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Abstract: A simple, basic and general model for describing both the (input-output) 

behavior and the implementation of distributed systems is presented. An important 

feature of the model is the separation of the machinery used to describe the imple- 

mentation and the behavior. This feature makes the model potentially useful for 

design specification of systems and of subsystems. 

The implementation model relies on the basic notions of process and variable, 

assuming ind iv is ib i l i t y  of variable access. Long-distance communication is modelled 

by a special process representing a "channel." Process executions are considered to 

be completely asynchronous; this consideration is reflected in the fairness of the 

operations for combining processes. The primit iv i ty and generality of the model make 

i t  an apparently suitable basis for cost comparison of various message-passing 

protocols and other higher-level programming constructs, as well as of complex dis- 

tributed system implementations. 

A system's (input-output) behavior is modelled by a set of f in i te  and inf in i te 

sequences of actions, each action involving access to a variable. 

Basic definitions, examples and characterization results are given. An extended 
example, involving specification and implementation of an arbiter system, is presented. 

For this example, equivalent implicit and explicit  specifications are given. Several 

different implementations are described, each of which exhibits the required 
behavior. 

General remarks are made about cost comparison of distributed system implemen- 

tations. 

*This research was supported in part by the National Science Foundation under grants 
MCS77-02474 and MCS77-15628. 
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I .  Int roduct ion 

A d is t r i bu ted  computing system consists of  a number of  d i s t i n c t  and l o g i c a l l y  

separated communicating asynchronous sequential processes. To gain a theoret ica l  

understanding of  such systems, i t  is necessary to f ind simple mathematical models 

which r e f l e c t  the essential  features of  these systems whi le abstract ing away i r r e l -  

evant de ta i l s .  Such models a l low problems to be stated prec ise ly  and make them 

amenable to mathematical analysis.  

In th is  paper, we present a mathematical model of d i s t r ibu ted  systems and a 

mathematical model of t h e i r  input /output  behavior. Both are se t - theore t ic  models 

b u i l t  from standard mathematical constructs such as set ,  sequence, funct ion,  and 

re l a t i on ,  rather  than axiomatic models consist ing of l i s t s  of desired propert ies of 

systems without a basis for  v a l i d i t y  or consistency. 

In construct ing a model, choices must be made regarding which features of actual 

systems to preserve and which to abstract  away, and how these choices are made depends 

on the intended appl icat ions of  the model. Our in terests  are in f ind ing a low-level 

model that  re f lec ts  c losely many aspects of physical r e a l i t y  and that  permits problems 

of communication and synchronization to be studied. Thus, we do not assume any 

p r im i t i ve  synchronization mechanism such as is i m p l i c i t  in Petri  nets [ I ]  or in the 

communicating sequential processes of Hoare [2] and of Milne and Milner [3 ] .  We have 

also chosen to omit from our model any notion of  time. Although we rea l ize  clocks and 

t ime-outs are important mechanisms in real d i s t r ibu ted  systems, many aspects of d is-  

t r ibu ted  computation can nevertheless be modelled without reference to such concepts, 

and the resu l t ing  s imp l i c i t y  and t r a c t a b i l i t y  of  the model more than compensates fo r  

the l im i t a t i ons  imposed on i t .  Eventually, of  course, time needs to be introduced into 

a su i tab le  formal model and studied. 

We are concerned wi th the cooperative behavior of processes, not t h e i r  in ternal  

s t ructure.  Hence, we assume simply that  each process is an automaton with a possibly 

i n f i n i t e  number of  in terna l  states and an a rb i t r a r y  set of  possible t rans i t i ons .  Each 

process from time to t ime takes a step, but we make no assumptions on how long i t  waits 

between steps except that  the time is  f i n i t e  -~ i t  does not wai t  forever,  

We also permit our processes to exh ib i t  i n f i n i te l y -b ranch ing  nondeterminism. 

This is done because we wish our notion of  "process" to encompass not only what a 

s ingle processor act ing alone can do but also what a subsystem of processes or module 

can do. That w i l l  permit us to describe the behavior of  a complete system in terms of 

the behaviors of component modules. Since a system of two determin is t ic  processes can 

exh ib i t  i n f i n i t e  nondeterminism, we are led to include th is  capab i l i t y  in our model. 

We have chosen the shared var iable as our basic (and only) communication mechanism. 

Because of the popu lar i t y  of message-based d is t r ibu ted  systems and the immediate re- 

act ion that  a "cent ra l "  shared memory does not const i tu te  true d i ' s t r ibu t ion ,  some words 
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about th i s  choice are in order.  

F i r s t  o f  a l l ,  at  the most p r i m i t i v e  l e v e l ,  something must be shared between two 

processors fo r  them to be able to communicate at  a l l .  This something is usual ly  a 

wi re in which, a t  the very l eas t ,  one process can i n j e c t  a vo l tage which the other  

process can sense. We can think of the wire as a binary shared variable whose value 

alternates from time to time between 0 and I .  Note that we are not specifying the 

protocols to be used by the sending and receiving processes which enable communica- 

tion to take place -- indeed part of our interest is in modelling and studying such 

protocols. All we have postulated so far is that the sending process can control the 

value on the wire and the receiving process can sense i t .  The setting and sensing 

correspond to writ ing and reading, respectively. We contend that shared variables 

are at the heart of every distributed system. 

Because of our decision to leave time out of the model, i t  is clear that the only 

way for the receiving process to be sure of seeing a value written by the sending 

process is for the la t ter  to leave the value there until i t  gets some sort of acknow- 

ledgement from the receiver. Thus, we cannot model the asynchronous serial communi- 

cation that is commonly used to communicate between terminals and computers, for the 

success of that method relies on sender and receiver having nearly identical clocks. 

We have argued so far that shared variables underlie any timing-independent 

system, but that certain kinds of communication which depend on time cannot be modelled. 

Does introducing timing-dependent communication primitives into our otherwise timing- 

independent system add any new power? Let's consider various possible message primi- 

tives. Perhaps the simplest is to assume each process has a "mailbox" [VAX/VMS] or 

"message buffer" into which another process can place a message. Now, what happens 

when the sender wants to send a second message before the receiver has seen the f i rst? 

I f  the second message simply overwrites the f i r s t ,  then the buffer behaves exactly 

l ike a shared variable whose values range over the set of possible messages. I f  the 

sender is forced to wait, then there is an impl ic i t  bu i l t - in  synchronization mechan- 

ism as in [2,3] which we have already rejected for our model. As a third possibi l i ty ,  

the message might go into a queue of waiting messages. I f  the queue is f i n i te ,  the 

same problem reappears when the queue gets f u l l .  An in f in i te  queue, on the other 

hand, seems very non-primitive and can be rejected for that reason alone. In any 

case, i f  the needed storage is available, the in f in i te  message queue can be modelled 

in our system by a process with two shared variables: an input buffer and an output 

buffer. The process repeatedly polls i ts two buffers, moving incoming messages to 

i ts  internal queue, and moving messages from the queue to the output buffer whenever 

i t  becomes empty. Of course, the sender must wait unti l  the input buffer becomes 

empty before writ ing another message, but i t  seems to be an essential property of any 

communication system that there wi l l  be a maximum rate at which messages can be sent, 

and the sender attempting to exceed that rate must necessarily wait i f  information is 
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not to be lost. (We note also that the delays inherent in long-distance communication 

between asynchronous processes can also be modelled simply in our framework.) 

From the above discussion, we see that various message systems can be modelled 

naturally using shared variables, provided the variables are not restricted to binary 

values. Also, there are situations in which i t  is natural for a variable to have more 

than one reader or writer. We incorporate such generalized variables in our model. 

Finally, we generalize our model in one more respect by permitting a variable to be 

read and updated in a single step. We call such an operation test-and-set. This 

simplifies the model since both reads and writes are special cases of test-and sets. 

Moreover, there are situations in which the natural primitive operations are not read 

and write but are other test-and-set operations such as Dijkstra's P and V [4]. They 

al l  become just special cases of our general model. The formal definit ion of the model 

appears in Section 2. 

A class of interesting and important questions to be addressed by a theory of dis- 

tributed systems concerns the relative "goodness" of various systems al l  of which solve 

the "same" problem. Before these questions can be investigated, one needs appropriate 

measures of "goodness" (complexity measures) and one needs a precise notion of the 

"problem" to be solved by a distributed system, We make some brief remarks about com- 

plexity measures in Section 5, but a thorough treatment must await another paper. In 

Section 3, we construct a formal notion of "distributed problem" and define precisely 

when a given system solves a given problem. Section 4 gives an example of a distr ibu- 

ted problem and several radically different systems for solving i t .  

