tories, and prove simple properties of traje
tories and their operations.

A traje
tory is used to model the evolution of a
olle
tion of variables over an

interval of time.

3.2.1 Basi
 De�nitions

Let V � V be a set of variables. A valuation v for V is a fun
tion that

asso
iates with ea
h variable v 2 V a value in type(v). We write val(V) for

the set of valuations for V . Let J be a left-
losed interval of T with left endpoint

equal to 0. Then a J-traje
tory for V is a fun
tion � : J ! val(V), su
h that

for ea
h v 2 V , � # v 2 dtype(v). A traje
tory for V is a J-traje
tory for V ,

for any J . We write trajs(V) for the set of all traje
tories for V .

A traje
tory for V with domain [0; 0℄ is
alled a point traje
tory for V . If v is

a valuation for V then }(v) denotes the point traje
tory for V that maps 0 to

v. We say that a J-traje
tory is �nite if J is a �nite interval,
losed if J is a

(�nite)
losed interval, open if J is a right-open interval, and full if J = T

�0

.

If � is a traje
tory then �:ltime, the limit time of � , is the supremum of dom(�).

Also, we de�ne �:fval , the �rst valuation of � , to be �(0), and if � is
losed,

we de�ne �:lval , the last valuation of � , to be �(�:ltime). For � a traje
tory

and t 2 T

�0

, we de�ne

� � t

�

= � d[0; t℄;

� � t

�

= � d[0; t);

� � t

�

=(� d[t;1))� t:

Note that, sin
e dynami
 types are
losed under time shift and subintervals,

the result of applying the above operations is always a traje
tory, ex
ept when

the result is a fun
tion with an empty domain. By
onvention, we also write

� �1

�

= � and � �1

�

= � .

14

3.2.2 Pre�x Ordering

Traje
tory � is a pre�x of traje
tory �

0

, denoted by � � �

0

, if �
an be obtained

by restri
ting �

0

to a subset of its domain. Formally, if � and �

0

are traje
tories

for V , then � � �

0

i� � = �

0

d dom(�). Alternatively, � � �

0

i� there exists

a t 2 T

�0

[f1g su
h that � = �

0

� t or � = �

0

� t. If � � �

0

then
learly

dom(�) � dom(�

0

). If T is a set of traje
tories for V , then pref (T) denotes

the pre�x
losure of T , de�ned by:

pref (T)

�

= f� 2 trajs(V) j 9�

0

2 T : � � �

0

g:

We say that T is pre�x
losed if T = pref (T).

The following lemma gives a simple domain-theoreti

hara
terization of the

set of traje
tories over a given set V of variables:

Lemma 3.4 Let V be a set of variables. The set trajs(V) of traje
tories for V ,

together with the pre�x ordering �, is an algebrai

po. Its
ompa
t elements

are the
losed traje
tories.

Proof: It is trivial to
he
k that (trajs(V);�) is a partial order. In order to

prove that it is a
po, assume that T is a dire
ted subset of trajs(V). We prove

that T has a least upper bound. It is routine to
he
k that a set of traje
tories

is dire
ted i� it is totally ordered by pre�x. So T is totally ordered. Using

this, it follows that the traje
tories in T are pairwise
ompatible fun
tions.

Therefore, fun
tion

S

T is de�ned.

We now prove that

S

T is a traje
tory for V . If

S

T 2 T then this is imme-

diate. Otherwise, let t 2 T [f1g be the supremum of the limit times of all

traje
tories in T . There exists an in�nite as
ending
hain t

0

; t

1

; t

2

; : : : of limit

times of traje
tories in T su
h that t = lim

i!1

t

i

and all the t

i

's are di�erent.

For ea
h i, let �

i

be a traje
tory in T with t

i

= �

i

:ltime. Next de�ne, for ea
h

i, �

0

i

= �

i+1

� t

i

. Then, by
onstru
tion, the traje
tories �

0

0

; �

0

1

; �

0

2

; : : : are
losed

and pairwise
ompatible, and

S

i

�

0

i

=

S

T . Let �

00

0

; �

00

1

; �

00

2

; : : : be the sequen
e

of fun
tions de�ned by

�

00

0

�

= �

0

0

;

�

00

i

�

= �

0

i

d[�

0

i�1

:ltime;1) if i > 0:

By
onstru
tion, the �

00

i

's are
losed, pairwise
ompatible, and

S

i

�

00

i

=

S

i

�

0

i

.

Using the assumption that dynami
 types are
losed under pasting, it follows

that

S

i

�

00

i

(and hen
e

S

T) is a traje
tory.

Now we show that

S

T is a lub for T . It follows immediately from the
on-

stru
tion of

S

T that

S

T is an upper bound for T . Suppose that �

0

is also

15

an upper bound for T . We prove that

S

T � �

0

. Sin
e ea
h � 2 T satis-

�es dom(�) � dom(�

0

), also

S

�2T

dom(�) � dom(�

0

). By de�nition of

S

T ,

dom(

S

T) =

S

�2T

dom(�). Hen
e dom(

S

T) � dom(�

0

). Let t be an element

of dom(

S

T). Then t is in the domain of some � 2 T . Sin
e � is a pre�x of both

S

T and �

0

, (

S

T)(t) = �

0

(t). Thus, �

0

ddom(

S

T) =

S

T , that is,

S

T � �

0

. It

follows that trajs(V) is a
po.

We leave it to the reader to
he
k that the
losed traje
tories are the
ompa
t

elements in this
po, and that the
po is algebrai
.

3.2.3 Con
atenation

The
on
atenation of two traje
tories is obtained by taking the union of the

�rst traje
tory and the fun
tion obtained by shifting the domain of the se
ond

traje
tory until the start time agrees with the limit time of the �rst traje
tory;

the last valuation of the �rst traje
tory, whi
h may not be the same as the �rst

valuation of the se
ond traje
tory, is the one that appears in the
on
atenation.

Formally, suppose � and �

0

are traje
tories for V , with �
losed. Then the

on
atenation �

_

�

0

is the fun
tion given by

�

_

�

0

�

= � [(�

0

d(0;1) + �:ltime):

Be
ause dynami
 types are
losed under time shift and pasting, it follows that

�

_

�

0

is a traje
tory for V . Observe that �

_

�

0

is �nite (resp.,
losed, full) if

and only if �

0

is �nite (resp.,
losed, full). Observe also that
on
atenation is

asso
iative.

The following lemma, whi
h is easy to prove, shows the
lose
onne
tion be-

tween
on
atenation and the pre�x ordering.

Lemma 3.5 Let � and � be traje
tories for V with �
losed. Then

� � �,9�

0

: � = �

_

�

0

:

Note that if � � �, then the traje
tory �

0

su
h that � = �

_

�

0

is unique ex
ept

that it has an arbitrary value for �

0

:fval . Note also that the \(" impli
ation in

Lemma 3.5 would not hold if the �rst valuation of the se
ond argument, rather

than the last valuation of the �rst argument, were used in the
on
atenation.

We extend the de�nition of
on
atenation to any (�nite or
ountably in�nite)

number of arguments. Let �

0

; �

1

; �

2

; : : : be a (�nite or in�nite) sequen
e of

traje
tories su
h that �

i

is
losed for ea
h non�nal index i. De�ne traje
tories

�

0

0

; �

0

1

; �

0

2

; : : : indu
tively by

16

�

0

0

�

= �

0

;

�

0

i+1

�

= �

0

i

_

�

i+1

for non�nal i:

Lemma 3.5 implies that for ea
h non�nal i, �

0

i

� �

0

i+1

. We de�ne the
on
ate-

nation �

0

_

�

1

_

�

2

� � � to be the limit of the
hain �

0

0

; �

0

1

; �

0

2

; : : :; existen
e of

this limit follows from Lemma 3.4.

3.3 Hybrid Sequen
es

In this subse
tion, we introdu
e the notion of a hybrid sequen
e, whi
h is used

to model a
ombination of
hanges that o

ur instantaneously and
hanges

that o

ur over intervals of time. Our de�nition is parameterized by a set A

of a
tions, whi
h are used to model instantaneous
hanges and instantaneous

syn
hronizations with the environment, and a set V of variables, whi
h are

used to model
hanges over intervals of time and
ontinuous intera
tion with

the environment. We also de�ne some spe
ial kinds of hybrid sequen
es and

some operations on hybrid sequen
es, and give basi
 properties.

3.3.1 Basi
 De�nitions

Fix a set A of a
tions and a set V of variables. An (A; V)-sequen
e is a �nite

or in�nite alternating sequen
e � = �

0

a

1

�

1

a

2

�

2

: : :, where

(1) ea
h �

i

is a traje
tory in trajs(V),

(2) ea
h a

i

is an a
tion in A,

(3) if � is a �nite sequen
e then it ends with a traje
tory, and

(4) if �

i

is not the last traje
tory in � then dom(�

i

) is
losed.

A hybrid sequen
e is an (A; V)-sequen
e for some A and V .

Sin
e the traje
tories in a hybrid sequen
e
an be point traje
tories, our no-

tion of hybrid sequen
e allows a sequen
e of dis
rete a
tions to o

ur at the

same real time, with
orresponding
hanges of variable values. An alternative

approa
h is des
ribed in [69℄, where state
hanges at a single real time are

modeled using a notion of \superdense time". Spe
i�
ally, hybrid behavior is

modeled in [69℄ using fun
tions from an extended time domain, whi
h in
ludes

ountably many elements for ea
h real time, to states.

If � is a hybrid sequen
e, with notation as above, then we de�ne the limit

time of �, �:ltime, to be

P

i

�

i

:ltime. A hybrid sequen
e � is de�ned to be:

� time-bounded if �:ltime is �nite.

� admissible if �:ltime =1.

17

�
losed if � is a �nite sequen
e and the domain of its �nal traje
tory is a

losed interval.

� Zeno if � is neither
losed nor admissible, that is, if � is time-bounded

and is either an in�nite sequen
e, or else a �nite sequen
e ending with a

traje
tory whose domain is right-open.

A more standard de�nition of \Zeno" would be simply \a time-bounded in�-

nite sequen
e". We add the se
ond option to the de�nition in order to guar-

antee a simple property of the hiding/restri
tion operator, see Lemma 4.9(2).

Ex
ept for Lemma 4.9(2), all results of this paper hold also for the more stan-

dard de�nition. We say that a hybrid sequen
e is \non-Zeno" if it is not Zeno,

that is, if it is
losed or admissible."

For any hybrid sequen
e �, we de�ne the �rst valuation of �, �:fval , to be

�

0

:fval . Also, if � is
losed, we de�ne the last valuation of �, �:lval , to be

last(�):lval , that is, the last valuation in the �nal traje
tory of �.

3.3.2 Pre�x Ordering

We say that (A; V)-sequen
e � = �

0

a

1

�

1

: : : is a pre�x of (A; V)-sequen
e

� = �

0

b

1

�

1

: : :, denoted by � � �, provided that (at least) one of the following

holds:

(1) � = �.

(2) � is a �nite sequen
e ending in some �

k

; �

i

= �

i

and a

i+1

= b

i+1

for every

i, 0 � i < k; and �

k

� �

k

.

Like the set of traje
tories over V , the set of (A; V)-sequen
es is a
po:

Lemma 3.6 Let V be a set of variables and A a set of a
tions. The set of

(A; V)-sequen
es, together with the pre�x ordering �, is an algebrai

po. Its

ompa
t elements are the
losed (A; V)-sequen
es.

Proof: We leave to the reader the routine
he
k that� is a partial order. Note

that this uses the fa
t that � is a partial order on traje
tories (Lemma 3.4).

In order to prove that we have a
po, let S be a dire
ted subset of (A; V)-

sequen
es. We prove that S has a least upper bound. It is easy to
he
k that

S is totally ordered by the pre�x ordering �. We distinguish two
ases.

(1) There is no �nite upper bound on the number of traje
tories that o

ur

in the sequen
es in S. In this
ase, we
an
onstru
t an in�nite sequen
e

�

0

; �

1

; �

2

: : : of elements of S su
h that, for ea
h i, �

i

ontains at least i

a
tions and i+1 traje
tories, and �

i

� �

i+1

. For ea
h i 2 N, let �

i

be the

i+ 1-st traje
tory (the one indexed by i) in �

i+1

, and for i � 1, let a

i

be

18

the i-th a
tion in �

i

. Let � = �

0

a

1

�

1

a

2

�

2

: : :. It is easy to verify that �

is an upper bound of the set f�

i

j i 2 Ng and in fa
t, is the only upper

bound of this set. It follows that � is the lub of S, as needed.

(2) There is a �nite upper bound k on the number of traje
tories that o

ur

in the (A; V)-sequen
es in S. In this
ase, let S

0

be the set obtained by

removing all sequen
es with fewer than k traje
tories from S. Sin
e S

0

is totally ordered, init(�) = init(�

0

) for any �; �

0

2 S

0

. (Re
all that init

is an ordinary sequen
e operation|it yields all but the last element of

the sequen
e.) Choose any � 2 S

0

and let � = init(�). Let T be the set

of �nal traje
tories of sequen
es in S

0

. Again using the fa
t that S

0

is

totally ordered, we obtain that T is totally ordered by the pre�x ordering

on traje
tories. Let � be the least upper bound of T (this upper bound

exists by Lemma 3.4). It is routine to
he
k that � � is a least upper

bound of S

0

, and thus of S.

We leave it to the reader to
he
k that the
losed (A; V)-sequen
es are the

ompa
t elements in this
po, and that the
po is algebrai
.

3.3.3 Con
atenation

Suppose � and �

0

are (A; V)-sequen
es with �
losed. Then the
on
atenation

�

_

�

0

is the (A; V)-sequen
e given by

�

_

�

0

�

= init(�) (last(�)

_

head(�

0

)) tail(�

0

):

(Here, init, last, head and tail are ordinary sequen
e operations.)

Lemma 3.7 Let � and � be (A; V)-sequen
es with �
losed. Then

� � �,9�

0

: � = �

_

�

0

:

Note that if � � �, then the (A; V)-sequen
e �

0

su
h that � = �

_

�

0

is unique

ex
ept that it has an arbitrary value in val(V) for �

0

:fval .

As we did for traje
tories, we extend the
on
atenation de�nition for (A; V)-

sequen
es to any �nite or in�nite number of arguments. Let �

0

; �

1

; : : : be a

�nite or in�nite sequen
e of (A; V)-sequen
es su
h that �

i

is
losed for ea
h

non�nal index i. De�ne (A; V)-sequen
es �

0

0

; �

0

1

; : : : indu
tively by

�

0

0

�

=�

0

;

�

0

i+1

�

=�

0

i

_

�

i+1

for non�nal i:

19

Lemma 3.7 implies that for ea
h non�nal i, �

0

i

� �

0

i+1

. We de�ne the
on
ate-

nation �

0

_

�

1

� � � to be the limit of the
hain �

0

0

; �

0

1

; : : :; existen
e of this limit

is ensured by Lemma 3.6.

3.3.4 Restri
tion

Let A and A

0

be sets of a
tions and let V and V

0

be sets of variables. The

(A

0

; V

0

)-restri
tion of an (A; V)-sequen
e �, denoted by � d(A

0

; V

0

), is obtained

by �rst proje
ting all traje
tories of � on the variables in V

0

, then removing the

a
tions not in A

0

, and �nally
on
atenating all adja
ent traje
tories. Formally,

we de�ne the (A

0

; V

0

)-restri
tion �rst for
losed (A; V)-sequen
es and then

extend the de�nition to arbitrary (A; V)-sequen
es using a limit
onstru
tion.

The de�nition for
losed (A; V)-sequen
es is by indu
tion on the length of

those sequen
es:

� d(A

0

; V

0

)= � # V

0

if � is a single traje
tory,

� a � d(A

0

; V

0

)=

8

>

<

>

:

(� d(A

0

; V

0

)) a (� # V

0

) if a 2 A

0

;

(� d(A

0

; V

0

))

_

(� # V

0

) otherwise.

Note that in the
ase where, due to removal of some a
tion, we
on
atenate

two adja
ent traje
tories, we lose the �rst state of the se
ond traje
tory (by

letting the last state of the �rst traje
tory dominate). It is easy to see that the

restri
tion operator is monotone on the set of
losed (A; V)-sequen
es. Hen
e,

if we apply this operation to a dire
ted set, the result is again a dire
ted set.

Together with Lemma 3.6, this allows us to extend the de�nition of restri
tion

to arbitrary (A; V)-sequen
es by:

� d(A

0

; V

0

)=tf� d(A

0

; V

0

) j � is a
losed pre�x of �g:

Lemma 3.8 (A

0

; V

0

)-restri
tion is a
ontinuous operation.

Proof: This follows by general domain-theoreti
 arguments. For
onvenien
e,

in this proof we write f(�) as an abbreviation for � d(A

0

; V

0

).

First we establish that (A

0

; V

0

)-restri
tion is monotone for arbitrary (A; V)-

sequen
es. Let �; �

0

be (A; V)-sequen
es with � � �

0

; we show that f(�) �

f(�

0

). Let P and P

0

denote the set of
losed pre�xes of � and �

0

, respe
-

tively. By transitivity of the pre�x ordering, it follows that P

0

dominates

P , that is, P v P

0

. Sin
e the restri
tion operation is monotone on
losed

(A; V)-sequen
es, it follows that f(P) v f(P

0

). Then Lemma 2.1 implies that

tf(P) � tf(P

0

). By the de�nition of the restri
tion operation, this implies

that f(�) � f(�

0

), whi
h shows monotoni
ity.

