
On Describing the Behavior and
Implementation of Distributed Systems*

Nancy A. Lynch
Georgia Institute of Technology

Atlanta, Georgia 30332/USA

Michael J. Fischer
University of Washington

Seattle, Washington 98195/USA

Abstract: A simple, basic and general model for describing both the (input-output)

behavior and the implementation of distributed systems is presented. An important

feature of the model is the separation of the machinery used to describe the imple-

mentation and the behavior. This feature makes the model potentially useful for

design specification of systems and of subsystems.

The implementation model relies on the basic notions of process and variable,

assuming ind iv is ib i l i t y of variable access. Long-distance communication is modelled

by a special process representing a "channel." Process executions are considered to

be completely asynchronous; this consideration is reflected in the fairness of the

operations for combining processes. The primit iv i ty and generality of the model make

i t an apparently suitable basis for cost comparison of various message-passing

protocols and other higher-level programming constructs, as well as of complex dis-

tributed system implementations.

A system's (input-output) behavior is modelled by a set of f in i te and inf in i te

sequences of actions, each action involving access to a variable.

Basic definitions, examples and characterization results are given. An extended
example, involving specification and implementation of an arbiter system, is presented.

For this example, equivalent implicit and explicit specifications are given. Several

different implementations are described, each of which exhibits the required
behavior.

General remarks are made about cost comparison of distributed system implemen-

tations.

*This research was supported in part by the National Science Foundation under grants
MCS77-02474 and MCS77-15628.

148

I . Int roduct ion

A d is t r i bu ted computing system consists of a number of d i s t i n c t and l o g i c a l l y

separated communicating asynchronous sequential processes. To gain a theoret ica l

understanding of such systems, i t is necessary to f ind simple mathematical models

which r e f l e c t the essential features of these systems whi le abstract ing away i r r e l -

evant de ta i l s . Such models a l low problems to be stated prec ise ly and make them

amenable to mathematical analysis.

In th is paper, we present a mathematical model of d i s t r ibu ted systems and a

mathematical model of t h e i r input /output behavior. Both are se t - theore t ic models

b u i l t from standard mathematical constructs such as set , sequence, funct ion, and

re l a t i on , rather than axiomatic models consist ing of l i s t s of desired propert ies of

systems without a basis for v a l i d i t y or consistency.

In construct ing a model, choices must be made regarding which features of actual

systems to preserve and which to abstract away, and how these choices are made depends

on the intended appl icat ions of the model. Our in terests are in f ind ing a low-level

model that re f lec ts c losely many aspects of physical r e a l i t y and that permits problems

of communication and synchronization to be studied. Thus, we do not assume any

p r im i t i ve synchronization mechanism such as is i m p l i c i t in Petri nets [I] or in the

communicating sequential processes of Hoare [2] and of Milne and Milner [3] . We have

also chosen to omit from our model any notion of time. Although we rea l ize clocks and

t ime-outs are important mechanisms in real d i s t r ibu ted systems, many aspects of d is-

t r ibu ted computation can nevertheless be modelled without reference to such concepts,

and the resu l t ing s imp l i c i t y and t r a c t a b i l i t y of the model more than compensates fo r

the l im i t a t i ons imposed on i t . Eventually, of course, time needs to be introduced into

a su i tab le formal model and studied.

We are concerned wi th the cooperative behavior of processes, not t h e i r in ternal

s t ructure. Hence, we assume simply that each process is an automaton with a possibly

i n f i n i t e number of in terna l states and an a rb i t r a r y set of possible t rans i t i ons . Each

process from time to t ime takes a step, but we make no assumptions on how long i t waits

between steps except that the time is f i n i t e -~ i t does not wai t forever,

We also permit our processes to exh ib i t i n f i n i te l y -b ranch ing nondeterminism.

This is done because we wish our notion of "process" to encompass not only what a

s ingle processor act ing alone can do but also what a subsystem of processes or module

can do. That w i l l permit us to describe the behavior of a complete system in terms of

the behaviors of component modules. Since a system of two determin is t ic processes can

exh ib i t i n f i n i t e nondeterminism, we are led to include th is capab i l i t y in our model.

We have chosen the shared var iable as our basic (and only) communication mechanism.

Because of the popu lar i t y of message-based d is t r ibu ted systems and the immediate re-

act ion that a "cent ra l " shared memory does not const i tu te true d i ' s t r ibu t ion , some words

149

about th i s choice are in order.

F i r s t o f a l l , at the most p r i m i t i v e l e v e l , something must be shared between two

processors fo r them to be able to communicate at a l l . This something is usual ly a

wi re in which, a t the very l eas t , one process can i n j e c t a vo l tage which the other

process can sense. We can think of the wire as a binary shared variable whose value

alternates from time to time between 0 and I . Note that we are not specifying the

protocols to be used by the sending and receiving processes which enable communica-

tion to take place -- indeed part of our interest is in modelling and studying such

protocols. All we have postulated so far is that the sending process can control the

value on the wire and the receiving process can sense i t . The setting and sensing

correspond to writ ing and reading, respectively. We contend that shared variables

are at the heart of every distributed system.

Because of our decision to leave time out of the model, i t is clear that the only

way for the receiving process to be sure of seeing a value written by the sending

process is for the la t ter to leave the value there until i t gets some sort of acknow-

ledgement from the receiver. Thus, we cannot model the asynchronous serial communi-

cation that is commonly used to communicate between terminals and computers, for the

success of that method relies on sender and receiver having nearly identical clocks.

We have argued so far that shared variables underlie any timing-independent

system, but that certain kinds of communication which depend on time cannot be modelled.

Does introducing timing-dependent communication primitives into our otherwise timing-

independent system add any new power? Let's consider various possible message primi-

tives. Perhaps the simplest is to assume each process has a "mailbox" [VAX/VMS] or

"message buffer" into which another process can place a message. Now, what happens

when the sender wants to send a second message before the receiver has seen the f i rst?

I f the second message simply overwrites the f i r s t , then the buffer behaves exactly

l ike a shared variable whose values range over the set of possible messages. I f the

sender is forced to wait, then there is an impl ic i t bu i l t - in synchronization mechan-

ism as in [2,3] which we have already rejected for our model. As a third possibi l i ty ,

the message might go into a queue of waiting messages. I f the queue is f i n i te , the

same problem reappears when the queue gets f u l l . An in f in i te queue, on the other

hand, seems very non-primitive and can be rejected for that reason alone. In any

case, i f the needed storage is available, the in f in i te message queue can be modelled

in our system by a process with two shared variables: an input buffer and an output

buffer. The process repeatedly polls i ts two buffers, moving incoming messages to

i ts internal queue, and moving messages from the queue to the output buffer whenever

i t becomes empty. Of course, the sender must wait unti l the input buffer becomes

empty before writ ing another message, but i t seems to be an essential property of any

communication system that there wi l l be a maximum rate at which messages can be sent,

and the sender attempting to exceed that rate must necessarily wait i f information is

150

not to be lost. (We note also that the delays inherent in long-distance communication

between asynchronous processes can also be modelled simply in our framework.)

From the above discussion, we see that various message systems can be modelled

naturally using shared variables, provided the variables are not restricted to binary

values. Also, there are situations in which i t is natural for a variable to have more

than one reader or writer. We incorporate such generalized variables in our model.

Finally, we generalize our model in one more respect by permitting a variable to be

read and updated in a single step. We call such an operation test-and-set. This

simplifies the model since both reads and writes are special cases of test-and sets.

Moreover, there are situations in which the natural primitive operations are not read

and write but are other test-and-set operations such as Dijkstra's P and V [4]. They

al l become just special cases of our general model. The formal definit ion of the model

appears in Section 2.

