
Hybrid I/O Automata
(extended abstract)

Nancy Lynch 1. Roberto Segala 2 Frits Vaandrager 3.~ H.B. Weinberg 1.**

1 MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

{lynch,hbw}@theory.lcs.mit. edu
2 Dipartimento di Matematica, Universita' di Bologna

Piazza di Porta San Donato 5, 40127 Bologna, Italy
segala@cs, tmibo, i t

3 CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

fritsv@cwi .nl

Abs t r ac t . We propose a new hybrid I/O automaton model that is ca-
pable of describing both continuous and discrete behavior. The model,
which extends the timed I /O automaton model of [12, 7] and the phase
transition system models of [15, 2], allows communication among compo-
nents using both shared variables and shared actions. The main contri-
butions of this paper are: (1) the definition of hybrid I /O automata and
of an implementation relation based on hybrid traces, (2) the definition
of a simulation between hybrid I /O automata and a proof that existence
of a simulation implies the implementation relation, (3) a definition of
composition of hybrid I /O automata and a proof that it respects the im-
plementation relation, and (4) a definition of receptiveness for hybrid I /O
automata and a proof that, assuming certain compatibility conditions,
receptiveness is preserved by composition.

1 Introduction

In recent years, there has been a fast growing interest in hybrid systems [8, 18] - -
systems that contain both discrete and continuous components, typically com-
puters interacting with the physical world. Because of the rapid development of
processor and circuit technology, hybrid systems are becoming common in many
application domains, including avionics, process control, robotics and consumer
electronics. Motivated by a desire to formally specify and verify real-life applica-
tions, we are generalizing existing methods from computer science to the setting

* Supported by NSF Grant 9225124-CCR, U.S. Department of Transportation Con-
tract DTRS95G-0001-YR.8, AFOSR-ONR Contract F49620-94-1-0199, and ARPA
Contracts F19628-95-C-0118 and N00014-92-J-4033.

** Current affiliation: Computing Science Institute, University of Nijmegeu, P.O. Box
9010, 9500 GL Nijmegen, The Netherlands, Fr i ts .Vaa~dragor~cs.ktm.nl-

*** Research partially supported by a National Science Foundation Graduate Fellowship.

497

of hybrid systems. We are applying our results in a number of projects in the
areas of personal rapid transit [14, 10, 20], intelligent vehicle highway systems,
and consumer electronics [5].

Within the theory of reactive systems, which has been developed in computer
science during the last 20 years, it is common to represent both a system and its
properties as abstract machines (see, for instance [11, 4, 9]). A system is then
defined to be correct iff the abstract machine for the system implements the
abstract machine for the specification in the sense that the set of behaviors of the
first is included in that of the second. A major reason why this approach has been
successful is that it supports stepwise refinement: systems can be specified in a
uniform way at many levels of abstraction, from a description of their highest-
level properties to a description of their implementation in terms of circuitry,
and the various specifications can be related formally using the implementation
relation. In this paper we generalize this and related ideas from the theory of
reactive systems to the setting of hybrid systems. More specifically, we propose
answers to the following four questions:

1. What system model do we use?
2. What implementation relation do we use?
3. How do we compose systems?
4. What does it mean for a system to be receptive?

The system model. Our new hybrid I/O automaton (HIOA) model is based on
infinite state machines. The model allows both discrete state jumps, described
by a set of labelled transitions, and continuous state changes, described by a set
of trajectories. To describe the external interface of a system, the state variables
are partioned into input, output and internal variables, and the transition labels
(or actions) are partit ioned into input, output and internal actions. Our model
is very general and contains no finiteness restrictions. More structure will have
to be added in order to deal with applications, but the general model that we
propose allows us to answer questions 2-4. HIOA's are inspired by the timed
I /O automata of [12, 7] and the phase transition system models of [15, 2]. The
main difference between HIOA's and timed I /O automata is that, as in phase
transition systems, trajectories are primitive in our model and not a derived
notion. In the work on phase transition systems the main emphasis thus far
has been on temporal logics and model checking. Questions 2-4 have not been
addressed and perhaps for this reason the external interface is not an integral
part of a phase transition system.

The implementation relation. The implementation relation that we propose is
simply inclusion of the sets of hybrid traces. A hybrid trace records occurrences
of input and output actions, and the evolution of input and output variables
during an execution of a system. Thus HIOA B implements HIOA A if every
behavior of B is allowed by A. In this case, B is typically more deterministic than
A, both at the discrete and the continuous level. For instance, A might produce
an output at an arbitrary time before noon, whereas B produces an output

498

sometime between 10 and l lAM. Or A might allow any smooth trajectory for
output variable y with/)E [0, 2], whereas B only allows trajectories with y= 1.

