GIT-1CS-81/13

A LOWER BOUND FOR THE TIME TO
ASSURE INTERACTIVE CONSISTENGY'

MicHaer J. FrscHer®
flancy A, LyncH**

SepTEMBER 1981

* Department of Computer Science
Yale University
New Haven, CT 06520

*% School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

This research was supported in part by the National Science
Foundation under grants MCS77-02474, MCS77-15628, MCS80-03337,
U.S. Army Research Office Contract DAAG29-79-C-0155 and Office

of Naval Research Contracts N00014~79-C-0873 and N00014-80~-C~0221.

A Lower Bound for the Time to Assure Interactive Consistency

Michael J. Fischer
Nancy A. Lynch

1. Introduction

The problem of "assuring interactive consistency” is defined in [PSL]. It is assumed that there are n
isolated processors, of which at most m are faulty. The processors can communicate by means of
two-party messages, using a medium which is reliable and of negligible delay. The sender of a
message is always identifiable by the receiver. Each processor p has a private value o(p). The
problem is to devise an algorithm that will allow each processor p to compute a value for each
processor r, such that (a) if p and r are nonfaulty, then P computes r’s private value o(r), and (b) all the
nonfaulty processors compute the same value for each processorr.

It is shown in [PSL] that if n < 3m + 1, then there is no algorithm which assures interactive
consistency. On the other hand, if n 2 3m + 1, then an algorithm does exist. The algorithm
presented in [PSL] uses m + 1 rounds of communication, and thus can be said to require "time" m +
1. An obvious question is whether fewer rounds of communication suffice to solve the problem.

In this paper, we answer this question in the negative. That is, we show that any algorithm which
assures interactive consistency in the presence of m faulty processors requires at least m + 1 rounds
of communication.

The remainder of the paper is organized as follows. Section 2 contains motivation for our formal
model and problem statement, Section 3 contains the notation and definitions. Section 4 contains a
reduction of our set of aliowable algorithms to a more restrictive set of "uniform™ algorithms. Section
5 contains a restatement of the relevant results of {PSL]. Section 6 contains our main lower bound
result. Section 7 contains an important open question,

The reader is urged to read [LSP] and [L] for discussion of the practical importance of assuring
interactive consistency, and [PSL] for additional results not immediately relevant to this paper. Other
related papers are [DW] and [D]. :

2. Motivation for the Definitions

A general model for solving the interactive consistency problem might consist of n processors
(automata) communicating by means of n? one-way "communication channels”. Each channel can
be formalized as a shared variable which can be modified by exactly one processor and read by
exactly one processor. (Such a formalization can be carried out, for example, within the model of
[LF].} The variables which each processor can modify are called its "out-channels”, while the
variables it can read are called its "in-channels". ’)

Each processor p starts with an arbitrary private value o(p). Execution of the system proceeds in
synchronous "rounds": at each round, the following two steps dccur: (1) First, each nonfaulty
processor writes values ("sends messages") derived from its state into all of its out-channels, while
each faulty processor writes arbitrary values into all of its out-channels. (2) Second, each processor

reads the values from all of its in-channels. After some specified number, k, of rounds, each
processor p outputs a vector of values, one for each processor r. These outputs are required to
satisfy conditions (a) and (b) stated in the Introduction. :

If the only complexity measure of interest is the number of rounds, then we can assume without loss
of generality that the messages sent by each nonfaulty processor p on the first round are all exactly
equal to its private value a(p), and that the messages sent by each nonfaulty processor on
subsequent rounds are all exactly the set of messages received from all processors on the previous
round. That is, if there is any correct k-round algorithm, then there is a correct k-round algorithm in
which exactly the messages described above are sent. This is so because (i) it is clear that the given
information is the maximum nontrivial information which could be sent, (ii) it doés not hurt to send
nonfaulty processors the maximum information, since they can derive any needed information from
the given maximum information, and (iii) it does not hurt to send faulty processors the maximum
information, since it is assumed that the faulty processors can send arbitrary messages in any case -
i.e. they could "guess" any missing information.

In such a maximum-information algorithm, the output vector of each processor p is simply a function
of the set of all values received by p at all rounds of the computation. (So far, this reduction is as in
[PSL] .) In addition, if p is nonfaulty, then the set of messages received by p at all rounds of the
computation is determined by the set of messages received by p at the last round (since p sends
messages to itself at each round containing the information p received at earlier rounds). Since the
correctness conditions involve only the outputs of nonfaulty processors, it suffices to formalize the
output of p as a function of the set of messages received by p at the last round of communication
only. ' :

3. Notation and Definitions

If Ais any alphabet, i, j e N U {0},i > j, we use A to denote the set of strings of symbols in A, of
length at least i and at most j.