Several factors contribute to making a satisfactory notion of "distributed prob- 

lem" considerably more complicated than the simple input-output function which is 

often identif ied with the behavior of a sequential program. 

I.  There is generally more than one site producing inputs and receiving outputs. 

2. Inf in i te,  non-terminating computations are the rule rather than the exception. 

3. The relat ive orders of reading inputs and producing outputs is significant as 
well as the actual values produced. 

4. Variations in timing make distributed systems inherently nondeterministic, so 
one must allow in general for several different possible outputs to a given 
sequence of inputs, al l  of which must be considered "correct". 

Brief ly, we define the behavior of a distributed system to be a set of f i n i te  

and in f in i te  sequences of interleavings of possible act iv i t ies at certain external 

variables (which are assumed to be used for communication with the outside world). 

Each sequence in the set describes a possible sequence of actions by the system, 

assuming particular actions affecting the variables by the environment. An action is 

a t r ip le  (u,x,v) consisting of a variable x~ the value u read from the 

variable and the value v written back into the variable. Since the environment can 

change a variable at any time, i t  is not true that the system wi l l  necessarily see 

the same value in a variable that i t  most recently wrote there. We require of the 
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behavior only that i t  be complete in that i t  describe at least one possible ser~es of 

responses by the system for every possib]ewaY that the environment might behave. 

A problem specification is an arbitrary set of input/output sequences. A partic- 

ular system is a solution to the problem i f  i ts behavior is contained in the problem 

specification. The problem specification is the set of acceptable computations, while 

the solution behavior is the set actually realized. 

Our definit ion only requires the solution system to be correct; there is no stip- 

ulation that the maximum permitted degree of nondeterminism actually be exhibited. We 

regard the lat ter  as a performance or complexity issue to be dealt with separately. 

We remark that the distributed computing paradigm leads one to a very different view 

of nondeterminism or concurrency than for multiprocessing. In the lat ter  case, the 

system implementer is presumed to have control of the scheduler, so the greater the 

possible concurrency among the processes he is trying to schedule, the greater his 

freedom to do so eff ic ient ly.  In a truly asynchronous environment, however, one has 

no direct control over the scheduling, so i t  is natural to be concerned with the worst 

case (which might actually occur) rather than the best case. Hence, decreasing the 

amount of nondeterminism in this situation can never hurt. 

We do not address in this paper another important aspect of problem specification, 

namely, what is an appropriate formal language for describing the sets of sequences 

that comprise a problem specification? Our example in Section 4 is described inform- 

a l ly  in standard mathematical notation. We expect the work on path expressions [5, 

etc.], flow expressions [6], and other formal systems of expressions might be applica- 
ble here. 

2, A Model fo r  Dis t r ibuted Systems 

Processes and Shared Variables 

The p r im i t i ve  notions in our model are that  of  "process" and var iab le" .  A pro- 

cess can be thought of as a sequence of changes of s ta te ;  l ikewise,  a var iable is a 

sequence of changes of value. The in terac t ion among system components occurs at the 

process-variable in ter face.  

Each var iab le  x has an associated set of  values, va lues(x) ,  which the var iab le 

can assume. A var iable act ion fo r  x is a t r i p l e  (u, x, v) wi th u, v ~ values(x) ;  

i n t u i t i v e l y ,  i t  represents the act ion of changing the value of x from u ( i t s  old value) 

to V ( i t s  new value). (u and v are not required to be d i s t i n c t . )  Act(x) is the set 

of a l l  var iable actions for  x. I f  X is a set of var iab les,  we l e t  act(X) = U ac t (x ) .  
xeX 

A process p has an associated set ( f i n i t e  or i n f i n i t e )  of  process states,  

s ta tes (p ) ,  which i t  can assume. Star t (p)  is a nonempty set of  s t a r t i n  9 s tates,  and 

f i n a l ( p )  a set of  f i na l  or ha l t i n  9 states,  We l e t  nonf inal(p)  = states(p) - f i n a l ( p ) .  
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A process action for p is a t r ip le  (s, p, t) with s c nonfinal(p), t ~ states(p); i t  

represents in tu i t ive ly  the action of p going from state s to state t in a single step. 

(s and t are not required to be d is t inct . )  Act(p) is the set of al l  process actions 

for p. I f  P is a set of processes, we let  act(P) ~f U act(p). 
p~P 

Every process action occurs in conjunction with a variable action; the pair forms 

a complete execution step. I f  P is a set of processes and X a set of variables, we 

le t  §teps(P,X) ~f act(P) x act(X) be the set of execution steps. To specify which 

steps are permitted in a computation, a process has two other components in i ts des- 

cription, yariables(p) is a set of variables which the process can access. Oksteps(p) 

is a subset of steps(p, variables(p)) describing the permissible steps of p. 

Oksteps(p) is subject to three restrict ions: 

(a) For any s ~ nonfinal(p), there exist t ,  u, x, v with ((s, p, t ) ,  (u, x, v)) 

E oksteps(p). 

(b) (Read Anything): I f  ((s, p, t ) ,  (u, x, v)) c oksteps(p) and u' ~ values(x), 

then there exist t ' ,  v' with ((s, p, t ' ) ,  (u',  x, v ' ) )  ~ oksteps(p). 

(c) (Countable Nondeterminism): Start(p) is countable, and also for any 

s ~ nonfinal(p), x ~ variables(p) and u ~ values(x), there are only countably 

many pairs t ,  v with ((s, p, t ) ,  (u, x, v)) ~ oksteps(p). 

Some intu i t ive remarks are in order. Oksteps(p) represents the allowable steps 

of p. A particular step ((s, p, t ) ,  (u, x, v)) ~ oksteps(p) is applicable in a given 

situation only i f  p is in state s andx has value u. (a) indicates that some step is 

applicable from every nonfinal state. In general, more than one step might be appli- 

cable; hence, we are considering non-deterministic processes. However, restr ict ion 

(c) l imits the number of applicable steps to being countable, a technical restr ict ion 

we need later for some of our results. The effect of taking the step is to put p into 

state t and to write v into x. A step is considered an atomic, indivisible action in 

our model. With respect to the variable x, a step involves a read followed by a write 

-- the read to verify that the transition is applicable and the write to update i ts 

value. We term such an action a "test-and-set". This is a generalization of the 

famil iar Boolean semaphores or test-and-set instructions found on many computers. 

Restriction (b) formalizes an important assumption that a process be able to re- 

spond in some way to anything that might be given to i t  as input. In other words, i f  

i t  is possible for a process in state s to access variable x, then there must be a 

transition from s accessing x for every u ~ values(x). 

A process is not required to be f in i te-state,  nor to have a f in i te  number of 

transitions from any state. Later (Theorem 3.7), we wi l l  see that countable nondeterm- 

inism arises from application of natural combination operations to even deterministic 

processes. Since we wish to treat single processes and groups of processes uniformly, 
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we a l low the greater genera l i ty  from the beginning. 

Systems of Processes 

The way in which processes communicate with other processes and with t he i r  env i r -  

onment is by means of t he i r  var iables.  A value placed in a var iab le is ava i lab le  to 

anybody who happens to read that  var iab le unt i l  i t  is replaced by a new value, Unlike 

message-based communication mechanisms, there is no guarantee that anyone w i l l  ever 

read the value, nor is there any p r im i t i ve  mechanism to inform the w r i t e r  that  the 

value has been read. Thus, fo r  meaningful communication to take place, both par t ies 

must adhere to previously-agreed-upon protocols,  though we place no res t r i c t i ons  on 

what kinds of protocols are allowed. Indeed, part  of our motivat ion in def in ing 

systems in th is  way is to give us a formal model in which to study such protocols,  

We wish to consider var iables accessed by a process or system of processes to be 

e i the r  in ternal  or external .  Internal  var iables are to be used only by the given 

process or system; thus, some consistency of the values of those var iables must be 

hypothesized, and an i n i t i a l  value must be provided. External var iables w i l l  not have 

such consistency requirements, That i s ,  a process or system of processes is to be 

able to respond to values of these var iables other than the ones i t  most recent ly  l e f t  

there. I n t u i t i v e l y ,  the external var iables may be accessible to other processes (or 

other external agents) which could change the values between steps of the given process 

or system. 