Within computer science, simulation relations provide a major technical tool
to prove inclusion of behaviors between systems (see [13] for an overview). In
this paper we propose a definition of a simulation between HIOA's and show
that existence of a simulation implies the implementation relation.

Composition. Within computer science various notions of composition have been
proposed for models based on transition systems. One popular approach is to
use the product construction from classical automata theory and to synchronize
on common transition labels ("actions") [11]. In other approaches there are no
transition labels to synchronize on, and communication between system compo-
nents is achieved via shared variables [16, 9]. Shared action and shared variable
communication are equally expressive, and the relationships between the two
mechanisms are well understood: it depends on the application which of the two
is more convenient to use. In control theory studies of dynamic feedback, commu-
nication between components is typically achieved via a connection map, which
specifies how outputs and inputs of components are wired [19]. This communica-
tion mechanism can be expressed naturally using shared variables. Since we find
it convenient to use communication via shared actions in the applications that
we work on, our model supports both shared action and shared variable com-
munication. Whereas shared actions always correspond to discrete transitions,
shared variables can be used equally well for communication of continuously
varying signals and for signals that can only Change value upon occurrence of a
discrete transition.

We prove that our composition operator respects the implementation rela-
tion: if A1 implements A2 then A1 composed with B implements A2 composed
with B. Such a result is essential for compositional design and verification of
systems.

Receptiveness. The class of HIOA's is very general and allows for systems with
bizarre timing behavior. We can describe systems in which time cannot advance
at all or in which time advances in successively smaller increments but never
beyond a certain bound, so called Zeno behavior. We do not want to accept
such systems as valid implementations of any specification since, clearly, they
will have no physical realization. Therefore we only accept receptive HIOA's as
implementations, i.e., ItIOA's in which time can advance to infinity indepen-
dently of the input provided by the environment. Inspired by earlier work of
[6, 1, 7] on (timed) discrete event systems, we define receptivity in terms of a
game between system and environment in which the goal of the system is to
construct an infinite, nonZeno execution, and the goal of the environment is to
prevent th is . It is interesting to compare our games with the game's of Nerode
and Yakhnis [17], Since the purpose of the latter games is the extraction of
digital control to meet performance specifications~ the environment player may
choose all disturbances. Irrespective of the disturbances the system should real-
ize a given performance specification. The purpose of our games is to show that

499

regardless of the input provided by its environment, a HIOA can exhibit proper
behavior. Therefore, in our games the system resolves all nondeterminism due
to internal disturbances (which express implementat ion freedom), even though
the environment may choose all the input signals.

The main technical result that we prove about receptivity is that , assuming
certain compatibil i ty conditions, receptiveness is preserved by composition.

2 H y b r i d I / O A u t o m a t a a n d T h e i r B e h a v i o r

In this section we introduce HIOA's and define an implementat ion relation be-
tween these automata . Since the notion of a trajectory plays an impor tant role in
the model, we start out with the definition of trajectories and some operations
on them.

2.1 T r a j e c t o r i e s

Throughout this paper, we fix a time axis T, which is a subgroup of (R, +) ,
the real numbers with addition. Usually, T = R or Z, but also the degenerated
t ime axis T = {0} is allowed. An interval 1 is a convex subset of T. We denote
intervals as usual: [tt,t~] = {t E T I t l < t < t2}, etc. For I an interval and
t E T , w e d e f i n e I + t g { t ' + t I t ' E I } -

We assume a universal set Y of variables. Variables in]2 are typed, where the
type of a variable, such as reals, integers, etc., indicates the domain over which
the variable ranges. Let Z C 12. A valuation of Z is a mapping that associates
to each variable of Z a value in its domain. We write Z for the set of valuations
of Z. Often, valuations will be referred to as states.

A trajectory over Z is a mapping w : I -+ Z, where I is a left-closed interval
of T with left endpoint equal to 0. With dom(w) we denote the domain of w
and with trajs(Z) the collection of all trajectories over Z. I f w is a t rajectory
then w.ltime, the limit time of w, is the supremum of dom(w). Similarly, define
w.fstate, the first state of w, to be w(0), and if dom(w) is right-closed, define
w.lstate, the last state of w, to be w(w.ltime). A trajectory with domain [0, 0] is
called a point trajectory. I f s is a state then define p(s) to be the point t rajectory
tha t maps 0 to s.

For w a trajectory and t E T >-~ we define w ~ t & w r [o,t] and w <~ t
w [[0, t). (Here [denotes the restriction of a function to a subset of its domain.)

Note that w <] 0 is not a trajectory. By convention, w ~ eo = w <1 oo = w.
Similarly we define, for w a trajectory and I a left-closed interval with minimal
element l, the restriction w t I to be the function with domain (I N dom(w)) - l
given by w t I (t) ~ w(t + 1). Note that w t I is a t rajectory iff l E dom(w).

