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Abstract

The combination of two security protocols, a simple
shared-key communication protocol and the Diffie-Hellman
key distribution protocol, is modeled formally and proved
correct. The modeling is based on the 1/O automaton model
for distributed algorithms, and the proofs are based on in-
variant assertions, simulation relations, and compositional
reasoning. Arguments about the cryptosystems are handled
separately from arguments about the protocols.

1. Introduction

Security protocols must satisfy important correctness re-
quirements, which means that it is important to be able to
think about them clearly and precisely. But they can also
be large and complicated, which makes such reasoning dif-
ficult. One needsways of decomposing thetask into clearly
separable pieces. Thisincludes separating different types of
concerns, for example, distributed algorithmsissues, cryp-
tosystem computability issues, probabilistic issues, and is-
sues of accurate modeling of reality. It asoincludesdecom-
posing the protocol susing thenormal techniquesfor decom-
posing distributed a gorithms, based on level s of abstraction
and parallel composition of interacting components.

This paper describes an experiment in modeling and an-
alyzing security protocols, using I/O automata [14, 12] and
the usual techniques that go along with them—a combina-
tion of invariant assertions, simulation relations, and com-
positional reasoning using traces. Theaim of the experiment
is to explore how these methods can help in decomposing
the task of reasoning about security protocols. This model
and these methods have been used successfully for decom-
posing the reasoning about many standard distributed algo-
rithms (see, eg., [12, 16, 13]), and about severa distributed
system designs(seg, e.g., [6, 7,9, 10]), so itisworth discov-
ering what they can do for security protocols.

The experiment involves combining simple shared-key
communication and key distribution protocolsto implement

private communication. In the case we describe in detail
here, simple Diffie-Hellman key distribution [4] is used,
the protocolstolerate only passive eavesdroppers, and only
safety propertiesare considered. Inanother casein progress,
discussed briefly here, the more complex Diffie-Oorschot-
Weiner key distribution protocol [5], which tolerates adver-
saries that can intrude more actively, is studied. Later work
will includeliveness guarantees, formulated interms of tim-
ing properties.

Our main guideline in studying these protocolsis to try
to decompose the reasoning as much as possible, identify-
ing sub-problemsthat can be treated separately. (Although
the examples in this paper are simple enough to be under-
stood informally, we believe that understanding how best
to decompose them is a good first step toward understand-
ing how to decompose more complex examples.) The han-
dling of each piece should be appropriately abstract. For
example, in discussing protocol issues, cryptosystem com-
putability i ssues should be summarized by assumptionssay-
ing that certain valuesare not “easily computable” from oth-
ers; number-theoretic arguments about why these values are
not (likely to be) easily computable should be treated at a
lower level, as mechanisms to achieve the more abstract
non-computability guarantees. Probabilistic issues should
be treated separately, as far as possible. After dividing up
the problemsin thisway, we expect that the main benefit of
the 1/0O automaton-based methods will be in clarifying the
distributed algorithm issues. Cryptosystem issues, for ex-
ample, may be better treated by other means, for example,
the inductive techniques of Paulson [15]. However, a gen-
eral framework should providearigorousway of combining
the different types of issues.

Intreating thedistributed a gorithmsthemselves, wesim-
ilarly try to decompose them as much as possible. The most
obvious form of decomposition involves treating the two
sub-protocol s separately, then trying to paste them together
using general theorems about automaton composition. An-
other form involves giving very high level automaton spec-
ifications for services, giving separate descriptions of im-
plementing a gorithms, and showing, by means of simula-



tion relations, that the algorithms implement the services.
Still another form involves first studying a protocol using a
natural, simple cryptosystem, and later trying to show that
its correctness properties extend to modified versions that
usemore el aborate cryptosystems. And still another form of
decomposition involves combining adversaries that interact
with separate protocolsinto asingle “colluding” unit.