20

Now we
omplete the proof that (A; V)-restri
tion is
ontinuous by assuming

that P is any dire
ted set of (A; V)-sequen
es and showing that f(tP) =

tf(P). By the de�nition of the restri
tion operation, f(tP) = tff(�) j

� is a
losed pre�x of t Pg. By Lemma 3.6 and the de�nition of
ompa
t

elements, any
losed pre�x � of tP is also a pre�x of some � 2 P . Therefore,

f(tP) = tff(�) j � is
losed and 9� 2 P : � is a pre�x of �g.

Now we apply Lemma 2.2 to the right hand side of this last equation. To do

this, we must show:

(1) Q

�

= ff(�) j � is
losed and 9� 2 P : � is a pre�x of �g is a dire
ted set.

To see this,
onsider any nonempty �nite subset R � Q. Ea
h element

of R is a pre�x of some � 2 P . Therefore, sin
e P is a dire
ted set,

there is some single �

0

2 P su
h that ea
h element of R is a pre�x of �

0

.

Therefore, R is a dire
ted set; sin
e R is �nite, it has a lub in R, and

hen
e in Q, as needed.

(2) For ea
h � 2 P , ff(�) j � is
losed and � is a pre�x of �g is a dire
ted

set with lub f(�). The �rst part follows be
ause the set of
losed pre�xes

of � is a dire
ted set and f is monotone. The se
ond part follows from

the de�nition of restri
tion.

(3) The set f(P) is dire
ted. This follows be
ause P is a dire
ted set and f

is monotone.

Then Lemma 2.2 implies that

tff(�) j � is
losed and 9� 2 P : � is a pre�x of �g =

= tff(�) j � 2 Pg = tf(P):

Thus, f(tP) = tf(P), as needed.

The proofs of the following three lemmas are left to the reader.

Lemma 3.9 (�

0

_

�

1

_

� � �) d(A; V) = �

0

d(A; V)

_

�

1

d(A; V)

_

: : :.

Lemma 3.10 (� d(A; V)) d(A

0

; V

0

) = � d(A \ A

0

; V \ V

0

).

Lemma 3.11

(1) � is time-bounded if and only if � d(A; V) is time-bounded.

(2) � is admissible if and only if � d(A; V) is admissible.

(3) If � is
losed then � d(A; V) is
losed.

(4) If � is non-Zeno then � d(A; V) is non-Zeno.

21

4 Hybrid Automata

In this se
tion, as a preliminary step toward de�ning hybrid I/O automata, we

de�ne a slightly more general hybrid automaton model. In hybrid automata,

a
tions and variables are
lassi�ed as external or internal. External a
tions

and variables are not further
lassi�ed as input or output; the input/output

distin
tion is added later, in Se
tion 6. We de�ne how hybrid automata exe
ute

and de�ne implementation and simulation relations between hybrid automata.

4.1 De�nition of Hybrid Automata

A hybrid automaton is a state ma
hine whose states are valuations of vari-

ables, and that uses other variables for
ommuni
ation with its environment.

It also has a set of a
tions, some of whi
h may be internal and some exter-

nal. The state of a hybrid automaton may
hange in two ways: by dis
rete

transitions, whi
h
hange the state atomi
ally and instantaneously, and by

traje
tories, whi
h des
ribe the evolution of the state over intervals of time.

The dis
rete transitions are labeled with a
tions; this will allow us to syn
hro-

nize the transitions of di�erent hybrid automata when we
ompose them in

parallel. The evolution des
ribed by a traje
tory may be des
ribed by
ontin-

uous or dis
ontinuous fun
tions.

De�nition 4.1 A hybrid automaton (HA) A = (W;X;Q;�; E;H;D; T)
on-

sists of:

� A set W of external variables and a set X of internal variables, disjoint

from ea
h other. We write V

�

= W [X.

� A set Q � val(X) of states.

� A nonempty set � � Q of start states.

� A set E of external a
tions and a set H of internal a
tions, disjoint from

ea
h other. We write A

�

= E [H.

� A set D � Q�A�Q of dis
rete transitions. We use x

a

!

A

x

0

as shorthand

for (x; a;x

0

) 2 D. We sometimes drop the subs
ript and write x

a

! x

0

, when

we think A should be
lear from the
ontext. We say that a is enabled in x

if there exists an x

0

su
h that x

a

! x

0

.

� A set T of traje
tories for V su
h that �(t) dX 2 Q for every � 2 T and

t 2 dom(�). Given a traje
tory � 2 T we denote �:fval dX by �:fstate and,

if � is
losed, we denote �:lval dX by �:lstate. We require that the following

axioms hold:

T1 (Pre�x
losure)

For every � 2 T and every �

0

� � , �

0

2 T .

T2 (SuÆx
losure)

22

For every � 2 T and every t 2 dom(�), � � t 2 T .

T3 (Con
atenation
losure)

Let �

0

; �

1

; �

2

; : : : be a sequen
e of traje
tories in T su
h that, for ea
h

non�nal index i, �

i

is
losed and �

i

:lstate = �

i+1

:fstate. Then �

0

_

�

1

_

�

2

� � � 2 T .

AxiomsT1-3 express some natural
onditions on the set of traje
tories that we

need to
onstru
t our theory. A key part of this theory is a parallel
omposition

operation for hybrid automata. In a
omposed system, any traje
tory of any

omponent automaton may be interrupted at any time by a dis
rete transition

of another (possibly independent)
omponent automaton. Axiom T1 ensures

that the part of the traje
tory up to the dis
rete transition is a traje
tory, and

axiom T2 ensures that the remainder is a traje
tory. Axiom T3 is required

be
ause the environment of a hybrid automaton, as a result of its own internal

dis
rete transitions, may
hange its
ontinuous dynami
s repeatedly, and the

automaton must be able to follow this behavior.

The earlier de�nition of hybrid automata in [53,54℄ used a spe
ial stuttering

a
tion e instead of axiom T3. Another key di�eren
e between the new de�ni-

tion of hybrid automaton and the earlier one is that in [53,54℄, the external

variables were
onsidered to be part of the state. This meant, for example, that

dis
rete transitions
ould depend on the values of these variables, a situation

that introdu
ed te
hni
al
ompli
ations. A lo
al transition of one automaton

ould
hange an output variable, whi
h
ould
ause a dis
rete
hange in a

se
ond automaton, whi
h in turn
ould
hange an input variable in the �rst

automaton. To avoid
y
li

onstraints during the intera
tion of systems, we

had to add several axioms, whi
h
ompli
ated the use of our automaton de�-

nitions in appli
ations.

In the new de�nition, we expli
itly identify the set Q of states as a subset of

val(X). In the earlier de�nition of [53,54℄ any valuation in val(X) was
alled

a state. The reason for introdu
ing Q is that in Se
tion 6, we will require that

in ea
h state ea
h input traje
tory is a

epted. In a
tual system des
riptions,

we often en
ounter valuations whi
h are not rea
hable from the initial state,

whi
h in fa
t we do not want to view as states, and from whi
h no behavior

is enabled.

4

By ex
luding these \ghost" valuations from Q, we save ourselves

the trouble of having to think about them.

Hybrid automata that have no external variables are very similar to the timed

automata de�ned in [60,74℄. The main di�eren
e is that hybrid automata have

traje
tories as a primitive rather than a derived notion. Also, the state of a

timed automaton need not be organized using variables with parti
ular types

and dynami
 types.

4

Typi
al examples are the valuations that do not satisfy the \lo
ation invariants"

of Alur-Dill style timed automata [2℄.

23

Notation: We often denote the
omponents of an HA A by W

A

, X

A

, Q

A

,

�

A

, E

A

, et
., and the
omponents of an HA A

i

by W

i

, X

i

, Q

i

�

i

, E

i

, et
. We

sometimes omit these subs
ripts, where no
onfusion seems likely.

Notation: In examples we typi
ally spe
ify sets of traje
tories using di�eren-

tial and algebrai
 equations and in
lusions. Below we explain a few notational

onventions that help us in doing this. Suppose the time domain T is R, �

is a (�xed) traje
tory over some set of variables V , and v 2 V . With some

abuse of notation, we use the variable name v to denote the fun
tion � # v in

dom(�)! type(v), whi
h gives the value of v at all times during traje
tory � .

Similarly, we view any expression e
ontaining variables from V as a fun
tion

with domain dom(�). Using these
onventions we
an say, for example, that

� satis�es the algebrai
 equation

v= e;

whi
h means that, for every t 2 dom(�), v(t) = e(t), that is, the
onstraint on

the variables expressed by equation v = e holds for ea
h state on traje
tory

� . Suppose that v is a variable and e is a real-valued expression
ontaining

variables from V . Suppose also that e, when viewed as a fun
tion, is integrable.

Then we say that � satis�es

_v= e

if, for every t 2 dom(�), v(t) = v(0)+

R

t

0

e(t

0

)dt

0

. Note that this interpretation

of the di�erential equation makes sense even at points where v is not di�eren-

tiable. A similar interpretation of di�erential equations is used by Polderman

and Willems [71℄, who
all these \weak solutions".

In the remainder of this subse
tion, we give two simple examples of hybrid

automata.

Example 4.2 (Vehi
le HA) We des
ribe an HA Vehi
le, displayed

5

in

Figure 2, whi
h models a vehi
le that follows a suggested a

eleration ap-

proximately, to within an error of � � 0. The time domain T is R. The state

of the Vehi
le automaton in
ludes two real-valued internal variables vel and

a

, whi
h represent the a
tual velo
ity and a

eleration of the vehi
le, re-

spe
tively. In addition, the automaton has two real-valued external variables,

vel-out and a

-in, representing reported velo
ity and suggested a

eleration.

5

We use an arrow notation be
ause later on in this paper, in Se
tion 6, we will view

a

-in as an input variable and vel-out as an output variable. Within the
ontext

of the present
hapter the arrow notation has no meaning.

24

acc-in vel-out

Vehicle

acc

vel

Fig. 2. The hybrid automaton Vehi
le.

The dynami
 type of the variables vel , vel-out , and a

-in is the (pasting
lo-

sure of the) set of
ontinuous fun
tions. The dynami
 type of a

 is the set of

integrable fun
tions.

Vehi
le is de�ned to be the HA su
h that W = fa

-in; vel-outg, X =

fvel ; a

g, Q is the set of all valuations of the variables vel and a

, and

�
onsists of the single valuation that assigns 0 to both state variables. The

set of a
tions is empty, and (therefore) D, the set of dis
rete transitions, is

empty. Set T
onsists of all traje
tories that satisfy:

_

vel= a

 (1)

a

(t) 2 [a

-in(t)� �; a

-in(t) + �℄ for t > 0 (2)

vel-out= vel (3)

Equation (1) says that the velo
ity is obtained by integrating the a

eleration.

In
lusion (2) asserts that, ex
ept possibly for the left endpoint, the a
tual a
-

eleration is within � of the suggested a

eleration. Equation (3) says that the

velo
ity is reported a

urately. We leave the reader to show that the traje
tory

axioms T1{T3 are satis�ed; the form of the equations and in
lusions used to

de�ne the traje
tories should make this
lear. We restri
t to the
ase t > 0

in equation (2) be
ause we do not want to
onstrain either the input or the

starting state of traje
tories. The reason for this restri
tion is te
hni
al (it

ensures that Vehi
le
an be viewed as a proper HIOA that satis�es the input

traje
tory enabling property) and should be
ome
learer in Se
tion 6.

Example 4.3 (Controller HA) Now we des
ribe an HA Controller , dis-

played in Figure 3, whi
h models a
ontroller that suggests a

elerations for

a vehi
le, with the intention of ensuring that the vehi
le's velo
ity does not

ex
eed a pre-spe
i�ed velo
ity vmax. The
ontroller monitors the vehi
le's ve-

lo
ity, and every time d, for some �xed d > 0, it produ
es a new suggested

a

eleration to be followed for the next time d. The a

eleration is
hosen in

25

vel-out acc-in

Controller

clock

vel-sensed

acc-suggested

suggest

Fig. 3. The hybrid automaton Controller .

su
h a way that, if it is followed to within an error of �, the velo
ity will remain

below vmax (provided the vehi
le is not going too fast in the �rst pla
e). We

assume that vmax � � d.

The
omponents of the Controller HA are as follows: W = fvel-out ; a

-ing

and X = fvel-sensed ; a

-suggested ;
lo
kg. All variables are of type R. The

dynami
 types of vel-out , vel-sensed , a

-in, and
lo
k are the (pasting
losure

of the) set of
ontinuous fun
tions, and a

-suggested is a dis
rete variable. Q

is the set of valuations of X in whi
h
lo
k � d. �
onsists of one valuation,

whi
h assigns 0 to all state variables. E = ; and H
ontains the single a
tion

suggest . Set D
onsists of the suggest steps spe
i�ed by

6

:

lo
k= d (4)

vel-sensed+ (a

-suggested

0

+ �)d� vmax (5)

lo
k

0

=0 (6)

vel-sensed

0

= vel-sensed (7)

Equation (4) says that the
lo
k indi
ates that it is time for the suggested

a

eleration to be
omputed. Inequality (5) says that the new suggested a
-

eleration is
hosen so that, if the vehi
le follows it for the next time d, even

with an error of �, the velo
ity will still remain at most vmax. Equation (6)

says that the
lo
k is reset after the dis
rete transition. Equation (7) says that

the transition does not
hange the value of vel-sensed . Set T
onsists of all

traje
tories that satisfy:

_

a

-suggested=0 (8)

_

lo
k=1 (9)

vel-sensed(t)= vel-out(t) for t > 0 (10)

6

Here we use the standard
onvention that v denotes the value of a variable in the

start state of a dis
rete transition, and v

0

denotes the value in the end state.

26

a

-in= a

-suggested (11)

Sin
e a

-suggested is a dis
rete variable, the reader might think that adding

onstraint (8) makes no di�eren
e. However, if we expand this
onstraint using

our de�nition of solutions for di�erential equations, we obtain

a

-suggested(t) = a

-suggested(0) +

t

Z

0

0 dt

0

= a

-suggested(0);

whi
h means that a

-suggested remains
onstant throughout the full traje
-

tory. So the e�e
t of adding di�erential equation (8) is that it rules out the

jumps that are allowed by the dynami
 type of a

-suggested . Equation (9)

states that
lo
k has rate 1, and is therefore a
lo
k variable in the sense of

the timed automaton model of [5℄.

Equation (10) says that the velo
ity sensed by the
ontroller is the same as the

velo
ity reported to the
ontroller by its environment. Equation (11) asserts

that the a

eleration that the
ontroller provides to its environment is the

same as the a

eleration that it has most re
ently
omputed. Again, we leave

the reader to show that the traje
tory axioms T1{T3 are satis�ed.

4.2 Exe
utions and Tra
es

We now de�ne exe
ution fragments, exe
utions, tra
e fragments, and tra
es,

whi
h are used to des
ribe automaton behavior. An exe
ution fragment of a

hybrid automaton A is an (A; V)-sequen
e � = �

0

a

1

�

1

a

2

�

2

: : :, where (1)

ea
h �

i

is a traje
tory in T , and (2) if �

i

is not the last traje
tory in � then

�

i

:lstate

a

i+1

! �

i+1

:fstate. An exe
ution fragment re
ords what happens during

a parti
ular run of a system, in
luding all the instantaneous, dis
rete state

hanges and all the
hanges to the state and external variables that o

ur

while time advan
es. We write frags

A

for the set of all exe
ution fragments of

A.

If � is an exe
ution fragment, with notation as above, then we de�ne the �rst

state of �, �:fstate, to be �

0

:fstate. We say that � is an exe
ution fragment

from a state x if �:fstate = x. An exe
ution fragment � is de�ned to be an

exe
ution if �:fstate is a start state, that is, �:fstate 2 �. We write exe
s

A

for

the set of all exe
utions of A. If � is a
losed (A; V)-sequen
e then we de�ne

the last state of �, �:lstate, to be last(�):lstate. A state of A is rea
hable if it

is the last state of some
losed exe
ution of A.

Example 4.4 (Vehi
le exe
ution) Sin
e the Vehi
le HA of Example 4.2 has

27

no dis
rete steps, ea
h of its exe
utions is a one-element sequen
e
onsisting

of a single traje
tory over all the variables of Vehi
le. An example of su
h

= acc

= acc-in

= vel = vel-out

1

2

3

4

1 2 3

Fig. 4. An exe
ution of the Vehi
le (lower two lines after 3 are supposed to
oin
ide).

an exe
ution, depi
ted graphi
ally in Figure 4, is the one
onsisting of the

traje
tory � with �:ltime =1, and su
h that:

a

-in(t) = 0 if t � 1;

2 if 1 < t � 3;

0 if t > 3:

a

(t) = � if t � 1;

2 + � if 1 < t � 3;

0 if t > 3:

vel(t) = vel-out(t) = �t if t � 1;

(2 + �)t� 2 if 1 < t � 3;

4 + 3� if t > 3:

Any �nite pre�x of � would also yield an exe
ution of Vehi
le. The tra
e of �

is the one-element sequen
e obtained by proje
ting � on fa

-in; vel-outg.

Example 4.5 (Controller exe
ution) In the Controller HA of Exam-

ple 4.3, suppose d = 1, so the suggested a

eleration is re
al
ulated at times

28

1, 2, et
. Also suppose that vmax � 4 + 4�. Then an example exe
ution of

Controller is the in�nite sequen
e � = �

0

suggest �

1

suggest �

2

: : :, where, for

every i and for every t 2 dom(�

i

)

(1) �

i

:ltime = 1.