More formal ly ,  i f  X is a set of  var iables,  a part !a I assignment for  x is any 

pa r t i a l  funct ion f : x ÷ U values(x) wi th f ( x )  ~ values(x) whenever f (x )  is deft'ned. 
x~X 

I f  f is defined fo r  a l l  x ~ X, i t  is cal led a to ta l  assignment for  X, The f u l l  speci- 

f i ca t i on  of  a system of processes S has four components: proc(S) is a f i n i t e  set of 

processes, ext(S) is a set of external var iab les,  in t (S)  is a set of in ternal  var iab les,  

and i n i t (S )  is a to ta l  assignment fo r  in t (S) .  S is subject to cer ta in r es t r i c t i ons :  

(a) Ext(S) n in t (S)  : ~. 

(b) For each p ~ proc(S), var iables(p)  c ext(S) u in t (S) .  

I f  P is a set of  processes and X a set of var iab les,  we l e t  S(P,X) ~f {S : S is 

a system of processes wi th proc(S) c P and int (S)  u ext(S) c X}. 

Execution Sequences 

The execution of  a system of processes is described by a set of execution se- 

quences. Each sequence is a l i s t  of steps which the system could perform when i n te r -  

leaved with appropr iate actions by the external agent. 

I f  A is any set ,  A* (A m ) denotes the set of f i n i t e  ( i n f i n i t e )  sequences of A- 
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elements. A c°unt  denotes A* u A m , the set  o f  f i n i t e  o r  i n f i n i t e  sequences o f  elements 

o f  A. Length: A c°unt  ÷ N u {~} denotes the number o f  elements in a g iven sequence. 

Let  P be a set  o f  processes and X a set  o f  v a r i a b l e s .  E(P,X) d~ (s teps(P,X) )  c°unt  

is  the domain o f  sequences used to descr ibe execut ions o f  processes and sets o f  pro-  

cesses over  P and X. 

To de f ine  the a l l owab le  execut ion sequences o f  a system, we f i r s t  de f ine  the 

execut ion  sequences f o r  processes and sets o f  processes. 

Let  p be a process. An execut ion sequence f o r  p is  a sequence 

e c ( o k s t e p s ( p , v a r i a b l e s ( p ) ) )  c°unt  ~ E ( p , v a r i a b l e s ( p ) )  f o r  which fou r  cond i t i ons  hold.  

~ l e n g t h ( e )  
Let  e = ((s i ,  p, t i ) ,  (u i ,  x i ,  v iJJ~= 1 . 

(a) I f  l eng th (e )  = O, then s t a r t ( p )  n f i n a l ( p )  # ~. 

(b) I f  l eng th (e )  ~ O, then s I ~ s t a r t ( p ) .  

(c) I f  e is  f i n i t e ,  then t l e n g t h ( e  ) ~ f i n a l ( p ) .  

(d) t j  = s j+ 1 f o r  1 ~ j < l e n g t h ( e ) .  

F i n a l l y ,  exec(p) is  the set  o f  execut ion sequences f o r  p. (Note,  f o r  example, t ha t  

t h i s  set  is  nonempty.) Thus, an execut ion  sequence f o r  a process e x h i b i t s  cons is tency 

f o r  s ta te  changes, but not  necessa r i l y  fo r  v a r i a b l e  va lue changes. 

Next we descr ibe the execut ion  o f  a set  o f  processes. We wish the execut ion to  

be f a i r  in the sense tha t  each process e i t h e r  reaches a f i n a l  s ta te  or  cont inues to 

execute i n f i n i t e l y  o f t en ;  i t  cannot be " locked out "  f o r e v e r  by o ther  processes when 

i t  is  ab le to  execute.  In o the r  words, processes are comple te ly  asynchronous and 

thus cannot i n f l uence  each o t h e r ' s  a b i l i t y  to execute a step.  Since no cons is tency 

o f  values o f  va r i ab l es  w i l l  y e t  be assumed, a s imple " s h u f f l e "  ope ra t i on  w i l l  s u f f i c e .  

Let  A be any set  and b = (bk)kE K be an indexed set  o f  elements o f  A c°unt .  

Shu f f l e (b )  is  the set  o f  sequences obta ined by tak ing  a l l  o f  the sequences in  b and 

"merging" them toge the r  in  a l l  poss ib le  ways to  form new sequences. Formal ly ,  i f  

n ~ N, then de f ine  [n_~1= { I  . . . . .  n} .  I f  n = ~, then [n ]  = N. Now a sequence 

c ~ A c°unt  is  in § h u f f l e ( b )  i f f  there  is  a I - I ,  on to ,  p a r t i a l  map ~ : K × N ÷ 

[ l e n g t h ( c ) ]  such t ha t  ( a ) - ( c )  hold.  

(a) ~ is de f ined f o r  (k ,n )  i f f  n ~ [ l e n g t h ( b k ) ] .  

(b) ~ is monotone inc reas ing  in i t s  second argument. 

(c) I f  ~ ( k , i )  = j ,  then c j  = the i th element in the sequence b k. 

The s h u f f l e  ope ra to r  is  e a s i l y  extended to  an indexed set  o f  subsets o f  A c°un t ,  v i z .  
_ = = I b i f  B = (Bk)k~ K, where B k A c°un t ,  then shu f f l e (B )  d f  U { s h u f f l e ( b )  : b ~ k)k~K and 

b k c B k, k~K}. 
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I f  P is a set of processes, define exec(p) ~f shuffle((exec(p))p~p). 

We now extend our notions of execution sequences to systems of processes. 

I f  X is a set of variables, let  B{~_)~f (act(X)) c°unt. Let b ~ B(X), x c X, and 

f be a partial assignment for X. Latest(b, x, f) is the value le f t  in x after per- 

forming the actions in b, assuming x had in i t i a l  value f(x). We define i t  recursively 

on the length of b. I f  length(b) = 0 then 

latest(b, x, f) = g(x)  i f  f(x) is defined; 

~ndefined otherwise. 

Now assume length(b) ~ l ,  and b = b' • (u, y, v) for some (u, y, v)e act(X). 

Then latest(b, x, f) = ~  i f  x=y; 

~ latest(b', f ,  x) i f  x~y and latest(b', f ,  x) is defined; 

~ndefined otherwise. 

Let X, K be sets of variables, b c B(X), and f a total assignment for K. We 

say b is (K,f)-consistent i f  for every prefix b' • (u, y, v) of b with y e K, then 

u = latest(b', y, f) .  For sets of action sequences B ~ B(X), define 

consistK,f(B) ~f {b e B : b is (K,f)-consistent}. 

Let P be a set of processes. A sequence of steps e ~ E(P,X) is (K,f)-consistent 

provided erase(e) is (K,f)-consistent, where erase : E(P,X) ÷ B(X) is a homomorphism 

mapping each pair (a,b) e steps(P,X) to its second member b. For sets of execution 

sequences E ~ E(P,X), define consistK,f(E) ~f {e ~ E : e is (K,f)-consistent}. Now 

le t  S be a system of processes. Exec(S) ~f consistint(S),init(s)(exec(proc(S))) 

E(proc(S), ext(S) u int(S)). Thus, exec(S) consists of those execution sequences of 

the system's processes in which the internal variables are consistent across the 

sequence. 

Behavior Sequences 

Exec(P) gives complete information on how a set of processes might execute in 

any given environment. Often, however, one is not interested in how the processes 

execute but only in their effect on the environment, that is, the way they change the 

variables. We obtain this information from the execution sequences by extracting the 

variable actions. 

I f  S is a system of processes, we define the behavior of S, beh(S) ~f 

erase(exec(S)) ~B(ext(S) u int(S)). 
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Simi lar ly ,  we define the behavior for  a process p and a set of processes P. 

Beh(p_) ~f erase(exec(p)). 

Beh(P) ~f erase(exec(P)). 

One might be interested in only these actions involv ing the external variables. 

Let X, K be sets of var iables, b ~ S(X), then elimK(b) is the subsequence of b con- 

s is t ing  of the actions net involv ing variables in K. (ElimK(b) might be f i n i t e  even 

i f  b is i n f i n i t e . )  We define the external behavior of S, 

extbeh(S) ~f elimint(s)(beh(S))- 

The following proposition demonstrates the use of some of the preceding notation, 

and shows an elementary implication of the read-anything property ((b) in the defini- 

tion of a process). 

