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halting, they continuously receive input fromand react to their environment. Al-though I/O automata can be used to model synchronous systems, they are bestsuited for modeling systems in which the components operate asynchronously.Each system component is modeled as an I/O automaton, which is essentiallya (possibly in�nite state) automaton with an action labeling each transition. Afundamental property of our model is that we make a very clear distinctionbetween those actions whose performance is under the control of the automatonand those actions whose performance is under the control of its environment.An automaton's actions are classi�ed as either `input', `output', or `internal'.An automaton generates output and internal actions autonomously, and trans-mits output instantaneously to its environment. In contrast, the automaton'sinput is generated by the environment and transmitted instantaneously to theautomaton. Our distinction between input and other actions is fundamental,based on who determines when the action is performed: an automaton can es-tablish restrictions on when it will perform an output or internal action, but itis unable to block the performance of an input action.1The fact that our automata are unable to block inputs distinguishes ourmodel from CSP (Communicating Sequential Processes) [Ho]. There, inputblocking is used for two purposes: as a way of blocking the activity of the en-vironment and as a way of eliminating undesirable inputs. Our model does notallow an automaton to block its environment or eliminate undesirable inputs.Suppose, however, that we only wish to guarantee that an automaton exhibitssome behavior when the environment observes certain restrictions on the pro-duction of inputs. Instead of allowing the automaton to block the bad inputs,we permit these inputs to occur, but permit the automaton to exhibit arbitrarybehavior when they do. Our correctness conditions are often of the form `if theenvironment behaves correctly, then the automaton behaves correctly.' Alter-natively, our correctness condition may require the automaton to detect badinputs and respond to them with error messages. In either case, we have simpleways of dealing with input restrictions without including input-blocking in themodel.I/O automata may be nondeterministic, and indeed the nondeterminism isan important part of the model's descriptive power. Describing algorithms asnondeterministically as possible tends to make results about the algorithms quitegeneral, since many results about nondeterministic algorithms apply a fortiori toall algorithms obtained by restricting the nondeterministic choices. Moreover,the use of nondeterminism helps to avoid cluttering algorithm descriptions andproofs with inessential details.I/O automata can be composed to yield other I/O automata. When wecompose a collection of automata, we identify the same-named actions of thedi�erent automata. Our composition guarantees that if one automaton has �1The shared-memory model described in [LF] has had a strong in
uence on the presentwork. In particular, the inability to block inputs appears as the `read-anything' property in[LF]. 2



as an output action, then � is an input action of all remaining automata having� as an action. As a result, an automaton generating an output action doesso autonomously, and this output is transmitted instantaneously to all otherautomata having the same action as an input. All such components are passiverecipients of the input, and take steps simultaneously with the output step. Asin CSP, we use simultaneous performance of actions to synchronize components,but we permit only one component to determine when the action occurs.When I/O automata are run, they generate `executions' (alternating se-quences of states and actions). Among all the executions of an automaton, weare primarily interested in the `fair' executions | those that permit each of theautomaton's primitive components to have in�nitely many chances to performoutput or internal actions. The fair executions of an automaton give rise to the`fair behaviors' of the automaton | the subsequences of the fair executions thatconsist of external (that is, input and output) actions. It is this set of sequencesthat we believe embodies the interesting behavior of an I/O automaton; thus,our semantics is a `trace' semantics. The set of fair behaviors of an I/O au-tomaton can consist of both �nite and in�nite sequences of actions, and is notnecessarily closed under the operation of taking pre�xes.A `problem' to be solved by an I/O automaton is formalized essentially asan arbitrary set of (�nite and in�nite) sequences of external actions. Our notionof what it means for an automaton to `solve' a problem is particularly simple:essentially, an automaton is said to `solve' a problem P provided that its set offair behaviors is a subset of P . It might not be obvious to the reader that thisde�nition is nontrivial; for example, if an automaton had no fair behaviors, thenour de�nition would say that it is a solution to every problem. However, thisanomaly does not arise, since our de�nitions imply that every automaton hasa nonempty set of fair behaviors. Since an automaton cannot block its input,for every possible pattern of inputs that might arrive from the environment, theautomaton is required to provide some response such that the resulting sequenceof actions is in the problem set P . That is, the automaton is required to respondappropriately to every possible input pattern.The model permits description of algorithms and systems at di�erent levels ofabstraction. Abstraction mappings are de�ned, mapping automata that includeimplementation detail to more abstract automata that suppress some of thedetail. Such mappings can be used as aids in correctness proofs for algorithms:if automaton A is an image of B under an appropriate abstraction mapping andA solves problem P , then B also solves P .The model allows very careful and readable descriptions of particular concur-rent algorithms. We have developed a simple language for describing automata,based on `precondition' and `e�ect' speci�cations for actions. This notation,similar to Dijkstra's `guarded commands,' has proved su�cient for describingall algorithms we have attempted so far. However, the model does not dependon this manner of describing automata; for example, the model is general enoughto serve as a formal basis for languages that include more elaborate constructs3



for sequential 
ow of control.Our model also allows precise statements of the problems that are to besolved by modules in concurrent systems. As described above, such problemsare formulated as sets of �nite and in�nite sequences of external actions. Wehave not so far developed any particular language or notation for describingsuch sets, but have used a variety of notations (e.g., temporal logic or generatingautomata) as they have seemed convenient. Again, our model is general enoughto serve as an operational model for many di�erent languages describing sets ofaction sequences.The model can be used as a formal basis for algorithm correctness proofs| proofs that particular algorithms solve particular problems in the sense de-scribed above. In fact, a current major thrust of our research involves producingcorrectness proofs for substantial-sized and complex concurrent algorithms. Weuse a variety of techniques for such proofs, primarily based on notions of com-position and abstraction. In every case, we try to utilize the modularity thatis suggested by informal descriptions of the algorithm in our formal correctnessproofs. So far, our proofs have been done by hand, but it appears that machine-checking of some of our proofs might be possible using current automatic prooftechnology.The model can also be used for carrying out complexity analysis, provingupper and lower bounds on the complexity of solving particular problems, andproving impossibility results.3 The Input/Output Automaton ModelIn this section we formally de�ne our model of computation, show how it can beused to model a system, how it can be used to construct a problem speci�cation,and how it can be used to prove that a system satis�es a speci�cation.3.1 Input/Output AutomataWe begin with the de�nition of an automaton. As previously mentioned, anautomaton's actions are partitioned into sets of input, output, and internalactions. This set of actions and its partition determines an interface betweenthe automaton and its environment. We refer to this interface as the actionsignature of the automaton. Formally, an action signature S is a partition ofa set acts(S) of actions into three disjoint sets in(S), out(S), and int(S) ofinput actions, output actions, and internal actions, respectively. We denote byext(S) = in(S) [ out(S) the set of external actions, those actions visible to theenvironment of any automaton have S as its action signature. An external actionsignature is an action signature S with no internal actions; that is, int(S) = ;or acts(S) = ext(S). Given an action signature S, we de�ne extsig(S) to bethe external action signature S0 with in(S0) = in(S) and out (S0) = out(S).4