(2) �

i

(t)(
lo
k) = t.

(3) If i = 0 then �

i

(t)(v) is equal to 0 for v 2 fa

-suggested ; a

-ing and �t

for v 2 fvel-out ; vel-sensedg.

(4) If 1 � i � 2 then �

i

(t)(v) is equal to 2 for v 2 fa

-suggested ; a

-ing and

(2 + �)(i + t)� 2 for v 2 fvel-out ; vel-sensedg.

(5) If i � 3 then �

i

(t)(v) is equal to 0 for v 2 fa

-suggested ; a

-ing and

4 + 3� for v 2 fvel-out ; vel-sensedg.

The assumed bound on vmax implies that the suggested a

elerations in this

exe
ution are a
tually possible suggestions a

ording to the rule given in the

Controller automaton de�nition. The tra
e of exe
ution �
onsists of a sin-

gle traje
tory be
ause Controller has no external a
tions. This traje
tory is

de�ned by:

a

-in(t) = 0 if t � 1;

2 if 1 < t � 3;

0 if t > 3:

vel-out(t) = �t if t � 1;

(2 + �)t� 2 if 1 < t � 3;

4 + 3� if t > 3:

Like traje
tories also exe
ution fragments are
losed under
ountable
on
ate-

nation.

Lemma 4.6 Let �

0

; �

1

; : : : be a �nite or in�nite sequen
e of exe
ution frag-

ments of A su
h that, for ea
h non�nal index i, �

i

is
losed and �

i

:lstate =

�

i+1

:fstate. Then �

0

_

�

1

_

� � � is an exe
ution fragment of A.

Proof: Follows easily from the de�nitions, using axiom T3.

Lemma 4.7 Let � and � be exe
ution fragments of A with �
losed. Then

� � � , 9�

0

2 frags

A

: � = �

_

�

0

:

Proof: Impli
ation \(" follows dire
tly from the
orresponding impli
ation

29

in Lemma 3.7. Impli
ation \)" follows from the de�nitions and T2.

The external behavior of a hybrid automaton is
aptured by the set of \tra
es"

of its exe
ution fragments, whi
h re
ord external a
tions and the traje
tories

that des
ribe the evolution of external variables. Formally, if � is an exe
ution

fragment, then the tra
e of �, denoted by tra
e(�), is the (E;W)-restri
tion of

�. (Re
all that E denotes the external a
tions and W the external variables.)

A tra
e fragment of a hybrid automaton A from a state x of A is the tra
e

of an exe
ution fragment of A from x. We write tra
efrags

A

(x) for the set

of tra
e fragments of A from x. Also, we de�ne a tra
e of A to be a tra
e

fragment from a start state, that is, the tra
e of an exe
ution of A, and write

tra
es

A

for the set of tra
es of A.

The following lemma follows trivially from Lemma 3.11:

Lemma 4.8 If � is an exe
ution fragment of A then

(1) � is time-bounded if and only if tra
e(�) is time-bounded.

(2) � is admissible if and only if tra
e(�) is admissible.

(3) If � is
losed then tra
e(�) is
losed.

(4) If � is non-Zeno then tra
e(�) is non-Zeno.

In parts (3) and (4) of the above lemma, the
onverse impli
ations do not

hold. Counterexamples
an be obtained by taking an exe
ution fragment �

that ends with an in�nite sequen
e of internal a
tions without any delay in

between. However, a slight weakening of the
onverse impli
ations does hold:

Lemma 4.9 If � is a tra
e fragment of A from state x then

(1) If � is
losed then there exists an exe
ution fragment � of A from x su
h

that tra
e(�) = � and � is
losed.

(2) If � is non-Zeno then there exists an exe
ution fragment � of A from x

su
h that tra
e(�) = � and � is non-Zeno.

If the de�nition of non-Zeno were broadened to in
lude the
ase of a right-

open �nal traje
tory, then part 2 of the above lemma
an fail. It might be that

the only exe
ution that leads to su
h a tra
e is a Zeno exe
ution, one with

in�nitely many internal events, and delays whi
h get smaller and smaller.

The next de�nition de�nes an implementation relation between hybrid au-

tomata in terms of in
lusion of tra
es: a low-level spe
i�
ation A implements

a high-level spe
i�
ation B if any behavior (tra
e) of A is also an allowed

behavior of B. Without additional assumptions, our implementation relation

only preserves safety properties. However, in Se
tion 7 we will see that if the

low-level spe
i�
ation automaton is required to be re
eptive, our implementa-

tion relation also preserves bounded liveness properties.

30

De�nition 4.10 Hybrid automata A

1

and A

2

are
omparable if they have the

same external interfa
e, that is, if W

1

= W

2

and E

1

= E

2

. If A

1

and A

2

are

omparable then we say that A

1

implements A

2

, denoted by A

1

� A

2

, if the

tra
es of A

1

are in
luded among those of A

2

, that is, if tra
es

A

1

� tra
es

A

2

.

7

4.3 Simulation Relations

In this subse
tion, we de�ne simulation relations between hybrid automata.

Simulation relations may be used to show that one HA implements another,

in the sense of in
lusion of sets of tra
es.

Let A and B be
omparable HAs. A simulation from A to B is a relation

R� Q

A

� Q

B

satisfying the following
onditions, for all states x

A

and x

B

of

A and B, respe
tively:

(1) If x

A

2 �

A

then there exists a state x

B

2 �

B

su
h that x

A

R x

B

.

(2) If x

A

R x

B

and � is an exe
ution fragment of A
onsisting of one a
tion

surrounded by two point traje
tories, with �:fstate = x

A

, then B has a

losed exe
ution fragment � with �:fstate = x

B

, tra
e(�) = tra
e(�), and

�:lstate R �:lstate.

(3) If x

A

R x

B

and � is an exe
ution fragment of A
onsisting of a single

losed traje
tory, with �:fstate = x

A

, then B has a
losed exe
ution

fragment � with �:fstate = x

B

, tra
e(�) = tra
e(�), and �:lstate R

�:lstate.

The de�nition of a simulation from A to B yields a
orresponden
e for open

traje
tories:

Lemma 4.11 Let A and B be
omparable HAs and let R be a simulation

from A to B. Let x

A

and x

B

be states of A and B, respe
tively, su
h that

x

A

R x

B

. Let � be an exe
ution fragment of A from state x

A

onsisting of a

single open traje
tory. Then B has an exe
ution fragment � with �:fstate = x

B

and tra
e(�) = tra
e(�).

Proof: Let � be the single open traje
tory in �. Using axioms T1 and T2, we

onstru
t an in�nite sequen
e �

0

; �

1

; : : : of
losed traje
tories of A su
h that

7

In [60,27,53,54℄, de�nitions of the set of tra
es of an automaton and of one au-

tomaton implementing another are based on
losed and admissible exe
utions only.

The results we obtain in this paper using the newer, more in
lusive de�nition imply

orresponding results for the earlier de�nition. For example, we have the following

property: If A

1

� A

2

then the set of tra
es that arise from
losed or admissible

exe
utions of A

1

is a subset of the set of tra
es that arise from
losed or admissible

exe
utions of A

2

.

31

� = �

0

_

�

1

_

� � �. Then, working indu
tively, we
onstru
t a sequen
e �

0

; �

1

; : : :

of
losed exe
ution fragments of B su
h that �

0

:fstate = x

B

and, for ea
h i,

�

i

:lstate R �

i

:lstate, �

i

:lstate = �

i+1

:fstate, and tra
e(�

i

) = tra
e(�

i

). This

onstru
tion uses indu
tion on i, using Property 3 of the de�nition of a simu-

lation relation in the indu
tion step. Now let � = �

0

_

�

1

_

� � �. By Lemma 4.6,

� is an exe
ution fragment of B. Clearly, �:fstate = x

B

. By Lemma 3.9 applied

to both � and �, tra
e(�) = tra
e(�). Thus � has the required properties.

Theorem 4.12 Let A and B be
omparable HAs and let R be a simulation

from A to B. Let x

A

and x

B

be states of A and B, respe
tively, su
h that

x

A

R x

B

. Then tra
efrags

A

(x

A

) � tra
efrags

B

(x

B

).

Proof: Suppose that Æ is the tra
e of an exe
ution fragment of A that starts

from x

A

; we prove that Æ is also a tra
e of an exe
ution fragment of B that

starts from x

B

. Let � = �

0

a

1

�

1

a

2

�

2

: : : be an exe
ution fragment of A su
h

that �:fstate = x

A

and Æ = tra
e(�). We
onsider
ases:

(1) � is an in�nite sequen
e.

Using axioms T1 and T2, we
an write � as an in�nite
on
atenation

�

0

_

�

1

_

�

2

� � �, in whi
h the exe
ution fragments �

i

with i even
onsist

of a traje
tory only, and the exe
ution fragments �

i

with i odd
onsist of

a single dis
rete step surrounded by two point traje
tories.

We de�ne indu
tively a sequen
e �

0

; �

1

; : : : of
losed exe
ution frag-

ments of B, su
h that �

0

:fstate = x

B

and, for all i, �

i

:lstate = �

i+1

:fstate,

�

i

:lstate R �

i

:lstate, and tra
e(�

i

) = tra
e(�

i

). We use Property 3 of the

de�nition of a simulation relation for the
onstru
tion of the �

i

's with

i even, and Property 2 for the
onstru
tion of the �

i

's with i odd. Let

� = �

0

_

�

1

_

�

2

� � �. By Lemma 4.6, � is an exe
ution fragment of B.

Clearly, �:fstate = x

B

. By Lemma 3.9, tra
e(�) = tra
e(�). Thus � has

the required properties.

(2) � is a �nite sequen
e ending with a
losed traje
tory.

Similar to the �rst
ase.

(3) � is a �nite sequen
e ending with an open traje
tory.

Similar to the �rst
ase, using Lemma 4.11.

Corollary 4.13 Let A and B be
omparable HAs and let R be a simulation

from A to B. Then tra
es

A

� tra
es

B

.

Proof: Suppose � 2 tra
es

A

. Then � 2 tra
efrags

A

(x

A

) for some start state

x

A

of A. Property 1 of the de�nition of simulation relation implies the exis-

ten
e of a start state x

B

of B su
h that x

A

R x

B

. Then Theorem 4.12 implies

that � 2 tra
efrags

B

(x

B

). Sin
e x

B

is a start state of B, this implies that

� 2 tra
es

B

, as needed.

32

Example 4.14 (Vehi
le implementation) Now denote the Vehi
le HA of

Example 4.2 by Vehi
le(�), making the un
ertainty parameter expli
it. Assume

that 0 � �

1

� �

2

. Let A = Vehi
le(�

1

) and B = Vehi
le(�

2

). We
laim that

A � B. We
an show this by demonstrating that the identity mapping is

a simulation relation from A to B. Sin
e these HAs have no dis
rete steps,

we need only show Properties 1 and 3 of the de�nition of simulation relation.

Property 1 is obvious be
ause the two HAs have the same (unique) start state,

whi
h assigns 0 to both state variables. For Property 3, assume that x

A

R x

B

and �
onsists of a
losed traje
tory � of A with �:fstate = x

A

. Let � = �.

Clearly, � is a
losed hybrid sequen
e, �:fstate = x

B

, tra
e(�) = tra
e(�), and

�:lstate R �:lstate. It remains to show that � is an exe
ution fragment of B,

that is, that � is a traje
tory of B. This follows immediately from the de�nition

of traje
tories for Vehi
le(�

1

) and Vehi
le(�

2

); the only interesting point is

that, for every t 2 dom(�), t > 0, we have: [a

-in(t) � �

1

; a

-in(t) + �

1

℄ �

[a

-in(t)� �

2

; a

-in(t) + �

2

℄.

Example 4.15 (Controller implementation)Denote the Controller HA of

Example 4.3 by Controller(vmax), making the maximum velo
ity parameter

expli
it. Assume that 0 � vmax

1

� vmax

2

. We
laim that Controller(vmax

1

) �

Controller(vmax

2

); again, we show this by demonstrating that the identity

mapping is a simulation relation. This requires showing all three properties of

the de�nition of simulation relation. Properties 1 and 3 are immediate, be
ause

vmax does not appear in the de�nitions of the start states and the traje
tories.

For Property 2, the key is that, if vel-sensed + (a

-suggested

0

+ �)d � vmax

1

,

then also vel-sensed + (a

-suggested)

0

+ �)d � vmax

2

.

5 Operations on Hybrid Automata

In this se
tion, we present two kinds of operations on hybrid automata: parallel

omposition and hiding.

5.1 Composition

We now introdu
e the operation of parallel
omposition for hybrid automata,

whi
h allows an automaton representing a
omplex system to be
onstru
ted

by
omposing automata representing individual system
omponents. Our
om-

position operation identi�es external a
tions with the same name in di�erent

omponent automata, and likewise for external variables. When any
ompo-

nent automaton performs a dis
rete step involving an a
tion a, so do all
ompo-

33

nent automata that have a in their signatures. Likewise, when any
omponent

automaton performs a traje
tory involving a parti
ular evolution of values for

an external variable v, then so do all
omponent automata that have v in their

signatures. We prove several results that say that the
omposition operation

respe
ts our notions of external behavior and implementation.

We de�ne
omposition as a partial, binary operation on hybrid automata.

Sin
e internal a
tions of an automaton A

1

are intended to be unobservable

by any other automaton A

2

, we allow A

1

to be
omposed with A

2

only if the

internal a
tions of A

1

are disjoint from the a
tions of A

2

. Similarly, we require

disjointness of the internal variables of A

1

and the variables of A

2

.

De�nition 5.1 We say that hybrid automata A

1

and A

2

are
ompatible if

H

1

\ A

2

= H

2

\ A

1

= ; and X

1

\ V

2

= X

2

\ V

1

= ;. If A

1

and A

2

are

ompatible then their
omposition A

1

kA

2

is de�ned to be the stru
ture A =

(W;X;Q;�; E;H;D; T) where

� W = W

1

[W

2

and X = X

1

[X

2

.

� Q = fx 2 val(X) j x dX

1

2 Q

1

^ x dX

2

2 Q

2

g.

� � = fx 2 Q j x dX

1

2 �

1

^ x dX

2

2 �

2

g.

� E = E

1

[E

2

and H = H

1

[H

2

.

� For ea
h x;x

0

2 Q and ea
h a 2 A, x

a

!

A

x

0

i� for i = 1; 2, either (1)

a 2 A

i

and x dX

i

a

!

i

x

0

dX

i

, or (2) a 62 A

i

and x dX

i

= x

0

dX

i

.

� T � trajs(V) is given by � 2 T , � # V

1

2 T

1

^ � # V

2

2 T

2

.

Whenever we write A

1

kA

2

, we impli
itly assume that A

1

and A

2

are
ompat-

ible.

Theorem 5.2 If A

1

and A

2

are hybrid automata then A

1

kA

2

is a hybrid

automaton.

Proof: Let A denote A

1

kA

2

as above. We show that A satis�es the properties

of a hybrid automaton (
f. Se
tion 4.1). Disjointness of W and X follows

from disjointness of W

1

and X

1

, disjointness of W

2

and X

2

, and
ompatibility.

Similarly, disjointness of E and H follows from disjointness of E

1

and H

1

,

disjointness of E

2

and H

2

, and
ompatibility. Nonemptiness of � follows from

nonemptiness of �

1

and �

2

and disjointness of X

1

and X

2

. We verify the T

properties:

T1 Let � 2 T , let �

0

be a traje
tory su
h that �

0

� � , and let i 2 f1; 2g.

By the de�nition of
omposition, � # V

i

2 T

i

. By the de�nition of pre�x,

�

0

V

i

� � # V

i

. By T1 applied to A

i

, �

0

V

i

2 T

i

. Then by de�nition of

omposition, �

0

2 T , as needed.

T2 Let � 2 T , t 2 dom(�), �

0

= � � t, and i 2 f1; 2g. By the de�nition of

omposition, � # V

i

2 T

i

. Then by T2 applied to A

i

, (� # V

i

) � t 2 T

i

.

Observe that (� # V

i

) � t = �

0

V

i

; therefore, �

0

V

i

2 T

i

. Then by the

34

de�nition of
omposition, �

0

2 T , as needed.

T3 Let �

0

; �

1

; �

2

; : : : be a sequen
e of traje
tories in T su
h that, for ea
h

non�nal index j, �

j

is
losed and �

j

:lstate = �

j+1

:fstate. Let � denote �

0

_

�

1

_

�

2

� � �, and let i 2 f1; 2g. By the de�nition of
omposition, operation,

for ea
h index j, �

j

V

i

2 T

i

, and for ea
h non�nal index j, �

j

V

i

is
losed

and (�

j

V

i

):lstate = (�

j+1

V

i

):fstate. By T3 applied to A

i

, �

0

V

i

_

�

1

#

V

i

_

�

2

V

i

� � � 2 T

i

. Observe that � # V

i

= �

0

V

i

_

�

1

V

i

_

�

2

V

i

� � �;

therefore, � # V

i

2 T

i

. Then by the de�nition of
omposition, � 2 T , as

needed.

The following \proje
tion lemma" says that exe
utions of a
omposition of

HAs proje
t to give exe
utions of the
omponent automata. Moreover,
ertain

properties of the exe
utions of the
omposition imply, or are implied by, similar

properties for the
omponent exe
utions.