Because I/O automata are composed by means of shared
actions, and because we are considering only safety proper-
tiesinthispaper, itisnatural to describe externa behavior of
automatain terms of sets of traces (i.e., sequences of exter-
nal actions). The simple trace semantics yields simple and
powerful projection and pasting theorems (seg, e.g., [12], p.
211), for the behavior of compositions of automata. How-
ever, in order to enable compositional reasoning about par-
ticular kinds of properties, the traces must contain all the
information relevant for those properties. For example, in
treating fault-tol erance properti essuch as wait-freeter mina-
tion and f-failure termination compositionaly, in terms of
traces, it isconvenient to allow the traces to contain specia
fail input actionsthat signal the occurrence of failure events
(see, eg., [12, 13]). Sometimesit is convenient to consider
different strengthsof failureactions(e.g., the good, bad, and
ugly failure actionsin [7]). Also, in order to treat timing
properties compositionaly, it is useful to introduce timing
information into the traces.

Inthe case of security protocols, important propertiesin-
volve lack of knowledge. To treat this compositionaly, one
should include something about knowledge in the traces.
Our approach hereisto giveexplicit learn input actionsand
reveal output actions by which a component can learn new
information and revea its knowledge, and to constrain the
component’s behavior in terms of these actions.

Specifically, the paper contains the following. Section
2 contains math preliminaries. Section 3 presents a model
for cryptosystems, which describe the data types encoun-
tered in the protocols, including (cleartext and ciphertext)
messages, keys, and lower-level data from which keys are
constructed. This data model aso describes the functions
that manipulate data, and the reachability (computability)
relationships that say which values can be computed eas-
ily from which others. This model is similar to others in
the literature. Section 4 then describes some “standard”
types of automata that model certain components appearing
in many systems—service environments, insecure channels,
and eavesdroppers.

Section 5 gives I/O automaton specifications for the two
main security services considered in this paper—private
communication and key distribution. The specification for
private communication is abstract: it talks only about com-
munication and revealed information, and not about keys.
Section 6 models and analyzes the implementation of pri-
vate communication using an abstract key distribution ser-

vice, and Section 7 treats the Diffie-Hellman implementa-
tionof key distribution. These protocolsuse particular cryp-
tosystems, and the protocol proofsassume thelimitationson
easy computability expressed by those cryptosystems. The
proofs are based on invariant assertions and on simulation
relations relating the protocols to the specifications for the
services they are intended to implement.

Section 8 shows what isinvolved in moving from a de-
scription of each of the two individual protocolsin terms of
its own natural cryptosystem to a description in terms of a
common, richer cryptosystem. For exampl e, the shared key
protocol is initialy analyzed in terms of abstract, unstruc-
tured keystaken from a simple “shared-key cryptosystem”.
However, when one combines this protocol with Diffie-
Hellman, itisnecessary to consider aversion that usesstruc-
tured keys, taken from aricher “structured-key cryptosys-
tem”.

Section 9 puts the pieces together, to get an implemen-
tation of private communication that uses shared-key com-
munication with Diffie-Hellman key distribution. Most of
thisis accomplished automatically from the general projec-
tion and pasting theorems for 1/0O automata; specia argu-
ments must be made for combining the insecure channels
used in the two protocols, and for combining the two adver-
sariesinto one. Section 10 givesafinal discussion. Because
of limited space, most of the proofs have been omitted from
thisversion; the rest will appear in atechnical report [].

Related work: Of theformal work on modeling and ana-
lyzing cryptographic protocols, the efforts that seem closest
inspirittooursarethoseof Abadi and of Paulson. Abadi has
developed a framework for formal study of composable se-
curity protocols[2, 1], and Paulson has devel oped inductive
reasoning methods, which appear val uable both for proving
assertions and for determining cryptosystem reachability re-
lationships[15]. Othershave stated and proved invariant as-
sertions for security protocols, though we do not know of
other work on simulation relations for such protocols. We
also do not know about other work using traces with explicit
learn and reveal actions as an approach to compositional
reasoning about security protocols. Wing and Cheiner are
currently modeling security protocol susing the approach of
this paper, including verifying assertions using the PV S the-
orem prover.

Acknowledgments: | thank Ron Rivest for getting me
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sions about this project. Martin Abadi, Oleg Cheiner, But-
ler Lampson, Victor Luchangco, Anna Lysyanskaya, Dalia
Malkhi, Mike Reiter, and Jeannette Wing provided useful
comments and encouragement.