A class of interesting and important questions to be addressed by a theory of dis-

tributed systems concerns the relative "goodness" of various systems al l of which solve

the "same" problem. Before these questions can be investigated, one needs appropriate

measures of "goodness" (complexity measures) and one needs a precise notion of the

"problem" to be solved by a distributed system, We make some brief remarks about com-

plexity measures in Section 5, but a thorough treatment must await another paper. In

Section 3, we construct a formal notion of "distributed problem" and define precisely

when a given system solves a given problem. Section 4 gives an example of a distr ibu-

ted problem and several radically different systems for solving i t .

Several factors contribute to making a satisfactory notion of "distributed prob-

lem" considerably more complicated than the simple input-output function which is

often identif ied with the behavior of a sequential program.

I. There is generally more than one site producing inputs and receiving outputs.

2. Inf in i te, non-terminating computations are the rule rather than the exception.

3. The relat ive orders of reading inputs and producing outputs is significant as
well as the actual values produced.

4. Variations in timing make distributed systems inherently nondeterministic, so
one must allow in general for several different possible outputs to a given
sequence of inputs, al l of which must be considered "correct".

Brief ly, we define the behavior of a distributed system to be a set of f i n i te

and in f in i te sequences of interleavings of possible act iv i t ies at certain external

variables (which are assumed to be used for communication with the outside world).

Each sequence in the set describes a possible sequence of actions by the system,

assuming particular actions affecting the variables by the environment. An action is

a t r ip le (u,x,v) consisting of a variable x~ the value u read from the

variable and the value v written back into the variable. Since the environment can

change a variable at any time, i t is not true that the system wi l l necessarily see

the same value in a variable that i t most recently wrote there. We require of the

I51

behavior only that i t be complete in that i t describe at least one possible ser~es of

responses by the system for every possib]ewaY that the environment might behave.

A problem specification is an arbitrary set of input/output sequences. A partic-

ular system is a solution to the problem i f i ts behavior is contained in the problem

specification. The problem specification is the set of acceptable computations, while

the solution behavior is the set actually realized.

Our definit ion only requires the solution system to be correct; there is no stip-

ulation that the maximum permitted degree of nondeterminism actually be exhibited. We

regard the lat ter as a performance or complexity issue to be dealt with separately.

We remark that the distributed computing paradigm leads one to a very different view

of nondeterminism or concurrency than for multiprocessing. In the lat ter case, the

system implementer is presumed to have control of the scheduler, so the greater the

possible concurrency among the processes he is trying to schedule, the greater his

freedom to do so eff ic ient ly. In a truly asynchronous environment, however, one has

no direct control over the scheduling, so i t is natural to be concerned with the worst

case (which might actually occur) rather than the best case. Hence, decreasing the

amount of nondeterminism in this situation can never hurt.

We do not address in this paper another important aspect of problem specification,

namely, what is an appropriate formal language for describing the sets of sequences

that comprise a problem specification? Our example in Section 4 is described inform-

a l ly in standard mathematical notation. We expect the work on path expressions [5,

etc.], flow expressions [6], and other formal systems of expressions might be applica-
ble here.

2, A Model fo r Dis t r ibuted Systems

Processes and Shared Variables

The p r im i t i ve notions in our model are that of "process" and var iab le" . A pro-

cess can be thought of as a sequence of changes of s ta te ; l ikewise, a var iable is a

sequence of changes of value. The in terac t ion among system components occurs at the

process-variable in ter face.

Each var iab le x has an associated set of values, va lues(x) , which the var iab le

can assume. A var iable act ion fo r x is a t r i p l e (u, x, v) wi th u, v ~ values(x) ;

i n t u i t i v e l y , i t represents the act ion of changing the value of x from u (i t s old value)

to V (i t s new value). (u and v are not required to be d i s t i n c t .) Act(x) is the set

of a l l var iable actions for x. I f X is a set of var iab les, we l e t act(X) = U ac t (x) .
xeX

A process p has an associated set (f i n i t e or i n f i n i t e) of process states,

s ta tes (p) , which i t can assume. Star t (p) is a nonempty set of s t a r t i n 9 s tates, and

f i n a l (p) a set of f i na l or ha l t i n 9 states, We l e t nonf inal(p) = states(p) - f i n a l (p) .

152

A process action for p is a t r ip le (s, p, t) with s c nonfinal(p), t ~ states(p); i t

represents in tu i t ive ly the action of p going from state s to state t in a single step.

(s and t are not required to be d is t inct .) Act(p) is the set of al l process actions

for p. I f P is a set of processes, we let act(P) ~f U act(p).
p~P

Every process action occurs in conjunction with a variable action; the pair forms

a complete execution step. I f P is a set of processes and X a set of variables, we

le t §teps(P,X) ~f act(P) x act(X) be the set of execution steps. To specify which

steps are permitted in a computation, a process has two other components in i ts des-

cription, yariables(p) is a set of variables which the process can access. Oksteps(p)

is a subset of steps(p, variables(p)) describing the permissible steps of p.

Oksteps(p) is subject to three restrict ions:

(a) For any s ~ nonfinal(p), there exist t , u, x, v with ((s, p, t) , (u, x, v))

E oksteps(p).

(b) (Read Anything): I f ((s, p, t) , (u, x, v)) c oksteps(p) and u' ~ values(x),

then there exist t ' , v' with ((s, p, t ') , (u', x, v ')) ~ oksteps(p).

(c) (Countable Nondeterminism): Start(p) is countable, and also for any

s ~ nonfinal(p), x ~ variables(p) and u ~ values(x), there are only countably

many pairs t , v with ((s, p, t) , (u, x, v)) ~ oksteps(p).

Some intu i t ive remarks are in order. Oksteps(p) represents the allowable steps

of p. A particular step ((s, p, t) , (u, x, v)) ~ oksteps(p) is applicable in a given

situation only i f p is in state s andx has value u. (a) indicates that some step is

applicable from every nonfinal state. In general, more than one step might be appli-

cable; hence, we are considering non-deterministic processes. However, restr ict ion

(c) l imits the number of applicable steps to being countable, a technical restr ict ion

we need later for some of our results. The effect of taking the step is to put p into

state t and to write v into x. A step is considered an atomic, indivisible action in

our model. With respect to the variable x, a step involves a read followed by a write

-- the read to verify that the transition is applicable and the write to update i ts

value. We term such an action a "test-and-set". This is a generalization of the

famil iar Boolean semaphores or test-and-set instructions found on many computers.

Restriction (b) formalizes an important assumption that a process be able to re-

spond in some way to anything that might be given to i t as input. In other words, i f

i t is possible for a process in state s to access variable x, then there must be a

transition from s accessing x for every u ~ values(x).

A process is not required to be f in i te-state, nor to have a f in i te number of

transitions from any state. Later (Theorem 3.7), we wi l l see that countable nondeterm-

inism arises from application of natural combination operations to even deterministic

processes. Since we wish to treat single processes and groups of processes uniformly,

153

we a l low the greater genera l i ty from the beginning.

Systems of Processes

The way in which processes communicate with other processes and with t he i r env i r -

onment is by means of t he i r var iables. A value placed in a var iab le is ava i lab le to

anybody who happens to read that var iab le unt i l i t is replaced by a new value, Unlike

message-based communication mechanisms, there is no guarantee that anyone w i l l ever

read the value, nor is there any p r im i t i ve mechanism to inform the w r i t e r that the

value has been read. Thus, fo r meaningful communication to take place, both par t ies

must adhere to previously-agreed-upon protocols, though we place no res t r i c t i ons on

what kinds of protocols are allowed. Indeed, part of our motivat ion in def in ing

systems in th is way is to give us a formal model in which to study such protocols,

We wish to consider var iables accessed by a process or system of processes to be

e i the r in ternal or external . Internal var iables are to be used only by the given

process or system; thus, some consistency of the values of those var iables must be

hypothesized, and an i n i t i a l value must be provided. External var iables w i l l not have

such consistency requirements, That i s , a process or system of processes is to be

able to respond to values of these var iables other than the ones i t most recent ly l e f t

there. I n t u i t i v e l y , the external var iables may be accessible to other processes (or

other external agents) which could change the values between steps of the given process

or system.