Lemma 5.3 Let A = A

1

kA

2

and let � be an exe
ution fragment of A. Then

� d(A

1

; V

1

) and � d(A

2

; V

2

) are exe
ution fragments of A

1

and A

2

, respe
tively.

Furthermore,

(1) � is time-bounded i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are time-bounded.

(2) � is admissible i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are admissible.

(3) � is
losed i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are
losed.

(4) � is Zeno i� at least one of � d(A

1

; V

1

) and � d(A

2

; V

2

) is Zeno.

(5) � is an exe
ution i� both � d(A

1

; V

1

) and � d(A

2

; V

2

) are exe
utions.

Proof: Simple appli
ation of the de�nitions.

Example 5.4 (Composition and Zeno exe
utions) Consider a
omposi-

tion A = A

1

kA

2

in whi
h the two
omponents have no a
tions or variables in

ommon. We des
ribe a Zeno exe
ution fragment � of A in whi
h only one of

the proje
ted exe
ution fragments is Zeno. Namely, let � = �

0

a

1

�

1

a

2

�

2

: : :,

where �

0

:ltime = 1 and for all i � 1, �

i

is a point traje
tory. Also, all the a

i

's

are a
tions of A

1

but not of A

2

. Then � d(A

1

; V

1

), whi
h in
ludes all the a

i

's,

is a Zeno exe
ution fragment, whereas � d(A

2

; V

2

), whi
h
onsists of the single

right-
losed traje
tory �

0

V

2

, is a
losed exe
ution fragment.

Example 5.5 (Exe
ution of vehi
le and
ontroller) Consider the Vehi
le

and Controller automata of Examples 4.2 and 4.3 (for the same �). These two

HAs are
ompatible. Their
omposition is displayed in Figure 5. An example

exe
ution of the
omposition is the in�nite sequen
e � = �

0

suggest�

1

suggest�

2

: : :,

where, for every i and for every t 2 dom(�

i

):

(1) �

i

:ltime = 1.

35

Controller

clock

vel-sensed

acc-suggested

suggest

vel-out

acc-in
Vehicle

vel

acc

Fig. 5. Composition of hybrid automata Vehi
le and Controller .

(2) �

i

(t)(
lo
k) = t.

(3) If i = 0 then �

i

(t)(v) is equal to 0 for v 2 fa

-suggested ; a

-ing, � for

v = a

, and �t for v 2 fvel ; vel-out ; vel-sensedg.

(4) If 1 � i � 2 then �

i

(t)(v) is equal to 2 for v 2 fa

-suggested ; a

-ing,

2 + � for v = a

, and (2 + �)(i+ t)� 2 for v 2 fvel ; vel-out ; vel-sensedg.

(5) If i � 3 then �

i

(t)(v) is equal to 0 for v 2 fa

-suggested ; a

-in; a

g and

4 + 3� for v 2 fvel ; vel-out ; vel-sensedg.

This exe
ution is admissible. Its proje
tions on the Vehi
le and Controller

automata are given by the admissible exe
utions in Examples 4.4 and 4.5,

respe
tively.

The following lemma says that we obtain the same result for an exe
ution

fragment � of a
omposition if we �rst extra
t the tra
e and then restri
t to

one of the
omponents, or if we �rst restri
t to the
omponent and then take

the tra
e.

Lemma 5.6 Let A = A

1

kA

2

, and let � be an exe
ution fragment of A. Then,

for i = 1; 2, tra
e(�) d(E

i

;W

i

) = tra
e(� d(A

i

; V

i

)).

Proof: Re
all that tra
e(�) = � d(E;W). The result follows straightforwardly

by Lemma 3.10 and the observation that W \ W

i

= W

i

= V

i

\ W

i

and

E \ E

i

= E

i

= A

i

\ E

i

.

The following fundamental theorem relates the set of tra
es of a
omposed

automaton to the sets of tra
es of the
omponent automata. It is expressed

in terms of equality between two sets of tra
es. Set in
lusion in one dire
tion

expresses the idea that a tra
e of a
omposition \proje
ts" to yield tra
es of the

omponents. Set in
lusion in the other dire
tion expresses the idea that tra
es

of
omponents
an be \pasted together" to yield a tra
e of the
omposition.

Theorem 5.7 Let A = A

1

kA

2

. Then tra
es

A

is exa
tly the set of (E;W)-

36

sequen
es whose restri
tions to A

1

and A

2

are tra
es of A

1

and A

2

, respe
-

tively. That is,

tra
es

A

= f� j � is (E;W)-sequen
e and � d(E

i

;W

i

) 2 tra
es

A

i

; i = 1; 2g:

Proof: For one dire
tion, suppose that � is a tra
e of A. Then by de�nition,

� is an (E;W)-sequen
e. Let � be an exe
ution of A su
h that � = tra
e(�).

Let i 2 f1; 2g. Then Lemma 5.6 implies that � d(E

i

;W

i

) = tra
e(� d(A

i

; V

i

)).

Sin
e, by Lemma 5.3, � d(A

i

; V

i

) is an exe
ution of A

i

, � d(E

i

;W

i

) is a tra
e

of A

i

.

Conversely, let � be an (E;W)-sequen
e su
h that � d(E

i

;W

i

) is a tra
e of A

i

,

i = 1; 2. Then there are exe
utions �

1

and �

2

of A

1

and A

2

, respe
tively, su
h

that, for i = 1; 2, tra
e(�

i

) = � d(E

i

;W

i

). De
ompose �

1

into �

0

1

_

�

1

1

_

�

2

1

_

� � �,

de
ompose �

2

into �

0

2

_

�

1

2

_

�

2

2

_

� � �, and de
ompose � into �

0 _

�

1 _

�

2 _

� � �

in su
h a way that for ea
h j, (1) tra
e(�

j

i

) = �

j

d(E

i

;W

i

) for i 2 f1; 2g,

(2) �

j

i

is either a traje
tory or an a
tion surrounded by point traje
tories,

i 2 f1; 2g, and (3) if both �

j

1

and �

j

2

onsist of a
tions surrounded by point

traje
tories then these a
tions are identi
al. Axioms T1 and T2 imply that

su
h de
ompositions exist.

8

Now we de�ne a sequen
e of exe
ution fragments of A, �

0

; �

1

; : : :, su
h that:

(1) �

0

:fstate 2 �

A

,

(2) For every non�nal j, �

j

:lstate = �

j+1

:fstate, and

(3) For every j, tra
e(�

j

) = �

j

.

By Lemma 4.6, the
on
atenation �

0_

�

1_

� � � is an exe
ution of A. Moreover,

by Lemma 3.9, the tra
e of this exe
ution is �. To de�ne ea
h �

j

, we distinguish

the following
ases:

(1) Ea
h of �

j

1

and �

j

2

is a traje
tory.

Then suppose that �

j

1

= �

1

and �

j

2

= �

2

. De�ne �

j

to be the fun
tion �

with domain dom(�

1

) su
h that �(t) = �

1

(t)[�

2

(t) for every t. (Compat-

ibility of �

1

and �

2

follows here, and in the remaining three
ases, from

the fa
ts that �

j

1

= �

j

d(E

1

;W

1

) and �

j

2

= �

j

d(E

2

;W

2

).)

(2) �

j

1

is a traje
tory and �

j

2

is an a
tion surrounded by point traje
tories.

Then �

j

1

must be a point traje
tory as well. Let �

j

1

= }(v

1

) and �

j

2

=

}(v

2

)a}(v

0

2

). Then de�ne �

j

to be }(v

1

[v

2

) a }(v

1

[v

0

2

).

(3) �

j

1

is an a
tion surrounded by point traje
tories and �

j

2

is a traje
tory.

This is symmetri
 with the previous
ase.

(4) Ea
h of �

j

1

and �

j

2

is an a
tion (the same in both
ases) surrounded by

point traje
tories.

8

See [59℄ for a detailed existen
e proof for similar de
ompositions.

37

Let �

j

1

= }(v

1

)a}(v

0

1

) and �

j

2

= }(v

2

)a}(v

0

2

). De�ne �

j

to be }(v

1

[

v

2

) a }(v

0

1

[v

0

2

).

It is straightforward to verify that the �

j

fragments satisfy the required prop-

erties.

The following theorem des
ribes a basi
 substitutivity property:

Theorem 5.8 Suppose A

1

and A

2

are
omparable HAs with A

1

� A

2

. Sup-

pose B is an HA that is
ompatible with ea
h of A

1

and A

2

. Then A

1

kB and

A

2

kB are
omparable and A

1

kB � A

2

kB.

Proof: The fa
t that A

1

kB and A

2

kB are
omparable follows from the fa
t

that A

1

and A

2

are
omparable and the de�nition of
omposition.

Let � 2 tra
es

A

1

kB

. By Theorem 5.7, � d(E

1

;W

1

) 2 tra
es

A

1

and � d(E

B

;W

B

) 2

tra
es

B

. Sin
e A

1

� A

2

, � d(E

1

;W

1

) 2 tra
es

A

2

. Sin
e A

1

and A

2

have the

same external interfa
e, (E

1

;W

1

) = (E

2

;W

2

). Thus, � d(E

2

;W

2

) 2 tra
es

A

2

.

It follows from Theorem 5.7 that � 2 tra
es

A

2

kB

.

Example 5.9 (Invariant for
ombined vehi
le and
ontroller)Consider

again the
omposition of the Vehi
le and Controller automata of Examples 4.2

and 4.3 (for the same �). In the
omposed automaton, it turns out that the

velo
ity is always less than or equal to vmax, that is, in all rea
hable states,

vel� vmax (12)

This statement may be proved by indu
tion on the length of
losed exe
ution

fragments. In the proof, we use the fa
t that
lo
k � d, whi
h follows from the

de�nition of Q. We also use assertions (3) and (11). In addition, we require

the following auxiliary invariants:

vel + (a

-suggested+ �)(d�
lo
k)� vmax (13)

lo
k > 0) a

� a

-suggested+ � (14)

vel-sensed= vel (15)

0�
lo
k (16)

Here the interesting assertion is (13), whi
h says, essentially, that the velo
ity

will stay less than or equal to vmax if the vehi
le a

elerates at the
urrently

suggested a

eleration plus � until the next re
al
ulation. The main invariant

(12) and the auxiliary invariants (13)-(16)
an all be proved together. All are

easily seen to be true in the initial state. There are two kinds of indu
tive

steps, for dis
rete suggest transitions and for traje
tories. Dis
rete transitions

38

are easily seen to preserve all the assertions; the most interesting property

to show is invariant (13), whi
h holds be
ause of the
onstraints on the new

suggested a

eleration, the fa
t that vel-sensed = vel , and the fa
t that, in

the new state,
lo
k = 0.

Traje
tories also preserve all the assertions; now the interesting thing to show

is the
onjun
tion of (12) and (13). Depending on whether or not a

-suggested+

� � 0, it suÆ
es to show only (12) or only (13). For example, suppose

a

-suggested + � � 0; we show the auxiliary invariant (13). The traje
tory

guarantees that vel

0

� vel +(a

-suggested + �)t and
lo
k

0

=
lo
k + t, where

t is the limit time of the traje
tory and unprimed and primed instan
es of the

variables are used (as usual) to indi
ate their values at the beginning and end

of the traje
tory, respe
tively. The inequality is based on the integral de�ni-

tion of vel in terms of a

 and the relationship between a

 and a

-suggested .

Then

vel

0

+ (a

-suggested

0

+ �)(d�
lo
k

0

)

= vel

0

+ (a

-suggested+ �)(d�
lo
k � t)

= vel

0

� (a

-suggested+ �)t + (a

-suggested+ �)(d�
lo
k)

� vel + (a

-suggested+ �)(d�
lo
k)

� vmax (by indu
tive hypothesis)

Note that, be
ause of the two kinds of indu
tive steps, the indu
tive proof

divides
leanly into separate parts that involve dis
rete and
ontinuous rea-

soning.

5.2 Hiding

We de�ne two hiding operations for hybrid automata, whi
h hide external a
-

tions and external variables, respe
tively, and we prove that these operations

respe
t the implementation relationship. The hiding operations re
lassify ex-

ternal a
tions or external variables as internal a
tions or variables.

� If E � E

A

, then A
tHide(E;A) is the HA B that is equal to A ex
ept that

E

B

= E

A

� E and H

B

= H

A

[E.

� If W � W

A

, then VarHide(W;A) is the HA B that is equal to A ex
ept that

W

B

= W

A

�W and T

B

= T

A

(V

A

�W).

Lemma 5.10 Let E � E

A

andW � W

A

. Then A
tHide(E;A) and VarHide(W;A)

are HAs.

Proof: This is a straightforward appli
ation of the de�nitions.

39

The following lemma
hara
terizes the tra
es of the automata that result from

applying the hiding operations:

Lemma 5.11 Let A be an HA.

(1) If E � E

A

then tra
es

A
tHide(E;A)

= f� d(E

A

� E; V

A

) j � 2 tra
es

A

g.

(2) If W � W

A

then tra
es

VarHide(W;A)

= f� d(A

A

;W

A

�W) j � 2 tra
es

A

g.

Proof: For (1), �rst observe that A
tHide(E;A) has the same set of exe
utions

as A. Then apply Lemma 3.10. The proof of (2) is straightforward.

Theorem 5.12 Suppose A and B are HAs with A � B, and suppose E � E

A

and W � W

A

.

Then A
tHide(E;A) � A
tHide(E;B) and VarHide(W;A) � VarHide(W;B).

Proof: Straightforward, using Lemma 5.11.

Example 5.13 (Implementing a velo
ity spe
i�
ation) In the
omposi-

tion of the Vehi
le and Controller automata de�ned in Example 5.5, we may

hide the a

-in variable used for
ommuni
ation between the two
omponents.

Thus, we de�ne

A=VarHide(fa

-ing;Vehi
lekController):

In the resulting automaton A, the only external variable is vel-out .

We may express the
orre
tness ofA by showing that it implements an abstra
t

spe
i�
ation automaton VSpe
, displayed in Figure 6, that simply represents

the
onstraint that the vehi
le's velo
ity is at most vmax. VSpe
 has one ex-

vel-out

vel

VSpec

Fig. 6. Spe
i�
ation automaton VSpe
.

ternal variable vel-out , one state variable vel , and the sets of states and initial

states both
onsist of all valuations satisfying vel � vmax. Both variables

40

have type R and dynami
 type equal to the (pasting
losure of the)
ontinu-

ous fun
tions. VSpe
 has no a
tions. The traje
tories of VSpe
 are those that

satisfy:

vel-out= vel (17)

We may argue thatA implements VSpe
 using a simulation relationR. Most of

the work has already been done by proving invariants, in Example 5.9. Relation

R relates states x

A

of A and x

B

of B

�

= VSpe
 exa
tly if x

A

is a rea
hable

state of A and x

B

(vel) = x

A

(vel). It is easy to see that R satis�es the start

ondition of the simulation relation de�nition. The dis
rete step
ondition

follows be
ause dis
rete a
tions of A do not
hange vel . For the traje
tory

ondition, assume x

A

R x

B

and � is a traje
tory of A with �rst state x

A

.

The de�nition of R implies that x

A

is a rea
hable state of A. Therefore all

states in traje
tory � are also rea
hable states of A. Therefore, the invariant

vel � vmax, whi
h was proved for A in Example 5.9, is also true of all states

in � . Now de�ne the
orresponding exe
ution fragment of B to
onsist of the

single traje
tory �

0

su
h that �

0

vel = �

0

vel-out = � # vel . This satis�es

all the required properties.

Example 5.14 (Sensor and dis
rete
ontroller) We des
ribe how to im-

plement the Controller of Example 4.3, whi
h re
eives
ontinuous informa-

tion about the vehi
le's velo
ity through vel-out and suggests a

elerations,

using two other
omponents: a Sensor , whi
h periodi
ally samples the
on-

tinuous velo
ity information and produ
es dis
rete velo
ity reports, and a

Dis
reteController , whi
h uses the dis
rete velo
ity reports and immediately

suggests a

elerations. These two
omponents are displayed in Figure 7.

Sensor

clock

suggest

report(v)

vel-sensed

acc-suggested

vel-reported

stable

DiscreteController

vel-out acc-in

Fig. 7. The hybrid automata Sensor and Dis
reteController .

The Sensor automaton has state variables
lo
k and vel-sensed , both initially

0, and external variable vel-out . All variables have type R and dynami
 type

equal to the (pasting
losure of the)
ontinuous fun
tions. The set Q of states

onsists of all valuations in whi
h
lo
k � d. Sensor also has external a
tions

report(v), v 2 R. D
onsists of report(v) steps spe
i�ed by:

41

lo
k= d (18)

lo
k

0

=0 (19)

v= vel-sensed (20)

That is, when the
lo
k rea
hes d, the Sensor may reset the
lo
k to 0 and

report the
urrent velo
ity. Set T
onsists of traje
tories that satisfy:

_

lo
k=1 (21)

vel-sensed(t)= vel-out(t) for t > 0 (22)

That is, the
lo
k in
reases at rate 1 and the velo
ity sensed is exa
tly what

is seen in vel-out .