Proposition 2.1: 

Let p be a process, x e variables(p), (vi) i= 1 any in f in i te  sequence of elements 

of values(x). Then for some (wi)i= l ,  i t  is the case that 

, ,length(b) 
b = kvi,x,wiJi= l 

is in elimvariables(p)-{x}(beh(p)). (That is, there is some possible execution of p 

for which the sequence of values read from x is given by (vi) i= l or some prefix 

thereof.) 

Proof sketch. By repeated use of the read-anything property. 
D 

Operations on Systems 

One goal of our formalism is to permit complex systems to be understood in terms 

of simpler ones. For th i s ,  we need some operations for bu i ld ing larger systems from 

smaller ones. Corresponding to these operations w i l l  be operations on execution 

sequences and behaviors. This approach is s imi lar  to that of Milne and Milner [3] .  

The f i r s t  operation jo ins a f i n i t e  co l lec t ion  of systems into a single one. 

Let (S i ) i c  I be a f i n i t e  indexed family of systems such that 

(a) i~ j  implies proc(S i )  n proc(Sj) = ~. 

(b) i~ j  implies in t (S j )  n ( in t (S j )  u ext(Sj)) = ~. 

Then ~ (S i ) i~  I is the system S such that 

proc(S) = U proc(Si) ,  
i~ l  

ext(S) = U ex t (S i ) ,  
i~ l  
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int(S) = U int(Si), 
i~I 

in i t (s) = U in i t (s i ) .  
i~I 

We define ~ for f in i te  indexed families of execution sets and indexed families 

of behaviors to be simply the shuffle operation. 

The second operation on systems is the one of turning selected external variables 

into internal ones. Let S be a system, K a set of variables and f a total assignment 

for K such that K n int(S) = ~. We define consistK,f(S) to be the system S ~ such 

that proc(S') = proc(S), ext(S') = ext(S) - K, int(S') = Int(S) u K, and in i t (S')  = 

init(S) u f. ConsistK, f has already been defined for execution sets and behaviors. 

That these definitions al l  make sense together is shown by the following. 

Theorem 2.2. The fo l lowing diagram commutes. 

S* exec 

S ........ exec ) 

~onsistK, f 
S ........... exec 

(p denotes the power set operator,) 

(i~E) , erase 

P(E) erase 

IconsistK, f 
P(E) erase 

(P(BI)* 

) P(B) 

~consistK, f 

P(B) 
Here we assume a f ixed set P of processes and X of var iables,  and we l e t  S = S(P,X), 
E = E(P,X), and B = B(X). 

We omit the straightforward but tedious proof. 

Modules 

The two operations of ~ and consistK, f are su f f i c ien t  to bui ld any system from 

one-process systems in a simple way, 

Let S, S* be systems. S * is a module of S i f  proc(S ~) ~proc(S) ,  ext(S')  ~ex t (S)  

u Int(S),  in t (S ' )  ~ in t (S) ,  and in i t (S  ~) = i n i t (S ) / i n t (S  ~) (the res t r i c t ion  of the 

function in i t (S)  to domain int(S~)).  Thus, a module is a subsystem whose internal 

variables are pr ivate to i t  and whose external variables form the inter face between 

the module and the remaining system and/or the external world. 

S is par t i t ione d into modules (Sm)m~ M i f  M is f i n i t e ,  S m is a module of S for  

each mcM, (proc(Sm))m~ M is a pa r t i t i on  of proc(S), and for  a l l  m, n ~ M, i f  m~n, then 

int(S m) n ( int(Sn) u ext(Sn)) = ~. 

A system S is atomic i f  i t  consists of a single process with no internal var iables, 

i .e .  i f  Iproc(S)l = 1 and int(S) = in i t (S )  = ~. 

The fo l lowing proposit ions are immediate from the de f in i t ions .  
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Propo§it ion 2.3. Every system can be par t i t i oned  in to  a f i n i t e  number of atomic 

modules. 

Proposit ion 2.4. Every system can be obtained from an a rb i t r a ry  p a r t i t i o n  into 

modules by one app l ica t ion of  ~ fol lowed by one appl icat ion of  

consistK, f fo r  appropr iate K,f .  

Remarks on Communication Mechanisms 

The basic communication mechanism in our model is the a v a i l a b i l i t y  of  the las t  

wr i t ten  value. We work at  a "p r im i t i ve "  l eve l ,  not basing communication on "messages" 

as do Hoare [2 ] ,  Feldman [7] and Milne and Milner [3 ] .  Some message models involve 

an i m p l i c i t  queuing mechanism or i m p l i c i t  process synchronizat ion, nei ther  of which 

we wish to assume as basic. Both of these mechanisms involve s ign i f i can t  implemen- 

ta t ion  cost and require cost analysis in terms of a more p r im i t i ve  common basis. 

Neither mechanism seems to be universal in the sense that  the most e f f i c i e n t  programs 

for  a rb i t r a r y  tasks would always be wr i t ten  using i t .  Moreover, the abstract ion of  

automatic process synchronization serves to hide the asynchrony of the basic model. 

Since we wish to understand asynchronous behavior, we prefer  not to mask i t  at the 

p r im i t i ve  levels of  our theory. 

The genera l i ty  of  our process and execution sequence de f in i t i ons  assumes possible 

i n d i v i s i b i l i t y  of  a f a i r l y  powerful form of var iab le access. In pa r t i cu l a r ,  processes 

that  can both read and change var iables in one i n d i v i s i b l e  step (such as the " tes t -  

and set" processes of Cremers-Hibbard [8] and Burns et al [9]  are included in the 

general de f i n i t i ons .  Some readers may consider th is  general access mechanism to be 

unreasonably powerful,  arguing that  a process model based on i n d i v i s i b i l i t y  of  "reads" 

and "wr i tes"  only is more r e a l i s t i c .  Such a process model can be defined by cer ta in 

r es t r i c t i ons  on our general model (as we describe below). Thus, our development not 

only specia l izes to include considerat ion of  a read-wr i te  model, but also allows 

comparison of the power of the read-wr i te  model wi th that  of  the more general access 

model. The spec ia l i za t ion  can be carr ied out as fo l lows.  

A process p is ca l led a read-wr i te  process provided fo r  each s c states(p) and 

each x c var iab les(p) ,  the set 

oksteps(p) n { ( ( s , p , t ) , ( u , x , v ) )  : t ~ s ta tes(p) ,  u, v ~ values(x)}  

can be par t i t i oned  into a co l lec t ion  of  subsets T, wi th each T c T sa t is fy ing  (at  

least )  one of  the fo l lowing.  

(a) (T describes a " read" . )  
For a l l  ( ( s , p , t ) , ( u , x , v ) )  in T, i t  is the case that  u = v. Moreover, fo r  

each u ~ values(x) there exists t wi th ( ( s , p , t ) , ( u , x , u ) )  in T. 

(b) (T describes a "w r i t e " . )  

For some t , v ,  T = { ( ( s , p , t ) , ( u , x , v ) )  : u ~ va lues(x)} .  

Two very simple examples fo l low.  
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Example 2.5. Let states(p) = s ta r t (p )  : { s } ,  f i na l ( p )  = B, var iables(p) = {x } ,  

values(x) = { 0 , I } ,  and oksteps(p) = { ( ( s , p , s ) , ( O , x , l ) ) ,  ( ( s , p , s ) , ( l , x , O ) ) } .  Process 

p simply examines x repeatedly, changing i t s  value at each access. The change is 

c lea r l y  an a c t i v i t y  that  involves both reading and w r i t i n g ,  so tha t ,  i n t u i t i v e l y ,  p 

is not a read-wr i te  process. Formally, i f  p were a read-wr i te  process, oksteps(p) 

would be pa r t i t i onab le  as above. No T can describe a read since i t  is never the case 

that  u = v. So ( ( s , p , s ) , ( O , x , l ) )  is in T fo r  some T which describes a wr i te .  But 

then ( ( s , p , s ) , ( l , x , l ) )  is in T ~oksteps(p)  as we l l ,  a cont rad ic t ion.  