We denote by local(S) = out(S) [ int(S) the set of locally-controlled actions,those actions under the local control of any automaton having S as its actionsignature. Given an automaton A with action signature S, we will frequentlyabuse notation and denote in(S) by in(A), etc.An input/output automaton A (also called an I/O automaton or simply anautomaton) consists of �ve components:� an action signature sig(A),� a set states(A) of states,� a nonempty set start(A) � states(A) of start states,� a transition relation steps(A) � states(A)� acts(A) � states(A) with theproperty that for every state s0 and input action � there is a transition(s0; �; s) in steps(A), and� an equivalence relation part(A) partitioning the set local(A) into at mosta countable number of equivalence classes.Since the equivalence relation part(A) is used only in the de�nition of fair com-putation in Section 3.3, we will ignore it for now. It is used to identify theprimitive components of the system being modeled by the automaton: eachclass is thought of as the set of actions under the local control of one systemcomponent.Each element of an automaton's transition relation represents a possible stepin the computation of the system the automaton models. We refer to an element(s0; �; s) of steps(A) as a step of A. If (s0; �; s) is a step of A, then � is said tobe enabled in s0. Since every input action is enabled in every state, automataare said to be input-enabled. This means that the automaton is unable to blockits input, which is one of the fundamental assumptions made in our model (theother being that the performance of an action is controlled by at most onesystem component).When an automaton `runs,' it generates a string representing an executionof the system the automaton models. An execution fragment of A is a �nitesequence s0; �1; s1; �2; : : : ; �n; sn or an in�nite sequence s0; �1; s1; �2; : : : of al-ternating states and actions of A such that (si; �i+1; si+1) is a step of A forevery i. An execution is an execution fragment beginning with a start state. Wedenote the set of executions of A by execs(A), and the set of �nite executionsof A by it �nexecs(A). We say that a state is reachable if it is the �nal state ofa �nite execution.While an execution represents a system computation, we are often interestedonly in the sequence of actions performed during the course of the computation,and not in the states through which the computation passes. The schedule of anexecution fragment � is the subsequence of � consisting of the actions appearingin �, and is denoted by sched (�). We say that � is a schedule of an automaton5



A if � is the schedule of an execution of A. We denote the set of schedulesof A by scheds(A), and the set of �nite schedules of A by �nscheds (A). Thebehavior of an execution or schedule � of A is the subsequence of � consisting ofexternal actions, and is denoted by beh(�). Intuitively, beh(�) is the externallyobservable portion of � , the sequence of actions the external environment mightobserve during �. We say that � is a behavior of A if � is the behavior of anexecution of A. We denote the set of behaviors of A by behs(A) and the set of�nite behaviors of A by �nbehs (A).We remark that since the same action may occur several times in an ex-ecution or a schedule, it is sometimes convenient to distinguish the di�erentoccurrences. On these occasions we refer to a particular occurrence of an actionas an event.We will be illustrating many of our de�nitions using simple examples ofcandy machines and their customers. We hope that, since this class of examplesis so popular in the CSP literature, they will provide an interesting comparisonof the models. In the remainder of this section, we de�ne automata modelingthese candy machines and customers.Our three candy machines CM-1, CM-2, and CM-3 di�er only in their tran-sition relations. We begin with the de�nition of CM-1. This candy machine hasthe following action signature.Input actions: PUSH1, PUSH2Output actions: SKYBAR, HEATHBAR, ALMONDJOYInternal actions: noneWe will sometimes abbreviate the two push actions as 1 and 2, and the threedispensation actions as S, H and A. The partition part(CM-1) places all threeoutput actions S, H, and A in the same equivalence class. The state of CM-1consists of one variable `button pushed,' which takes on values 0, 1 and 2. Inthe initial state, `button pushed' is set to 0. We describe the transition relationfor CM-1 by giving a precondition and an e�ect for every action � : the triple(s0; �; s) is a step of CM-1 exactly if the precondition of � is satis�ed by s0 ands is the result of transforming s0 as determined by the e�ects of � . We omitthe precondition for an action when this precondition is true. The transitionrelation for CM-1 is as follows:
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PUSH1 E�ect: button pushed  1PUSH2 E�ect: button pushed  2SKYBAR Precondition: button pushed = 1E�ect: button pushed  0HEATHBAR Precondition: button pushed = 2E�ect: button pushed  0ALMONDJOY Precondition: button pushed = 2E�ect: button pushed  0When the customer pushes button 1, CM-1 can dispense a SKYBAR. Whenthe customer pushes button 2, CM-1 can dispense either a HEATHBAR or anALMONDJOY, but not both. The choice between H and A is made nondeter-ministically by CM-1.Candy machine CM-2 is identical to CM-1, except that its HEATHBAR ac-tion has `false' as its precondition. This candy machine never dispenses HEATH-BARs, but is able to dispense SKYBARs and ALMONDJOYs.Candy machine CM-3 is identical to CM-1 except that all three candy dis-pensation actions have `false' as their precondition. It never dispenses candy,which must disappoint a number of its customers.Like our candy machines, our three customers CUST-1, CUST-2, and CUST-3 are also quite similar. Customer CUST-1 continues to request candy barsad in�nitum, nondeterministically choosing which button to push. Its actionsignature is the `complement' of the candy machines':Input actions: SKYBAR, HEATHBAR, ALMONDJOYOutput actions: PUSH1, PUSH2Internal actions: noneThe state of CUST-1 consists of one variable `waiting', which takes on values`yes' and `no'. In the initial state, `waiting' is set to `no'. CUST-1's actions areas follows.
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SKYBAR E�ect: waiting  noHEATHBAR E�ect: waiting  noALMONDJOY E�ect: waiting  noPUSH1 Precondition: waiting = noE�ect: waiting  yesPUSH2 Precondition: waiting = noE�ect: waiting  yesThis customer is very patient: after pushing a button, it waits for a candy barbefore pushing a button a second time. The partition part(CUST-1) of thiscustomer's locally-controlled actions puts PUSH1 and PUSH2 together in oneequivalence class.Customer CUST-2 is somewhat more selective than CUST-1. It pushesbutton 2 repeatedly just until the machine dispenses a HEATHBAR, and thenpushes button 1 forever. Formally, CUST-2 has another variable `heathbar received'in its state in addition to `waiting'. This variable takes on values `yes' and `no',initially `no'. The actions of CUST-2 that di�er from those of CUST-1 are asfollows:HEATHBAR E�ect: waiting  no; heathbar received  yesPUSH1 Precondition: waiting = no; heathbar received = yesE�ect: waiting  yesPUSH2 Precondition: waiting = no; heathbar received = noE�ect: waiting  yesCustomer CUST-3 is similar to CUST-1 except that it maymake a transitionto a `satiated' state from which it no longer requests any candy bars. Formally,CUST-3's state has an additional `satiated' variable besides the `waiting' vari-able of CUST-1. It takes on values `yes' or `no', initially `no'. CUST-3 has anadditional internal action BECOME SATIATED, de�ned as follows.BECOME SATIATED Precondition: satiated = no; waiting = noE�ect: satiated  yesAlso, each of PUSH1 and PUSH2 has the additional precondition `satiated = no'.Again, part(CUST-3) puts all three locally-controlled actions PUSH1, PUSH2,and BECOME SATIATED in the same equivalence class.8