The Dis
reteController HA has state variables vel-reported and a

-suggested ,

both dis
rete variables of type R, initially 0, a dis
rete Boolean state variable

stable, initially true, and one external variable a

-in, of type R and dynami

type equal to (the pasting
losure of) the
ontinuous fun
tions. The state
on-

sists of all valuations of the internal variables. The Dis
reteController also has

external a
tions report(v), v 2 R, and an internal a
tion suggest . D in
ludes

report(v) steps that satisfy:

vel-reported

0

= v (23)

stable

0

= false (24)

and suggest steps that satisfy:

stable= false (25)

stable

0

= true (26)

vel-reported+ (a

-suggested

0

+ �)d� vmax (27)

That is, a new velo
ity report sets the
ag that triggers the Dis
reteController

to re
al
ulate the suggested a

eleration. Traje
tories satisfy:

stable(t)= stable(0) (28)

stable(t)= true for t > 0 (29)

_

a

-suggested=0 (30)

a

-in= a

-suggested (31)

That is, the Dis
reteController does not allow time to pass if stable = false; it

must perform a suggest a
tion after re
eiving a report input and before time

an pass. The Dis
reteController does not
hange the suggested a

eleration

during a traje
tory, and submits it a

urately to its environment. Now de�ne

42

A=A
tHide(freport(v) j v 2 Rg; SensorkDis
reteController):

We
laim that A implements B

�

= Controller . We may argue this using the

simulation relation R that relates states x

A

of A and x

B

of Controller pro-

vided that x

A

is a rea
hable state of A, x

B

(vel-sensed) = x

A

(vel-sensed),

x

B

(a

-suggested) = x

A

(a

-suggested) and x

B

(
lo
k) = x

A

(
lo
k) if x

A

(stable) =

true, else d. A key to the argument is that a suggest step o

urs in B when

suggest o

urs in A, rather than when a report o

urs.

Sin
e A � Controller , Theorem 5.8 implies AkVehi
le � ControllerkVehi
le.

Then Theorem 5.12 implies

VarHide(fa

-ing;AkVehi
le)�VarHide(fa

-ing;ControllerkVehi
le):

Sin
e, by Example 5.13, VarHide(fa

-ing;ControllerkVehi
le) � VSpe
, tran-

sitivity of implementation implies that VarHide(fa

-ing;AkVehi
le) imple-

ments VSpe
.

6 Hybrid I/O Automata

In this se
tion we re�ne the hybrid automaton model of Se
tion 4 by dis-

tinguishing between input and output a
tions and between input and output

variables. The results on simulation relations and operations for hybrid au-

tomata presented in Se
tions 4.3 and 5
an be extended to this new setting.

6.1 De�nition of Hybrid I/O Automata

De�nition 6.1 A hybrid I/O automaton (HIOA) A is a tuple (H; U; Y; I; O)

where

� H = (W;X;Q;�; E;H;D; T) is a hybrid automaton.

� U and Y partition W into input and output variables, respe
tively.

Variables in Z

�

= X [Y are
alled lo
ally
ontrolled; as before, we write

V

�

=W [X.

� I and O partition E into input and output a
tions, respe
tively.

A
tions in L

�

= H [O are
alled lo
ally
ontrolled; as before we write

A

�

= E [H.

� The following additional axioms are satis�ed:

E1 (Input a
tion enabling)

For every x 2 Q and every a 2 I, there exists x

0

2 Q su
h that x

a

! x

0

.

43

E2 (Input traje
tory enabling)

For every x 2 Q and every � 2 trajs(U), there exists � 2 T su
h that

�:fstate = x, � # U � �, and either

(1) � # U = �, or

(2) � is
losed and some l 2 L is enabled in �:lstate.

Input a
tion enabling is the input enabling
ondition of ordinary I/O au-

tomata. Input traje
tory enabling is a new,
orresponding
ondition for in-

tera
tion over time intervals. It says that an HIOA should be able to a

ept

any input traje
tory, that is, any traje
tory for the input variables, either by

letting time advan
e for the entire duration of the input traje
tory, or by re-

a
ting with a lo
ally
ontrolled a
tion after some part of the input traje
tory

has o

urred. In Se
tion 7, we will see that by repeated appli
ation of axiom

E2 a HIOA is able to fully a

ept any input traje
tory, possibly interleaved

with lo
ally
ontrolled a
tions, provided the HIOA does not exhibit unwanted

Zeno behavior.

Note the role of dynami
 types in axiom E2. Input traje
tory enabling means

that an automaton
annot restri
t the inputs. The problem we hit is that with

absolutely no way of restri
ting the inputs, the inputs were just too ill-behaved.

In examples, we typi
ally want to be able to integrate the input to get the

value of internal variables, but we
annot do this unless the input is integrable.

Axiom E2 states that a HIOA needs to be able to a

ept any input traje
tory

in trajs(U). By de�nition, the traje
tories in trajs(U), when proje
ted on an

individual variable u 2 U , must be in agreement with the dynami
 type of

u. For instan
e, by taking as the dynami
 type of variables in U the set of

pie
ewise smooth fun
tions, we impose some rather minimal
onstraints on

the input traje
tories that allow us to give meaningful automaton de�nitions

involving integrals, di�erential equations, et
.

In
ontrol theory it is
ustomary to require
ausality, that is, the output at

time t depends only upon the input traje
tory up to, and possibly in
luding,

time t [71℄. In our setting, there is no need to enfor
e
ausality expli
itly sin
e

it is implied already by the
losure of the set of traje
tories under pre�x and

on
atenation. Assume that in a traje
tory � the output at time t \depends"

on the input traje
tory after t. By pre�x
losure of traje
tories (axiom T1),

� � t is also a traje
tory. Let x be the state of � at time t, and let � be any

input traje
tory. By axiomE2 there exists a traje
tory �

0

with �rst state x that

agrees with � (at least up to a
ertain point). By axiom T3 the
on
atenation

of � � t and �

0

is again a traje
tory. The output of this traje
tory at time

t agrees with the output of � at time t, even though the subsequent inputs

will in general be di�erent. It follows that in � the output at time t does not

depend on the input after t, a
ontradi
tion. Also note that our de�nition

does not enfor
e fun
tional dependen
e of outputs from inputs: HIOAs may

be nondeterministi
, allowing for several possible outputs for any given input

44

traje
tory.

It will sometimes be
onvenient for us to
onsider automata in whi
h inputs

and outputs are distinguished, but that do not ne
essarily satisfy the proper-

ties E1 or E2. We
all su
h an automaton a pre-HIOA.

Notation: As we did for HAs, we denote the
omponents of a (pre-)HIOA

A by H

A

; U

A

; Y

A

; : : : ;W

A

; X

A

; Q

A

;�

A

, et
., and those of a (pre-)HIOA A

i

by

H

i

; U

i

; Y

i

; : : : ;W

i

; X

i

, Q

i

;�

i

, et
. We sometimes omit these subs
ripts, where

no
onfusion is likely. We abuse notation slightly by referring to a (pre-)HIOA

A as an HA when we intend to refer to H

A

.

Example 6.2 (Vehi
le and
ontroller HIOAs) The Vehi
le HA of Ex-

ample 4.2
an be
onverted into an HIOA by
lassifying a

-in as an input

variable and vel-out as an output variable. Property E1, input a
tion enabling,

holds va
uously. It is also easy to see that E2 holds, in fa
t, the �rst alter-

native always holds|from any state the Vehi
le automaton
an a

ept any

input traje
tory. Note that, in order for E2 to hold, it is essential that we do

not require in
lusion (2) to hold for initial states of traje
tories.

Similarly, the Controller HA of Example 4.3
an be
onverted into an HIOA by

lassifying vel-out as an input variable and a

-in as an output variable. Again,

E1 holds va
uously. To see E2,
onsider a state x, and an input traje
tory

�. The de�nition of Q implies that x(
lo
k) � d. Then the de�nition of the

Controller traje
tories implies that there is some traje
tory � starting from

x that is
onsistent with � and that either spans all of � or stops short, at a

valuation v in whi
h
lo
k = d. Then the de�nition of the suggest transitions

implies that this lo
ally
ontrolled a
tion is enabled in v dX, as needed.

Example 6.3 (Sensor and dis
rete
ontroller HIOAs) The Sensor au-

tomaton from Example 5.14
an be
onverted into an HIOA by
lassifying

vel-out as an input variable and the report a
tions as output a
tions. The

argument that Sensor is a
tually an HIOA is similar to the argument for the

Controller in Example 6.2.

Similarly, the Dis
reteController automaton from Example 5.14
an be
on-

verted into an HIOA by
lassifying the report a
tions as input a
tions and

the a

-in variable as an output variable. It is straightforward to verify E1.

E2 is not
ompletely trivial, even though the automaton has no input vari-

ables: from any state x we must
onsider \null" input traje
tories, whi
h map

a time interval to the empty valuation (the valuation for no variables). If

x(stable) = true, then the Dis
reteController
an a

ept the entire input tra-

je
tory, and if x(stable) = false, then suggest is enabled in x. This implies E2.

45

6.2 Exe
utions, Tra
es, and Simulation Relations

An exe
ution of a pre-HIOA A is de�ned to be an exe
ution of H

A

, a tra
e of

A is a tra
e of H

A

, and similarly for exe
ution fragments and tra
e fragments.

We extend the notation exe
s

A

, et
. to pre-HIOAs in the obvious way. Two

pre-HIOAs A

1

andA

2

are
omparable if their inputs and outputs
oin
ide, that

is, if I

1

= I

2

, O

1

= O

2

, U

1

= U

2

, and Y

1

= Y

2

. If A

1

and A

2

are
omparable,

then A

1

� A

2

is de�ned to mean that the tra
es of A

1

are in
luded among

those of A

2

: A

1

� A

2

�

= tra
es

A

1

� tra
es

A

2

.

Lemma 6.4 Let A

1

and A

2

be two
omparable pre-HIOAs. Then H

1

and H

2

are
omparable and A

1

� A

2

i� H

1

� H

2

.

Proof: Immediate from the de�nitions.

The de�nition of simulation for pre-HIOAs is the same as for HAs. Formally,

if A

1

and A

2

are
omparable pre-HIOAs, then a simulation from A

1

to A

2

is

a simulation from H

1

to H

2

.

Theorem 6.5 If A

1

and A

2

are
omparable pre-HIOAs and there is a simu-

lation from A

1

to A

2

, then A

1

� A

2

.

Proof: Immediate from the de�nition of simulation, Theorem 4.12, and

Lemma 6.4.

6.3 Composition

The de�nition of
omposition for HIOAs is based on the
orresponding de�ni-

tion for HAs, but also takes the input/output stru
ture into a

ount. Just as

for HAs, we allow an HIOA A

1

to be
omposed with an HIOA A

2

only if the

sets of internal a
tions and variables of A

1

are disjoint from the sets of a
tions

and variables, respe
tively, of A

2

. In addition, in order that the
omposition

operation might satisfy
ertain desirable properties (see, for example, the re-

sults in Se
tion 6.5), we require that at most one
omponent should \
ontrol"

any given a
tion or variable; that is, we allow A

1

and A

2

to be
omposed only

if the sets of output a
tions of A

1

and A

2

are disjoint and the sets of output

variables of A

1

and A

2

are disjoint.

Formally, we say that pre-HIOAs A

1

and A

2

are
ompatible if H

1

and H

2

are

ompatible and

Y

1

\ Y

2

= O

1

\ O

2

= ;:

46

Lemma 6.6 If A

1

and A

2

are
ompatible pre-HIOAs, then H

1

and H

2

are

ompatible HAs.

Proof: Immediate from the de�nitions.

If A

1

and A

2

are
ompatible pre-HIOAs then their
omposition A

1

kA

2

is

de�ned to be the tuple A = (H; U; Y; I; O) where

� H = H

1

kH

2

,

� Y = Y

1

[Y

2

,

� U = (U

1

[U

2

)� Y ,

� O = O

1

[O

2

, and

� I = (I

1

[I

2

)� O.

Thus, an external a
tion or variable of the
omposition is
lassi�ed as an

output if it is an output of one of the
omponent automata, and otherwise it

is
lassi�ed as an input.

The
omposition of two HIOAs (or pre-HIOAs) is guaranteed to be a pre-

HIOA:

Theorem 6.7 If A

1

and A

2

are pre-HIOAs then A

1

kA

2

is a pre-HIOA.

Proof: Let A denote A

1

kA

2

. Lemma 5.2 implies that H = H

1

kH

2

is an HA.

By
onstru
tion, U and Y form a partition ofW and I and O form a partition

of E. This suÆ
es.

Example 6.8 (Interfa
es for
ompositions of HIOAs)When the Vehi
le

and Controller HIOAs from Example 6.2 are
omposed, the external interfa
e

of the resulting pre-HIOA
onsists of U = I = O = ; and Y = fa

-in; vel-outg.

When the Sensor and Dis
reteController from Example 6.3 are
omposed,

the external interfa
e of the resulting pre-HIOA
onsists of U = fvel-outg,

Y = fa

-ing, I = ;, and O = freport(v) j v 2 Rg.

Composition of pre-HIOAs satis�es the following substitutivity result:

Theorem 6.9 Suppose A

1

and A

2

are
omparable pre-HIOAs with A

1

� A

2

.

Suppose B is a pre-HIOA that is
ompatible with ea
h of A

1

and A

2

. Then

A

1

kB and A

2

kB are
omparable and A

1

kB � A

2

kB.

Proof: The fa
t that A

1

and A

2

are
omparable and the de�nition of
om-

position for pre-HIOAs implies that A

1

kB and A

2

kB are
omparable.

Sin
e A

1

and A

2

are
omparable and A

1

� A

2

, Lemma 6.4 implies that H

A

1

47

and H

A

2

are
omparable and H

A

1

� H

A

2

. Lemma 6.6 implies that H

A

1

and

H

B

are
ompatible HAs and H

A

2

and H

B

are
ompatible HAs. Theorem 5.8

then implies that H

A

1

kH

B

� H

A

2

kH

B

. By the de�nition of
omposition, it

follows that H

A

1

kB

� H

A

2

kB

. Then the de�nition of implementation for pre-

HIOAs implies that A

1

kB � A

2

kB.

We would like to show that the
omposition of two HIOAs is an HIOA; how-

ever, this is not true in general. Property E1 is preserved by
omposition:

Lemma 6.10 If A

1

and A

2

are pre-HIOAs that satisfy E1, then the
ompo-

sition A

1

kA

2

also satis�es E1.

Proof: Let A = A

1

kA

2

. Assume that A

1

and A

2

satisfy E1. We verify that

A satis�es E1. Consider x 2 Q and a 2 I. We distinguish three
ases.

(1) a 2 I

1

\ I

2

. By de�nition of
omposition, x dX

i

2 Q

i

for i 2 f1; 2g. Then

by E1 applied toA

i

, there exists a state x

0

i

of A

i

su
h that (x dX

i

)

a

!

i

x

0

i

.

Let x

0

�

= x

0

1

[x

0

2

. We know that x

0

is well de�ned sin
e, by
ompatibility,

X

1

\X

2

= ;. Then by de�nition of
omposition, x

0

2 Q and x

a

! x

0

.

(2) a 2 I

1

� I

2

. By de�nition of
omposition, x dX

1

2 Q

1

. By E1 applied

to A

1

, there exists a state x

0

1

of A

1

su
h that (x dX

1

)

a

!

1

x

0

1

. Let x

0

�

=

x

0

1

[(x dX

2

). We know that x

0

is well de�ned sin
e, by
ompatibility,

X

1

\ X

2

= ;. Then by de�nition of parallel
omposition, x

0

2 Q and

x

a

! x

0

.

(3) a 2 I

2

� I

1

. Symmetri
 to the previous
ase.

However, E2 is not ne
essarily preserved by
omposition:

Example 6.11 (Two HIOAs whose
omposition does not satisfy

E2) Suppose that A

1

has no dis
rete a
tions, no state variables, one output

variable v

1

and one input variable v

2

. All variables are of type R and dynami

type the (pasting
losure of the)
ontinuous fun
tions. The sets Q

1

and �

1

of states and start states
onsist of the unique valuation of the empty set of

variables. The traje
tories are all those fun
tions that satisfy v

1

(t) = v

2

(t)+ 1

for t > 0. It is easy to
he
k that A

1

is an HIOA. De�ne A

2

symmetri
ally,

with output variable v

2

and input variable v

1

; A

2

's traje
tories are those that

satisfy v

2

(t) = v

1

(t) + 1 for t > 0.

The
omposition pre-HIOA, A

1

kA

2

, does not satisfy E2. Satisfying E2 would

require (sin
e the
omposition has no dis
rete a
tions) that the
omposition

in
lude at least one traje
tory with limit time 1 starting from the initial

state. However, no su
h traje
tory exists, be
ause the
ombined
onstraints

are in
onsistent for every t > 0.

48

As a way out of the diÆ
ulties noted in Example 6.11, we might
onsider

introdu
ing a stati
 dependen
y relation �

A

between the external variables

of a hybrid automaton. If x �

A

y then the value of y is allowed to depend

without delay on the value of x. As an additional
ondition for
ompatibility

of A and B, we would then require that A and B do not share variables x

and y su
h that x � Ay and y �

B

x. This approa
h, whi
h is followed, for

example, in the Masa

io language of [33℄, would rule out the above example.

However, it would also rule out any form of dynami
 feedba
k as studied in

ontrol theory (for instan
e, PID
ontrol) [79℄. We therefore think that this

stati
 approa
h is overly restri
tive. Within
ontrol theory there is no generally

appli
able synta
ti

riterion to test whether
ombinations of di�erential and

algebrai
 equations are well-de�ned;
onsequently, we have no simple
riterion

to test whether the
omposition of two HIOAs satis�es E2.