2. Mathematical Preliminaries

A denotes the empty string. We use I/O automata as de-
fined in[12]. Since we do not deal with livenessin this pa-
per, the tasks are irrdlevant. If A and B are I/O automata
with the same externa signature, then we say that A imple-
ments B provided that every trace of A isalso atrace of B.
Invariantsand simul ation relations are defined, for example,
in[12].

3. DataMod€

This section gives a basic model for the data types used
in the protocols.

3.1. Cryptosystems

A cryptosystem signature S consists of:
e TNg,aset of type names.
e I'N g, aset of function names.
e domaing, amapping from FN s to (TN g)*.
e rangeg,amapping from FN s to T'Ng.
e INg C FNg,aset of easy function names.

A congtant name is a function name f such that
domaing(f) = A. Let CNg C FNg denote the set
of constant names of C. We omit the subscript S where no
confusion seems likely. A cryptosystem € consists of:

e A cryptosystem signature sig.. We write 7'N¢ as
shorthand for T'N 4, , €tc.

e setc, amapping from 7'N ¢ to digoint sets.

e fun., amapping from F'N ¢ to functions, We require
that if domaine(f) = (t1,...,t5) and range.(f) = ¢
then funs(f) : setc(t1) x -+ X sete(tr) — sete(t).

We write setc for [ J, ¢y, setc(t). We omit the subscript
C where no confusion seems likely. If X U {y} C setc, we
say that y is easily reachable from X in C provided that y
is obtainable starting from elements of X, by applying only
functions denoted by function namesin EN¢.

3.2. Term Cryptosystems

If S isa cryptosystem signature, then the terms of S, and
their types, are defined recursively, as follows:

1 Ifc € CNg and rangeg(c) = t, then c isaterm and
typeg(c) =t.

2. If f € FNg, domains(f) = ti1,ta,...,ts, Where
k > 1, rangeg(f) = t,and ey, ..., e are terms of
typesty, . .., t;, respectively, then the expression e =
fler,...,ep)isaterm, and types(e) = t.

Let Termsg(t) denote the set of terms of S of typet. Let
Termss denotethe set of al termsof S.

Some of the cryptosystems we consider are best under-
stood as term algebras derived from cryptosystem signa-
tures. In these cases, thevalues of the varioustypes are, for-
mally, equivalence classes of terms:. Anequivalencereation
R on Termsg issaid to be a congruence provided that the
following hold.

1. If eRe’ then types(e) = types(e’).

2. Supposethat f € FN s, domains(f) = t1,ta,. .., s,
where k > 1, ranges(f) = t, e1,..., e areterms
of typesty, . .., tx, respectively, e}, . . ., e}, aretermsof
typesty, ..., t, respectively, and forall 7, 1 < i < k,
e;Rel. Then f(eq,...,ep)Rf(e1, ..., ex).

Let S be a cryptosystem signature and R a congruence on
Termss. Then theterm cryptosystem € for § and R isthe
unique cryptosystem satisfying:

o sig. = S.

o Ift € TN¢,thensete(t) istheset of al R-equivalence
classes of terms of typet in Termsc.

o If f € FN¢, domaine(f) = (t1,...,1;) and
rangec(f) = ¢ then funs(f) is the function from
sete(ty) x -+ X sete(ty) 1o sete(t) defined as fol-
lows. Suppose that e; € sete(t;) foral i, 1 <
i < k. Then fune(f)([e1]r,- .-, [ex]r) is defined to
be[f(ei,...,ex)]r. (Since R isacongruence, thisis
well-defined.)

We use the notation R for the congruence relation R of C.
If e € Termsc, then wewrite [e]¢ for the equivaence class
of e withrespectto R¢. Also,if E C Termse thenwewrite
[E]c for the set of equivalence classes [¢]¢ fore € F.

3.3. Cryptosystem Examples

In this subsection we give the cryptosystems used later
in the paper. The first kind of cryptosystem, a shared-key
cryptosystem, is used in shared key communication. The
second kind, a base-exponent cryptosystem, is used in the
Diffie-Hellman protocol. The third kind, a structured-key
cryptosystem, is essentially acombination of thetwo others.
It is used when the two protocol s are combined.