3.2 CompositionWe can construct an automaton modeling a complex system by composing au-tomata modeling the simpler system components. The essence of this composi-tion is quite simple: when we compose a collection of automata, we identify anoutput action � of one automaton with the input action � of each automatonhaving � as an input action. Consequently, when one automaton having � as anoutput action performs � , all automata having � as an action perform � simul-taneously (automata not having � as an action do nothing). For example, in thecomposition of CM-1 and CUST-1, we identify the output action PUSH1 of thecustomer with the input action PUSH1 of the candy machine. The occurrenceof PUSH1 causes both the candy machine and the customer to perform PUSH1,causing button pushed to be set to 1 in the candy machine's local state, andwaiting to be set to `yes' in the customer's local state. This synchronizationmodels a form of communication from the customer to the candy machine.We impose certain restrictions on the composition of automata. Since inter-nal actions of an automaton A are intended to be unobservable by any otherautomaton B, we cannot allow A to be composed with B unless the internalactions of A are disjoint from the actions of B, since otherwise one of A's in-ternal actions could force B to take a step. Furthermore, in keeping with ourphilosophy that at most one system component controls the performance of anygiven action, we cannot allowA and B to be composed unless the output actionsof A and B form disjoint sets. Finally, since we do not preclude the possibilityof composing a countable collection of automata, each action of a compositionmust be an action of only �nitely many of the composition's components. Onemotivation for this restriction is Milner's motivation for ruling out in�nite prod-ucts in CCS [M]: if each automaton in an in�nite product has � as an action,then an in�nite amount of work is performed by a single action � , which weconsider unreasonable. Since we do not have a recursion operation as CCS does,however, we require in�nite products in order to model systems that can createprocesses dynamically.Since the action signature of a composition (the composition's interface withits environment) is determined uniquely by the action signatures of its compo-nents, it is convenient to de�ne a composition of action signatures before de�ningthe composition of automata. The preceding discussion motivates the follow-ing de�nition. A countable collection fSigi2I of action signatures is said to bestrongly compatible2 if for all i; j 2 I satisfying i 6= j we have1. out (Si) \ out(Sj ) = ;,2. int(Si) \ acts(Sj) = ;, and2Such a collection is said to be compatible if it satis�es the �rst two of the three propertieslisted. Some of the results below follow simply from compatibility, while others require strongcompatibility. Here, we simplify matters by considering the stronger de�nition only. Theconsequences of the two de�nitions are described more carefully in [LT1].9



3. no action is contained in in�nitely many sets acts(Si).We say that a collection of automata are strongly compatible if their action sig-natures are strongly compatible. CM-1 and CUST-1, for example, are stronglycompatible.When we compose a collection of automata, internal actions of the compo-nents become internal actions of the composition, output actions become outputactions, and all other actions (each of which can only an input action of a com-ponent) become input actions. For example, all actions become output actionsin the composition of CM-1 and CUST-1. Notice that this composition doesnot hide actions such as PUSH1 representing communication between compo-nents CM-1 and CUST-1 by making them internal actions of the compositionCM-1�CUST-1. As motivation for this decision, consider one automaton A hav-ing � as an output actions and two automata B1 and B2 having � as an inputaction. Notice that � is essentially a broadcast from A to B1 and B2 in thecomposition A �B1 �B2 of the three automata. Notice, however, that if we hidecommunication, then the composition (A �B1) �B2 would not be the same as thecompositionA�B1 �B2 since � would be made internal to A�B1 before composingwith B2, and hence � would no longer be a broadcast to both B1 and B2. Thisis problematic if we want to reason about the system A � B1 �B2 in a modularway by �rst reasoning about A � B1 and then reasoning about A �B1 � B2. Wewill de�ne another operation to hide such communication actions explicitly.The preceding discussion motivates the following de�nitions. The composi-tion S = Qi2I Si of a countable collection of strongly compatible action signa-tures fSigi2I is de�ned to be the action signature with� in(S) = [i2I in(Si)�[i2Iout(Si),� out (S) = [i2Iout(Si), and� int(S) = [i2Iint(Si).The composition A = Qi2I Ai of a countable collection of strongly compatibleautomata fAigi2I is the automaton de�ned as follows:3� sig(A) = Qi2I sig(Ai),� states(A) = Qi2I states(Ai),� start(A) = Qi2I start(Ai),� steps(A) is the set of triples (~s1; �; ~s2) such that, for all i 2 I, if � 2acts(Ai) then (~s1[i]; �; ~s2[i]) 2 steps(Ai), and if � 62 acts(Ai) then ~s1[i] =~s2[i], and3Here start(A) and states(A) are de�ned in terms of the ordinary Cartesian product, whilesig(A) is de�ned in terms of the composition of actions signatures just de�ned. Also, we usethe notation ~s[i] to denote the ith component of the state vector ~s.10



� part(A) = [i2Ipart(Ai).When I is the �nite set f1; :::; ng, we often denote Qi2I Ai by A1 � � � � �An.Notice that since the automataAi are input-enabled, so is their composition.The partition of the composition's locally-controlled actions is formed by takingthe union of the components' partitions (that is, each equivalence class of eachcomponent becomes an equivalence class of the composition). For example,since CM-1's partition has one class fS;H;Ag and CUST-1's partition has oneclass f1; 2g, the partition of CM-1�CUST-1 has two classes fS;H;Ag and f1; 2g.This corresponds to our intuition that this partition identi�es the primitivecomponents (e.g., CM-1 and CUST-1) of the system modeled by an automaton.Again, we ignore this partition until we de�ne fair computation in the nextsection.Three basic results relate the executions, schedules, and behaviors of a com-position to those of the composition's components. The �rst says, for example,that an execution of a composition induces executions of the component au-tomata. Given an execution � = ~s0�1~s1 : : : of A, let �jAi be the sequenceobtained by deleting �j ~sj when �j is not an action of Ai and replacing theremaining ~sj by ~sj [i].Proposition 1: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. If � 2 execs(A) then �jAi 2 execs(Ai) for every i 2 I.Moreover, the same result holds if execs() is replaced by it �nexecs(; ) scheds(),�nscheds(), behs(), or �nbehs().Certain converses of the preceding proposition are also true. The followingproposition says that executions of component automata can often be pastedtogether to form an execution of the composition.Proposition 2: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. Suppose �i is an execution of Ai for every i 2 I, andsuppose � is a sequence of actions in acts(A) such that �jAi = sched (�i) forevery i 2 I. Then there is an execution � of A such that � = sched (�) and�i = �jAi for every i 2 I. Moreover, the same result holds when acts() andsched() are replaced by ext() and beh(), respectively.As a corollary, schedules and behaviors of component automata can also bepasted together to form schedules and behaviors of the composition.Proposition 3: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. Let � be a sequence of actions in acts(A). If �jAi 2scheds(Ai) for every i 2 I, then � 2 scheds(A). Moreover, the same result holdswhen acts() and scheds() are replaced by ext() and behs(), respectively.As promised, we now de�ne an operation that `hides' actions of an automatonby converting them to internal actions. We begin with a hiding operation for11