Example 2.6. Let states(p) = s ta r t (p )  = {s} ,  f i na l ( p )  = ~, var iables(p) = {x } ,  and 

oksteps(p) = { ( ( s , p , s ) , ( O , x , l ) ) ,  ( ( s , p , s ) , ( l , x , l ) ) } .  Process p simply examines x 

repeatedly,  w r i t i ng  " I "  every time. I t  is easy to see that  p is a read-wr i te process. 

So fa r ,  our model describes asynchronous processes co~un ica t ing  by shared va r i -  

ables, a s i tua t ion  which suggests that  the processes are physical ly  located s u f f i c i e n t l y  

near to each other to share memory without delay. We also wish to model more general 

"d i s t r i bu ted"  systems of asynchronous processes, in which communication is done by 

means of a channel wi th s i gn i f i can t  transmission delay. No new pr imi t ives  are required 

in order to extend the present model to handle such communication. A one-way channel 

is simply modelled by a special "channel process" p, as deta i led below. 

Example 2.7. Let V be any set ,  states(p) = {wr i te }  x V u {read},  s ta r t (p )  = { read},  

f i n a l ( p )  = ~, var iables(p)  = { x , y } ,  values(x) = values(y) = V, and oksteps(p) = 

{ ( ( r e a d , p , ( w r i t e , v ) ) , ( v , x , v ) )  : u,v c V} u { ( ( ( w r i t e , u ) , p , r e a d ) , ( v , y , u ) )  : u,v c V}. 

Process p is thought of as sharing a var iable with each of two other processes. I t  

a l te rna te l y  reads from one of  the var iables and wr i tes the value read in the other 

var iab le .  (p is obviously a read-wr i te  process.) When p is combined with two processes 

at i t s  ends in the manner already described in th is  sect ion, the consistent execution 

sequences exact ly  describe the e f fec t  of an a rb i t ra ry -de lay  channel used for  commun- 

ica t ion  between the two o r ig ina l  processes. 

3. Characterizat ions and Elementary Examples of Behaviors 

The pr inc ipa l  j u s t i f i c a t i o n  fo r  a formalism for  describing d is t r ibu ted  systems 

is that  techniques can thereby be developed fo r  speci fy ing requirements for  t he i r  

operat ion. I t  should be possible to determine whether a pa r t i cu la r  system is a sa t i s -  

factory rea l i za t i on  of the speci f ied requirements. Typical requirements might involve 

exclusion, fa i rness,  synchronization and other log ica l  correctness proper t ies ;  they 

can also involve performance and e f f i c iency .  

Requiring that  a system exh ib i t  exact ly  a speci f ied set of  execution sequences 

is general ly too strong. For instance, i f  Pl and P2 are processes wi th exec(p I )  2 

exec(P2), then Pl is always an adequate replacement fo r  P2" In contrast  to the usual 
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assumptions about nondeterminism, in the case of asynchronous systems a l l  possible 

nondeterministic choices should be "correct". Thus, a system exhibit ing any subset 

of the specified execution sequences should be acceptable. (Recall that a process 

cannot have an empty set of execution sequences.) 

The subset requirement above is s t i l l  stronger than one would necessarily want. 

We are not generally interested in requiring that the complete detai l  of the specified 

execution sequences be exhibited by an implementing system, but rather only certain 

abstracted aspects. Such aspects might be of two di f ferent types. One possib i l i ty  

is to specify state reachabil i ty requirements as in Cremers-Hibbard [8] and Burns 

et al [9]. A second poss ib i l i ty ,  appropriate for specifying processes or groups of 

processes to be used as modules in larger systems, is to specify external behavior. 

That is the type of specification we emphasize in this paper. 

Monotonicity and the Adequate Replacement Property 

Let Sl, S 2 be systems. Define S 1 ~S 2 i f f  extbeh(Sl) ~ extbeh(S2). We call the 

part ial order "C_C" on systems the adequate replacement order, for we argue that S 1 

should always be an adequate replacement for S 2, at least for  the purpose of determ- 

ining logical correctness of input-output behavior. 

Proposition 3.1. ~, consistK, f ,  and elim K as operations on P(B) preserve inclusion 

of subsets of B. 

Proof: Immediate, 

Proposition 3.2. 

(a) 

(b) 

Let (Bi)i~ I be an indexed family of sets, where each B i ~ B(X), K any set of 

variables. 

Then ElimK(~(Bi)i~ I) = ~ (ElimK(Bi))i~ I. 

I f  K, K' are disjoint sets of variables, f a total assignment for K, B ~ B(X); 

then ElimK,(ConsistK,f(B)) = ConsistK,f(ElimK,(B)). 

Proof: Immediate. 

Proposition 3.3. 

0 and Consistk, f as operations on S preserve~ . 

Proof: By Theorem 2.2 and Propositions 3.1 and 3.2. 

I t  follows that i f  a module S 1 of a system S is replaced by an adequate replace- 

ment S 1 , then the resulting system S' is an adequate replacement for S. 
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Equivalence of  Systems 

We can also define an equivalence among systems based only on the i r  input-output 

behaviors. While this equivalence is s t i l l  too strong for many purposes, i t  neverthe- 

less is not so strong as notions of  equivalence based on simulation. 

Let S I ,  S 2 be systems. Define S 1 z S 2 i f f  extbeh(Sl) = extbeh(S2). (Thus, 

S 1 ~ S 2 i f f  S I E S  2 and S 2 ~ S  I . )  

We now proceed to show that any system is equivalent to an atomic system. Thus, 

groups of  processes and single processes can be treated uniformly, an indicat ion of 

the usefulness of our model for  modular design of systems. 

We give the construction in two parts, F i rs t  we show how to reduce the number 

of processes to one, then we show how to el iminate the internal  variables. 

Lemma 3.4. For any system S, there is a system S ~ with the same external and internal  

variables such that Iproc(S') l  = 1 and beh(S') = beh(S), 

Proof Sketch. By induction on Iproc(S) I. For instance, given a system of two process- 

es Pl and P2' we must define a single process p whose behavior is exact ly the shuff le 

of those of Pl and P2" The f i r s t  obvious idea might be to al low states of p to rep- 

resent pairs consisting of states of Pl and P2" Transit ions could be composed natur- 

a l l y  from the t ransi t ions of Pl and P2" essent ia l ly  al lowing e i ther  one. The only 

problem is that nothing prevents the nondetermin~stic choice from always choosing to 

simulate one process over the other, v io la t ing  the fairness of the shuff le operation, 

However, the countable branching capabi l i ty  of processes can be used to enforce f a i r -  

ness. When p begins simulating one of Pl '  P2' i t  nondeterminist ical ly  chooses an 

i n t ege r~ l  representing the number of steps p w i l l  simulate for  that process before 

sh i f t ing  to the other process. 

A process p is cal led t ree l i ke  provided (a) and (b I hold. 

(a) For a l l  t O ~ states(p),  ! { ( ( s , p , t ) , ( u , x , v ) )  ~ oksteps(p) : t = to}I. ~ ! .  

(b) For a l l  t O E s ta r t (p ) ,  I { ( ( s~p , t ) , (u ,x ,v ) )  ~ oksteps(p) : t = to} I = Q, 

Lemma 3.5. I f  p is a process, there exists a t ree l i ke  process q with Beh(p) = Beh(q). 

Proof Sketch. Process p can be "opened up into a tree" by rep l ica t ing states; process 

q has states corresponding to f i n i t e  paths in p. 
[] 

Theorem 3.6. For any system S, there is an atomic system S ~ such that S~ ~ S. 

Proof Sketch. By Lemma 3.4, we can assume proc(S) = {p}. By Lemma 3.5, we can assume 

p is t ree l i ke .  A process transformation is carr ied out in two steps, the intermediate 

resul t  of  which need not be a process. F i rs t ,  Pl is constructed from p by "pruning" 
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p's tree so that only (K,f)-consistent paths remain, where K = int(S) and f = init(S). 

Since p is treelike, there wi l l  be no ambiguity involved in deciding when to prune. 

Now P2 is constructed from Pl by condensing paths involving variables in K. This con- 

struction is not carried out in stages because of the possible condensation of in f in i te  

paths to f in i te  paths. The possibil ity that Pl could continue forever on branches 

involving only variables in K involves transition to a final state of P2" Finally, S' 

is the atomic system such that proc(S') = {p2 } and ext(S') = ext(S). 

o 

Unbounded Nondeterminism 

We argue that i t  is natural to use countable nondeterminism for the basic process 

model. Restriction to f in i te l y  many states would surely be unnatural, ruling out 

processes which resemble natural sequential computation models such as Turing machines. 