3.3.1 Shared-key cryptosystems

A shared-key cryptosystem C is aterm cryptosystem. The
signature S = sig. isdefined asfollows. T'N s consists of
twotypenames: “ A" for messagesand “ K" for keys. F'N s
consists of:

e enc, With domain(enc) = “M","K") and
range(enc) = “M".

o dec, with domain(dec) =
range(dec) ="“M".

(HM” , H[(H) and

e MConsts, a set of message constant names, with
range(m) = “M" foral m € MConsts.

e K(Constg, a set of key constant names, with
range(k) = “K" foral k € KConsts.

ENg = {enc, dec}. Therdation R isdefined by means of
all equations of the form:

o dec(enc(m, k), k) = m, wherem, k € Termss,
type(m) = “M", type(k) ="K".

Specifically, we want the smallest congruence relation on
Termsgs that equates all terms that are related by the given
equations.

3.3.2 Base-exponent cryptosystems

A base-exponent cryptosystem C isaterm cryptosystemin
which, letting S = sig.: T'N s consists of two type names,
“B” for bases and “ X" for exponents. F'N s consists of:

o exp, with domain(exp) = (“B",“X") and
range(exp) = “B".

e BConsts, a set of base constant names, with
range(b) = “B” foral b € BConsts.

e XConstlg and XConst2s, two digoint sets of ex-
ponent constant names, with domain(z) = A and
range(x) =" X" fordl x € XConstl s U XConst2s.

ENs = {exp} U BConsts. Therdation R is defined by
means of all equations of the form:

z),whereb, z,y €
typ ( )_uxn

Define B2s to be the st of al terms of the form
exp(exp(b,x),y), whereb € BConsts, x € XConstlg
andy € XConst2s. Anaugmented base-exponent cryp-
tosystem is a base-exponent cryptosystem together with a
distinguished element 605 of BConsts.

o cxp(exp(b,z),y) = exp(exp(b,y),
Termsg, type(b) = “B”, type(x) =

3.3.3 Structured-key cryptosystems

A structured-key cryptosystem isacombination of ashared-
key cryptosystem and a base-exponent cryptosystem, where
certain terms of the base-exponent cryptosystem are iden-
tified with the keys. A structured-key cryptosystem C is a
term cryptosystem in which, letting § = sug,: TN s con-
sistsof thetypenames“ A", “ B”,and “X”. F'N s consists
of:

o enc, With domain(enc) = (*M",“B") and
range(enc) = “M".

o dec, with domain(dec) = *M",“B") and
range(dec) ="“M".

o cxp, with domain(exp) = “B",“X") and

range(exp) = “B".

e MConsts, a set of message constant names, with
range(m) = “M" foral m € MConsts.

e BConsts, a set of base constant names, with
range(b) = “B” fordl b € BConst.

o XConstls and XConst2gs, two digoint sets of expo-
nent constant names, with range(z) = “X” for all
x € XConstls U XConst2s.

ENs = {enc, dec, exp} U BConsls. Therelation R isde-
fined by means of al equations of the form:

o dec(enc(m,b),b) = m, where m, b € Termss,
type(m) = “M", type(b) =“B".

z), whereb, z, y €
( )_uxn

o cxp(exp(b,z),y) = exp(exp(b,y),
Termsgs, type(b) = “B”, type(x) = typ

Once again, we write B2 s for the set of terms of the form
exp(exp(b,x),y), whereb € BConsts, + € XConstls,
andy € XConst2s. An augmented structured-key cryp-
tosystem is a structured-key cryptosystem together with a
distinguished element 60s of BConsts.

4. Some Generally-Useful Automata

In this section, we give automaton models for some sys-
tem componentsthat will appear in many settings: environ-
ments for security services, insecure channels, and eaves-
droppers. They are presented in a parameterized fashion so
that they can be used in different contexts. We model these
components as automata (rather than, e.g., by trace proper-
ties) for uniformity with the way we will model algorithms
and system specs, and because thismakes it possibleto rea-
son about them assertionally.