action signatures: if S is an action signature and � � acts(S), then hide�S = S0where in(S0) = in(S) � �, out(S0) = out(S) � � and int(S0) = int(S) [ �.We now de�ne a hiding operation for automata: if A is an automaton and� � acts(A), then hide�A is the automaton A0 obtained from A by replacingsig(A) with sig(A0) = hide�sig(()A).3.3 FairnessConsider CUST-4, a particularly greedy version of CUST-1 in which all actionshave the precondition `true;' that is, the customer does not wait for a candy barbefore pressing a button again. One behavior of the composition CM-1�CUST-4is the in�nite sequence 1111... in which the customer repeatedly pushes button1 without giving the candy machine a chance to dispense a candy bar. Clearlythe only time the candy machine can do its job is when it is treated fairly;that is, when it is given a chance to respond to its input. For this reason, weare in general only interested in the executions of a composition in which allcomponents are treated fairly. While what it means for a component to betreated fairly may vary from context to context, it seems that any reasonablede�nition should have the property that in�nitely often the component is giventhe opportunity to perform one of its locally-controlled actions (cf. [F]). In thissection we de�ne such a notion of fairness.As we have mentioned, the partition of an automaton's locally-controlled ac-tions is intended to capture some of the structure of the system the automatonis modeling. Each class of actions is intended to represent the set of locally-controlled actions of some system component. Notice that the locally-controlledactions of CM-1 and CUST-4 are fS;H;Ag and f1; 2g, respectively, and thatthe partition of the locally-controlled actions of CM-1�CUST-4 has two equiv-alence classes fS;H;Ag and f1; 2g. The de�nition of automaton compositionguarantees that an equivalence class of a component automaton becomes anequivalence class of a composition, and hence that composition retains the es-sential structure of the system's primitive components.4 In our model, there-fore, being fair to each component means being fair to each equivalence class oflocally-controlled actions. This motivates the following de�nition.A fair execution of an automaton A is de�ned to be an execution � of Asuch that the following conditions hold for each class C of part(A):1. If � is �nite, then no action of C is enabled in the �nal state of �.2. If � is in�nite, then either � contains in�nitely many events from C, or �contains in�nitely many occurrences of states in which no action of C isenabled.4It might be argued that retaining this partition is a bad thing to do since it destroys someaspects of abstraction. Notice, however, that any reasonable de�nition of fairness must lead tosome breakdown of abstraction since being fair means being fair to the primitive componentswhich must somehow be modeled. 12



This says that a fair execution gives fair turns to each class C of part(A), andtherefore to each component of the system being modeled. In�nitely often theautomaton attempts to perform an action from the class C. On each attempt,either an action of C is performed, or no action from C can be performed sinceno action from C is enabled. For example, we may view a �nite fair execution asan execution at the end of which the automaton repeatedly cycles through theclasses in round-robin order attempting to perform an action from each class,but failing each time since no action is enabled from the �nal state. Returningto the composition CM-1�CUST-4, we see that 111... is not a fair behaviorsince the output action S of CM-1 is enabled in every state (except the �rst)and yet never performed. On the other hand, 11S11S... is a fair behavior ofthe composition since in�nitely often an output action of CM-1 is performedand in�nitely often an output action of CUST-4 is performed. Considering thecomposition CM-1�CUST-3, notice that any �nite execution ending with theaction BECOME SATIATED is a fair execution since from the state followingthis action no action of the composition is enabled. (In fact, these are preciselythe fair �nite executions of this composition.)We denote the set of fair executions of A by fairexecs(A). We say that � isa fair schedule of A if � is the schedule of a fair execution of A, and we denotethe set of fair schedules of A by fairscheds(A). We say that � is a fair behaviorof A if � is the behavior of a fair execution of A, and we denote the set offair behaviors of A by fairbehs(A). For example, the schedule consisting of thesingle internal action BECOME SATIATED is a fair schedule of CM-1�CUST-3,and hence the empty schedule consisting of no actions is a fair behavior of thiscomposition.We can prove the following analogues to Propositions 1-3 in the precedingsection:Proposition 4: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. If � 2 fairexecs(A) then �jAi 2 fairexecs(Ai) for everyi 2 I. Moreover, the same result holds if fairexecs() is replaced by fairscheds()or fairbehs().Proposition 5: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. Suppose �i is a fair execution of Ai for every i 2 I, andsuppose � is a sequence of actions in acts(A) such that �jAi = sched (�i) forevery i 2 I. Then there is a fair execution � of A such that � = sched (�) and�i = �jAi for every i 2 I. Moreover, the same result holds when acts() andsched() are replaced by ext() and beh(), respectively.Proposition 6: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. Let � be a sequence of actions in acts(A). If �jAi 2fairscheds(Ai) for every i 2 I, then � 2 fairscheds(A). Moreover, the sameresult holds when acts() and fairscheds() are replaced by ext() and fairbehs(),respectively. 13



We state these results because analogous results often do not hold in othermodels. As we will see in the following section, the fact that the fair behaviorof a composition is uniquely determined by the fair behavior of the componentsmakes it possible to reason about the fair behavior of a system in a modular way.The proofs of these propositions are nearly identical to the proofs of Propositions1-3. The one additional key fact needed is the fact that a component automatondetermines by itself when one of its locally-controlled actions may be performed.3.4 Problem Speci�cationWe want to say that a problem speci�cation is simply a set of allowable `behav-iors,' and that an automaton solves the speci�cation if each of its `behaviors' iscontained in this set. The automaton solves the problem in the sense that every`behavior' it exhibits is a `behavior' allowed by the problem speci�cation (butnotice that there is no single `behavior' the automaton is required to exhibit).The appropriate notion of `behavior' (e.g., �nite behavior, in�nite behavior, fairbehavior, etc.) used in such a de�nition depends to some extent on the natureof the problem speci�cation.It is often useful to di�erentiate between two types of speci�cations sincedi�erent techniques are usually used to prove that such speci�cations are satis-�ed [La1]. Safety properties are informally characterized by the fact that theyspecify a property that must hold in every state of a computation. Since anin�nite computation satis�es a safety property if and only if every �nite pre�xof the computation does so, the notion of `behavior' most useful in this contextseems to be �nite behaviors. Liveness properties are informally characterized bythe fact that they specify events that must eventually be performed. A reliablecandy machine, for example, should satisfy the liveness condition that if a but-ton is pushed, then a candy bar (of the correct type) is eventually dispensed.Clearly this is a property of in�nite behaviors, and not �nite behaviors. In fact,this is a property that can only be satis�ed by fair behaviors, since a candymachine cannot dispense the required candy bar if it is not given the chance todo so. The notion of `behavior' most useful in this context, therefore, seems tobe fair behaviors.Consequently, we would like to say that a speci�cation is a set of allowablebehaviors, and that an automaton solves the speci�cation if all �nite or fairbehaviors (depending on the context) of the automaton are contained in the set.In addition to a set of allowable behaviors, however, a problem speci�cation mustspecify the required interface between a solution and its environment. That is,we want a problem speci�cation to be a set of behaviors together with an actionsignature.We therefore de�ne a schedule module H to consist of two components:� an action signature sig(H), and� a set scheds(H) of schedules. 14