But the usual models, though having in f in i te ly  many states, are restricted to f in i te  

nondeterminism. This restriction does not seem overly strong in more conventional 

settings, since i t  is preserved by natural sequential combination operations. But for 

the asynchronous parallel case, the finite-branching property would not be preserved 

by our combination and internalizing constructions. The next result implies that any 

behavior of a process can be realized as the external behavior of a pair of communi- 

cating finite-branching processes. Since behaviors realizable by finite-branching 

processes form a proper subset of those realizable by al l  processes (as we show by 

Example 3.9), uniformity requires at least countable nondeterminism. 

More precisely, a process p is f in i te  branching provided start(p) is f in i te ,  and 

also for any s c nonfinal(p), x ~ variables(p), u E values(x), there are only f in i te ly  

many t, v with ((s,p,t),(u,x,v)) ~ oksteps(p). A system S is f i n i t e  branching i f  

every process in proc(S) is f in i te  branching. In the following theorem, let  p denote 

the process of Example 2.6. Process p is f in i te  branching and f in i te  state. Assume 

variables(p) = {x}, and f(x) = O. 

Theorem 3.7. Let S be a system of processes, p ~ proc(S). Then there exists an atomic 

f in i te  branching system S l such that S ~ consist{x},f(S l ~ Sp), where Sp is the fixed 

atomic system with proc(Sp) = {p}, ext(Sp) = {x}, and int(Sp) = init(Sp) = ~. 

Proof Sketch. By Theorem 3.6, we can assume that S is atomic. Let proc(S) = {q}. 

For each s ~ states(q), y ~ variables(q), u ~ values(y), there are only countably many 

pairs (v,t) such that ((s,q,t),(u,y,v)) c oksteps(q). Some ordering is fixed for each 

such set of pairs. An ordering is also fixed for the elements of start(q). Process 

ql simulates a step of process q as follows. Process ql alternately tests x and 

increments a counter until i t  sees that x has been set to I. I t  then uses the value 

of i ts counter to select one of the possible alternatives of q to simulate and resets 

the counter and variable x to 0 in preparation for the next step of simulation. S l 
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then is the system with proc(S l = {ql }, ext(Sl) = ext(S) u {x}, int(S l )  = init(S l )  = 

B. [] 

We conclude this section with an example of a set of sequences which can be ob- 

tained as the behavior of a process, but not of any finite-branching process. 

Lemma 3.8. Let p be a finite-branching process, x E variables(p), b e (act(x)) m. 

I f  beh(p) contains in f in i te ly  many prefixes of b, then b ~ beh(p). 

Proof Sketch. By a KSnig's Lemma-style argument. 
[] 

Example 3.9: In tu i t ive ly ,  we consider the specification to "write a value any f i n i te  

number of times." 

Let x be a variable, v e values(x), A = {(u,x,v) : u m values(x)}. A* is the set 

of al l  f i n i te  sequences of actions, each of which "writes v" into x. A* can easily 

be realized as beh(p) for a process p which uses countable nondeterminism to choose 

an element of N for a counter in i t ia l i za t ion .  Process p alternately decrements the 

counter and writes v, halting when the counter is O. 

On the other hand, Lemma 3.8 implies that A* is not beh(p) for any finite-branch- 

ing process p, since b = (v,x,v) m has al l  of i ts  f i n i te  prefixes in A*. 

4. Examples 

In this section, we discuss behavior specification for a typical distributed 

system - an arbiter. (A similar treatment has been worked out for a t icket distr ibu- 

tion system, but space l imitations preclude inclusion of the details of this second 

example.) We also describe particular and diverse implementations within our model 

that realize this behavior. We do not espouse any particular formal specification 

language, but rather express behavior restrictions in general mathematical terminology. 

The specification example follows a pattern which has more general appl icabi l i ty ,  

so we f i r s t  describe that pattern. A f i n i te  set X of variables is accessed by a "user" 

and by a "system". The user is required to follow a simple and restr ict ive behavior 

pattern; formally, a set U ! B(X) of "correct user sequences" is defined. The system 

is to be designed so that when i t  is combined with a user exhibiting correct behavior, 

with correct in i t i a l i za t ion  of variables, certain conditions (on the values of vari- 

ables) hold. Formally, a set M c ({user,system} × act(X)) cOunt is defined in order 

to describe the desired conditions. A total assignment f for X is defined in order to 

describe correct in i t i a l i za t ion  of variables. 

In a sense, U, M and f may together be regarded as a specification for the be- 

havior of the desired system: any b ~ 8(X) can be considered "acceptable" i f  whenever 

i t  is combined consistently with a sequence in U, the resulting combination is in M. 

A system of processes is a correct implementation i f  al l  of i ts  external behavior 
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sequences are acceptable.  

More f o r m a l l y ,  i f  A is any set ,  t ~ A c°un t ,  L any se t ,  x any element o f  L, then 

t x denotes t ha t  element o f  ( { x }  × A) c°unt  whose i th element is ( s , t i ) ,  where t i is  the 

i th element o f  t .  (That i s ,  the e n t i r e  sequence is  l a b e l l e d  by x . )  This supersc r ip t  

ope ra to r  is  extended to  subsets o f  A c°unt  in the obvious way. 

For X, K sets o f  v a r i a b l e s ,  L any se t ,  t ~ (L x ac t (X ) )  c°un t ,  f a t o t a l  ass ign-  

ment f o r  K, we say t ha t  t i s  ( K , f ) - c o n s i s t e n t  prov ided the sequence o f  second compon- 

ents of t is (K,f)-consistent. 

In the present examples, L is taken to be {user,system}, a set of identifying 

labels for the modules of interest. 

A sequence b ~ B(X) is called (U,M,f)-acceptable provided 

{c ~ shuffle(uUser,bsystem) : c is (X,f)-consistent} ~ M. Then a system of processes 

S would be considered to be a correct implementation provided every sequence in 

extbeh(S) is (U,M,f)-acceptable. 

However, this type of description may be somewhat d i f f i cu l t  for a system designer 

to use as a specification, so that i t  may be helpful to define exp l ic i t l y  a set B 

of (U,M,f)-acceptable sequences. Any system of processes S with extbeh(S) ~B is 

then considered correct. B should be as large as possible so as not to constrain 

the system designer unnecessarily. In the following example, we are able to obtain 

B exactly equal to the set of (U,M,f)-acceptable sequences, thus providing an 

expl ic i t  correctness characterization. We do not yet have a general equivalence 

theorem for specifications, however. 

Example 4.1: Arbiter 

Values(x) = {E,A,G} for each x ~ X. Intu i t ive ly,  E indicates "empty", A indicates 

"ask" and G indicates "grant" of a resource. The user is restricted simply to 

in i t ia t ing  requests and returning granted resources. More precisely, U ~B(X) is 

defined as follows. 

(Let  a ~ s h u f f l e ( { a  x : x E X} ) ,  where each a x ~ B(x) .  

a c U i f f  f o r  each x e X, ( a ) - ( c )  hold 

~ length(ax)  ) 
(Le t  a x = ( u i , x , v i ~ i =  1 

(a) Correct  T rans i t i ons  

For a l l  i ,  1 < i < l e n g t h ( a x ) ,  i f  u i = E then v i # G, and i f  u i = A then v i = u i -  

(The user cannot g ran t  a request ,  and once he has i n i t i a t e d  a request  he cannot re -  

t r a c t  i t . )  
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(b) Stopping 

I f  a x is f i n i t e  and nonempty, then Vlength(ax) = E. (The user cannot leave the system 

when a request is pending or granted.)  

(c) Return of  Resource 

For a l l  i ,  i f  u i = G then there ex is ts  j ~ i  wi th v j  # G. 

( I f  the user sees that  his request has been granted, he must eventual ly return the 

resource.) 
I 

Thus, user correctness is defined l oca l l y  at each var iab le .  In pa r t i cu la r ,  the 

user can consist  of  separate processes, one fo r  each var iab le ,  with no communication 

between them. I t  is easy to design various sets of processes with behavior a subset 

of U. 

Correct operation fo r  our a rb i t e r  system w i l l  require that  a l l  requests eventu- 

a l l y  be granted, and that  no two requests be granted simultaneously. Of course, 

var iants on these condit ions could be speci f ied instead. 