More formal ly , i f X is a set of var iables, a part !a I assignment for x is any

pa r t i a l funct ion f : x ÷ U values(x) wi th f (x) ~ values(x) whenever f (x) is deft'ned.
x~X

I f f is defined fo r a l l x ~ X, i t is cal led a to ta l assignment for X, The f u l l speci-

f i ca t i on of a system of processes S has four components: proc(S) is a f i n i t e set of

processes, ext(S) is a set of external var iab les, in t (S) is a set of in ternal var iab les,

and i n i t (S) is a to ta l assignment fo r in t (S) . S is subject to cer ta in r es t r i c t i ons :

(a) Ext(S) n in t (S) : ~.

(b) For each p ~ proc(S), var iables(p) c ext(S) u in t (S) .

I f P is a set of processes and X a set of var iab les, we l e t S(P,X) ~f {S : S is

a system of processes wi th proc(S) c P and int (S) u ext(S) c X}.

Execution Sequences

The execution of a system of processes is described by a set of execution se-

quences. Each sequence is a l i s t of steps which the system could perform when i n te r -

leaved with appropr iate actions by the external agent.

I f A is any set , A* (A m) denotes the set of f i n i t e (i n f i n i t e) sequences of A-

154

elements. A c°unt denotes A* u A m , the set o f f i n i t e o r i n f i n i t e sequences o f elements

o f A. Length: A c°unt ÷ N u {~} denotes the number o f elements in a g iven sequence.

Let P be a set o f processes and X a set o f v a r i a b l e s . E(P,X) d~ (s teps(P,X)) c°unt

is the domain o f sequences used to descr ibe execut ions o f processes and sets o f pro-

cesses over P and X.

To de f ine the a l l owab le execut ion sequences o f a system, we f i r s t de f ine the

execut ion sequences f o r processes and sets o f processes.

Let p be a process. An execut ion sequence f o r p is a sequence

e c (o k s t e p s (p , v a r i a b l e s (p))) c°unt ~ E (p , v a r i a b l e s (p)) f o r which fou r cond i t i ons hold.

~ l e n g t h (e)
Let e = ((s i , p, t i) , (u i , x i , v iJJ~= 1 .

(a) I f l eng th (e) = O, then s t a r t (p) n f i n a l (p) # ~.

(b) I f l eng th (e) ~ O, then s I ~ s t a r t (p) .

(c) I f e is f i n i t e , then t l e n g t h (e) ~ f i n a l (p) .

(d) t j = s j+ 1 f o r 1 ~ j < l e n g t h (e) .

F i n a l l y , exec(p) is the set o f execut ion sequences f o r p. (Note, f o r example, t ha t

t h i s set is nonempty.) Thus, an execut ion sequence f o r a process e x h i b i t s cons is tency

f o r s ta te changes, but not necessa r i l y fo r v a r i a b l e va lue changes.

Next we descr ibe the execut ion o f a set o f processes. We wish the execut ion to

be f a i r in the sense tha t each process e i t h e r reaches a f i n a l s ta te or cont inues to

execute i n f i n i t e l y o f t en ; i t cannot be " locked out " f o r e v e r by o ther processes when

i t is ab le to execute. In o the r words, processes are comple te ly asynchronous and

thus cannot i n f l uence each o t h e r ' s a b i l i t y to execute a step. Since no cons is tency

o f values o f va r i ab l es w i l l y e t be assumed, a s imple " s h u f f l e " ope ra t i on w i l l s u f f i c e .

Let A be any set and b = (bk)kE K be an indexed set o f elements o f A c°unt .

Shu f f l e (b) is the set o f sequences obta ined by tak ing a l l o f the sequences in b and

"merging" them toge the r in a l l poss ib le ways to form new sequences. Formal ly , i f

n ~ N, then de f ine [n_~1= { I n} . I f n = ~, then [n] = N. Now a sequence

c ~ A c°unt is in § h u f f l e (b) i f f there is a I - I , on to , p a r t i a l map ~ : K × N ÷

[l e n g t h (c)] such t ha t (a) - (c) hold.

(a) ~ is de f ined f o r (k ,n) i f f n ~ [l e n g t h (b k)] .

(b) ~ is monotone inc reas ing in i t s second argument.

(c) I f ~ (k , i) = j , then c j = the i th element in the sequence b k.

The s h u f f l e ope ra to r is e a s i l y extended to an indexed set o f subsets o f A c°un t , v i z .
_ = = I b i f B = (Bk)k~ K, where B k A c°un t , then shu f f l e (B) d f U { s h u f f l e (b) : b ~ k)k~K and

b k c B k, k~K}.

155

I f P is a set of processes, define exec(p) ~f shuffle((exec(p))p~p).

We now extend our notions of execution sequences to systems of processes.

I f X is a set of variables, let B{~_)~f (act(X)) c°unt. Let b ~ B(X), x c X, and

f be a partial assignment for X. Latest(b, x, f) is the value le f t in x after per-

forming the actions in b, assuming x had in i t i a l value f(x). We define i t recursively

on the length of b. I f length(b) = 0 then

latest(b, x, f) = g(x) i f f(x) is defined;

~ndefined otherwise.

Now assume length(b) ~ l , and b = b' • (u, y, v) for some (u, y, v)e act(X).

Then latest(b, x, f) = ~ i f x=y;

~ latest(b', f , x) i f x~y and latest(b', f , x) is defined;

~ndefined otherwise.

Let X, K be sets of variables, b c B(X), and f a total assignment for K. We

say b is (K,f)-consistent i f for every prefix b' • (u, y, v) of b with y e K, then

u = latest(b', y, f) . For sets of action sequences B ~ B(X), define

consistK,f(B) ~f {b e B : b is (K,f)-consistent}.

Let P be a set of processes. A sequence of steps e ~ E(P,X) is (K,f)-consistent

provided erase(e) is (K,f)-consistent, where erase : E(P,X) ÷ B(X) is a homomorphism

mapping each pair (a,b) e steps(P,X) to its second member b. For sets of execution

sequences E ~ E(P,X), define consistK,f(E) ~f {e ~ E : e is (K,f)-consistent}. Now

le t S be a system of processes. Exec(S) ~f consistint(S),init(s)(exec(proc(S)))

E(proc(S), ext(S) u int(S)). Thus, exec(S) consists of those execution sequences of

the system's processes in which the internal variables are consistent across the

sequence.

Behavior Sequences

Exec(P) gives complete information on how a set of processes might execute in

any given environment. Often, however, one is not interested in how the processes

execute but only in their effect on the environment, that is, the way they change the

variables. We obtain this information from the execution sequences by extracting the

variable actions.

I f S is a system of processes, we define the behavior of S, beh(S) ~f

erase(exec(S)) ~B(ext(S) u int(S)).

156

Simi lar ly , we define the behavior for a process p and a set of processes P.

Beh(p_) ~f erase(exec(p)).

Beh(P) ~f erase(exec(P)).

One might be interested in only these actions involv ing the external variables.

Let X, K be sets of var iables, b ~ S(X), then elimK(b) is the subsequence of b con-

s is t ing of the actions net involv ing variables in K. (ElimK(b) might be f i n i t e even

i f b is i n f i n i t e .) We define the external behavior of S,

extbeh(S) ~f elimint(s)(beh(S))-

The following proposition demonstrates the use of some of the preceding notation,

and shows an elementary implication of the read-anything property ((b) in the defini-

tion of a process).

Proposition 2.1:

Let p be a process, x e variables(p), (vi) i= 1 any in f in i te sequence of elements

of values(x). Then for some (wi)i= l , i t is the case that

, ,length(b)
b = kvi,x,wiJi= l

is in elimvariables(p)-{x}(beh(p)). (That is, there is some possible execution of p

for which the sequence of values read from x is given by (vi) i= l or some prefix

thereof.)