Each schedule in scheds(H) is a �nite or in�nite sequence of actions of H.We denote by �nscheds (H) the set of �nite schedules of H. The behavior ofa schedule � of H is the subsequence of � consisting of external actions, andis denoted by beh(�). We say that � is a behavior of H if � is the behaviorof a schedule of H. We denote the set of behaviors of H by behs(H) andthe set of �nite behaviors of H by �nbehs (H). We extend the de�nitions offair schedules and fair behaviors to schedule modules in a trivial way, lettingfairscheds(H) = scheds(H) and fairbehs(H) = behs(H). We will use the termmodule to refer to either an automaton or a schedule module.There are several natural schedule modules that we often wish to associatewith an automaton. They correspond to the automaton's schedules, �nite sched-ules, fair schedules, behaviors, �nite behaviors and fair behaviors. For eachautomaton A, let Scheds(A), Finscheds(A) and Fairscheds(A) be the sched-ule modules having action signature sig(A) and having schedules scheds(A),�nscheds(A) and fairscheds(A), respectively. Also, for each module M (eitheran automaton or schedule module), let Behs(M ), Finbehs(M ) and Fairbehs(M )be the schedule modules having the external action signature extsig(M ) andhaving schedules behs(M ), �nbehs (M ) and fairbehs(M ), respectively. (Hereand elsewhere, we follow the convention of denoting sets of schedules with lowercase names and corresponding schedule modules with corresponding upper casenames.)It is convenient to de�ne two operations for schedule modules. Correspond-ing to our composition operation for automata, we de�ne the composition of acountable collection of strongly compatible schedule modules fHigi2I to be theschedule module H = Qi2I Hi where:� sig(H) = Qi2I sig(Hi),� scheds(H) is the set of sequences � of actions of H such that �jHi is aschedule of Hi for every i 2 I.The following proposition shows how composition of schedule modules corre-sponds to composition of automata.Proposition 7: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. Then Scheds(A) = Qi2I Scheds (Ai), Fairscheds(A) =Qi2I Fairscheds(Ai), Behs(A) = Qi2I Behs(Ai) and Fairbehs(A) = Qi2I Fairbehs(Ai).Corresponding to our hiding operation for automata, we de�ne hide hide�H tobe the schedule moduleH0 obtained fromH by replacing sig(H) with sig(H0) =hide�sig(()H).Finally, we are ready to de�ne a problem speci�cation and what it means foran automaton to satisfy a speci�cation. A problem is simply a schedule moduleP . An automaton A solves5 a problem P if A and P have the same external5This concept is called satisfying in [LT1].15



action signature and fairbehs(A) � fairbehs(P ). An automaton A implementsa problem P if A and P have the same external action signature (that is, thesame external interface) and �nbehs(A) � �nbehs(P ). Notice that if A solves P ,then A cannot be a trivial solution of P since the fact that A is input-enabledensures that fairbehs(A) contains a response by A to every possible sequence ofinput actions. For analogous reasons, the same is true if A implements P .Since we may want to carry out correctness proofs hierarchically in severalstages, it is convenient to state the de�nitions of `solves' and `implements' moregenerally. For example, we may want to prove that one automaton solves aproblem by showing that the automaton `solves' another automaton, which inturn `solves' another automaton, and so on, until some �nal automaton solvesthe original problem. Therefore, let M and M 0 be modules (either automataor schedule modules) with the same external action signature. We say thatM solves M 0 if fairbehs(M ) � fairbehs(M 0) and that M implements M 0 if�nbehs(M ) � �nbehs (M 0).To illustrate these de�nitions, let us consider some interesting speci�cationsof correct candy machine behavior.Some basic requirements for a candy machine can be described by the sched-ule module SAFE-CM. SAFE-CM has the same action signature as CM-1, andhas as its set of schedules the set of sequences over the symbols 1,2,S,H,A satis-fying the following condition: every S is immediately preceded by a 1, and everyA or H is immediately preceded by a 2.In order to show that CM-1 is a safe candy machine (that is, that it im-plements the problem described by SAFE-CM), we must show that all �nitebehaviors of CM-1 satisfy the given requirement. We proceed by induction onthe length of a behavior, using an inductive hypothesis that characterizes thestate of CM-1 in terms of the preceding events: button pushed = 1 if the lastevent in the sequence is PUSH1, button pushed = 2 if the last event in thesequence is PUSH2, and button pushed = 0 otherwise (that is, if the sequenceis empty or the last event is a dispensation event). The inductive step consid-ers cases based on the �ve possible actions. For instance, if SKYBAR occurs,its precondition implies that button pushed = 1 just prior to the dispensation;thus, the immediately preceding symbol in the sequence is 1, as needed. Theother cases are similar. It follows that CM-1 implements SAFE-CM, and hencethat CM-1 is a safe candy machine. In fact, the same proof also shows thatCM-1 solves SAFE-CM.It is also easy to see that CM-2 is a safe candy machine. However, sayingthat CM-1 and CM-2 are safe candy machines is not really saying enough,since the same is also true for CM-3. CM-3's �nite behaviors are just the �nitesequences of 1's and 2's, which trivially satisfy the required condition. AlthoughCM-3 is a safe candy machine, it is not a very interesting one. Therefore, wegive a stronger speci�cation below. In order to do this, we need an additionalde�nition.Since an automaton cannot block input actions, in discussing correct candy16



machine behavior it is helpful to consider certain `well-formedness' conditionson the interaction between the machine and its environment. For example, wemay want to restrict attention to interactions in which push and dispensationevents alternate strictly. De�ne a sequence of candy machine actions to be well-formed if it consists of alternating input and output (push and dispensation)actions, starting with an input action. Notice that CM-1 has behaviors, in factfair behaviors, that are not well-formed. For example, 11S11S... is a non-well-formed fair behavior of CM-1. This is because CM-1 does not have the powerto insure that its environment satis�es the well-formedness condition.A stronger set of requirements than SAFE-CM can be described by theschedule module LIVE-CM. LIVE-CM has the same action signature as CM-1.Its set of sequences are those that are safe candy machine sequences and thatin addition satisfy the following condition: `If the sequence is well-formed, thenevery 1 event is followed by a later S event, and every 2 event is followed bya later H or A event.'6 That is, every request for a candy bar is eventuallysatis�ed by a candy bar of the correct type.Let us consider which of our candy machines are live candy machines; thatis, which candy machines solve LIVE-CM. CM-3 is not a live candy machinebecause it has fair behaviors, such as the sequence consisting of the single event1, that do not satisfy this condition. (This sequence satis�es the well-formednesshypothesis, but does not satisfy the liveness conclusion.) On the other hand,CM-1 is a live candy machine, which we can prove as follows. Suppose not; thenthere is a fair behavior of CM-1 that is well-formed and that contains a pushevent that is not followed by any later dispensation event of the correct type.By well-formedness and the fact that CM-1 is a safe candy machine, the onlypossibility is that the sequence is �nite and ends with the given push event. Say,for example, that the push event is PUSH1. Then by the state characterizationgiven above, the state after the given schedule has button pushed = 1. Thenthe SKYBAR dispensation action is enabled in this state. But the de�nition ofa fair execution implies that no action of CM-1 can be enabled in the �nal state,which yields a contradiction. CM-2 is also a live candy machine, even thoughit has less nondeterminism than CM-1. The proof is similar to that for CM-1.Notice that while CM-1 and CM-2 both solve LIVE-CM, neither implementsLIVE-CM since there are �nite behaviors of both machines ending with thepush of a button that are not contained in LIVE-CM. Conversely, while it canbe shown that CUST-3 implements CUST-1, CUST-3 does not solve CUST-1since there are fair behaviors of CUST-3, such as the empty sequence, that arenot fair behaviors of CUST-1. In general, given an automaton A and a problemP , it is not the case that if A solves P then A implements P , nor is it the casethat if A implements P then A solves P .One might ask the technical question whether it might be reasonable toeliminate the well-formedness hypothesis in the live candy machine behavior6This can be formalized in terms of temporal logic.17