If w is a trajectory over Z and Z ' C Z, then the projection w I Z' is the
trajectory over Z ' with domain dom(w) defined by w ~ Z' (t)(z) ~ w(t)(z). The
projection operation is extended to sets of trajectories by pointwise extension.

500

Also, if w is a t rajectory over Z and z E Z, then the projection w ~ z is the
function from dom(w) to the domain of z defined by w ~ z (t) ~= w(t)(z).

If w is a t rajectory with a right-closed domain I = [0, u], w ~ is a t rajectory
with domain F, and if w.lslate = wqfstate, then we define the concatenation
w ~ w ' to be the trajectory with domain I U (F + u) given by

(w (t) if t E I,
w ~ w' (t) = , w'(t - u) otherwise.

We extend the concatenation operator to a countable sequence of trajectories: if
wi is a t rajectory with domain Ii, 1 < i < c~, where all Ii are right-closed, and if
wi.lstate = wi+l.fstate for all i, then we define the infinite concatenation, written
w l ~ w 2 ~ w 3 . . . , to be the least function w such that w(t+~j<i wj.ltime) = wi(t)
for all t E I i .

A trajectory w is closed if its domain is a (finite) closed interval and full if
its domain equals T ->~ For W a set of trajectories, Closed(W) and Full(W)
denote the subsets of closed and full trajectories in W, respectively. Trajectory
w is a prefix of t rajectory w', notation w __ w', if either w = w' or w' =
w ~ w", for some trajectory w". With Pref(W) we denote the prefix-closure of

W: Pref(W) ~ {w [3w' E W : w <_ w'}. Set W is prefix closed if W = Pref(W).
A trajectory in W is maximal if it is not a prefix of any other t rajectory in W.
We write Max(W) for the subset of maximal trajectories in W.

2 . 2 H y b r i d I / O A u t o m a t a

A hybrid [/ 0 automaton (HIOA) A = (U, X, Y, ~in, ~int, ~out, O, ~), I/V) con-

sists of the following components:

- Three disjoint sets U, X and Y of variables, called input, internal and output
variables, respectively.
Variables in E ~ U U Y are called external, and variables in L ~ X U Y are

called locally controlled. We write V -~ U U L.
- Three disjoint sets f i n , z int Zout of input, internal and output actions,

respectively.
We assume tha t Z ~n contains a special element e, the environment action,
which represents the occurrence of a discrete transition outside the system
tha t is unobservable, except (possibly) through its effect on the input vari-
ables. Actions in S e~t ~- Z i n U Z ~ are called external, and actions in
~toc ,a ~int Lout = U are called locally controlled. We write ~ _a ~i~ O Z Ioc

- A nonempty set 0 C V of initial states satisfying
I n i t (start states closed under change of input variables)

Vs, s ' E V : s E O A s [L = s ~ [L ~ s~EO
- A set D C V x Z • V of discrete transitions satisfying

D1 (input action enabling)
V s E V , a C Z i'~ 3 s ' E V : s a>s,

D2 (environment action only affect inputs)
Vs, s ' E V : s ~ s ' ~ s [L = s ' [L

501

D3 (input variable change enabling)
Vs, s ~ , s ' E V , a E Z : s - - % d A s ~ r L = s ' [L ~ s a~s"

Here we used s --% s ~ as shorthand for (s, a, s I) E :D.
- A set W of trajectories over V satisfying

T1 (existence of point trajectories)
Vs E V : ~ (s) E W

T2 (closure under subintervals)
Vw E W , I left-closed, non-empty subinterval of dom(w): w ~ I E W

T 3 (completeness)
(vt E T >-~ : ~v t [0, t] ~ W) ~ w ~ W

Axiom I n i t says that a system has no control over the initial values of its input
variables: if one valuation is allowed then any other valuation is allowed also.

Axiom D1 is a slight generalization of the input enabling condition of the
(classical) I /O automaton model: it says that in each state each input action is
enabled, including the environment action e. The second axiom D2 says that e
cannot change locally controlled variables. Axiom D3 expresses that, since input
variables are not under control of the system, these variables may be changed
in an arbitrary way after any discrete action. The three axioms together imply
the converse of D2, i.e., if two states only differ in their input variables then
there exists an e transition between them. Axioms D1-3 play a crucial role in
our study of parMlel composition. In particular D2 and D3 are used to avoid
cyclic constraints during the interaction of two systems.

Axioms T1-3 state some natural conditions on the set of trajectories that we
need to set up our theory: existence of point trajectories, closure under subin-
tervals, and the fact that a full trajectory is in W iff all its prefixes are in 142.