As a te
hni
al way out of the diÆ
ulty, we de�ne a stronger notion of
om-

patibility. Namely, we say that
ompatible pre-HIOAs A

1

and A

2

are strongly

ompatible if A

1

kA

2

satis�es axiom E2. Strong
ompatibility says that any

input traje
tory � of the
omposition must be a

eptable by the
omposition:

the two
omponent automata are able to evolve together, following the input

traje
tory �, in su
h a way that either they a

ept all of � or else they a
-

ept part of �, up to a point where one of them
an interrupt with a lo
ally

ontrolled a
tion.

Theorem 6.12 If A

1

and A

2

are strongly
ompatible HIOAs, then A

1

kA

2

is

an HIOA.

Proof: Lemma 6.7 implies that the
omposition is a pre-HIOA. Lemma 6.10

implies that the
omposition satis�es E1. Property E2 follows immediately

from strong
ompatibility.

Strong
ompatibility is a te
hni
al notion. By itself, it does not seem to be

very useful, be
ause
he
king it involves verifying
ompatibility between the

ontinuous dynami
s of two systems. In Se
tion 6.5, we give some suÆ
ient

onditions for strong
ompatibility that are easier to
he
k.

6.4 Hiding

The de�nitions of variable and a
tion hiding extend to any pre-HIOA A. For

input/output automata, we allow hiding outputs only (but not inputs):

(1) If O � O

A

, then A
tHide(O;A) is the pre-HIOA B that is equal to A

ex
ept that O

B

= O

A

�O and H

B

= H

A

[O.

49

(2) If Y � Y

A

then VarHide(Y;A) is the pre-HIOA B given by:

� H

B

= VarHide(Y;H

A

).

� Y

B

= Y

A

� Y .

� U

B

= U

A

, I

B

= I

A

, and O

B

= O

A

.

Lemma 6.13 Suppose A is a pre-HIOA, O � O

A

and Y � Y

A

. Then:

(1) A
tHide(O;A) and VarHide(Y;A) are pre-HIOAs.

(2) If A satis�es E1 then so do A
tHide(O;A) and VarHide(Y;A).

(3) If A satis�es E2 then so do A
tHide(O;A) and VarHide(Y;A).

Lemma 6.14 Let A be a pre-HIOA.

(1) If O � O

A

then tra
es

A
tHide(O;A)

= f� d(E

A

� O; V

A

) j � 2 tra
es

A

g.

(2) If Y � Y

A

then tra
es

VarHide(Y;A)

= f� d(A

A

;W

A

� Y) j � 2 tra
es

A

g.

Proof: Straightforward, see also the proof of Lemma 5.11.

Theorem 6.15 Suppose A and B are pre-HIOAs with A � B, and suppose

O � O

A

and Y � Y

A

.

Then A
tHide(O;A) � A
tHide(O;B) and VarHide(Y;A) � VarHide(Y;B).

Proof: Straightforward, using Lemma 6.14.

Example 6.16 (Interfa
es for automata with hiding) In Example 5.14,

we de�ned the HA B

�

= VarHide(fa

-ing;AkVehi
le), where

A

�

=A
tHide(freport(v) j v 2 Rg; SensorkDis
reteController):

This models the three-way
omposition of the sensor, dis
rete
ontroller, and

vehi
le, with the internal report a
tions and a

eleration suggestions hidden.

If we interpret the three automata as HIOAs, then these de�nitions still make

sense be
ause the a
tions and variables that are hidden are outputs. The

external interfa
e for A is given by U

A

= fvel-outg, Y

A

= fa

-ing, and

I

A

= O

A

= ;, and the external interfa
e for B is given by U

B

= I

B

= O

B

= ;

and Y

B

= fvel-outg.

6.5 SuÆ
ient Conditions for Strong Compatibility

Che
king strong
ompatibility of two HIOAs
an be diÆ
ult be
ause it requires

he
king
ompatibility between the
ontinuous dynami
s of two systems. How-

50

ever, for
ertain restri
ted
lasses of HIOAs, strong
ompatibility is implied

by
ompatibility, whi
h is easy to
he
k.

Example 6.17 (HIOAs for whi
h
ompatibility implies strong
om-

patibility) It is routine to verify that two HIOAs without input variables are

strongly
ompatible if and only if they are
ompatible. In the
lassi
al
on-

trol theory setting, a system without input variables is uninteresting be
ause

it
annot be
ontrolled. However, in the hybrid setting, su
h a system
an

still intera
t with its environment via dis
rete input a
tions. Linear hybrid

automata as des
ribed in [4,3℄, for instan
e, have no input variables.

Symmetri
ally, two HIOAs without output variables are strongly
ompatible

if and only if they are
ompatible. The same equivalen
e holds if one of the

HIOAs has no input variables and the other has no output variables, or if one

has no external variables at all.

The following theorem generalizes all the
laims in Example 6.17. It applies

to pairs of HIOAs that
annot mutually a�e
t ea
h other be
ause the output

variables of one are disjoint from the input variables of the other.

Theorem 6.18 Let A

1

and A

2

be two
ompatible HIOAs su
h that U

1

\Y

2

=

;. Then A

1

and A

2

are strongly
ompatible.

Proof: Let A denote A

1

kA

2

. We need to show that A satis�es E2. Let x

be a state of A and let � be a traje
tory in trajs(U). Sin
e U

1

\ Y

2

= ;, the

de�nition of
omposition implies that U

1

� U . By E2 applied to A

1

, there

exists a traje
tory �

1

2 T

1

, with �

1

:fstate = x dX

1

that is pointwise
ompatible

with � and su
h that either dom(�

1

) = dom(�), or else dom(�

1

) � dom(�), �

1

is
losed, and a lo
ally
ontrolled a
tion of A

1

is enabled in �

1

:lstate.

Let �

2

be ((� d dom(�

1

))

_

[�

1

) # U

2

. That is, �

2

is an input traje
tory for

A

2

. Ea
h input variable of A

2

is either an input variable of A or an output

variable of A

1

; the valuations in �

2

for those that are inputs of A are obtained

from �, whereas the valuations for those that are output variables of A

1

are

obtained from �

1

. By E2 applied to A

2

, there exists a traje
tory �

2

2 T

2

, with

�

2

:fstate = x dX

2

, that is pointwise
ompatible with �

2

and su
h that either

dom(�

2

) = dom(�

2

), or else dom(�

2

) � dom(�

2

), �

2

is
losed, and a lo
ally

ontrolled a
tion of A

2

is enabled in �

2

:lstate.

In the se
ond
ase, (�

1

d dom(�

2

))

_

[�

2

is a traje
tory of T that starts from

x, is pointwise
ompatible with �, is
losed, and enables a lo
ally
ontrolled

a
tion of A (in parti
ular, of A

2

) in its last state. In the �rst
ase, �

1

_

[�

2

is a traje
tory of T that starts from x, is pointwise
ompatible with �, and

either spans all of � or is
losed and enables a lo
ally
ontrolled a
tion of A

51

(in parti
ular, of A

1

) in its last state. This shows that A satis�es E2.

We
an also
onsider HIOAs that do not exhibit any dependen
ies between

inputs and outputs during a traje
tory. In parti
ular, the values of the in-

put variables should a�e
t neither the values of the output variables nor the

amount of time that elapses until a lo
ally
ontrolled a
tion is enabled. For-

mally, we say that an HIOA A is oblivious if it satis�es the following axiom:

OBL For all � 2 T and � 2 trajs(U) with dom(�) = dom(�), there exists

�

0

2 T su
h that:

(1) �

0

U = �.

(2) �

0

Y = � # Y .

(3) If � is
losed and some lo
ally
ontrolled a
tion is enabled in �:lstate

then some lo
ally
ontrolled a
tion is enabled in �

0

:lstate.

Theorem 6.19 Let A

1

and A

2

be two
ompatible HIOAs and suppose that

A

1

is oblivious. Then A

1

and A

2

are strongly
ompatible.

Proof: Let A denote A

1

kA

2

. We need to show that A satis�es E2. Let x

be a state of A and let � be a traje
tory in trajs(U). Let �

1

be any traje
tory

of trajs(U

1

) that is pointwise
ompatible with � and su
h that dom(�

1

) =

dom(�). ByE2 applied toA

1

, there exists a traje
tory �

1

2 T

1

, with �

1

:fstate =

x dX

1

, that is pointwise
ompatible with �

1

and su
h that either dom(�

1

) =

dom(�

1

), or else dom(�

1

) � dom(�

1

), �

1

is
losed, and a lo
ally
ontrolled

a
tion of A

1

is enabled in �

1

:lstate.

Let �

2

be ((� d dom(�

1

))

_

[�

1

) # U

2

. By E2 applied to A

2

, there exists a

traje
tory �

2

2 T

2

, with �

2

:fstate = x dX

2

, that is pointwise
ompatible with

�

2

and su
h that either dom(�

2

) = dom(�

2

), or else dom(�

2

) � dom(�

2

), �

2

is

losed, and a lo
ally
ontrolled a
tion of A

2

is enabled in �

2

:lstate.

Let �

0

1

be ((� d dom(�

2

))

_

[�

2

) # U

1

. By OBL applied to A

1

, there exists a

traje
tory �

0

1

2 T

1

su
h that �

0

1

U

1

= �

0

1

, �

0

1

Y

1

= (�

1

d dom(�

2

)) # Y

1

, and

if �

1

d dom(�

2

) is
losed and some lo
ally
ontrolled a
tion of A

1

is enabled in

its last state, then some lo
ally
ontrolled a
tion is also enabled in �

0

1

:lstate. It

follows that �

0

1

and �

2

are pointwise
ompatible, and that �

0

1

_

[�

2

is a traje
tory

in T that starts from x and is pointwise
ompatible with �. We
laim that

�

0

1

_

[�

2

satis�es the requirements for E2. We
onsider
ases:

(1) dom(�

2

) � dom(�

2

).

Then �

0

1

_

[�

2

is
losed and enables a lo
ally
ontrolled a
tion (of A

2

)

in its last state, whi
h satis�es the requirements for E2.

(2) dom(�

2

) = dom(�

2

)(= dom(�

1

)).

We
onsider two sub
ases. First, if dom(�

1

) � dom(�), then �

1

is
losed

and enables some lo
ally
ontrolled a
tion (of A

1

) in its last state. By

52

axiomOBL, some lo
ally
ontrolled a
tion is also enabled in �

0

1

_

[�

2

:lstate,

whi
h suÆ
es for E2. In the other sub
ase, if dom(�

1

) = dom(�), then

�

0

1

_

[�

2

spans all of �, whi
h again suÆ
es for E2.

Example 6.20 (Oblivious
ontroller) The Controller HIOA of Exam-

ple 4.3 and 6.2 satis�es OBL. During any traje
tory � of Controller , velo
ity

information arrives in vel-out but does not a�e
t the Controller 's output; the

output is only
hanged when a (lo
ally
ontrolled) suggest transition o

urs.

Enabling of the suggest a
tion is not a�e
ted by
hanges in vel-out , but only

by the value of
lo
k .

Be
ause Controller is oblivious and
ompatible with the Vehi
le HIOA, The-

orem 6.19 implies that Vehi
le and Controller are strongly
ompatible. It

follows that their
omposition, Vehi
lekController , is an HIOA.

Example 6.21 (Plant and
ontroller)Figure 8 displays a standard s
enario

studied in
ontrol theory involving a plant P
ontrolled by a digital
ontroller

C. The interfa
e from the
ontroller to the plant is given by a digital/analog

A

6

-

P

?

D

�

C

ControlMeasurement

Input symbol Output symbol

Fig. 8. Hybrid Control System.

onverter D, while the interfa
e from the plant to the
ontroller is given by

an analog/digital
onverter A. The
ontroller C monitors the input variables

and
hanges its output variables only at the
lo
k ti
ks via some dis
rete

transitions. Thus, C satis�es OBL. The output variables of A are disjoint

from the input variables of both P and D, and the output variables of P

53

are disjoint from the input variables of D. Thus, if P; C;A;D are pairwise

ompatible, then P and A are strongly
ompatible (by Theorem 6.18), PkA

and D are strongly
ompatible (by Theorem 6.18), and ((PkA)kD) and C are

strongly
ompatible (by Theorem 6.19). Hen
e, ((PkA)kD)kC is an HIOA.

Example 6.22 (Lips
hitz HIOAs) We may de�ne a sub
lass of HIOAs

alled Lips
hitz HIOAs, in whi
h some of the state variables are dis
rete

\mode" variables, and in whi
h, for ea
h mode, the rest of the variables evolve

a

ording to a system of di�erential equations based on globally Lips
hitz fun
-

tions. We may restri
t this
lass further by imposing a bound on the range of

the input variables (by restri
ting their dynami
 types), thus obtaining the set

of input-bounded Lips
hitz HIOAs. Then it is possible to show that two
om-

patible input-bounded Lips
hitz HIOAs are strongly
ompatible, whi
h implies

that the
omposition of two
ompatible input-bounded Lips
hitz HIOAs is a

(Lips
hitz) HIOA. A
areful development will be reserved for another paper.

7 Re
eptive Hybrid I/O Automata

In this se
tion, we de�ne the notion of re
eptiveness for HIOAs. An HIOA

will be de�ned to be re
eptive provided that it admits a strategy for resolv-

ing its nondeterministi

hoi
es that never generates in�nitely many lo
ally

ontrolled a
tions in �nite time. This notion has two important
onsequen
es:

First, a re
eptive HIOA provides some response from any state, for any se-

quen
e of dis
rete input a
tions and input traje
tories. This implies that the

automaton has a nontrivial set of exe
ution fragments, in fa
t, it has exe
ution

fragments that a

ommodate any inputs from the environment. The automa-

ton
annot simply stop at some point and refuse to allow time to elapse; it must

allow time to pass to in�nity if the environment does so. Se
ond, re
eptive-

ness is
losed under
omposition. Previous studies of re
eptiveness properties

in
lude [21,1,74,54℄.

If HIOA A implements HIOA B and if A is re
eptive, then besides preserva-

tion of \may" properties (any tra
e of A is also a tra
e of B) we also have

preservation of \must" properties. For instan
e, if in B an input a
tion a al-

ways must be followed by an output b within 10 time units, then this property

will also hold for A: (1) sin
e A is input enabled it will always a

ept input

a, (2) sin
e A is re
eptive it will never end up in a time deadlo
k or a Zeno

exe
ution; time
an always advan
e, (3) A must always perform a b before or

at time 10 sin
e otherwise a tra
e is generated that is not allowed by B.

54

We formally de�ne re
eptiveness by �rst de�ning what it means for an HIOA

to be progressive. A progressive HIOA never generates in�nitely many lo
ally

ontrolled a
tions in �nite time. Thus, in all of its exe
ution fragments, it

allows time to pass to in�nity provided that its environment also does so.

We then de�ne a strategy for resolving nondeterministi

hoi
es, and de�ne

re
eptiveness in terms of the existen
e of a progressive strategy.

The treatment of re
eptiveness in this paper is mu
h simpler than that in pre-

vious papers. One reason is that we address only the generation of admissible

exe
utions here, rather than general liveness properties. Also, we formulate

strategies as restri
ted automata, rather than introdu
ing separate de�nitions

based on two-player games.

7.1 Progressive HIOAs

We say that an exe
ution fragment of a pre-HIOA is lo
ally-Zeno if it is Zeno

and
ontains in�nitely many lo
ally
ontrolled a
tions, or equivalently, if it

has �nite limit time and
ontains in�nitely many lo
ally
ontrolled a
tions. A

pre-HIOA A is progressive if it has no lo
ally-Zeno exe
ution fragments.

The following lemma says that any progressive pre-HIOA that satis�es E2,

and therefore any HIOA, is
apable of following any input traje
tory.

Lemma 7.1 Let A be a progressive pre-HIOA that satis�es property E2, let x

be a state of A, and let � 2 trajs(U). Then there exists an exe
ution fragment

� of A su
h that �:fstate = x and � d(I; U) = �. (Here � denotes the hybrid

sequen
e
onsisting of the single traje
tory �. Re
all that we write a for a

sequen
e
onsisting of just a.)

Proof: We
onstru
t a �nite or in�nite sequen
e �

0

; �

1

; : : : of exe
ution frag-

ments of A su
h that:

(1) �

0

:fstate = x.

(2) For every non�nal index i, �

i

:lstate = �

i+1

:fstate.

(3) For every i � 0, (�

0

_

�

1

_

� � �

_

�

i

) d(I; U) � �.

(4) For every i � 0, either (�

0

_

�

1

_

� � �

_

�

i

) d(I; U) = � or �

i

in
ludes a

lo
ally
ontrolled a
tion.

The
onstru
tion is
arried out re
ursively. To de�ne �

0

, we begin with state

x and use E2 either to span all of �, or to span a pre�x of � and then perform

a lo
ally
ontrolled a
tion. For i > 0 (assuming that we have not already

spanned all of �), we de�ne �

i

by beginning with �

i�1

:lstate and using E2

either to span the entire suÆx of � starting from �

0

_

� � �

_

�

i�1

:ltime, or to

span a pre�x of that suÆx and then perform a lo
ally
ontrolled a
tion.

55

Now we
onsider two
ases:

(1) The
onstru
tion ends after a �nite number of stages, having spanned all

of �, say with �

k

as the last exe
ution fragment in the sequen
e.