speci�cation. If we did this, then we would arrive at a stronger speci�cationfor a live candy machine, one that requires that the machine must always issuecandy sometime after each push, regardless of whether the pushes happen in awell-formed manner. While this might be a reasonable requirement for a candymachine, CM-1 does not satisfy it. For consider the (non-well-formed) behavior12H12H12H... of CM-1. This contains 1 events that are not followed by Sevents. However, it is a fair behavior of CM-1 since in�nitely often an actionfrom the single class fS;A;Hg of part(CM � 1) is performed. Consequently,CM-1 does not satisfy the proposed stronger speci�cation.As we have seen, there are many ways to argue that an automaton A solvesa problem P . We now turn our attention to two more general techniques.3.4.1 Proof Techniques: Modular DecompositionOne common technique for reasoning about the behavior of an automaton ismodular decomposition, in which we reason about the behavior of a compositionby reasoning about the behavior of the component automata individually.It is often the case that an automaton behaves correctly only in the contextof certain restrictions on its input. These restrictions may be guaranteed in thecontext of the composition with other automata comprising the remainder ofthe system, or may be restrictions de�ned by a problem statement describingconditions under which a solution is required to behave correctly. (Recall, forexample, the well-formedness conditions de�ned earlier for candy machines.) Auseful notion for discussing such restrictions is that of a module `preserving' aproperty of behaviors: as long as the environment does not violate this property,neither does the module.In practice, this notion is of most interest when the property is pre�x-closed,and when the property does not concern the module's internal actions. A setof sequences P is said to be pre�x-closed if � 2 P whenever both � is a pre�xof � and � 2 P. For example, the set of well-formed sequences de�ned forcandy machines is pre�x-closed. A moduleM (either an automaton or schedulemodule) is said to be pre�x-closed provided that �nbehs(M ) is pre�x-closed. Forexample, the schedule module SAFE-CM is pre�x-closed, and every automatonis pre�x-closed. Let M be a pre�x-closed module and let P be a nonempty,pre�x-closed set of sequences of actions from a set � satisfying �\ int(M ) = ;.We say that M preserves P if ��j� 2 P whenever �j� 2 P, � 2 out (M ), and��jM 2 �nbehs (M ).It is not hard to see, for example, that in this sense the candy machine CM-1 preserves well-formedness: although the customer may press a button twicewithout waiting for a candy bar to be dispensed, the candy machine dispensesa candy bar only if a button has been pressed since the last candy bar wasdispensed. In general, if a module preserves a property P, then the moduleis not the �rst to violate P: as long as the environment only provides inputssuch that the cumulative behavior satis�es P, the module will only perform18



outputs such that the cumulative behavior satis�es P. This de�nition, however,deserves closer inspection. First, notice that we consider only sequences � withthe property that ��jM 2 �nbehs(M ). This implies that we consider onlysequences � that contain no internal actions of M . Second, notice that werequire sequences � to satisfy only �j� 2 P rather than the stronger property� 2 P. Suppose, for example, that P is a property of the actions � at one oftwo interfaces to the module M . In this case, it may be that for no � 2 P and� 2 out(M ) is it the case that ��jM 2 �nbehs (M ), since all �nite behaviors ofM containing outputs include activity at both interfaces toM . By considering �satisfying only �j� 2 P, we consider all sequences determining �nite behaviorsof M that, at the interface concerning P, do not violate the property P.One can prove that a composition preserves a property by showing that eachof the component automata preserves the property:Proposition 8: Let fAigi2I be a strongly compatible collection of automataand let A = Qi2I Ai. If Ai preserves P for every i 2 I, then A preserves P.For example, since CM-1 and CUST-1 both preserve well-formedness, the com-position CM-1�CUST-1 does so as well.In fact, we can prove a slightly stronger result. An automaton is said to beclosed if it has no input actions. In other words, it models a closed system thatdoes not interact with its environment.Proposition 9: Let A be a closed automaton. Let P be a set of sequences over�. If A preserves P, then �nbehs (A)j� � P.In the special case that � is the set of external actions of A, the conclusionof this proposition reduces to the fact that �nbehs (A) � P. The proof of theproposition depends on the fact that � does not contain any ofA's input actions,and hence that if the property P is violated then it is not an input action of Acommitting the violation. In fact, this proposition follows as a corollary from thefollowing slightly more general statement: If A preserves P and in(A) \� = ;,then �nbehs(A)j� � P.Combining Propositions 8 and 9, we have the following technique for provingthat an automaton implements a problem:Corollary 10: Let fAigi2I be a strongly compatible collection of automatawith the property that A =Qi2I Ai is a closed automaton. Let P be a problemwith the external action signature of A. If Ai preserves �nbehs (P ) for all i 2 I,then A implements P .That is, if we can prove that each component Ai preserves the external be-havior required by the problem P , then we will have shown that the compositionA preserves the desired external behavior; and since A has no input actions thatcould be responsible for violating the behavior required by P , it follows that all�nite behaviors of A are behaviors of P .A similar technique follows from the following proposition:19



Proposition 11: Let fAigi2I be a collection of strongly compatible automata,and let fPigi2I be a collection of problems. If Ai solves Pi for every i, thenQi2I Ai solves Qi2I Pi.This says we can prove that the composition of the automata fAigi2I solves aproblem by proving that each component Ai solves a problem Pi and then prov-ing that the composition of the problems fPigi2I solves the original problem.For example, consider proving that every fair behavior of the composition ofCM-1 and CUST-1 is an in�nite well-formed sequence of actions in which eachdispensation action dispenses an appropriate candy. Let LIVE-CUST be theschedule module whose signature is the same as CUST-1's, and whose sched-ules are exactly those in which (i) the customer is not the �rst to violate well-formedness, and (ii) if the sequence is well-formed, then it is either in�nite or else�nite and ending with a push event. Then it is easy to see that CUST-1 solvesLIVE-CUST. We have already argued that CM-1 solves the schedule moduleLIVE-CM described earlier. So it su�ces to prove that every behavior of thecomposition of LIVE-CUST and LIVE-CM is an in�nite well-formed sequenceof actions in which each dispensation action dispenses an appropriate candy.This is not di�cult to show: well-formedness holds because neither componentis the �rst to violate it, appropriate responses follow from the speci�cation ofLIVE-CM, and the sequence is in�nite because neither component stops at itsown turn.3.4.2 Proof Techniques: Hierarchical DecompositionA second common technique for proving that an automaton solves a problem ishierarchical decomposition in which we prove that the given automaton solves asecond, that the second solves a third, and so on until the �nal automaton solvesthe given problem. One way of proving that one automaton A solves anotherautomaton B is to establish a relationship between the states of A and B anduse this relationship to argue that the fair behaviors of A are fair behaviorsof B. One helpful such relationship is a possibilities mapping, which we nowde�ne.We de�ne an extended step of an automaton A to be a triple of the form(s0; �; s), where s0 and s are states of A, � is a �nite sequence of actions of A,and there is an execution fragment of A having s0 as its �rst state, s as its laststate, and � as its schedule. (This execution fragment might consist of only asingle state, in the case that � is the empty sequence.) Suppose A and B areautomata with the same external action signature, and suppose f is a mappingfrom states(A) to the power set of states(B). That is, if s is a state of A thenf(s) is a set of states of B. The mapping f is said to be a possibilities mappingfrom A to B provided the following conditions hold:1. For every start state s0 of A, there is a start state t0 of B such thatt0 2 f(s0). 20