Notation Let A be a HIOA as described above. If s E V and l E L, then we
write s - - ~ l i f f t h e r e exists an s ~ E V such that s a~s, and J [L = l. In the
sequel, the components of a HIOA A will be denoted by VA, UA, ZA, OA, etc.
Sometimes, the components of a HIOA Ai will also be denoted by ~ , Ui, Ei,
Oi, etc.

2.3 H y b r i d E x e c u t i o n s

A hybrid execution fragment of A is a finite or infinite alternating sequence
~ W o a l w l a 2 w 2 " �9 " , where:

1. Each wi is a trajectory in WA and each ai is an action in ZA.
2. If c~ is a finite sequence then it ends with a trajectory.
3. If wi is not the last trajectory in ~ then its domain is a right-closed interval

and wi.lstate-~A wi+l.fstate.

An execution fragment records all the discrete changes that occur in the evolution
of a system, plus the "continuous" state changes that take place in between. The
third item says that the discrete actions in a span between successive trajectories.
We write h-frag(A) for the set of all hybrid execution fragments of A.

502

If a = w o a l w t a 2 w 2 . . , is a hybrid execution fragment then we define the
limit t ime of a, notation a. l t ime, to be ~ i wi.l t ime. Further, we define the first
state of c~, c~.fslate, to be wo.fstale.

We distinguish several sorts of hybrid execution fragments. A hybrid execu-
tion fragment a is defined to be

- an execution if the first state of ~ is an initial state,

- finite if ~ is a finite sequence and the domain of its final t rajectory is a
right-closed interval,

- admissible if a. l t imc = ~x~,

- Zeno if ~ is neither finite nor admissible, and

- a sentence if a is a finite execution that ends with a point trajectory.

If a = woalwl �9 �9 �9 anwn is a finite hybrid execution fragment then we define the
last state of c~, notation a.lstate, to be wn.lstate. A state of A is defined to be
reachable if it is the last s tate of some finite hybrid execution of A.

A finite hybrid execution fragment a = w o a l w l a 2 w 2 . . , anWn and a hybrid
execution fragment ~ .~ Woalwla2w2 . t , ' ' ' .. of A can be concatenated if w~ ~ w~
is defined and a trajectory of A. In this case, the concatenation a ~ cd is the
hybrid execution fragment defined by

. . w o) a l w l a 2 w 2 � 9 = w o a l w l a 2 w 2 " a n (W n t t t t t

2.4 H y b r i d T r a c e s

Suppose ~ = woatwla2w2 . . . is a hybrid execution fragment of A. In order to
define the hybrid trace of a, let

where, for a an action, vis(a) is defined equal to ~- if a is an internal action or e,
and equM to a otherwise. Here ~- is a special symbol which, as in the theory of
process Mgebra, plays the role of the 'generic' invisible action. An occurrence of ~"
in 7 is called inert if the final state of the trajectory that precedes the ~- equals the
first state of the trajectory that follows it (after hiding of the internal variables).
The hybrid trace of a , written htrace(a), is defined to be the sequence obtained
from 7 by removing all inert r ' s and concatenating the surrounding trajectories.

The hybrid traces of A are the hybrid traces that arise from all the finite and
admissible hybrid executions of A. We write h-traces(A) for the set of hybrid

traces of A.
HIOA's A1 and A2 are comparable if they have the same external interface,

i.e., U1 = U2,]11 = 1/2, Z~" = Z ~ and Z~ =t = Z~=t. If A1 and A2 are comparable
then A1 < A2 is defined to mean that the hybrid traces of A1 are included in

those of A2:A1 <_ A2 ~= h-traces(A1) C h-traces(A2).

503

3 Simulation Relations

Let A and B be comparable HIOA's. A simulation from A to B is a relation
R C_ VA X VB satisfying the following conditions, for all states r and s of A and
B, respectively:

1. If r E OA then there exists s E OB such that r /~ s.
2. If r %A rt and r R s then B has a finite execution fragment c~ with s =

c~.fstate, htrace(~a(r) a ~(r')) = htrace(o 0 and r ' R a.lstate.
3. If r R s and w is a closed trajectory of A with r = w.fstate then B has a

finite execution fragment a with s -- a.fstate, htrace(w) = htrace(a) and
w.lstate R a.lstate.

Note that by Condition 3 and the existence of point trajectories (axiom T1) ,
r R s implies that r[EA = s[EB.

T h e o r e m l . I rA and B are comparable IIIOA 's and there is a simulation from
A toB , t h e n A < B .

4 Parallel Composition and Hiding

We say tha t HIOA's A1 and As are compatible if, for i 7~ j ,

~. Lvjint ~ o u t out x ~ n ~ = ~ n ~ ~ n ~ = n~} =0.