Let P be the set of processors, [P| = n, and let m be an upper bound ‘on the number of faulty
processors. Fix V to be the domain of values on which the processors wish to reach agreement,
Assume {0,1} C V.

For any k e N U {0}, let U¥ denote the set of mappings from PXinto V. (An element of UK is intended
to represent a set of messages which a processor could receive at the last round of a computation.)

A k-round aigorithm A (for P) is a set {F p' ' p € P} of functions, where Fp.: UK X P — V. A is uniform if
Fp = Fq forallp,qeP.

A k-round scenario (for P with m faults) is a mapping o: P "%*1 _, v such that IT > n-m, where T,
(the set of truthtellers) = {qg ¢ P: o(wgp) = o(wq) for all p ¢ P and all w ¢ PO*’1}. Intuitively,
a(p1p2...pi) is intended to represent the value in V which p, , told p, that Pio told P that ... that p, told
p, was p1’s private value; as a special case, o(p) represents p's private value. {Note that this
definition reverses the direction of the string arguments in the [PSL] definition.)

Let L. (the set of /iars) denote P-T . lio:P™ ' VandpeP, then p's view of ¢ is the map o€ QX

given by op(w) = o(wp). Let "(")" = {op : 0 is a k-round scenario (for P with m faults) and p ¢ Ta}.
That is, ‘Tpk is the set of possible views for p when p is a truthteller in a k-round scenario.

LetA = {Fp : p € P} be a k-round algorithm. Then A assures interactive consistency {for P with m
faults) provided for each k-round scenario o (for P with m faults), the following two conditions hold.

(a) (Validity) Fp(op,r) = o(r)foralip,re Ta,
(b) (Agreement) Fp(op, r)=F q(o 7 r) for all p, q € TU andallreP.
4. Reduction to Uniform Algorithms

In this section, we show that it suffices to restrict attention to uniform algorithms.

Lemma 1: Assume n > 2m+1. Let A = {Fp : p € P} be a k-round algorithm which
assures interactive consistency. Then F p(a,r) = Fq(a,r) forallp,gq,rePandall a e ‘i;k N
Tk

q’ »

Proof: Letp,q,reP,ac¢ 1;" n "fq". Then there are k-round scenarios o and r such that p
€T .,qeT ,anda = Oy = T LetseT N T,. (Such an s is guaranteed to exist because
n>2m + 1) '

Modify only the last round of o and + to obtain new k-round scenarios ¢’ and 7’, as follows.
Let o’(ws) = o(wp) for all w ¢ Pk, and let ¢’(x) = a(x) otherwise. Similarly, let 7’(ws) =
r(wq) for all w ¢ Pk, and let 7'(x) = 7(x) otherwise. It is easy to check that ¢’ and 7’ are

scenarios, that {p,s} C T, {as} C T .,andthata = a’p =0 = f’q = 7' . Thus, Fp(a,r)
= Fp(o-’p,r), = Fs(o’s,r) by the agreement property, = Fs(r’s,r),' = Fq('r’q,r) by the

agreement property, = F q(a,r).

Theorem 1: Assumen > 2m + 1. lfthereisa k-round algorithm which assures interactive
consistency, then there is a k-round uniform algorithm which assures interactive consistency.

Proof: LetA = {Fp : p & P} be a k-round algorithm which assures interactive consistency.
Define F: U X P — V as follows. LetF (a,r) = Flanifa e,
0 otherwise.

Lemma 1 shows that this definition is consistent. Then the algorithm which uses F for ail
processors is a k-round algorithm which assures interactive consistency.

5. Earlier Results

In this section, we state the two relevant results from [PSL].
Theorem 2: Assumen<3m + 1. Then there is no algorithm which assures interactive

consistency.
Proof: [PSL].
|
Theorem 3: Assumen>3m + 1. Then there is an m + 1-round uniform algorithm which
assures interactive consistency.
Proof: [PSL].
0

6. Lower Bound

In this section, we present our main result.

Theorem 4: Ifk < m, then there is no k-round algorithm which assures interactive
consistency.

Proof: The theorem is easily seen to be true if m = 0, so assume that m 2 1. Assume that
the theorem is false: that k < m and there is a k-round algorithm A = {Fp : p & P} which
assures interactive consistency. By Theorem 1, we can assume that A is uniform, i.e. that
Fp = Ffor all p ¢ P. By Theorem 2, we know that n >3m+ 1.