2. If s0 is a reachable state of A, t0 2 f(s0) is a reachable state of B, and(s0; �; s) is a step of A, then there is an extended step (t0; 
; t) of B suchthat(a) 
jext(B) = �jext(A), and(b) t 2 f(s).It is easy to show, for example, that there is a possibilities mapping f fromCUST-2 to CUST-1 that maps each state s of CUST-2 to the singleton setcontaining the state of CUST-1 that only contains the `waiting' variable of s.The existence of a possibilities mapping from A to B, together with addi-tional results relating the fair behaviors of A and B, can be used to prove thatA solves B. Some such additional results are given in [LT1] and [WLL]. For ex-ample, using our possibilities mapping from CUST-2 to CUST-1 we can provethat CUST-2 actually solves CUST-1. A straightforward proof can be baseddirectly on the de�nition of fair execution and the fact that for every state s ofCUST-2, some output action is enabled in s for CUST-2 exactly if some outputaction is enabled in the single state in f(s) for CUST-1.In cases in which we are only interested in �nite behaviors and not fairbehaviors, the following simple result is often useful.Proposition 12: Suppose that A and B are automata with the same exter-nal action signature. If there is a possibilities mapping from A to B, then Aimplements B.So, for example, the existence of the possibilities mapping f from CUST-2to CUST-1 implies that CUST-2 implements CUST-1.4 Choosing a Ring LeaderIn this section we sketch a more sophisticated example than the candy machinesstudied in the previous section, the election of a leader in a ring of processors.This example exhibits much more interesting concurrent activity than the candymachine example. It shows how one can use the model to reason about inter-esting concurrent algorithms, and suggests how the model can be used to carryout complexity analysis and prove lower bound and impossibility results.We assume a ring of n processors, each starting with a unique identi�erchosen from a universal totally ordered identi�er set I. Each processor cancommunicate with each of its neighbors in the ring, using a pair of one-waychannels. The processors do not know the size of the ring, nor the speci�csubset of I that is actually being used as identi�ers. The object is for theprocessors to choose a unique leader from among themselves. This problem hasbeen widely studied in the area of distributed algorithms.21



Each processor and each communication channel is modeled as an I/O au-tomaton. Each channel automaton has input actions of the form SEND(M) andoutput actions of the form RECEIVE(M).7 Its state is a multiset, consisting ofthose messages that have been sent but not yet received; initially, the multisetis empty. The transition relation is as follows:SEND(M) E�ect: messages  messages [ fMgRECEIVE(M) Precondition: M 2 messagesE�ect: messages  messages - fMgThe partition puts all output actions (all RECEIVE actions) in the same equiv-alence class; this has the e�ect of hypothesizing that if there is a message to bedelivered, then some message is eventually delivered.Each processor is also modeled as an I/O automaton, having SEND outputactions and RECEIVE input actions. In addition, it has a LEADER outputaction by which it can announce that it has been chosen as the leader processor.It may also have internal actions.A collection of channel and processor automata is composed into a singlesystem automaton, and then the hiding operator is used to produce a newsystem automaton in which the only external actions are LEADER actions. Theproblem to be solved by the system can be described by the schedule modulewhose external action signature has no input actions and only LEADER outputactions, and whose set of schedules consists of the set of sequences of lengthexactly 1. That is, in a correct behavior, exactly one LEADER event occurs.We now describe a particular algorithm for solving this problem, based onthat of LeLann [Le] and Chang and Roberts [CR]. Each processor sends itsidenti�er clockwise around the ring. When a processor receives an identi�er, ifthe identi�er is less than its own, the processor discards the received identi�er.If it is greater than its own, the processor passes the received identi�er clockwise.If it is equal to its own, the processor performs a LEADER output action.In more detail, the state of a processor with identi�er i has a variable `pend-ing' which holds a subset of I, initially fig. It also has a variable `leader-status',which takes on values from f`unknown', `elected', `announced'g and has initialvalue `unknown'. The actions are de�ned as follows:7Since the model uses a global naming scheme, the actual action names would have to besubscripted with information identifying the particular channel.22



RECEIVE(j), j 2 I E�ect: if j > i then pending  pending [ fjgif j = i then leader-status  `elected'SEND(j), j 2 I Precondition: j 2 pendingE�ect: pending  pending - fjgLEADER Precondition: leader-status = `elected'E�ect: leader-status  `announced'The partition puts all output actions in the same equivalence class. It is not hardto carry out a correctness proof of this algorithm using the model. The safetyproof (that is, that no more than one LEADER event ever occurs) involvesproving an invariant assertion relating the identi�ers that appear in di�erentplaces in the ring, both as processor id's and in messages. More speci�cally, itmust be shown that if i < j, then a processor with identi�er i, a processor withidenti�er j, and a message containing identi�er i cannot appear in that order,reading clockwise around the ring.In order to prove liveness (that is, that some LEADER event eventuallyoccurs), another invariant is used, expressing conservation of the message cor-responding to the maximum identi�er. Then a `variant function' is de�ned,describing the progress that has been made toward election of a leader: for eachstate, the value of the variant function in that state is the sum of the distancesof all id's back to their originating processors, measured in a clockwise direc-tion. At every point where the value of the variant function is nonzero, anyaction that occurs (other than the LEADER action) can be shown to decreaseits value. Furthermore, at every point where the value of the variant functionis nonzero, some action is enabled. Thus, the function value eventually reacheszero, and hence a LEADER event eventually occurs.The model can be used to carry out complexity analysis. For any executionof the algorithm, the number of SEND or RECEIVE events can be used as ameasure of the amount of communication; it is not hard to prove that 2n2 isa worst-case upper bound on this number. Also, for any execution, time canbe measured as follows. Assign a `real time' to each event, as large as possible,subject to the requirement that for each class of the partition, the time betweensuccessive `turns' for that class is at most 1. Then the di�erence between thereal time assigned to the LEADER event and the start time can be taken as atime measure for the entire execution. Since 2n2 is a worst-case upper boundon the number of SEND and RECEIVE events, it is not hard to see that 2n2+1is a worst-case upper bound for this time measure.8The given algorithm is not optimal in its communication requirements; for8The standard analysis of this algorithm attains an O(n) upper bound, by assuming allmessages are delivered within time 1 regardless of the congestion of the message channels. Wedo not assume this, and so obtain a quadratic bound.23



example, [P] contains an algorithm with an O(n logn) upper bound. The algo-rithm in [P] can also be formalized and analyzed using our model. Also, [Bu]proves an 
(nlogn) lower bound on the worst-case amount of communication;this result also is describable in our model.5 Other ApplicationsThe model has been used to describe and reason about many di�erent kinds ofalgorithms, both in systems applications and in the algorithms research litera-ture. In this section, we describe some of these uses.5.1 Network Resource AllocationOur �rst use of the model was for describing network resource allocation algo-rithms. [LT1] presents a network arbiter design and proves its correctness usingI/O automata. The algorithm is based on a resource performing a treewalk ofa spanning tree of the network graph. The conditions proved include safetyproperties (mutual exclusion) and liveness properties (no lockout).The correctness proof is done in three levels of abstraction. The problemde�nition is presented as a high-level schedule module, in which inputs arerequests and returns and outputs are grants, all for a particular resource. Theintermediate level is a description of the algorithm in terms of graph theory,formalized as an automaton together with a restricted set of executions. Finally,the complete distributed algorithm is described as a composition of automataat the lowest level. It is shown that each level solves the level above it, and thusthat the distributed algorithm solves the arbiter problem.Most of the interesting reasoning about the algorithm is done at the interme-diate level, in terms of graphs. This reasoning is close to the intuitive reasoningone would normally use to understand and explain the algorithm. The inter-esting work involves showing that the intermediate level solves the high-levelproblem statement. Showing that the lowest level solves the intermediate levelis a long but straightforward case analysis.[LT1] also contains an analysis of the time complexity of the algorithm,demonstrating an O(n) worst-case upper bound, where n is the number of nodesin the network, and an O(d) worst-case upper bound when requests do notoverlap, where d is the diameter of the network. The time analysis proof followsthe proof of `no lockout' very closely, suggesting that there may be a moregeneral correspondence between liveness proofs and proofs of upper bounds ontime.We have also used the model to study other network resource allocation al-gorithms. For example, in [LW], we give an algorithm for the `Drinking Philoso-phers' problem: in this problem, users request sets of resources by name, withthe same user possibly requesting di�erent sets of resources each time it makes24