If A1 and A2 are compatible then their composition AtllA2 is defined to be the
tuple A = (U, X, Y, ~i~, ~i~t, Gout, O, :D, W) given by

- U = (U ~ U U 2) - (Y 1 U Y 2) , X = X ~ U X 2 , Y : Y l U Y 2
- = u - u = u = u

- 0 - : { s E V t s [V l EO1As[V2 E 0 2 }
- Define, for i E {1, 2}, projection function ~r~ : E -+ Z~ by a-~(a) ~ a i f a E Z~

and 7ri(a) ~ e otherwise. Then 7) is the subset of V x Z x V given by

- W is the set of trajectories over V given by

w ~ W ~ w S Vl e W 1 A w S V~C W~

P r o p o s i t i o n 2 . All]A2 is a HIOA.

T h e o r e m 3 . Suppose A1,A2 and B are HIOA 's with At < A2, and each orAl
and A~ is compatible with B. Then Alll B <_ A21IB.

Two natural hiding operations can be defined on any HIOA A:
(1) If S C Z~ ~a, then ActHide(S, A) is the HIOA B that is equal to A except
that ~ t = 57~,t _ S and ~ y t = Z~,,t U S.

(2) If Z C YA, then VarHide(Z,A) is the HIOA B that is the equal to A except
that YB = Y4 -- Z and XB = XA U Z.

504

T h e o r e m 4 . Suppose A and B are HIOA 's with A ~ B, and let S C_ Z~4 ut and
ZC_YA.
Then ActUide(S, A) _< ActHide(S, B) and VarHide(Z, A) _< VarHide(Z, B).

5 Receptiveness

We call a HIOA feasible if any finite execution can be extended to an admissible
execution. The main significance of feasibility is to guarantee that a HIOA is
meaningful in the sense that it cannot block time. Unfortunately feasibility is
not preserved by parallel composition, and thus we need to impose additional
restrictions on a HIOA so that the feasibility property is guaranteed to be pre-
served by parallel composition. Our ideal objective would be to find the weakest
restrictions that need to be imposed; here we just propose some restrictions,
although we have not proved that they are the weakest. Below we define a no-
tion of receptiveness and prove that it is preserved by composition under some
reasonable assumptions.

5.1 I / O B e h a v i o r s

The concept of an I /O behavior plays an important role in the definition of
receptiveness. Intuitively, an I /O behavior is a set of trajectories that arise from
an HIOA after choosing initial values for the local variables and resolving all
internal nondeterminism.

We assume, for each variable v G)2, a dynamic type J:v, which is a nonempty
collection of functions from T to the domain of v. We require the sets Yv to be
time-invariant: for each f E j r and each t E T, also f t E ~P,, where f t is the
function from T to the domain of v given by f t (t ') ~= f (t ' + t). Intuitively, the
dynamic type Jr, gives the collection of allowed trajectories for v. For instance,
i f T = R and v has domain R, then ~u will be the set of all continuous or smooth
functions, or the set of all measurable locally essentially bounded functions [19].
If v is a "discrete" variable (in the sense of [15]), then ~% is the set of all the
constant functions. If Z C • then we write 5- t ra j s (Z) for the set of trajectories
w over Z with the property that for all z E Z, w ~ z E 9r~ [dom(w).

An [/10 behavior is a triple P = (U, Y, 13), where

- U is a set of typed input variables;
- Y is a set of typed output variables with U N Y = 0; we write V ~ U U Y;
- 13 G Y- t ra j s (V) is a prefix closed set of trajectories satisfying

B1 (functional dependence of outputs from inputs)
For all w, w' G 13 and for all t E dom(w) r dom(w') ,

(w < t) v = (w' < t) v w(t) ry = w,(t) ry
B2 (freedom of inputs)

Yw E Full(iT'-trajs(U)) 3w' e Max(13) : w' ~ U < w
B3 (nonZenoness)

Max(13) c_ CZosed(13) u Full(13)

505

Axiom B1 says that the output at t ime t is fully determined by the inputs at
times up to, but not including, t. Roughly speaking, axiom B2 expresses that the
input is a signal that is imposed by the environment and over which the system
has no control. However, in a hybrid world a continuous phase of a system can
be interrupted at any t ime by the occurrence of a discrete transition. A system
may, for instance, perform a locally controlled discrete action as soon as the
input reaches a threshold value. Therefore, axiom B2 only requires that for each
full input signal there exists a maximal trajectory that , when projected on its
input, forms a prefix of this input signal. Axiom B3 states that each maximal
trajectory is either closed or full. Together, B2 and B3 imply that in an I /O
behavior each input signal is accepted up to and including some finite time t or
up to (x~. Note that for any I /O behavior P there is an output state s C Y such
that all trajectories w in/3 begin with s, i.e., w(O)FY = s.