Define a relation ~ on UX as follows. Let a ~ B provided there exist a k-round scenario ¢
and p,qe¢ T(7 for whicha = o p and B = oy Let = .be the smallest equivalence relation

containing ~. By the agreement property, we have:

Fact 1: F(a,r) = F(Br) for all a, B & U with « =B, andallreP,
Foreachve V, we P let)}v (w) = v. By the validity property, we have:
Fact 2: F(yv,r) = vforallrePandallve V. |

Define an arbitrary total order on P, let N = nk, and let I: Pk—»{1,...,N} be a bijection
corresponding to lexicographic order on the strings in Pk, That is, if v,

We Pk, 0<Li<k1, p,geP, v= FeeBiPX, W = ror, gyand p< a, then l{v) < l{w).
For1 <a<N + 1,define a, : P* — {0, 1} by

aa(w) = 0ifl{w)<a,
1 otherwise.

Note thata, = v,anday = Yo

We claim that a,~a, ,foralla1<a < N.Ifso, then Yy =T ay ey o= Y, S0
that Yy = Y, Fix anyre P.By Fact 1, F(y1,r) = F(yo,r). However, by Fact 2, F(y_l,r) = 1
and F(yo,r) = 0. This provides the needed contradiction.

It remains to prove the claim. Fix a, 1<a<N, and choose Myl SO -that !(r,...rk) =d. By

assumption, n-k > n-m > 3m+1-m = 2m+1 > 2, so that there exist two distinct

participants, M, and Mo iN P»{r1,...,rk}. Assume without loss of generality that et

M+ in the total order on P. We construct a k-round scenario ¢ with LU - {r1,...,rk}, in

which ¢ =a_and o =a, ..
rk+1 a rk+2 a+1

Leto(w) = Oifw= Fy--Fpx, where 0 <i <k, peP,x e P and p<
1 otherwise, '

IPOT

We show that ¢ is a k-round scenario, with La - {r1,...,rk}. LetqeP- {r1,...,r'k}, p € Pand
we P 9% We must show that o(wq) = o(wgp). Now, Iwg| < k, so thatwq is of the form
Fyf;SX, wherei <k-1,s e P, and s#r., ,- Then a(wq) = Oifs< LAY
1 otherwise,

=a(r1...risxp) = g(wgp).

Next,we show thato_ = @, LetwePX Then a, (w) = Oifl (w) < a,
k+1

. 1 otherwise,

= o(wrk”) =0, (w).

k+1
Finally, we show that ¢ =a, .. LetwePKThen a W= 0ifl(w) <a,
rk+2 a+1 a+1
1 otherwise,
= o(wrk+2) since) < Mot
=0 {w).
k+2

O

Note that Theorem 3 (of the previous section) provides an upper bound on both the number of
processors and the number of rounds. Thus, it demonstrates that both the lower bounds of Theorems
2 and 4 are tight.)

7. Open Question

The most important question remaining involves the amount of communication and storage needed to
assure interactive consistency. The algorithm in [PSL], which uses the minimum possible number of
rounds, involves sending enormous amounts of information - approximately nm*2 values in v. We
would like to know if this amount can be reduced, say to an amount polynomial in n and m (using
either the minimum number, m + 1, of rounds, or perhaps a larger number of rounds). An algorithm
using such a reduced amount of communication might be of considerably more practical value than
the current algorithm. ' :

Acknowledgements:

The authors thank Leslie Lamport, Michael Merritt and Eugene Stark for helpful discussions and
suggestions about this manuscript. '

References
[D] Dolev, D. The Byzantine Generals Strike Again. To appear.

[DW] Davies, D., and Wakerly, J. Synchronization and matching in redundant systems. IEEE Trans. on
Comptrs. C-27, 6(June 1978), 531-539. .

[L] Lamport, L. Using Time Instead of Timeout For Fault-Tolerant Distributed Systems. June 1981.

[LF] Lynch, Nancy A., and Fischer, Michael J. On Describing The Behavior and Implementation of
Distributed Systems. Theoretical Computer Science 13 1981, pp. 17-43.

[LSP] Lamport, L., Shostak, R. and Pease, M. The Byzantine Generals Problem. Manuscript.

[PSL] Pease, M., Shostak, R. and Lamport, L. Reaching Agreement in the Presence of Faults. JACM,
Vol. 27, No. 2, April 1980, pp. 228-234.