a request. [CM2] contains an algorithm for this problem, constructed by modi-fying a particular Dining Philosophers algorithm. Our algorithm, based on theone in [CM2], is described as a composition of automata that solve the Din-ing Philosophers problem and automata that carry out additional bookkeeping.Our use of composition allows us to use any Dining Philosophers algorithm asa `subroutine;' some choices can be shown to yield better time performance forthe resulting Drinking Philosophers algorithm than is yielded by the algorithmof [CM2].5.2 SynchronizersIn [A], Awerbuch describes a synchronizer algorithm| a distributed algorithmdesigned to convert programs written for synchronous networks into versionsthat can be used in asynchronous networks. In this algorithm, the networknodes are partitioned into clusters, and di�erent strategies are used to synchro-nize within clusters and among clusters. The algorithm is clever, but complex,and is presented without formal proof. In [FLS], we provide a new presenta-tion and a proof for Awerbuch's algorithm. The algorithm is decomposed intoseparate automata for intercluster and intracluster synchronization. The inter-cluster synchronizer is further decomposed into a piece executing at each node.In fact, Awerbuch's actual program for each node is described as the composi-tion of two automata, one participating in intercluster and one in intraclustersynchronization.5.3 CommunicationIn [WLL], we present a correctness proof for the intricate distributed minimumspanning tree algorithm of [GHS]. The techniques used are based on the hi-erarchical structure used in [LT1]. However, instead of a linear hierarchy ofalgorithms, we use a lattice of algorithms. The complete algorithm has severaldi�erent projections onto higher level `subalgorithms', where each subalgorithmrepresents one task performed by the main algorithm. The proof involves show-ing that the subalgorithms all solve the minimum spanning tree problem andthat the full algorithm `solves' all of the subalgorithms. In showing the latter,we make use of many properties of the separate subalgorithms. We develop thebasic theory needed for lattice-structured proofs; some work on a similar theoryappears in [LaS].Another proof of the correctness of the algorithm of [GHS] appears in [CG].This proof uses techniques closely related to the notion of communication-closedlayers [EF], and is based on a model which is essentially the same as the I/Oautomaton model.More recently, we have used I/O automata to characterize correct behaviorfor physical channels and data links [LMF]. We prove that certain types of datalink behavior can be implemented in terms of certain types of physical channels,25



while other types cannot. Preliminary results show that interesting data linkbehavior seems to require at least some stable storage (whereas previous workshows that a single stable bit at each end su�ces). Also, under certain technicalassumptions, the data link protocol must use unbounded size headers to achievereasonable behavior, in case the underlying physical channels are not FIFO.5.4 Concurrency ControlWe have been using the model as the formal foundation for a new theory ofatomic transactions. Transactions arose originally in database systems, butare now used as a basic construct for general data-oriented distributed pro-gramming. Use of transactions in general-purpose languages has required theirextension to allow nesting; nested transactions permit more concurrency thansingle-level transactions, and permit localized handling of failures.In [LM], we use I/O automata to model nested transactions, state the cor-rectness conditions that they must satisfy, describe an exclusive locking algo-rithm for nested transactions, and carry out a correctness proof. In later papers,we extend this treatment to more general locking algorithms and timestamp-based algorithms. We also prove correctness of algorithms for management of`orphan' transactions | transactions that continue to execute even though someancestor in the transaction nesting structure has been aborted. We are able touse I/O automata to decompose the orphan algorithms so that concurrencycontrol and recovery are handled by one module, and orphan management ishandled by another. Correctness properties for the two kinds of modules areproved separately, and then combined to yield correctness properties for thecomplete algorithm.We have had similar success in describing correctness of algorithms for repli-cated data management. We are able to decompose certain replicated dataalgorithms into modules that handle concurrency control and recovery at thelevel of individual data replicas and modules that implement the data replicationalgorithm. A book [LMWF] is now in progress, describing this theory.Although the model has proved to be a very usable tool for describing theseresults, its full power has not yet been used in this work. In particular, only�nite executions have so far been considered, and only safety properties havebeen proved.5.5 Shared Atomic ObjectsA topic of recent research interest has been the study of wait-free implementabil-ity of concurrently-accessible atomic objects in terms of other atomic objects.An object is said to be atomic, roughly speaking, if it responds to concurrentinvocations of operations as if the operations were executed indivisibly at sometime between the invocation and response times. So far, most of the work has26



focused on read-write registers for use by various numbers of readers and writers.Many of the algorithms are very complex and di�cult to understand precisely.The paper [La2], which initiated this research area, contains an interestingformal model based on partial orderings of operations. However, most of thesubsequent papers do not use Lamport's model, but instead include their ownmodels and de�nitions. The multiplicity of models has contributed to makingthe papers very di�cult to read.In [Bl], Bloom uses the I/O automatonmodel as the basis for stating correct-ness conditions for atomic read-write registers, for describing a new algorithm(which implements 2-writer n-reader registers from 1-writer n+1-reader regis-ters) and for proving the algorithm correct. He describes the solution as acomposition of automata for each of the reader and writer protocols and au-tomata for the 1-writer registers used in the implementation. The combinationis shown to implement the desired 2-writer register. The work is rigorous andclear; we hope that a similar presentation will help clarify some of the otheralgorithms.New work by Scha�er [S] uses the I/O automatonmodel to point out errors ina published register algorithm, modify the algorithm, and prove the correctnessof the modi�ed algorithm. New work by Herlihy on impossibility results foratomic object implementations [He] also uses the I/O automaton model.5.6 Data
owIn [LS], we formulate the semantics of data
ow networks in terms of I/O au-tomata. We de�ne the notion of `determinacy' (that is, that the sequence ofoutput actions is uniquely de�ned by the sequence of input actions), a notionthat is considered important in data
ow computation. We state a theorem thatexpresses Kahn's main result about data
ow networks [K] | that the semanticsof networks of determinate components can be uniquely de�ned using the least�xed point operator applied to certain equations involving behavior of the in-dividual components. We then prove a theorem showing the equivalence of ouroperational semantics and Kahn's �xed-point semantics. In fact, the work of[LS] generalizes Kahn's work since the determinate I/O automata used in [LS]to model processes compute all continuous stream functions whereas Kahn'sprocesses compute a more restricted class of functions.5.7 Real-Time ComputingFinally, some recent work [TMM] suggests some ways in which time can beintroduced into the I/O automaton model. Based on these de�nitions, Lynchhas suggested [Ly] some preliminary ideas on how the I/O automaton modelcan be used to model and reason about real-time computing.27
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