Our I /O behaviors can be viewed as a special case of the I /O behaviors of
Sontag [19]. Sontag defines I /O behaviors in terms of a response map from input
signals up to time t to the output at t ime t, but this presentation is equivalent to
our definition in terms of trajectories over both inputs and outputs. Technically,
we found it a bit easier to use trajectories in this paper. In [19], no assumptions
are made about possible input signals and the length of maximal trajectories
(our axioms B2 and B3). However, [19] singles out the so-called])-complete
I /O behaviors, which are I /O behaviors that accept any input of type Y.

In the sequel, the components of an I /O behavior P will be denoted by
Vp, Up, Yp and Bp. Also, if no confusion can arise, the components of an I /O
behavior Pi will be denoted by ~ , Ui, ~ and B~, etc.

Two I /O behaviors P1 and P2 are compatible if Y1 N]/2 = @. In this case, we
define the composition P1]]P2 to be the structure P = (U, Y, B) where

- u = (u 1 u u 2) - (Y1 u v 2) ,
- Y = Y 1 U Y 2 , and

- BC_~-trajs(Ut_JY) i s g i v e n b y w E B r162 w ~ V I E B 1 A w ~ V 2 ~ / 3 2 .

In general, the composition of two compatible I / 0 behaviors need not be an I /O
behavior since there may be "too many solutions":

Example 1. Suppose T -- R. For u, y variables whose dynamic type is the set of
functions from R to R that have left-hand limits, define Copy(u, y) to be the I /O
behavior that, for t > 0, copies input u to output y, and with the initial value
of y set to 0. Then the composition of Copy(u, y) and Copy(y, u) has no input
variables and therefore just one full input trajectory is allowed. However, there
is more than one output trajectory and thus the composition does not satisfy
axiom B1.

It may also occur that the composition of two compatible I /O behaviors
yields an I /O behavior, even though there exists no "solution" in the sense that
maximal trajectories can be merged. This motivates the following definition.

Two compatible I /O behaviors P1 and P2 are strongly compatible if P --
PI[IP~ is an I /O behavior and, for each trajectory w of P,

w E Max(Bp) r (w ~ ViE Max(B1) V w ~ V~ E Max(B2)).

506

Example 2. Suppose T = R. For u, y variables whose dynamic type is the set
of functions from R to R that have left-hand limits, define Addl(u, y) to be the
I /O behavior whose output y is, for t > 0, equal to the input u incremented by
1, and with the initial value of y set to 0. Then the I /O behaviors Addl(u, y)
and Addl(y, u) are compatible but not strongly compatible, even though their
composition is an I /O behavior.

Let A be a HIOA and let l G LA be a valuation of the local variables of A.
A nonempty set W of trajectories of A is called an 1-process (or process) of A if
(UA, LA, W) is an I /O behavior and, for all w E W, w(O) [LA = l, i.e., the initial
states of all trajectories in W agree with I.

Two compatible ItIOA's A1 and A~ are strongly compatible if for each reach-
able state s of AlilA2, for each (s[L1)-process W1 of A1, and for each (sVn2)-
process W2 of A2, the I / 0 behaviors (U~, L1, W1) and (U2, L2, W2) are strongly
compatible.

5.2 Games and Strategies

Intuitively, a system is receptive if time can advance to infinity independently of
the input provided by its environment, or equivalently, if it does not constrain
its environment. In [6, 1, 7] various notions of receptivity have been defined in
terms of games. Below, we extend these ideas to the setting of HIOA's. The
interaction between a system and its environment is represented as a two person
game in which the goal of the system is to construct an admissible execution,
and the goal of the environment is to prevent this. The system is receptive if it
has a strategy by which it can always win the game, irrespective of the behavior
of the environment.

Formally, a strategy p for A is a function that specifies, for each sentence a
of A with l = a.lstate[LA,

1. an /-process W ~ of A,
2. a function g~ : Closed(W ~) • ~ n __~ LA satisfying

g~(w, a) = l ~ w.lstate ---~a A l.

3. a function f ~ : Closed(Max(W~)) ~ (Z~ c • LA) satisfying

f a (w) : (a, l) ~ w.lstate a)A I,

At the beginning and immediately after each discrete transition, a strategy pro-
duces a process W that starts in the current local state. By doing this, a strategy
resolves all nondeterminism for the next continuous phase. Typically, choosing
a process amounts to fixing the trajectories for certain internal variables that
represent disturbances, and deciding at which time the next locally controlled
action will be performed. Once a process has been selected, the input signal fully
determines the next trajectory in the execution of the system. Since at any point
the environment may produce a discrete input action, a strategy also specifies,
through the function g, what will be the next local state after such an action.

507

The values of the input variables after a discrete step are determined by the
environment. Through the function f , a s trategy specifies, for each maximal and
closed trajectory of the selected process, which locally controlled step will be
performed at the end of this trajectory.