Proof sketch. By repeated use of the read-anything property.
D

Operations on Systems

One goal of our formalism is to permit complex systems to be understood in terms

of simpler ones. For th i s , we need some operations for bu i ld ing larger systems from

smaller ones. Corresponding to these operations w i l l be operations on execution

sequences and behaviors. This approach is s imi lar to that of Milne and Milner [3] .

The f i r s t operation jo ins a f i n i t e co l lec t ion of systems into a single one.

Let (S i) i c I be a f i n i t e indexed family of systems such that

(a) i~ j implies proc(S i) n proc(Sj) = ~.

(b) i~ j implies in t (S j) n (in t (S j) u ext(Sj)) = ~.

Then ~ (S i) i~ I is the system S such that

proc(S) = U proc(Si) ,
i~ l

ext(S) = U ex t (S i) ,
i~ l

157

int(S) = U int(Si),
i~I

in i t (s) = U in i t (s i) .
i~I

We define ~ for f in i te indexed families of execution sets and indexed families

of behaviors to be simply the shuffle operation.

The second operation on systems is the one of turning selected external variables

into internal ones. Let S be a system, K a set of variables and f a total assignment

for K such that K n int(S) = ~. We define consistK,f(S) to be the system S ~ such

that proc(S') = proc(S), ext(S') = ext(S) - K, int(S') = Int(S) u K, and in i t (S') =

init(S) u f. ConsistK, f has already been defined for execution sets and behaviors.

That these definitions al l make sense together is shown by the following.

Theorem 2.2. The fo l lowing diagram commutes.

S* exec

S exec)

~onsistK, f
S exec

(p denotes the power set operator,)

(i~E) , erase

P(E) erase

IconsistK, f
P(E) erase

(P(BI)*

) P(B)

~consistK, f

P(B)
Here we assume a f ixed set P of processes and X of var iables, and we l e t S = S(P,X),
E = E(P,X), and B = B(X).

We omit the straightforward but tedious proof.

Modules

The two operations of ~ and consistK, f are su f f i c ien t to bui ld any system from

one-process systems in a simple way,

Let S, S* be systems. S * is a module of S i f proc(S ~) ~proc(S) , ext(S') ~ex t (S)

u Int(S), in t (S ') ~ in t (S) , and in i t (S ~) = i n i t (S) / i n t (S ~) (the res t r i c t ion of the

function in i t (S) to domain int(S~)). Thus, a module is a subsystem whose internal

variables are pr ivate to i t and whose external variables form the inter face between

the module and the remaining system and/or the external world.

S is par t i t ione d into modules (Sm)m~ M i f M is f i n i t e , S m is a module of S for

each mcM, (proc(Sm))m~ M is a pa r t i t i on of proc(S), and for a l l m, n ~ M, i f m~n, then

int(S m) n (int(Sn) u ext(Sn)) = ~.

A system S is atomic i f i t consists of a single process with no internal var iables,

i .e . i f Iproc(S)l = 1 and int(S) = in i t (S) = ~.

The fo l lowing proposit ions are immediate from the de f in i t ions .

158

Propo§it ion 2.3. Every system can be par t i t i oned in to a f i n i t e number of atomic

modules.

Proposit ion 2.4. Every system can be obtained from an a rb i t r a ry p a r t i t i o n into

modules by one app l ica t ion of ~ fol lowed by one appl icat ion of

consistK, f fo r appropr iate K,f .

Remarks on Communication Mechanisms

The basic communication mechanism in our model is the a v a i l a b i l i t y of the las t

wr i t ten value. We work at a "p r im i t i ve " l eve l , not basing communication on "messages"

as do Hoare [2] , Feldman [7] and Milne and Milner [3] . Some message models involve

an i m p l i c i t queuing mechanism or i m p l i c i t process synchronizat ion, nei ther of which

we wish to assume as basic. Both of these mechanisms involve s ign i f i can t implemen-

ta t ion cost and require cost analysis in terms of a more p r im i t i ve common basis.

Neither mechanism seems to be universal in the sense that the most e f f i c i e n t programs

for a rb i t r a r y tasks would always be wr i t ten using i t . Moreover, the abstract ion of

automatic process synchronization serves to hide the asynchrony of the basic model.

Since we wish to understand asynchronous behavior, we prefer not to mask i t at the

p r im i t i ve levels of our theory.

The genera l i ty of our process and execution sequence de f in i t i ons assumes possible

i n d i v i s i b i l i t y of a f a i r l y powerful form of var iab le access. In pa r t i cu l a r , processes

that can both read and change var iables in one i n d i v i s i b l e step (such as the " tes t -

and set" processes of Cremers-Hibbard [8] and Burns et al [9] are included in the

general de f i n i t i ons . Some readers may consider th is general access mechanism to be

unreasonably powerful, arguing that a process model based on i n d i v i s i b i l i t y of "reads"

and "wr i tes" only is more r e a l i s t i c . Such a process model can be defined by cer ta in

r es t r i c t i ons on our general model (as we describe below). Thus, our development not

only specia l izes to include considerat ion of a read-wr i te model, but also allows

comparison of the power of the read-wr i te model wi th that of the more general access

model. The spec ia l i za t ion can be carr ied out as fo l lows.

A process p is ca l led a read-wr i te process provided fo r each s c states(p) and

each x c var iab les(p) , the set

oksteps(p) n { ((s , p , t) , (u , x , v)) : t ~ s ta tes(p) , u, v ~ values(x)}

can be par t i t i oned into a co l lec t ion of subsets T, wi th each T c T sa t is fy ing (at

least) one of the fo l lowing.

(a) (T describes a " read" .)
For a l l ((s , p , t) , (u , x , v)) in T, i t is the case that u = v. Moreover, fo r

each u ~ values(x) there exists t wi th ((s , p , t) , (u , x , u)) in T.

(b) (T describes a "w r i t e " .)

For some t , v , T = { ((s , p , t) , (u , x , v)) : u ~ va lues(x)} .

Two very simple examples fo l low.

159

Example 2.5. Let states(p) = s ta r t (p) : { s } , f i na l (p) = B, var iables(p) = {x } ,

values(x) = { 0 , I } , and oksteps(p) = { ((s , p , s) , (O , x , l)) , ((s , p , s) , (l , x , O)) } . Process

p simply examines x repeatedly, changing i t s value at each access. The change is

c lea r l y an a c t i v i t y that involves both reading and w r i t i n g , so tha t , i n t u i t i v e l y , p

is not a read-wr i te process. Formally, i f p were a read-wr i te process, oksteps(p)

would be pa r t i t i onab le as above. No T can describe a read since i t is never the case

that u = v. So ((s , p , s) , (O , x , l)) is in T fo r some T which describes a wr i te . But

then ((s , p , s) , (l , x , l)) is in T ~oksteps(p) as we l l , a cont rad ic t ion.

Example 2.6. Let states(p) = s ta r t (p) = {s} , f i na l (p) = ~, var iables(p) = {x } , and

oksteps(p) = { ((s , p , s) , (O , x , l)) , ((s , p , s) , (l , x , l)) } . Process p simply examines x

repeatedly, w r i t i ng " I " every time. I t is easy to see that p is a read-wr i te process.

So fa r , our model describes asynchronous processes co~un ica t ing by shared va r i -

ables, a s i tua t ion which suggests that the processes are physical ly located s u f f i c i e n t l y

near to each other to share memory without delay. We also wish to model more general

"d i s t r i bu ted" systems of asynchronous processes, in which communication is done by

means of a channel wi th s i gn i f i can t transmission delay. No new pr imi t ives are required

in order to extend the present model to handle such communication. A one-way channel

is simply modelled by a special "channel process" p, as deta i led below.

Example 2.7. Let V be any set , states(p) = {wr i te } x V u {read}, s ta r t (p) = { read},

f i n a l (p) = ~, var iables(p) = { x , y } , values(x) = values(y) = V, and oksteps(p) =

{ ((r e a d , p , (w r i t e , v)) , (v , x , v)) : u,v c V} u { (((w r i t e , u) , p , r e a d) , (v , y , u)) : u,v c V}.