In this
ase, the
on
atenation �

0

_

�

1

_

� � �

_

�

k

satis�es the
onditions

of the lemma.

(2) The
onstru
tion pro
eeds through in�nitely many stages.

In this
ase, the exe
ution fragment �

�

= �

0

_

�

1

_

� � �
ontains in�nitely

many lo
ally
ontrolled a
tions. Sin
e A is progressive, it must be the

ase that �:ltime =1, and therefore � d(I; U):ltime =1. Sin
e the set

of traje
tories for U is a
po, � d(I; U) � �. Sin
e � d(I; U) � �, and

� d(I; U):ltime =1, it follows that � d(I; U) = �, as needed.

The following theorem says that a progressive HIOA is
apable of following

not just individual input traje
tories, but entire input hybrid sequen
es.

Theorem 7.2 Let A be a progressive HIOA with state x, and let � be an

(I; U)-sequen
e. Then there exists an exe
ution fragment � of A su
h that

�:fstate = x and � d(I; U) = �.

Proof: Let � = �

0

a

1

�

1

a

2

�

2

: : :. We de�ne a �nite or in�nite sequen
e �

0

; �

1

; : : :

of exe
ution fragments of A su
h that:

(1) �

0

:fstate = x.

(2) For every non�nal index i, �

i

:lstate = �

i+1

:fstate.

(3) For every i, (�

0

_

�

1

_

� � �

_

�

i

) d(I; U) = �

0

a

1

�

1

a

2

�

2

: : : �

i

.

The
onstru
tion is
arried out re
ursively. To de�ne �

0

, we begin with x and

use Lemma 7.1 to span �

0

. For i > 0, we de�ne �

i

by starting with �

i�1

:lstate,

using property E1 to perform a
tion a

i

and move to a new state, and then

using Lemma 7.1 to span �

i

.

Let � = �

0

_

�

1

_

� � �. By Lemma 3.8 we
on
lude that � d(I; U) = �, as

needed.

The property asserted in Theorem 7.2 has been
alled I/O feasibility elsewhere

in the literature [59℄. Thus, we de�ne a pre-HIOA to be I/O feasible provided

that, for ea
h state x and ea
h (I; U)-sequen
e �, there is some exe
ution

fragment � su
h that �:fstate = x and � d(I; U) = �. Theorem 7.2 may then

be restated as:

Corollary 7.3 Every progressive HIOA is I/O feasible.

56

I/O feasibility implies that any �nite exe
ution fragment
an be extended to

an admissible exe
ution in response to any admissible input from the envi-

ronment. A related, weaker property that has also been studied is feasibility

[57℄. In terms of our model, we may say that a pre-HIOA is feasible provided

that, for ea
h state x, there is some admissible exe
ution fragment � su
h that

�:fstate = x.

Feasibility implies that any �nite exe
ution fragment
an be extended to some

admissible exe
ution fragment|no
onstraints are imposed on the inputs. Ob-

serve that any I/O feasible HIOA must be feasible, as long as the dynami

type of ea
h input variable in
ludes at least one admissible traje
tory. Feasibil-

ity should be regarded as a minimal liveness requirement that any reasonable

HIOA should satisfy. I/O feasibility is a strengthened version of feasibility

that takes inputs into a

ount.

Closure under
omposition is easy to show:

Theorem 7.4 If A

1

and A

2

are
ompatible progressive pre-HIOAs, then their

omposition is also progressive.

Proof: Let A be A

1

kA

2

. Suppose for the sake of
ontradi
tion that A is

not progressive. Then, by de�nition, A has a lo
ally-Zeno exe
ution frag-

ment �, that is, �
ontains in�nitely many lo
ally
ontrolled a
tions of A.

Therefore, �
ontains either in�nitely many lo
ally
ontrolled a
tions of A

1

or

in�nitely many lo
ally
ontrolled a
tions of A

2

. Suppose without loss of gen-

erality that �
ontains in�nitely many lo
ally
ontrolled a
tions of A

1

. Then,

by Lemma 5.3 and the de�nition of restri
tion, � d(A

1

; V

1

) is a time-bounded

exe
ution fragment of A

1

with in�nitely many lo
ally
ontrolled a
tions, that

is, a lo
ally-Zeno exe
ution fragment of A

1

. This
ontradi
ts the assumption

that A

1

is progressive.

Example 7.5 (Progressive and non-progressive pre-HIOAs) The Vehi
le

HIOA is obviously progressive be
ause it has no dis
rete a
tions. The Controller

and Sensor HIOAs are progressive be
ause their lo
ally
ontrolled a
tions are

separated in time. The Dis
reteController HIOA is not progressive, be
ause

if report inputs arrive in a Zeno fashion, the Dis
reteController may respond

by performing suggest internal a
tions in a Zeno fashion. However, the
om-

position SensorkDis
reteController is progressive.

Consider a more nondeterministi
 version of Sensor , NSensor , that is allowed

to perform report a
tions for any value of
lo
k (� d), rather than just for

lo
k = d. Formally, NSensor is identi
al to Sensor ex
ept that
ondition

(18) is dropped. NSensor is not progressive, be
ause it may perform in�nitely

many report a
tions in �nite time. Also, the
omposition of NSensor with

57

Dis
reteController is not progressive.

7.2 Strategies

In this subse
tion, we de�ne the notion of a strategy, whi
h provides a way

to resolve some of the nondeterministi

hoi
es in a pre-HIOA. We will use

strategies in the next subse
tion to de�ne re
eptiveness.

We de�ne a strategy for a pre-HIOA A to be an HIOA A

0

that di�ers from A

only in that D

0

� D and T

0

� T . That is, we require:

� D

0

� D.

� T

0

� T .

� W = W

0

, X = X

0

, Q = Q

0

, � = �

0

, E = E

0

, H = H

0

, U = U

0

, Y = Y

0

,

I = I

0

, and O = O

0

.

Our strategies are nondeterministi
 and memoryless. They serve to
hoose

some of the evolutions that are possible from ea
h state x of A. The fa
t that

the state set Q

0

of A

0

is the same as the state set Q of A implies that A

0

hooses evolutions from every state of A.

Strategy notions have been used elsewhere in de�ning re
eptiveness, for ex-

ample, in [21,1,74℄. In this earlier work, strategies have been formalized using

two-player games rather than restri
ted automata. De�ning strategies using

automata instead of two-player games allows us to avoid introdu
ing extra

mathemati
al ma
hinery. A drawba
k of our approa
h is that it is not appli-

able in a setting with general liveness properties.

Lemma 7.6 If A

0

is a strategy for A, then every exe
ution fragment of A

0

is

also an exe
ution fragment of A.

Theorem 7.7 Let A

1

and A

2

be two
ompatible pre-HIOAs with strongly
om-

patible strategies A

0

1

and A

0

2

, respe
tively. Then A

0

1

kA

0

2

is a strategy for A

1

kA

2

.

Proof: Let A denote A

1

kA

2

and let A

0

denote A

0

1

kA

0

2

. Sin
e A

0

1

and A

0

2

are strongly
ompatible, Theorem 6.12 implies that A

0

is an HIOA. From the

de�nitions of
omposition and strategy, A

0

di�ers from A only in that D

0

� D

and T

0

� T . Then the de�nition of strategy implies that A

0

is a strategy for

A.

Lemma 7.8 Let A

1

and A

2

be two
ompatible pre-HIOAs with strongly
om-

patible strategies A

0

1

and A

0

2

, respe
tively. Then A

1

and A

2

are strongly
om-

patible.

58

Proof: Let A denote A

1

kA

2

and let A

0

denote A

0

1

kA

0

2

. Theorem 7.7 implies

that A

0

is a strategy for A. Sin
e A

0

1

and A

0

2

are strongly
ompatible, their

omposition A

0

satis�es E2. We show that also A satis�es E2.

Let x 2 Q and let � 2 trajs(U). Then sin
e A

0

is a strategy for A, we have

Q

0

= Q and U

0

= U , Y

0

= Y , and so x 2 Q

0

and � 2 trajs(U

0

). Sin
e A

0

satis�es E2, there exists � 2 T

0

su
h that �:fstate = x, � # U

0

� �, and either

� # U

0

= �, or else � is
losed and some l 2 L

0

is enabled (in A

0

) in �:lstate.

Sin
e A

0

is a strategy for A, it follows that also � 2 T , � # U � �, and either

� # U = �, or else � is
losed and some l 2 L is enabled (in A) in �:lstate.

Therefore, A satis�es E2, that is, A

1

and A

2

are strongly
ompatible.

Example 7.9 (Strategy for nondeterministi
 sensor) The Sensor HIOA

de�ned in Example 5.14 is a strategy for the NSensor HIOA de�ned in Ex-

ample 7.5.

7.3 Re
eptive HIOAs

Finally, we de�ne a pre-HIOA to be re
eptive if it has a progressive strategy.

Example 7.10 (Re
eptive and non-re
eptive HIOAs) The NSensor

HIOA of Example 7.5 is not progressive, but it is re
eptive. That is be
ause the

original Sensor HIOA, as de�ned in Example 5.14, is a progressive strategy

for NSensor .

The Dis
reteController HIOA is not re
eptive: be
ause any strategy for it

must satisfy E1 and E2, su
h a strategy must be able to perform dis
rete

steps in response to any report input, and so must be
apable of performing

in�nitely many suggest a
tions in �nite time.

Consider a variant NDController of Dis
reteController that has its own
lo
k

and may wait any amount of time, up to a �xed d' (> 0), to respond to ea
h

report input with a new suggest . (Several reports may o

ur in su

ession; a

single suggest may be used to handle all of them, as long as it o

urs within

time d' of the �rst of these reports.) NDController is not progressive, be
ause

it has the option of responding immediately to reports, and thus may gener-

ate in�nitely many suggestions in �nite time. It is re
eptive, however, using

a progressive strategy that always waits the maximum allowed time before

generating a suggestion.

59

The two most important general properties of re
eptive HIOAs are expressed

by the following two theorems. The �rst expresses nontriviality|that any re-

eptive HIOA (or pre-HIOA)
an respond to any inputs from the environment.

The se
ond theorem shows that re
eptiveness is preserved by
omposition.

Theorem 7.11 Every re
eptive pre-HIOA is I/O feasible.

Proof: Let A be a re
eptive pre-HIOA. By de�nition of re
eptive, there exists

a progressive strategy A

0

for A. Sin
e A

0

is a progressive HIOA, Corollary 7.3

implies that A

0

is I/O feasible. We show that also A is I/O feasible.

Let x 2 Q and let � be an (I; U)-sequen
e. Then sin
e A

0

is a strategy for

A, we have Q

0

= Q, I

0

= I, and U

0

= U , and so x 2 Q

0

and � is an

(I

0

; U

0

)-sequen
e. Sin
e A

0

is I/O feasible, there is some exe
ution fragment

� of A

0

su
h that �:fstate = x and � d(I

0

; U

0

) = �. By Lemma 7.6, � is

also an exe
ution fragment of A. Sin
e A

0

is a strategy for A, it follows that

� d(I; U) = �. Therefore, A is I/O feasible.

The question of whether the
onverse of Theorem 7.11 holds is still open.

Finally, we have our theorem about
omposability of re
eptive HIOAs:

Theorem 7.12 Let A

1

and A

2

be two
ompatible re
eptive HIOAs with strongly

ompatible progressive strategies A

0

1

and A

0

2

, respe
tively. Then A

1

kA

2

is a re-

eptive HIOA with progressive strategy A

0

1

kA

0

2

.

Proof: Let A and A

0

denote A

1

kA

2

and A

0

1

kA

0

2

, respe
tively. The fa
t that A

is an HIOA follows from Lemma 7.8 and Theorem 6.12. Theorem 7.7 implies

that A

0

is a strategy for A. Theorem 7.4 and the fa
t that A

0

1

and A

0

2

are

progressive implies that A

0

is progressive. Thus, A is a re
eptive HIOA and

A

0

is a progressive strategy for A.

Example 7.13 (Composition of re
eptive sensor and re
eptive dis-

rete
ontroller)As noted in Example 7.10, both NSensor andNDController

are re
eptive, using progressive strategies that always wait the maximum al-

lowed amount of time. These two strategies are strongly
ompatible, by Theo-

rem 6.18. Therefore, by Theorem 7.12, the
ompositionNSensorkNDController

is a re
eptive HIOA with a progressive strategy that is the
omposition of the

two progressive strategies for the two pie
es.

60

8 Con
lusions

In this paper, we have de�ned a new hybrid I/O automaton (HIOA) modeling

framework for des
ribing and reasoning about the behavior of hybrid systems.

Many future resear
h dire
tions remain.

First, the expressive and analyti
al power of the new model should be tested

further by using it to des
ribe and analyze many more examples. These should

in
lude many of the examples that have been used as illustrations elsewhere in

the hybrid systems literature. The automated transportation examples studied

using the previous version of the HIOA model should be revisited using the

new model to see what
hanges arise, and new and more ambitious
ase studies

should be attempted.

It would be interesting to de�ne and prove formal relationships between the

HA and HIOA models of this paper and other models of hybrid systems, in-

luding those of [63,3,13,8,14,38℄. Also, one
an de�ne a timed input/output

automaton model by simply restri
ting the HIOA model of this paper so that

it does not in
lude any external variables. It remains to
onsider the formal

relationship between this model and other timed automaton models, for ex-

ample, those of [1,5,60,74,65℄.

It would also be useful to in
orporate additional analysis methods, in
luding

assume-guarantee reasoning [16,36℄ and a variety of methods from
ontrol

theory, into the HIOA framework. Control theory methods to
onsider should

in
lude Lyapunov stability analysis methods [79℄ and robust
ontrol methods

[23℄. Results about these methods should be formulated in terms of HIOAs,

and the methods should be extended where ne
essary in order to a

ommodate

a
ombination of dis
rete and
ontinuous behavior.

Other extensions of the HIOA framework are also desirable. In some prior work

(e.g., [21,1,74℄), strategies are used to des
ribe how a system intera
ts with its

environment to guarantee that the out
ome of the intera
tion satis�es a target

liveness property. In this paper, we do not
onsider general liveness properties,

but only the spe
ial
ase of admissibility. It remains to extend the theory to

more general liveness properties. Another important extension would be the

addition of probabilities, whi
h would make it possible to model and analyze

probabilisti
 hybrid systems. Su
h an extension
ould be used, for example, to

prove bounds on the probability of errors in safety-
riti
al real-time systems.

This extension appears to be a very
hallenging problem.

Future work will in
lude tool support for modeling and analysis as des
ribed in

this paper. This will in
lude a formal modeling language based on HIOA, with

onstru
ts similar to those used in the examples of this paper, and
onne
tions

to a theorem prover. A preliminary language proposal appears in [68℄.

61

A
knowledgments:We thank Ekaterina Dolginova, Carl Livadas, John Lygeros,

Sayan Mitra, and Natasha Neogi for working with versions of our HIOA model

while it was evolving; their questions and observations have helped us greatly

in
ompleting the development of the model. We also thank Paul Attie for

reading and
ommenting on an earlier version of the paper, and �nding a bug

in a de�nition. Finally, we thank the referees for their insightful reports.

Referen
es

[1℄ M. Abadi and L. Lamport. Composing spe
i�
ations. ACM Transa
tions on

Programming Languages and Systems, 1(15):73{132, 1993.

[2℄ R. Alur. Timed automata. In NATO-ASI Summer S
hool on Veri�
ation of

Digital and Hybrid Systems. Springer-Verlag, 1998.

[3℄ R. Alur, C. Cour
oubetis, N. Halbwa
hs, T.A. Henzinger, P.-H. Ho, X. Ni
ollin,

A. Olivero, J.Sifakis, and S. Yovine. The algorithmi
 analysis of hybrid systems.

Theoreti
al Computer S
ien
e, 138:3{34, 1995.

[4℄ R. Alur, C. Cour
oubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an

algorithmi
 approa
h to the spe
i�
ation and veri�
ation of hybrid systems. In

Grossman et al. [28℄, pages 209{229.

[5℄ R. Alur and D.L. Dill. A theory of timed automata. Theoreti
al Computer

S
ien
e, 126:183{235, 1994.

[6℄ R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional re�nement of

hierar
hi
al hybrid systems. In Di Benedetto and Sangiovanni-Vin
entelli [20℄,

pages 33{48.

[7℄ R. Alur and T.A. Henzinger. Rea
tive modules. In Pro
eedings of the 11th

IEEE Syposium on Logi
 in Computer S
ien
e, pages 207{218, 1996.

[8℄ R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In

Pro
eedings of the Ninth International Conferen
e on Con
urren
y Theory,

volume 1243 of Le
ture Notes in Computer S
ien
e, pages 74{88. Springer-

Verlag, 1997.

[9℄ R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems III, volume

1066 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1996.

[10℄ P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems

IV (Fourth International Conferen
e on Hybrid Systems, Itha
a, NY, O
tober

1996), volume 1273 of Le
ture Notes in Computer S
ien
e. Springer-Verlag,

1997.

[11℄ D.J.B. Boss
her, I. Polak, and F.W. Vaandrager. Veri�
ation of an audio
ontrol

proto
ol. In Langmaa
k et al. [41℄, pages 170{192.

62

[12℄ A. Bouajjani and O. Maler, editors. Pro
eedings Se
ond European Workshop

on Real-Time and Hybrid Systems, Grenoble, Fran
e, June 1995.