In the game between the environment and the system the behavior of the
environment is represented by an environment sequence. This is an infinite al-
ternating sequence

E : wl al bl w2 a2 b2 . . .

of closed or full trajectories w~ E Y:-trajs(UA), actions a~ E Z~4 n, and booleans
bi e {T, F}

In the i-th move of the game, the environment produces input signal wi. If
wi is finite then the environment produces discrete action ai right after signal
w~. The boolean bi serves to break tics in case the environment and the system
both want to perform a discrete action at the same time: if bi = T then the
environment is allowed to make a move and otherwise the system may perform
an action. As in [7], our game starts after a finite execution a. The outcome of
the game is described formally in the following definition.

Let A be a HIOA, p a strategy for A, I an environment sequence for A (with
p and E as defined above), and let a be a finite hybrid execution of A. We define
the outcome Op,z(a) as the limit of the sequence (a~)~>0 of hybrid executions
that is constructed inductively below. Each ai is either a sentence or admissible.

Let 1 = a. ls tale[LA. Then a0 ___a a e p(wl(0) U l).
Here we extend a in a trivial way to a sentence in order to get into a si tuation

where strategy p can be applied in combination with environment sequence 2:.
In the definition, U is the operation that takes the union of two functions, each
viewed as a set of pairs. The first argument of U yields the values for the input
variables and the second argument the values for the locally controlled variables.

For i > 0, define ai in terms of hi-1 as follows.
A

If h i -1 is admissible then ai = a~_ 1.
Otherwise, h i -1 is a sentence. Pick any full t ra jectory w + E 5C-trajs(UA)

- - / W ~ with wl < w +. Then by axiom B2 there is a maximal execution w i E with
w~ ~ UA <_ w +. By axiom B1, w~ is uniquely determined by the choice of w +.
Let t = wi. l t ime and t ~ = w~.ltime. We distinguish between three cases:

1. I f t = t ~ = o o t h e n

Cgi ~ O~i-- i W i �9

This is the case where both the system and the environment have decided
not to perform any discrete action.

2. I f t K t ~ o r t = t ~ < o o A b i = T , t h e n

ai = hi -1 ((w~ ~ t) ai p(wi+l(0) U gai(w~ ~ t, hi))).

This is the case where, after an initial f ragment of w~, the environment
produces an input action hi. The resulting state after this action is obtained

508

by taking the union of the first state of the next input trajectory and the
local state that is specified by the g-part of the strategy.

3. If t ' < t or t = t ' < ~ A bi = F and if we let f~ (w~) = (a~, li), then

= U lO).

has been completed, the system performs a This is the case where, after w i
locally controlled step as specified by the f -par t of the strategy.

Note that the definition of o~i does not depend on the choice of w + since by
' <~ t of ' that is used in the construction is determined axiom B1 the prefix w i _ w i

uniquely by the fixed prefix wi of w +.

P r o p o s i t i o n S . Op,z(a) is a Zeno or admissible hybrid execution of A.

A hybrid execution a of a HIOA A is Zeno-tolerant iff it is Zeno, contains
infinitely many input actions and only finitely many locally controlled actions.
A strategy p for A is Zeno-tolerant if for each environment sequence 2: and for
each finite execution a, Op,z(a) is either admissible or Zeno-tolerant. We call A
receptive iff there exists a Zeno-tolerant strategy for A. Note that each receptive
HIOA is trivially feasible.

We now come to the main result of this paper.

T h e o r e m 6 . Suppose A1 and A2 are strongly compatible, receptive HIOA's.
Then A1HA2 is receptive.

The corresponding result for the hiding operations is much easier to prove:

T h e o r e m 7. Suppose A is a receptive HIOA, and let S C Z~ ut and Z C YA.
Then ActHide(S, A) and VarHide(Z, A) are receptive.

5.3 S t r o n g C o m p a t i b i l i t y vs. Compatibility

In order to apply Theorem 6, one has to establish that the HIOA's A1 and
A2 are strongly compatible. From control theory it is well-known that this is
a difficult problem in general. However, it is possible to identify certain classes
of I /O behaviors for which strong compatibility reduces to compatibility. This
means that for all processes of A1 and A2 in such a class, the condition of strong
compatibility in Theorem 6, which in general is hard to check, reduces to the
syntactic condition of compatibility.

A first example can be obtained by considering what we call autistic I /O
behaviors. These are [/O behaviors that accept any input but produce an output
that is totally unrelated to this input. Formally, an I /O behavior is called autistic
if it satisfies the axiom

B4 Vw, w' E B : dom(w) : dom(w') =:~ w l Y = w' J~ Y

509

It is easy to verify that two autistic processes are strongly compatible iff they
are compatible. From the perspective of classical control theory autistic processes
are definitely of no interest: why have an input if it is not used at all? In a hybrid
setting, however, an automaton that does not process its input in a continuous
manner can still monitor this input and perform a discrete transition when some
threshold is reached. In linear hybrid automata [3, 2], for instance, there is no
continuous processing of inputs and all underlying processes are autistic.