Process p is thought of as sharing a var iable with each of two other processes. I t

a l te rna te l y reads from one of the var iables and wr i tes the value read in the other

var iab le . (p is obviously a read-wr i te process.) When p is combined with two processes

at i t s ends in the manner already described in th is sect ion, the consistent execution

sequences exact ly describe the e f fec t of an a rb i t ra ry -de lay channel used for commun-

ica t ion between the two o r ig ina l processes.

3. Characterizat ions and Elementary Examples of Behaviors

The pr inc ipa l j u s t i f i c a t i o n fo r a formalism for describing d is t r ibu ted systems

is that techniques can thereby be developed fo r speci fy ing requirements for t he i r

operat ion. I t should be possible to determine whether a pa r t i cu la r system is a sa t i s -

factory rea l i za t i on of the speci f ied requirements. Typical requirements might involve

exclusion, fa i rness, synchronization and other log ica l correctness proper t ies ; they

can also involve performance and e f f i c iency .

Requiring that a system exh ib i t exact ly a speci f ied set of execution sequences

is general ly too strong. For instance, i f Pl and P2 are processes wi th exec(p I) 2

exec(P2), then Pl is always an adequate replacement fo r P2" In contrast to the usual

160

assumptions about nondeterminism, in the case of asynchronous systems a l l possible

nondeterministic choices should be "correct". Thus, a system exhibit ing any subset

of the specified execution sequences should be acceptable. (Recall that a process

cannot have an empty set of execution sequences.)

The subset requirement above is s t i l l stronger than one would necessarily want.

We are not generally interested in requiring that the complete detai l of the specified

execution sequences be exhibited by an implementing system, but rather only certain

abstracted aspects. Such aspects might be of two di f ferent types. One possib i l i ty

is to specify state reachabil i ty requirements as in Cremers-Hibbard [8] and Burns

et al [9]. A second poss ib i l i ty , appropriate for specifying processes or groups of

processes to be used as modules in larger systems, is to specify external behavior.

That is the type of specification we emphasize in this paper.

Monotonicity and the Adequate Replacement Property

Let Sl, S 2 be systems. Define S 1 ~S 2 i f f extbeh(Sl) ~ extbeh(S2). We call the

part ial order "C_C" on systems the adequate replacement order, for we argue that S 1

should always be an adequate replacement for S 2, at least for the purpose of determ-

ining logical correctness of input-output behavior.

Proposition 3.1. ~, consistK, f , and elim K as operations on P(B) preserve inclusion

of subsets of B.

Proof: Immediate,

Proposition 3.2.

(a)

(b)

Let (Bi)i~ I be an indexed family of sets, where each B i ~ B(X), K any set of

variables.

Then ElimK(~(Bi)i~ I) = ~ (ElimK(Bi))i~ I.

I f K, K' are disjoint sets of variables, f a total assignment for K, B ~ B(X);

then ElimK,(ConsistK,f(B)) = ConsistK,f(ElimK,(B)).

Proof: Immediate.

Proposition 3.3.

0 and Consistk, f as operations on S preserve~ .

Proof: By Theorem 2.2 and Propositions 3.1 and 3.2.

I t follows that i f a module S 1 of a system S is replaced by an adequate replace-

ment S 1 , then the resulting system S' is an adequate replacement for S.

161

Equivalence of Systems

We can also define an equivalence among systems based only on the i r input-output

behaviors. While this equivalence is s t i l l too strong for many purposes, i t neverthe-

less is not so strong as notions of equivalence based on simulation.

Let S I , S 2 be systems. Define S 1 z S 2 i f f extbeh(Sl) = extbeh(S2). (Thus,

S 1 ~ S 2 i f f S I E S 2 and S 2 ~ S I .)

We now proceed to show that any system is equivalent to an atomic system. Thus,

groups of processes and single processes can be treated uniformly, an indicat ion of

the usefulness of our model for modular design of systems.

We give the construction in two parts, F i rs t we show how to reduce the number

of processes to one, then we show how to el iminate the internal variables.

Lemma 3.4. For any system S, there is a system S ~ with the same external and internal

variables such that Iproc(S') l = 1 and beh(S') = beh(S),

Proof Sketch. By induction on Iproc(S) I. For instance, given a system of two process-

es Pl and P2' we must define a single process p whose behavior is exact ly the shuff le

of those of Pl and P2" The f i r s t obvious idea might be to al low states of p to rep-

resent pairs consisting of states of Pl and P2" Transit ions could be composed natur-

a l l y from the t ransi t ions of Pl and P2" essent ia l ly al lowing e i ther one. The only

problem is that nothing prevents the nondetermin~stic choice from always choosing to

simulate one process over the other, v io la t ing the fairness of the shuff le operation,

However, the countable branching capabi l i ty of processes can be used to enforce f a i r -

ness. When p begins simulating one of Pl ' P2' i t nondeterminist ical ly chooses an

i n t ege r~ l representing the number of steps p w i l l simulate for that process before

sh i f t ing to the other process.

A process p is cal led t ree l i ke provided (a) and (b I hold.

(a) For a l l t O ~ states(p), ! { ((s , p , t) , (u , x , v)) ~ oksteps(p) : t = to}I. ~ ! .

(b) For a l l t O E s ta r t (p) , I { ((s~p , t) , (u ,x ,v)) ~ oksteps(p) : t = to} I = Q,

Lemma 3.5. I f p is a process, there exists a t ree l i ke process q with Beh(p) = Beh(q).

Proof Sketch. Process p can be "opened up into a tree" by rep l ica t ing states; process

q has states corresponding to f i n i t e paths in p.
[]

Theorem 3.6. For any system S, there is an atomic system S ~ such that S~ ~ S.

Proof Sketch. By Lemma 3.4, we can assume proc(S) = {p}. By Lemma 3.5, we can assume

p is t ree l i ke . A process transformation is carr ied out in two steps, the intermediate

resul t of which need not be a process. F i rs t , Pl is constructed from p by "pruning"

162

p's tree so that only (K,f)-consistent paths remain, where K = int(S) and f = init(S).

Since p is treelike, there wi l l be no ambiguity involved in deciding when to prune.

Now P2 is constructed from Pl by condensing paths involving variables in K. This con-

struction is not carried out in stages because of the possible condensation of in f in i te

paths to f in i te paths. The possibil ity that Pl could continue forever on branches

involving only variables in K involves transition to a final state of P2" Finally, S'

is the atomic system such that proc(S') = {p2 } and ext(S') = ext(S).

o

Unbounded Nondeterminism

We argue that i t is natural to use countable nondeterminism for the basic process

model. Restriction to f in i te l y many states would surely be unnatural, ruling out

processes which resemble natural sequential computation models such as Turing machines.

But the usual models, though having in f in i te ly many states, are restricted to f in i te

nondeterminism. This restriction does not seem overly strong in more conventional

settings, since i t is preserved by natural sequential combination operations. But for

the asynchronous parallel case, the finite-branching property would not be preserved

by our combination and internalizing constructions. The next result implies that any

behavior of a process can be realized as the external behavior of a pair of communi-

cating finite-branching processes. Since behaviors realizable by finite-branching

processes form a proper subset of those realizable by al l processes (as we show by

Example 3.9), uniformity requires at least countable nondeterminism.

More precisely, a process p is f in i te branching provided start(p) is f in i te , and

also for any s c nonfinal(p), x ~ variables(p), u E values(x), there are only f in i te ly

many t, v with ((s,p,t),(u,x,v)) ~ oksteps(p). A system S is f i n i t e branching i f

every process in proc(S) is f in i te branching. In the following theorem, let p denote

the process of Example 2.6. Process p is f in i te branching and f in i te state. Assume

variables(p) = {x}, and f(x) = O.