Let f : ~x[E], L = {user,system}. M 2 (L × act(X)) c°unt is defined as fol lows. 

c ~ M i f f  c is (X, f ) -consistent  and both (a) and (b) hold. 

(a) Local Conditions 

(Let c ~ shuf f le({c x : x ~ X}), each c x ~ (L x act(x))C°unt.)  

For each x E X, both (a l )  and (a2) hold. 

'~ ' x " l eng th (cx )  ' 
(Let c x : £~i,~ui, , v i ) J i=  l . j  

(a l )  Correct Transitions 

For a l l  i ,  l < i < length(cx),  e i ther  u i = v i or else one of ( a l l ) - ( a l 3 )  holds. 

( a l l )  £i = user, u i = E and v i = A. 

(al2) £i = user and u i = G. 

(al3) £i = system~ u i = A, v i = G. 

(The allowed t rans i t ions are depicted at r i gh t . )  

user 

(a2) Progress 

For a l l  i ,  i f  v i # E then there exists j ~ i with vj  ~ v i -  

(Any value other than E is eventual ly changed.) 
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(b) Global Condi t ions 

= , ~ length(c)  
(Let  c (Z i , (u i , x i , v i )~ leng th (c ) j i =  1 , d : ( u i , x i , . i , i =  1 . ,  

( b l )  Mutual Exclus ion 

For no X l ,X 2 ~ X, x I ~ x 2 and no p r e f i x  e o f  d is  i t  the case tha t  

l a t e s t ( e , x ] , f )  = l a t e s t ( e , x 2 ~ f )  = G. 
i 

Next,  we de f i ne  B. 

b ~ B i f f  e i t h e r  (a) o r  (b) holds.  

(a) I n i t i a l i z a t i o n  or  User Observed to  be I nco r rec t  

(Le t  b E s h u f f l e ( { b  x : x ~ X}) as be fo re . )  

For some x ~ X, one o f  ( a l ) - ( a 3 )  holds.  

'u v , l eng th (b  ) , 
(Le t  b x = t i , x ,  i ] i = l  x . )  

( a l )  u I = G. 

(a2) For some i ,  v i = E and ui+ 1 = G, or  e lse v i = A and ui+ 1 ~ A. 

(a3) length  (b x) = ~, and u i = G f o r  a l l  s u f f i c i e n t l y  l a rge  i .  

(Thus, a sequence is " co r rec t "  i f  i t  i nvo lves  i n c o r r e c t  ac t i on  on the pa r t  o f  the 

user or  an i n c o r r e c t  i n i t i a l i z a t i o n  o f  the v a r i a b l e s .  I t  is  the job  o f  the system 

designer  to d iscover  how such e r ro rs  can be detected dur ing system ope ra t i on .  I t  is  

easy to program a system to check f o r  e r ro rs  such as those represented in (a l )  and 

(a2) ,  but (a3) e r ro rs  could not be detected a t  any f i n i t e  po in t  dur ing the computat ion.  

However, the system is requ i red  to  obey some cond i t i ons  i n v o l v i n g  i n f i n i t e  execut ion  

sequences. I t  is  poss ib le  to  a l l ow  some o f  the system's "even tua l "  behav ior  to  wa i t  

f o r  the user ' s  "even tua l "  behav ior .  An example w i l l  be seen in  Implementat ion I . )  

(b) Correctness Condi t ions 

Both ( b l )  and (b2) hold.  

( b l )  Local Condi t ions 

(Le t  b ~ s h u f f l e ( { b  x : x ~ X}) as be fo re . )  

For each x ~ X, ( b l l ) - ( b l 3 )  a l l  hold.  

(b x , , l eng th (b  ) • 
= ~ u i , x , v i ~ i =  1 x .~ 

( b l l )  Correct  T r a n s i t i o n  ~ 

For a l l  i ,  i f  u i = E or  G, then v i = u i ,  and i f  u i = A, then v i = A or  G. 

(b12) I n f i n i t e  Examination 

b x is  i n f i n i t e  
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( b 1 3 )  Response 

For a l l  i ,  i f  u i = A, then fo r  some j ~ i i t  is the case that  ~ ~ A. 

(b2) Global Conditions 

x v ~length(b).)  
(Let b = (u i ,  i '  i J i = l  

( b 2 1 )  Mutual Exclusion 

For no Xl,X 2 ~ X, x I ~ x 2, and no p r e f i x d  o f b  i t  is the case that  

l a t e s t ( d , X l , f )  = l a t e s t ( d , x 2 , f )  = G. • 

The fo l lowing theorem shows that  our e x p l i c i t  character izat ion for  system behavior 

is as general as possible. 

Theorem 4.2: For U,M,f,B of  th is  example, B = {b : b is (U,M,f)-acceptable}.  

Proof: c : Let b ~ B, a ~ U, c ~ shuffle(aUSer,bsystem), c (X, f ) -cons is tent .  We 

must show c ~ M. 

Since a ~ U and c is (X , f ) -cons is ten t ,  we can show that b f a i l s  to sa t is fy  (a) 

of  (the de f i n i t i on  of)  B. Thus, b sa t i s f i es  (b) of B. 

We check that  c sa t i s f i es  each condi t ion of  M. c sa t i s f i es  (a l )  o f  M because of 

(a) of  U and ( b l l )  of  B. To ve r i f y  (a2) of M, wr i te  c ~ shuf f le ( {c  x : x ~ X}),  and 

: 1~length(Cx) I f  , ( u i , x ,A ) )  is element of fo r  f ixed x, wr i te  c x ( Z i , ( u i , x , v i J , i =  1 . (Z i an 

c, then (b12) and (b13) of  B together imply that fo r  some j > i ,  v i ~ A. I f  

(Z i , ( u i , x ,G ) )  is an element of  c, then l e t  j be the largest  number ~ i wi th Zj = user. 

By ( b l l )  of  B, j ex is ts  and vj = A or G. Then by (b) of  U, there exists k > i with 

Z k = user. I f  u k ~ G we are done. Otherwise, (c) of U implies that  for  some m~ k, 

v ~ G. m 

(b l )  of  M fol lows easi ly  from (b21) of  B and (a) of  U. 

: Let b ~ B. We must produce a ~ U, c ~ shuf f le(a user, #ystem), c (X , f ) -cons is ten t ,  

and c ~ M. Clear ly,  b f a i l s  to sa t i s fy  (a) of B. In add i t ion ,  b w i l l  f a i l  to sa t i s fy  

at  least  one of ( b l l ) ,  (b12), (b13) and (b21) of B. 

We consider four cases. 

( b l l )  f a i l s :  An_n~la ~ U, c c shuffle(aUSer,bsystem) which is (X, f ) -cons is tent  w i l l  

f a i l  to sa t i s fy  (a l )  of M. One such c can be constructed by immediately preceding 

each element (system,(u,x ,v) )  of  c which is derived from an act ion of  b by an element 

(use r , ( y , x ,u ) ) .  The value of y is uniquely determined by the consistency requirements 

on c; since b f a i l s  to sa t i s fy  (a) of B, th is  determination produces a ~ U. 

(b12) f a i l s :  Consider x such that  actions (u,x ,v)  only appear f i n i t e l y  of ten in b. 
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Construct a m U, c ~ shuffle(aUSer,bsystem), c (X , f ) -cons is ten t ,  with the fo l lowing 

property.  In c, fo l lowing a l l  elements of  the form (system, (u ,x ,v ) )  ( fo r  any u ,v) ,  

there is an element of  the form (user , (u ,x ,A) )  ( fo r  some u), and fo l lowing that  

element there are i n f i n i t e l y  many elements of  the form (user , (A,x ,A) ) .  Such a, c 

can be constructed by a s l i gh t  addi t ion to the construct ion fo r  the preceding case. 

The resu l t ing  c f a i l s  to sa t i s fy  (a2) of  M. 

(b13) f a i l s :  Consider x such that  (A,x,A) occurs in b and moreover fo r  a l l  fo l lowing 

actions in b of the form (u ,x , v ) ,  we have v = A. 

Then any a e U, c ~ shuffle(aUSer,b system) which is (X, f ) -cons is tent  w i l l  f a i l  

to sa t i s fy  (a2) of M. Such a, c can be constructed as before. 

x v ~length(b) where ,G) and are actions (b21) f a i l s :  Let b = (u i ,  i '  i ' i = l  ' ( u j , x j  (Uk,Xk,G) 

witnessing the cont rad ic t ion to (b21) of  B. We can assume that j < k, x j  # x k and 

fo r  no m, j < m < k i t  is the case that  x m = x j .  