Less trivial examples of classes of I /O behaviors for which strong compati-
bility reduces to compatibility can be found in the literature on control theory
[19]. In control theory it is common to express the continuous behavior of a
system by means of differential equations; thus, to be sure that a system is well
described, the differential equations need to admit a unique solution for each
possible starting condition of the system. A typical approach is to describe a
system through differential equations of the form

[y = g (x)

where u, y, and x are the input, output, and internal vectors of variables, re-
spectively. It is known from calculus that if f is globally Lipschitz and u is C1
then for each fixed starting condition x(0) = xo there is a unique solution to the
equations of E, defined on a maximal neighborhood of 0, such that x(0) = xo.
Suppose that the dynamic type of each input variable is the set of all C1 func-
tions. Consider the set W of all the solutions to E for each possible choice of xo
and of u(t), and let (U, X U Y, W') be any I /O behavior whose trajectories are
prefixes of trajectories in W. We say that (U, X U Y, W') is an I /O behavior of
E.

Consider now two systems, described by equations E1 and E~ with the same
form as E, and suppose there are no common locally controlled variables in El
and E2. The interaction between E1 and E2 can be described by a new set of
equations E3 obtained by considering together the equations of E1 and E2. If
also the g functions of E1 and E2 are globally Lipschitz, then it is easy to show
that E3 can be represented in the same form as E where f and g are globally
Lipschitz. Furthermore, let P1 and P2 be any two I /O behaviors of E1 and E2,
respectively. Then it is the case that P1 and P2 are strongly compatible and that
P3 is an I /O behavior of E3.

Therefore, if we choose the dynamic type of each variable to be the set of all C 1
functions, then strong compatibility reduces to compatibility for I /O behaviors
of systems of equations E, where f and g are globally Lipschitz. In general,
any choice of conditions on f and u that guarantee local existence of unique
solutions and that are preserved by interaction between systems can be used as
a basis to define a class of processes for which strong compatibility reduces to
compatibility.

Acknowledgment We thank Jan van Schuppen for constructive criticism.

510

R e f e r e n c e s

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems, 1(15):73-132, 1993.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-tt. Ho, X. Nicollin,
A. Olivero, J.Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

3. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In
Grossman et al. [8], pages 209-229.

4. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18. Cambridge University Press, 1990.

5. D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Verification of an audio control
protocol. In Proc. FTRTFT'94, LNCS 863, pages 170-192. Springer-Verlag, 1994.

6. D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. ACM Distinguished Dissertations. MIT Press, 1988.

7. R. Gawlick, R. Segala, J.F. SCgaard-Andersen, and N. Lynch. Liveness in timed
and untimed systems. I n Proceedings 21 th ICALP, LNCS 820. Springer-Verlag,
1994. A full version appears as MIT Technical Report number MIT/LCS/TR-587.

8. R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid Systems,
LNCS 736. Springer-Verlag, 1993.

9. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, March 1994.

10. N.A. Lynch. Modelling and verification of automated transit systems, using timed
automata, invariants and simulations, 1996. This volume.

11. N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In Proceedings 6 th PODC, pages 137-151, August 1987. A full version is
available as MIT Technical Report MIT/LCS/TR-387.

12. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations - part II:
Timing-based systems. Report CS-R9314, CWI, Amsterdam, March 1993. To
appear in Information and Computation.

13. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, part I:
Untimed systems. Information and Computation, 121(2):214-233, September 1995.

14. N.A. Lynch and H.B. Weinberg. Proving correctness of a vehicle maneuver: De-
celeration. In Proceedings Second European Workshop on Real-Time and Hybrid
Systems, Grenoble, France, June 1995.

15. O. Mulet, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Proceedings
REX Workshop, LNCS 600, pages 447-484. Springer-Verlag, 1992.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

17. A. Nerode and A. Yakhnis. Concurrent programs as strategies in games. In
Y. Moschovakis, editor, Logic from Computer Science. Springer-Verlag, 1992.

18. A. Pnueli and J. Sifakis, editors. Special Issue on Hybrid Systems of Theoretical
Computer Science, 138(1). Elsevier Science Publishers, February 1995.

19. E.D. Sontag. Mathematical Control Theory - - Deterministic Finite Dimensional
Systems, TAM 6. Springer-Verlag, 1990.

20. H.B. Weinberg, N.A. Lynch, and N. Defisle. Verification of automated vehicle
protection systems, 1996. This volume.