Theorem 3.7. Let S be a system of processes, p ~ proc(S). Then there exists an atomic

f in i te branching system S l such that S ~ consist{x},f(S l ~ Sp), where Sp is the fixed

atomic system with proc(Sp) = {p}, ext(Sp) = {x}, and int(Sp) = init(Sp) = ~.

Proof Sketch. By Theorem 3.6, we can assume that S is atomic. Let proc(S) = {q}.

For each s ~ states(q), y ~ variables(q), u ~ values(y), there are only countably many

pairs (v,t) such that ((s,q,t),(u,y,v)) c oksteps(q). Some ordering is fixed for each

such set of pairs. An ordering is also fixed for the elements of start(q). Process

ql simulates a step of process q as follows. Process ql alternately tests x and

increments a counter until i t sees that x has been set to I. I t then uses the value

of i ts counter to select one of the possible alternatives of q to simulate and resets

the counter and variable x to 0 in preparation for the next step of simulation. S l

163

then is the system with proc(S l = {ql }, ext(Sl) = ext(S) u {x}, int(S l) = init(S l) =

B. []

We conclude this section with an example of a set of sequences which can be ob-

tained as the behavior of a process, but not of any finite-branching process.

Lemma 3.8. Let p be a finite-branching process, x E variables(p), b e (act(x)) m.

I f beh(p) contains in f in i te ly many prefixes of b, then b ~ beh(p).

Proof Sketch. By a KSnig's Lemma-style argument.
[]

Example 3.9: In tu i t ive ly , we consider the specification to "write a value any f i n i te

number of times."

Let x be a variable, v e values(x), A = {(u,x,v) : u m values(x)}. A* is the set

of al l f i n i te sequences of actions, each of which "writes v" into x. A* can easily

be realized as beh(p) for a process p which uses countable nondeterminism to choose

an element of N for a counter in i t ia l i za t ion . Process p alternately decrements the

counter and writes v, halting when the counter is O.

On the other hand, Lemma 3.8 implies that A* is not beh(p) for any finite-branch-

ing process p, since b = (v,x,v) m has al l of i ts f i n i te prefixes in A*.

4. Examples

In this section, we discuss behavior specification for a typical distributed

system - an arbiter. (A similar treatment has been worked out for a t icket distr ibu-

tion system, but space l imitations preclude inclusion of the details of this second

example.) We also describe particular and diverse implementations within our model

that realize this behavior. We do not espouse any particular formal specification

language, but rather express behavior restrictions in general mathematical terminology.

The specification example follows a pattern which has more general appl icabi l i ty ,

so we f i r s t describe that pattern. A f i n i te set X of variables is accessed by a "user"

and by a "system". The user is required to follow a simple and restr ict ive behavior

pattern; formally, a set U ! B(X) of "correct user sequences" is defined. The system

is to be designed so that when i t is combined with a user exhibiting correct behavior,

with correct in i t i a l i za t ion of variables, certain conditions (on the values of vari-

ables) hold. Formally, a set M c ({user,system} × act(X)) cOunt is defined in order

to describe the desired conditions. A total assignment f for X is defined in order to

describe correct in i t i a l i za t ion of variables.

In a sense, U, M and f may together be regarded as a specification for the be-

havior of the desired system: any b ~ 8(X) can be considered "acceptable" i f whenever

i t is combined consistently with a sequence in U, the resulting combination is in M.

A system of processes is a correct implementation i f al l of i ts external behavior

164

sequences are acceptable.

More f o r m a l l y , i f A is any set , t ~ A c°un t , L any se t , x any element o f L, then

t x denotes t ha t element o f ({ x } × A) c°unt whose i th element is (s , t i) , where t i is the

i th element o f t . (That i s , the e n t i r e sequence is l a b e l l e d by x .) This supersc r ip t

ope ra to r is extended to subsets o f A c°unt in the obvious way.

For X, K sets o f v a r i a b l e s , L any se t , t ~ (L x ac t (X)) c°un t , f a t o t a l ass ign-

ment f o r K, we say t ha t t i s (K , f) - c o n s i s t e n t prov ided the sequence o f second compon-

ents of t is (K,f)-consistent.

In the present examples, L is taken to be {user,system}, a set of identifying

labels for the modules of interest.

A sequence b ~ B(X) is called (U,M,f)-acceptable provided

{c ~ shuffle(uUser,bsystem) : c is (X,f)-consistent} ~ M. Then a system of processes

S would be considered to be a correct implementation provided every sequence in

extbeh(S) is (U,M,f)-acceptable.

However, this type of description may be somewhat d i f f i cu l t for a system designer

to use as a specification, so that i t may be helpful to define exp l ic i t l y a set B

of (U,M,f)-acceptable sequences. Any system of processes S with extbeh(S) ~B is

then considered correct. B should be as large as possible so as not to constrain

the system designer unnecessarily. In the following example, we are able to obtain

B exactly equal to the set of (U,M,f)-acceptable sequences, thus providing an

expl ic i t correctness characterization. We do not yet have a general equivalence

theorem for specifications, however.

Example 4.1: Arbiter

Values(x) = {E,A,G} for each x ~ X. Intu i t ive ly, E indicates "empty", A indicates

"ask" and G indicates "grant" of a resource. The user is restricted simply to

in i t ia t ing requests and returning granted resources. More precisely, U ~B(X) is

defined as follows.

(Let a ~ s h u f f l e ({ a x : x E X}) , where each a x ~ B(x) .

a c U i f f f o r each x e X, (a) - (c) hold

~ length(ax))
(Le t a x = (u i , x , v i ~ i = 1

(a) Correct T rans i t i ons

For a l l i , 1 < i < l e n g t h (a x) , i f u i = E then v i # G, and i f u i = A then v i = u i -

(The user cannot g ran t a request , and once he has i n i t i a t e d a request he cannot re -

t r a c t i t .)

165

(b) Stopping

I f a x is f i n i t e and nonempty, then Vlength(ax) = E. (The user cannot leave the system

when a request is pending or granted.)

(c) Return of Resource

For a l l i , i f u i = G then there ex is ts j ~ i wi th v j # G.

(I f the user sees that his request has been granted, he must eventual ly return the

resource.)
I

Thus, user correctness is defined l oca l l y at each var iab le . In pa r t i cu la r , the

user can consist of separate processes, one fo r each var iab le , with no communication

between them. I t is easy to design various sets of processes with behavior a subset

of U.

Correct operation fo r our a rb i t e r system w i l l require that a l l requests eventu-

a l l y be granted, and that no two requests be granted simultaneously. Of course,

var iants on these condit ions could be speci f ied instead.

Let f : ~x[E], L = {user,system}. M 2 (L × act(X)) c°unt is defined as fol lows.

c ~ M i f f c is (X, f) -consistent and both (a) and (b) hold.

(a) Local Conditions

(Let c ~ shuf f le({c x : x ~ X}), each c x ~ (L x act(x))C°unt.)

For each x E X, both (a l) and (a2) hold.

'~ ' x " l eng th (cx) '
(Let c x : £~i,~ui, , v i) J i= l . j

(a l) Correct Transitions

For a l l i , l < i < length(cx), e i ther u i = v i or else one of (a l l) - (a l 3) holds.

(a l l) £i = user, u i = E and v i = A.

(al2) £i = user and u i = G.

(al3) £i = system~ u i = A, v i = G.

(The allowed t rans i t ions are depicted at r i gh t .)

user

(a2) Progress

For a l l i , i f v i # E then there exists j ~ i with vj ~ v i -

(Any value other than E is eventual ly changed.)

166

(b) Global Condi t ions

= , ~ length(c)
(Let c (Z i , (u i , x i , v i)~ leng th (c) j i = 1 , d : (u i , x i , . i , i = 1 . ,

(b l) Mutual Exclus ion

For no X l ,X 2 ~ X, x I ~ x 2 and no p r e f i x e o f d is i t the case tha t

l a t e s t (e , x] , f) = l a t e s t (e , x 2 ~ f) = G.
i

Next, we de f i ne B.

b ~ B i f f e i t h e r (a) o r (b) holds.