Construct a e U, c ~ shuffle(aUSer,bsystem), c (X , f ) -cons is ten t ,  with the fo l low-  

ing property. In c, the elements derived from b's actions (u j , x j ,G )  and (Uk,Xk,G) 

have no intervening elements of  the form (user, ( u , x j , v ) )  fo r  any u, v. Such a, c 

f a i l  to sa t i s fy  (b l )  of  M. 

Such a, c can be constructed as before. 
D 

The given descr ip t ion of B seems s u f f i c i e n t l y  manageable to be used to specify 

system behavior. B is also s u f f i c i e n t l y  general to admit many d i f f e ren t  implementa- 

t ions - i . e .  processes or communicating groups of processes with behavior a subset 

of B but with very d i f f e ren t  internal  st ructure and execution behavior. Outlines of 

three such examples fo l low.  

Implementation I :  The simplest implementation is a s ingle process p which pol ls  each 

var iab le  in c i r cu l a r  sequence. When A is read, p changes i t  to G aad then repeatedly 

reads that  var iab le  un t i l  i t s  value reverts e i the r  to E or A. When th is  occurs, p 

resumes po l l i ng  wi th the next var iab le.  

Note that  p may f a i l  to examine some var iab le  a f t e r  some t ime, cont rad ic t ing 

(b12) of  the d e f i n i t i o n  of  B. But the only way th is  can occur is i f  the user acts 

incor rec t l y ,  f a i l i n g ,  fo r  example, to change G to E or A. Then the execution w i l l  

sa t i s f y ,  fo r  example, (a3) of  the de f i n i t i on  of  B. Thus, although p does not ac tua l ly  

detect cer ta in incorrect  user behavior, i t  nevertheless can cause i t s  own correct  

eventual behavior to depend on the eventual correctness of user behavior. 

Checking that  beh(p) ~ B is s t ra ight forward.  

Implementation 2: The idea of Implementation 1 can be extended to a l low "more con- 
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currency" using a binary tree of po l l ing  processes, with the leaves accessing the 

inter face var iables x c X. 

Each non-root process p a l te rna te ly  pol ls  i t s  l e f t  and r i gh t  son var iables.  When 

A is seen, p changes i t s  own father  var iable to A. When the father var iab le changes 

to G, p grants i t s  pending son's request by changing the appropriate A to G. p then 

waits fo r  that  son var iable to rever t  to e i ther  E or A. When th is  occurs, p changes 

i t s  fa ther  var iab le to E and then resumes po l l ing  i t s  sons wi th the other son being 

pol led next. 

The root  process acts j us t  l i k e  p of  Implementation 1 fo r  !Xi = 2. 

One must do a l i t t l e  work to convince oneself that  the a l te rna t ing  strategy 

guarantees eventual grant ing of  a l l  requests. Al l  other propert ies in the de f i n i t i on  

of  B are easy to check, i f  a l l  fa ther  var iables are assumed to be i n i t i a l i z e d  at E. 

Implementation 3: The th i rd  implementation is based on the state-model algorithms 

used in Burns et  al [9 ] ,  (see also Cremers-Hibbard [8 ] ) .  This t ime, the implementing 

system consists of  ident ica l  processes Px' each of which has access to exact ly  one of  

the inter face var iables.  In add i t ion ,  there is a common var iable x* to which a l l  the 

processes Px have access. One of the algorithms from [9 ] ,  such as algor i thm A, is 

used. This algor i thm enables asynchronous processes requir ing mutual exclusion syn- 

chronizat ion to communicate using x* to achieve the needed synchronization, with good 

bounds on the number of times any s ingle process might be bypassed by any other (and 

with a very small number of values fo r  x*) .  The processes themselves must be w i l l i n g ,  

however, to execute a complicated protocol .  In the present development, we have de- 

f ined a very simple a rb i t e r  protocol and do not require a user to learn the more 

complicated protocol of the e a r l i e r  algor i thm. We can s t i l l  use the e a r l i e r  ideas, 

however, by i so la t i ng  the e a r l i e r  protocol in the system processes and al lowing a user 

to communicate wi th one of those processes. 

In ou t l i ne ,  and re fe r r ing  to some ideas from algor i thm A, the Px accessing x 

examines x un t i l  A is detected. Then Px enters the t r y i ng  protocol using x*. When 

Px is allowed ( in algor i thm A) to enter i t s  c r i t i c a l  region, i t  passes the permission 

on by changing the value of x to G. Px then examines x un t i l  i t  reverts to E or A, 

and then Px enters the e x i t  protocol using x*. When Px has completed i t s  ex i t  protocol ,  

i t  is  ready to begin once again, examining x for  fur ther  requests. 

Correctness of the resu l t ing  system of communicating processes is easy to under- 

stand based on that  of  Algorithm A. 

The main point  to be made by th is  example is that  there are many d i f f e ren t  pro- 

cesses and systems of processes which can meaningful ly be said to rea l i ze  the same 

input-output  behavior. In the three implementations above, the systems vary both in 

process conf igurat ion and in execution. There is no r e a l i s t i c  sense in which the 
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internal  states and t rans i t ions  ( i . e .  the execution sequences) of the d i f f e ren t  

implementations could be thought to simulate each other. And yet ,  they are a l l  so- 

lu t ions to the problem of construct ing an a rb i t e r .  

A technical question which may be of in te res t  fo r  the purpose of obtaining a 

sequence-based character izat ion fo r  behaviors in whether B in the above example is 

exact ly equal to extbeh(S) fo r  some system S. I t  is not hard to show that U can be 

so obtained. 

5. Complexity Measures 

Separation of  behavior and implementation opens the way for  comparison of d i f f e r -  

ent implementations of the same behavior, a fundamental subject of study for  any 

theory of computation. I n t u i t i v e l y ,  comparisons might be made on the basis of process 

conf igurat ion,  local process space requirements, communication space requirements, 

number of local process steps executed, number of changes made to var iables,  and 

possible "amount of concurrency". Tradeoffs would be expected. 

Configuration and space measures seem easy to formal ize.  For instance, the 

three implementations in Example 4.1 use I ,  n-I and n processes, O, n-2 and 1 

aux i l i a r y  communication var iables,  and O, 3 and n+5 values for  each communication 

var iab le ,  respect ive ly .  

In contrast ,  time and concurrency measures are not so s t ra ight forward.  For 

instance, "response time" might be expected (sometimes) to be bet te r  fo r  Implementa- 

t ions 2 and 3 than for  Implementation 1 of Example 4.1, because of "use of concurrency". 

But much work remains to be done in quant i fy ing such time comparisons. 

In order to state time bounds, one must meet several requirements. F i r s t ,  one 

must decide what actions to count during execution. Second, in order to state time 

bounds as closed-form functions (e.g. "runtime = 2n2"), one requires an appropriate 

notion of  the "size of  the task being accomplished", ( i . e .  an appropriate parameter 

n on which to base complexity analys is) .  F ina l l y ,  one needs to establ ish appropriate 

quan t i f i ca t ion  over a l te rnat ives in the present nondeterminist ic set t ing.  We bel ieve 

that  pa r t i a l  orders of the type studied by Grei f  [ I I ]  and Hewitt [12] w i l l  provide 

useful ways of sa t is fy ing  the f i r s t  requirement but do not yet  know how best to 

sa t i s fy  the remaining requirements. 

In some d e t a i l ,  l e t  X be a set of  var iables,  p a set of processes, 

~length (a) be a sequence of elements of steps(P,X). For a = ( ( s i , P i , t i ) ,  ( u i , x i , v i ) J i =  1 

i ,  j e N, define i P' j i f f  i < j and e i ther  x i = x j  or Pi = Pj" Let P be the t ran-  

s i t i v e  closure of  P'. In words, P formalizes the ordering of steps of a imposed by 

the sequent ia l i t y  of  each indiv idual  process and each var iab le.  P seems to provide 

much useful information about the "running time" and "possible concurrency" in a, 

including some seemingly natural formal measures. An important remaining task is the 
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use of these measures to obtain clean statements of upper and lower complexity bounds, 

both for part icular systems and for the col lect ion of systems real iz ing part icular 

specified behavior. 
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