[13℄ M.S. Brani
ky. Studies in Hybrid Systems: Modeling, Analysis, and Control.

PhD thesis, Laboratory for Information and De
ision Systems, Massa
husetts

Institute of Te
hnology, Cambridge, MA, USA, June 1995.

[14℄ M.S. Brani
ky. Analyzing and synthesizing hybrid
ontrol systems. In

Rozenberg and Vaandrager [73℄, pages 74{113.

[15℄ M.S. Brani
ky, E. Dolginova, and N.A. Lyn
h. A toolbox for proving and

maintaining hybrid spe
i�
ations. In Antsaklis et al. [10℄, pages 18{30.

[16℄ E.M. Clarke, O. Grumberg, and D. Peled. Model Che
king. MIT Press,

Cambridge, Massa
husetts, 1999.

[17℄ J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors.

Pro
eedings REX Workshop on Real-Time: Theory in Pra
ti
e, Mook, The

Netherlands, June 1991, volume 600 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, 1992.

[18℄ R. De Ni
ola and F.W. Vaandrager. A
tion versus state based logi
s for

transition systems. In I. Guessarian, editor, Semanti
s of Systems of Con
urrent

Pro
esses, Pro
eedings LITP Spring S
hool on Theoreti
al Computer S
ien
e,

La Ro
he Posay, Fran
e, volume 469 of Le
ture Notes in Computer S
ien
e,

pages 407{419. Springer-Verlag, 1990.

[19℄ Roberto DePris
o, Butler Lampson, and Nan
y Lyn
h. Revisiting the Paxos

algorithm. In Marios Mavroni
olas and Philippas Tsigas, editors, Distributed

Algorithms 11th International Workshop, WDAG'97, Saarbr�u
ken, Germany,

September 1997 Pro
eedings, volume 1320 of Le
ture Notes in Computer

S
ien
e, pages 111{125, Berlin-Heidelberg, 1997. Springer-Verlag.

[20℄ M.D. Di Benedetto and A.L. Sangiovanni-Vin
entelli, editors. Pro
eedings

Fourth International Workshop on Hybrid Systems: Computation and Control

(HSCC'01), Rome, Italy, volume 2034 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, Mar
h 2001.

[21℄ D. Dill. Tra
e Theory for Automati
 Hierar
hi
al Veri�
ation of Speed-

Independent Cir
uits. ACM Distinguished Dissertations. MIT Press, 1988.

[22℄ E. Dolginova and N.A. Lyn
h. Safety veri�
ation for automated platoon

maneuvers: A
ase study. In Maler [62℄, pages 154{170.

[23℄ P. Dorato, editor. Robust Control. IEEE Press, New York, 1987.

[24℄ A. Fehnker. Automotive
ontrol revisited| linear inequalities as approximation

of rea
hable sets. In Henzinger and Sastry [34℄, pages 110{125.

[25℄ Alan Fekete, Nan
y Lyn
h, and Alex Shvartsman. Spe
ifying and using a

partitionable group
ommuni
ation servi
e. ACM Transa
tions on Computer

Systems, 19(2):171{216, May 2001.

63

[26℄ R. W. Floyd. Assigning meanings to programs. Mathemati
al Aspe
ts of

Computer S
ien
e, pages 19{32, 1967. From Pro
eedings of Symp. Appl. Math.

19.

[27℄ R. Gawli
k, R. Segala, J.F. S�gaard-Andersen, and N.A. Lyn
h. Liveness in

timed and untimed systems. In S. Abiteboul and E. Shamir, editors, Pro
eedings

21

th

ICALP, Jerusalem, volume 820 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, 1994. A full version appears as MIT Te
hni
al Report number

MIT/LCS/TR-587.

[28℄ R.L. Grossman, A. Nerode, A.P. Ravn, and H. Ris
hel, editors. Hybrid Systems,

volume 736 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1993.

[29℄ C.A. Gunter. Semanti
s of Programming Languages: Stru
tures and Te
hniques.

MIT Press, Cambridge, Massa
husetts, 1992.

[30℄ Constan
e Heitmeyer and Nan
y Lyn
h. The generalized railroad
rossing: A

ase study in formal veri�
ation of real-time systems. In Pro
eedings of the Real-

Time Systems Symposium, pages 120{131, San Juan, Puerto Ri
o, De
ember

1994. IEEE.

[31℄ Constan
e Heitmeyer and Nan
y Lyn
h. Formal veri�
ation of real-time

systems using timed automata. In Constan
e Heitmeyer and Dino Mandrioli,

editors, Formal Methods for Real-Time Computing, Trends in Software,

hapter 4, pages 83{106. John Wiley & Sons Ltd, April 1996.

[32℄ M. Hennessy. Algebrai
 Theory of Pro
esses. MIT Press, Cambridge,

Massa
husetts, 1988.

[33℄ T.A. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for

hierar
hi
al hybrid systems. In Di Benedetto and Sangiovanni-Vin
entelli [20℄,

pages 275{290.

[34℄ T.A. Henzinger and S. Sastry, editors. Pro
eedings First International Workshop

on Hybrid Systems: Computation and Control (HSCC'98), Berkeley, California,

volume 1386 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, April 1998.

[35℄ C.A.R. Hoare. Communi
ating Sequential Pro
esses. Prenti
e-Hall

International, Englewood Cli�s, 1985.

[36℄ C. B. Jones. Development Methods for Computer Programs in
luding a Notion

of Interferen
e. PhD thesis, Oxford University, June 1981. Printed as

Programming Resear
h Group, Te
hni
al Monograph 25.

[37℄ A. Kapur, T.A. Henzinger, Z. Manna, and A. Pnueli. Proving safety properties

of hybrid systems. In Langmaa
k et al. [41℄, pages 431{454.

[38℄ Y. Kesten, Z. Manna, and A. Pnueli. Veri�
ation of
lo
ked and hybrid systems.

In Rozenberg and Vaandrager [73℄, pages 4{73.

[39℄ L. Lamport. What good is temporal logi
? In R.E. Mason, editor, Information

Pro
essing 83, pages 657{668. North-Holland, 1983.

64

[40℄ L. Lamport. The temporal logi
 of a
tions. ACM Transa
tions on Programming

Languages and Systems, 16(3):872{923, May 1994.

[41℄ H. Langmaa
k, W.-P. de Roever, and J. Vytopil, editors. Pro
eedings of the

Third International S
hool and Symposium on Formal Te
hniques in Real-Time

and Fault-Tolerant Systems (FTRTFT'94), L�ube
k, Germany, September 1994,

volume 863 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1994.

[42℄ C. Livadas. Formal veri�
ation of safety-
riti
al hybrid systems. Master's thesis,

Department of Ele
tri
al Engineering and Computer S
ien
e, Massa
husetts

Institute of Te
hnology, Cambridge, September 1997. Also, MIT/LCS/TR-730.

[43℄ C. Livadas, J. Lygeros, and N.A. Lyn
h. High-level modelling and analysis of

t
as. In Pro
eedings of the IEEE Real-Time Systems Symposium (RTSS'99).

IEEE Computer So
iety Press, 1999.

[44℄ C. Livadas and N.A. Lyn
h. Formal veri�
ation of safety-
riti
al hybrid systems.

In Henzinger and Sastry [34℄, pages 253{272.

[45℄ Vi
tor Lu
hang
o, Ekrem S�oylemez, Stephen Garland, and Nan
y Lyn
h.

Verifying timing properties of
on
urrent algorithms. In Dieter Hogrefe and

Stefan Leue, editors, Formal Des
ription Te
hniques VII: Pro
eedings of the

7th IFIP WG6.1 International Conferen
e on Formal Des
ription Te
hniques

(FORTE'94, Berne, Switzerland, O
tober 1994), pages 259{273. Chapman and

Hall, 1995.

[46℄ J. Lygeros and N.A. Lyn
h. On the formal veri�
ation of the TCAS
on
i
t

resolution algorithms. In Pro
eedings 36th IEEE Conferen
e on De
ision and

Control, San Diego, CA, pages 1829{1834, De
ember 1997. Extended abstra
t.

[47℄ J. Lygeros and N.A. Lyn
h. Strings of vehi
les: Modeling and safety
onditions.

In Henzinger and Sastry [34℄, pages 273{288.

[48℄ N.A. Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, In
., San

Fransis
o, California, 1996.

[49℄ N.A. Lyn
h. Modelling and veri�
ation of automated transit systems, using

timed automata, invariants and simulations. In Alur et al. [9℄, pages 449{463.

[50℄ N.A. Lyn
h. A three-level analysis of a simple a

eleration maneuver, with

un
ertainties. In Pro
eedings of the Third AMAST Workshop on Real-Time

Systems, Salt Lake City, Utah, pages 1{22, Mar
h 1996.

[51℄ N.A. Lyn
h and B.H. Krogh, editors. Pro
eedings Third International Workshop

on Hybrid Systems: Computation and Control (HSCC 2000), Pittsburgh, PA,

USA, volume 1790 of Le
ture Notes in Computer S
ien
e. Springer-Verlag,

Mar
h 2000.

[52℄ N.A. Lyn
h, R. Segala, and F.W. Vaandrager. Hybrid I/O automata revisited.

In Di Benedetto and Sangiovanni-Vin
entelli [20℄, pages 403{417.

[53℄ N.A. Lyn
h, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O

automata. In Alur et al. [9℄, pages 496{510.

65

[54℄ N.A. Lyn
h, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O

automata. Report CSI-R9907, Computing S
ien
e Institute, University of

Nijmegen, April 1999.

[55℄ N.A. Lyn
h and M.R. Tuttle. Hierar
hi
al
orre
tness proofs for distributed

algorithms. In Pro
eedings of the 6

th

Annual ACM Symposium on Prin
iples of

Distributed Computing, pages 137{151, August 1987. A full version is available

as MIT Te
hni
al Report MIT/LCS/TR-387.

[56℄ N.A. Lyn
h and M.R. Tuttle. An introdu
tion to input/output automata. CWI

Quarterly, 2(3):219{246, September 1989.

[57℄ N.A. Lyn
h and F.W. Vaandrager. Forward and ba
kward simulations for

timing-based systems. In de Bakker et al. [17℄, pages 397{446.

[58℄ N.A. Lyn
h and F.W. Vaandrager. Forward and ba
kward simulations, I:

Untimed systems. Information and Computation, 121(2):214{233, September

1995.

[59℄ N.A. Lyn
h and F.W. Vaandrager. A
tion transdu
ers and timed automata.

Formal Aspe
ts of Computing, 8(5):499{538, 1996.

[60℄ N.A. Lyn
h and F.W. Vaandrager. Forward and ba
kward simulations, II:

Timing-based systems. Information and Computation, 128(1):1{25, July 1996.

[61℄ N.A. Lyn
h and H.B. Weinberg. Proving
orre
tness of a vehi
le maneuver:

De
eleration. In Bouajjani and Maler [12℄.

[62℄ O. Maler, editor. Pro
eedings International Workshop on Hybrid and Real-

Time Systems (HART'97), Grenoble, Fran
e, volume 1201 of Le
ture Notes in

Computer S
ien
e. Springer-Verlag, Mar
h 1997.

[63℄ O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In de Bakker

et al. [17℄, pages 447{484.

[64℄ Z. Manna and A. Pnueli. The Temporal Logi
 of Rea
tive and Con
urrent

Systems: Spe
i�
ation. Springer-Verlag, 1992.

[65℄ Mi
hael Merritt, Fran
emary Modugno, and Mark R. Tuttle. Time
onstrained

automata. In J. C. M. Baeten and J. F. Goote, editors, CONCUR'91:

2nd International Conferen
e on Con
urren
y Theory (Amsterdam, The

Netherlands, August 1991), volume 527 of Le
ture Notes in Computer S
ien
e,

pages 408{423. Springer-Verlag, 1991.

[66℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall International,

Englewood Cli�s, 1989.

[67℄ R. Milner, J. Parrow, and D. Walker. A
al
ulus of mobile pro
esses, Part I +

II. Information and Computation, 100(1):1{77, 1992.

[68℄ Sayan Mitra, Yong Wang, Nan
y Lyn
h, and Eri
 Feron. Safety veri�
ation

of model heli
opter
ontroller using hybrid input/output automata. In Hybrid

Systems: Computation and Control (HSCC'03), Prague, the Cze
h Republi
,

pages 259{273. LNCS, Springer Verlag, 2003.

66

[69℄ A. Pnueli. Development of hybrid systems. In Langmaa
k et al. [41℄, pages

77{85.

[70℄ A. Pnueli and J. Sifakis, editors. Spe
ial Issue on Hybrid Systems of Theoreti
al

Computer S
ien
e, 138(1). Elsevier S
ien
e Publishers, February 1995.

[71℄ J.W. Polderman and J.C. Willems. Introdu
tion to Mathemati
al Systems

Theory: A Behavioural Approa
h, volume 26 of Texts in Applied Mathemati
s.

Springer-Verlag, 1998.

[72℄ W.P. de Roever and K. Engelhardt. Data Re�nement: Model-Oriented Proof

Methods and their Comparison. Cambridge Tra
ts in Theoreti
al Computer

S
ien
e 47. Cambridge University Press, 1998.

[73℄ G. Rozenberg and F.W. Vaandrager, editors. Le
tures on Embedded Systems,

volume 1494 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, O
tober

1998.

[74℄ R. Segala, R. Gawli
k, J.F. S�gaard-Andersen, and N.A. Lyn
h. Liveness in

timed and untimed systems. Information and Computation, 141(2):119{171,

Mar
h 1998.

[75℄ Mark Smith. Formal veri�
ation of
ommuni
ation proto
ols. In

Reinhard Gotzhein and Jan Bredereke, editors, Formal Des
ription Te
hniques

IX: Theory, Appli
ations, and Tools FORTE/PSTV'96: Joint International

Conferen
e on Formal Des
ription Te
hniques for Distributed Systems

and Communi
ation Proto
ols, and Proto
ol Spe
i�
ation, Testing, and

Veri�
ation, Kaiserslautern, Germany, O
tober 1996, pages 129{144. Chapman

& Hall, 1996.

[76℄ Mark Smith. Formal veri�
ation of TCP. In Pro
eedings of The Se
ond

Te
hni
al Conferen
e on Tele
ommuni
ations R&D in Massa
husetts, pages

279{299, Lowell, MA, Mar
h 1996.

[77℄ Mark Smith. Reliable message delivery and
onditionally-fast transa
tions are

not possible without a

urate
lo
ks. In Pro
eedings of the 17th Annual ACM

Symposium on the Prin
iples of Distributed Computing, pages 163{171, June

1998.

[78℄ J. S�gaard-Andersen, S. Garland, J. Guttag, N.A. Lyn
h, and A. Pogosyants.

Computer-assisted simulation proofs. In C. Cour
oubetis, editor, Pro
eedings

of the 5th International Conferen
e on Computer Aided Veri�
ation, Elounda,

Gree
e, volume 697 of Le
ture Notes in Computer S
ien
e, pages 305{319.

Springer-Verlag, 1993.

[79℄ E.D. Sontag. Mathemati
al Control Theory | Deterministi
 Finite

Dimensional Systems, volume 6 of Texts in Applied Mathemati
s. Springer-

Verlag, 1990.

[80℄ F.W. Vaandrager and J.H. van S
huppen, editors. Pro
eedings Se
ond

International Workshop on Hybrid Systems: Computation and Control

(HSCC'99), Berg en Dal, The Netherlands, volume 1569 of Le
ture Notes in

Computer S
ien
e. Springer-Verlag, Mar
h 1999.

67

[81℄ H.B. Weinberg. Corre
tness of vehi
le
ontrol systems: A
ase study.

Master's thesis, Department of Ele
tri
al Engineering and Computer S
ien
e,

Massa
husetts Institute of Te
hnology, Cambridge, February 1996. Also,

MIT/LCS/TR-685.

[82℄ H.B. Weinberg and N.A. Lyn
h. Corre
tness of vehi
le
ontrol systems: A

ase study. In Pro
eedings of the 17th IEEE Real-Time Systems Symposium

(RTSS'96), Washington, D.C., pages 62{72. IEEE Computer So
iety Press,

De
ember 1996.

[83℄ H.B. Weinberg, N.A. Lyn
h, and N. Delisle. Veri�
ation of automated vehi
le

prote
tion systems. In Alur et al. [9℄, pages 101{113.

68

A Notational Conventions

a; b a
tion

; d element of some set

f; g; h fun
tion

i; j index

k natural number

l lo
ally
ontrolled a
tion

t time point

u input variable

v variable

w external variable

x internal variable

y output variable

z lo
al variable

A set of a
tions

D set of dis
rete transitions

E set of external a
tions

F set of fun
tions

H set of internal (hidden) a
tions

I set of input a
tions or index set

J interval or index set

K set of time points

L set of lo
ally
ontrolled a
tions

O set of output a
tions

P set of elements in
po

Q set of automaton states

R (simulation) relation

S set

69

T set of traje
tories

U set of input variables

V set of variables

W set of external (Dut
h: waarneembare) variables

X set of internal variables

Y set of output variables

Z set of lo
al variables

x state

v valuation

A, B, C hybrid (I/O) automaton

H hybrid automaton

T set of traje
tories

N the natural numbers

R the real numbers

T the time axis

Z the integers

V the universe of variables

�; �; Æ hybrid sequen
e

 sequen
e

� the empty sequen
e

� proje
tion fun
tion

�; � sequen
e

� , � traje
tory

� set of start states

70