(a) I n i t i a l i z a t i o n or User Observed to be I nco r rec t

(Le t b E s h u f f l e ({ b x : x ~ X}) as be fo re .)

For some x ~ X, one o f (a l) - (a 3) holds.

'u v , l eng th (b) ,
(Le t b x = t i , x , i] i = l x .)

(a l) u I = G.

(a2) For some i , v i = E and ui+ 1 = G, or e lse v i = A and ui+ 1 ~ A.

(a3) length (b x) = ~, and u i = G f o r a l l s u f f i c i e n t l y l a rge i .

(Thus, a sequence is " co r rec t " i f i t i nvo lves i n c o r r e c t ac t i on on the pa r t o f the

user or an i n c o r r e c t i n i t i a l i z a t i o n o f the v a r i a b l e s . I t is the job o f the system

designer to d iscover how such e r ro rs can be detected dur ing system ope ra t i on . I t is

easy to program a system to check f o r e r ro rs such as those represented in (a l) and

(a2) , but (a3) e r ro rs could not be detected a t any f i n i t e po in t dur ing the computat ion.

However, the system is requ i red to obey some cond i t i ons i n v o l v i n g i n f i n i t e execut ion

sequences. I t is poss ib le to a l l ow some o f the system's "even tua l " behav ior to wa i t

f o r the user ' s "even tua l " behav ior . An example w i l l be seen in Implementat ion I .)

(b) Correctness Condi t ions

Both (b l) and (b2) hold.

(b l) Local Condi t ions

(Le t b ~ s h u f f l e ({ b x : x ~ X}) as be fo re .)

For each x ~ X, (b l l) - (b l 3) a l l hold.

(b x , , l eng th (b) •
= ~ u i , x , v i ~ i = 1 x .~

(b l l) Correct T r a n s i t i o n ~

For a l l i , i f u i = E or G, then v i = u i , and i f u i = A, then v i = A or G.

(b12) I n f i n i t e Examination

b x is i n f i n i t e

167

(b 1 3) Response

For a l l i , i f u i = A, then fo r some j ~ i i t is the case that ~ ~ A.

(b2) Global Conditions

x v ~length(b).)
(Let b = (u i , i ' i J i = l

(b 2 1) Mutual Exclusion

For no Xl,X 2 ~ X, x I ~ x 2, and no p r e f i x d o f b i t is the case that

l a t e s t (d , X l , f) = l a t e s t (d , x 2 , f) = G. •

The fo l lowing theorem shows that our e x p l i c i t character izat ion for system behavior

is as general as possible.

Theorem 4.2: For U,M,f,B of th is example, B = {b : b is (U,M,f)-acceptable}.

Proof: c : Let b ~ B, a ~ U, c ~ shuffle(aUSer,bsystem), c (X, f) -cons is tent . We

must show c ~ M.

Since a ~ U and c is (X , f) -cons is ten t , we can show that b f a i l s to sa t is fy (a)

of (the de f i n i t i on of) B. Thus, b sa t i s f i es (b) of B.

We check that c sa t i s f i es each condi t ion of M. c sa t i s f i es (a l) o f M because of

(a) of U and (b l l) of B. To ve r i f y (a2) of M, wr i te c ~ shuf f le ({c x : x ~ X}), and

: 1~length(Cx) I f , (u i , x ,A)) is element of fo r f ixed x, wr i te c x (Z i , (u i , x , v i J , i = 1 . (Z i an

c, then (b12) and (b13) of B together imply that fo r some j > i , v i ~ A. I f

(Z i , (u i , x ,G)) is an element of c, then l e t j be the largest number ~ i wi th Zj = user.

By (b l l) of B, j ex is ts and vj = A or G. Then by (b) of U, there exists k > i with

Z k = user. I f u k ~ G we are done. Otherwise, (c) of U implies that for some m~ k,

v ~ G. m

(b l) of M fol lows easi ly from (b21) of B and (a) of U.

: Let b ~ B. We must produce a ~ U, c ~ shuf f le(a user, #ystem), c (X , f) -cons is ten t ,

and c ~ M. Clear ly, b f a i l s to sa t i s fy (a) of B. In add i t ion , b w i l l f a i l to sa t i s fy

at least one of (b l l) , (b12), (b13) and (b21) of B.

We consider four cases.

(b l l) f a i l s : An_n~la ~ U, c c shuffle(aUSer,bsystem) which is (X, f) -cons is tent w i l l

f a i l to sa t i s fy (a l) of M. One such c can be constructed by immediately preceding

each element (system,(u,x ,v)) of c which is derived from an act ion of b by an element

(use r , (y , x ,u)) . The value of y is uniquely determined by the consistency requirements

on c; since b f a i l s to sa t i s fy (a) of B, th is determination produces a ~ U.

(b12) f a i l s : Consider x such that actions (u,x ,v) only appear f i n i t e l y of ten in b.

168

Construct a m U, c ~ shuffle(aUSer,bsystem), c (X , f) -cons is ten t , with the fo l lowing

property. In c, fo l lowing a l l elements of the form (system, (u ,x ,v)) (fo r any u ,v) ,

there is an element of the form (user , (u ,x ,A)) (fo r some u), and fo l lowing that

element there are i n f i n i t e l y many elements of the form (user , (A,x ,A)) . Such a, c

can be constructed by a s l i gh t addi t ion to the construct ion fo r the preceding case.

The resu l t ing c f a i l s to sa t i s fy (a2) of M.

(b13) f a i l s : Consider x such that (A,x,A) occurs in b and moreover fo r a l l fo l lowing

actions in b of the form (u ,x , v) , we have v = A.

Then any a e U, c ~ shuffle(aUSer,b system) which is (X, f) -cons is tent w i l l f a i l

to sa t i s fy (a2) of M. Such a, c can be constructed as before.

x v ~length(b) where ,G) and are actions (b21) f a i l s : Let b = (u i , i ' i ' i = l ' (u j , x j (Uk,Xk,G)

witnessing the cont rad ic t ion to (b21) of B. We can assume that j < k, x j # x k and

fo r no m, j < m < k i t is the case that x m = x j .

Construct a e U, c ~ shuffle(aUSer,bsystem), c (X , f) -cons is ten t , with the fo l low-

ing property. In c, the elements derived from b's actions (u j , x j ,G) and (Uk,Xk,G)

have no intervening elements of the form (user, (u , x j , v)) fo r any u, v. Such a, c

f a i l to sa t i s fy (b l) of M.

Such a, c can be constructed as before.
D

The given descr ip t ion of B seems s u f f i c i e n t l y manageable to be used to specify

system behavior. B is also s u f f i c i e n t l y general to admit many d i f f e ren t implementa-

t ions - i . e . processes or communicating groups of processes with behavior a subset

of B but with very d i f f e ren t internal st ructure and execution behavior. Outlines of

three such examples fo l low.

Implementation I : The simplest implementation is a s ingle process p which pol ls each

var iab le in c i r cu l a r sequence. When A is read, p changes i t to G aad then repeatedly

reads that var iab le un t i l i t s value reverts e i the r to E or A. When th is occurs, p

resumes po l l i ng wi th the next var iab le.

Note that p may f a i l to examine some var iab le a f t e r some t ime, cont rad ic t ing

(b12) of the d e f i n i t i o n of B. But the only way th is can occur is i f the user acts

incor rec t l y , f a i l i n g , fo r example, to change G to E or A. Then the execution w i l l

sa t i s f y , fo r example, (a3) of the de f i n i t i on of B. Thus, although p does not ac tua l ly

detect cer ta in incorrect user behavior, i t nevertheless can cause i t s own correct

eventual behavior to depend on the eventual correctness of user behavior.

Checking that beh(p) ~ B is s t ra ight forward.

Implementation 2: The idea of Implementation 1 can be extended to a l low "more con-

169

currency" using a binary tree of po l l ing processes, with the leaves accessing the

inter face var iables x c X.

Each non-root process p a l te rna te ly pol ls i t s l e f t and r i gh t son var iables. When

A is seen, p changes i t s own father var iable to A. When the father var iab le changes

to G, p grants i t s pending son's request by changing the appropriate A to G. p then

waits fo r that son var iable to rever t to e i ther E or A. When th is occurs, p changes

i t s fa ther var iab le to E and then resumes po l l ing i t s sons wi th the other son being

pol led next.

The root process acts j us t l i k e p of Implementation 1 fo r !Xi = 2.

One must do a l i t t l e work to convince oneself that the a l te rna t ing strategy

guarantees eventual grant ing of a l l requests. Al l other propert ies in the de f i n i t i on

of B are easy to check, i f a l l fa ther var iables are assumed to be i n i t i a l i z e d at E.

Implementation 3: The th i rd implementation is based on the state-model algorithms

used in Burns et al [9] , (see also Cremers-Hibbard [8]) . This t ime, the implementing

system consists of ident ica l processes Px' each of which has access to exact ly one of

the inter face var iables. In add i t ion , there is a common var iable x* to which a l l the

processes Px have access. One of the algorithms from [9] , such as algor i thm A, is

used. This algor i thm enables asynchronous processes requir ing mutual exclusion syn-

chronizat ion to communicate using x* to achieve the needed synchronization, with good

bounds on the number of times any s ingle process might be bypassed by any other (and

with a very small number of values fo r x*) . The processes themselves must be w i l l i n g ,

however, to execute a complicated protocol . In the present development, we have de-

f ined a very simple a rb i t e r protocol and do not require a user to learn the more

complicated protocol of the e a r l i e r algor i thm. We can s t i l l use the e a r l i e r ideas,

however, by i so la t i ng the e a r l i e r protocol in the system processes and al lowing a user

to communicate wi th one of those processes.

In ou t l i ne , and re fe r r ing to some ideas from algor i thm A, the Px accessing x

examines x un t i l A is detected. Then Px enters the t r y i ng protocol using x*. When

Px is allowed (in algor i thm A) to enter i t s c r i t i c a l region, i t passes the permission

on by changing the value of x to G. Px then examines x un t i l i t reverts to E or A,

and then Px enters the e x i t protocol using x*. When Px has completed i t s ex i t protocol ,

i t is ready to begin once again, examining x for fur ther requests.

Correctness of the resu l t ing system of communicating processes is easy to under-

stand based on that of Algorithm A.

The main point to be made by th is example is that there are many d i f f e ren t pro-

cesses and systems of processes which can meaningful ly be said to rea l i ze the same

input-output behavior. In the three implementations above, the systems vary both in

process conf igurat ion and in execution. There is no r e a l i s t i c sense in which the

170

internal states and t rans i t ions (i . e . the execution sequences) of the d i f f e ren t

implementations could be thought to simulate each other. And yet , they are a l l so-

lu t ions to the problem of construct ing an a rb i t e r .

A technical question which may be of in te res t fo r the purpose of obtaining a

sequence-based character izat ion fo r behaviors in whether B in the above example is

exact ly equal to extbeh(S) fo r some system S. I t is not hard to show that U can be

so obtained.

5. Complexity Measures

Separation of behavior and implementation opens the way for comparison of d i f f e r -

ent implementations of the same behavior, a fundamental subject of study for any

theory of computation. I n t u i t i v e l y , comparisons might be made on the basis of process

conf igurat ion, local process space requirements, communication space requirements,

number of local process steps executed, number of changes made to var iables, and

possible "amount of concurrency". Tradeoffs would be expected.

Configuration and space measures seem easy to formal ize. For instance, the

three implementations in Example 4.1 use I , n-I and n processes, O, n-2 and 1

aux i l i a r y communication var iables, and O, 3 and n+5 values for each communication

var iab le , respect ive ly .

In contrast , time and concurrency measures are not so s t ra ight forward. For

instance, "response time" might be expected (sometimes) to be bet te r fo r Implementa-

t ions 2 and 3 than for Implementation 1 of Example 4.1, because of "use of concurrency".

But much work remains to be done in quant i fy ing such time comparisons.

In order to state time bounds, one must meet several requirements. F i r s t , one

must decide what actions to count during execution. Second, in order to state time

bounds as closed-form functions (e.g. "runtime = 2n2"), one requires an appropriate

notion of the "size of the task being accomplished", (i . e . an appropriate parameter

n on which to base complexity analys is) . F ina l l y , one needs to establ ish appropriate

quan t i f i ca t ion over a l te rnat ives in the present nondeterminist ic set t ing. We bel ieve

that pa r t i a l orders of the type studied by Grei f [I I] and Hewitt [12] w i l l provide

useful ways of sa t is fy ing the f i r s t requirement but do not yet know how best to

sa t i s fy the remaining requirements.

In some d e t a i l , l e t X be a set of var iables, p a set of processes,

~length (a) be a sequence of elements of steps(P,X). For a = ((s i , P i , t i) , (u i , x i , v i) J i = 1

i , j e N, define i P' j i f f i < j and e i ther x i = x j or Pi = Pj" Let P be the t ran-

s i t i v e closure of P'. In words, P formalizes the ordering of steps of a imposed by

the sequent ia l i t y of each indiv idual process and each var iab le. P seems to provide

much useful information about the "running time" and "possible concurrency" in a,

including some seemingly natural formal measures. An important remaining task is the

171

use of these measures to obtain clean statements of upper and lower complexity bounds,

both for part icular systems and for the col lect ion of systems real iz ing part icular

specified behavior.

REFERENCES

[I] Petr i , C.A., "Kommunikation mit Automaten," Schriften des Reinish Westfalischen
Inst. Instrumentelle Mathematik, Bonn. 1962.

[2] Hoare, C.A.R., "Communicating Sequential Processes," Technical Report, Depart-
ment of Computer Science, the Queen's University, Belfast, Northern Ire-
land, December, 1976.

[3] Milne, G. and R. Milner, "Concurrent Processes and Their Syntax," Internal
Report CSR-2-77, Department of Computer Science, Edinburg, May, 1977.

[4] Dijkstra, E.W., "Co-operating Sequential Processes," Programming Languages,
NATA Advanced Study Inst i tu te , Academic Press, 1968.

[5] Campbell, R. and A. Habermann, "The Specification of Process Synchronization
Using Path Expressions," Lecture Notes in Computer Science, 16, Springer-
Verlag, 1974.

[6] Shaw, A.C., "Software Descriptions with Flow Expressions," IEEE Trans. on
Software Engineerin 9 SE-4, 3 (1978), 242-254.

[7] Feldman, J. , "Synchronizing Distant Cooperating Processes," Technical Report
26, Department of Computer Sciences, University of Rochester, October, 1977.

[8] Cremers, A. and T. N. Hibbard, "Mutual Exclusion of N Processes Using an O(N) -
Valued Message Variable," USC Department of Computer Science Manuscript,
1975.

[9] Burns, J.E., M. J. Fischer, P. Jackson, N.A. Lynch, and G. L. Peterson,
"Shared Data Requirements for Implementation of Mutual Exclusion Using a
Test-and-Set Primit ive," Proceedings of 1978 International Conference
on Parallel Processin 9 (1978).

[I0] Chandra, A.K., "Computable Nondeterministic Functions," Proceedings of 19th
Annual Symposium on Foundations of Computer Science, 1978.

[l l] Greif, Irene, "A Language for Formal Problem Specification," Comm. ACM, 20,
12 (1977), 931-935.

[12] Atkinson, R. and C. Hewitt, "Specification and Proof Techniques for Serializers,"
AI Memo 438, Massachusetts Institute of Technology, August, 1977.