4.1. Environment Automata

Hereweassumethat I/ isauniversal set of datavalues, A
isan arbitrary finite set of adversary ports, that is, locations
where information can be communicated to the adversary,
and N C U. The environment automaton Env(U, A, N')
models any entities other than the channels from which an
eavesdropper may learn information. It says that the envi-
ronment is capable of communicating elements of U/ at any
adversary porta € A, but infact does not communicate any
elements of V.

Env(U, A, N):
Signature:

Input: Output:
None learn(u)a,u EU,a € A

States:
No variables
Transitions:
learn(u)a
Precondition:
ug N
Effect:

4.2. Insecure Channed Automata

Here we assume that / isauniversal set of data values,
P isan arbitrary finite set of client ports, and A is an arbi-
trary finite set of adversary ports. The insecure channel ad-
mits send and receive actionsfor all elements of U/ and also
has eavesdrop output actions, by which informationin tran-
Sit passes to an outsider. The insecure channel alows any
message in transit to be communicated to an outsider.

IC(U, P, A):
Signature:

Input:
IC-send(u)p,q.u €U,p, g € P,p#gq

Output:
IC-receive (u)p,q,u €U, p,g € P,p# ¢
eavesdrop (u)p,q,a, v €U, p,q EP,p#£ qa € A

States:

foreveryp,g € P,p # ¢
buffer (p,q), amultiset of U, initially empty

Transitions:
IC-send(u)p,q eavesdrop (u)p,q,a

Effect: Precondition:
add u to buffer(p, q) u € buffer(p,q)

Effect:
IC-receive (u)p,q none
Precondition:
u € buffer(p,q)
Effect:

remove one copy of x
from buffer(p, q)

4.3. Eavesdropper Automata

Here we assume that C is a cryptosystem, P is an arbi-
trary finite set of client ports, and A isan arbitrary finite set
of adversary ports. We define a model for an eavesdropper,
as a nondeterministic automaton Eve(C, P, A). Eve Sim-
ply remembers everything it learns and hears, and can re-
veal anything it has, at any time. It does this by maintain-
ingavariable has, initidly §. Thevalueof has may change
only inrestricted ways: Namely, when eavesdrop(u), 4.4 OF
learn(u), occurs, u gets added to has. When an internal
compute actionoccurs, thevaueresulting from applyingan
easy function (onein EN¢) tovauesin has may be added
to has. Werestrict the reveal(u) output so that v € has,
that is, Eve can only report avalue that it has.

Fve(C, P, A):
Signature:
Input:
eavesdrop (u)p,q,a,u € sete,p,q E P,p# g a € A
learn(u)a, u € setc,a € A

Output:
reveal(w)a, u € setc,a € A

Internal:
compute(u, f)a, f € ENc,a € A

States:
has C setc, initialy §

Transitions:

eavesdrop (u)p,q,a reveal(u)q
Effect: Precondition:

has := has U {u} u € has
Effect:
learn(u)a none
Effect:
has := has U {u} compute(u, fa
Precondition:
{ug,...,ux} C s.has
u=f(ui,...,ug)
Effect:

has := has U {u}
5. The Services

In this section, we describe the two services that are im-
plemented by the protocol sin thispaper. They are described
as automata, which is convenient for assertiona reasoning.
The use of input and output actions provides convenient
ways of composing these automata with others, and of de-
scribing what is preserved by implementation rel ationships.
For simplicity, we writethese specificationsto describe only
safety properties, although the same methods can be used to
handl e liveness properties, formulated as time bounds (see,
eg., [11, 12]).



5.1. Private Communication

This section contains a specification of the problem of
achieving private communication among the members of a
finite collection P of clients. The specification expresses
three properties: (1) only messages that are sent are deliv-
ered, (2) messages are delivered at most once each, and (3)
none of the messages isreveaed by an “adversary”. Wede-
scribe the problem using a high-level 1/0 automaton speci-
fication PC (U, P, M, A), whereU isauniversal set of data
values, P isan arbitrary finite set of client ports, M C U is
a set of messages, and A isan arbitrary finite set of adver-
sary ports. This specification does not mention distribution
or keys; these aspectswill appear inimplementationsof this
specification, but not in the specification itself. The specifi-
cation simply describesthe desired properties, as an abstract
machine. Asusual for automaton specifications, the proper-
ties, listed separately above, areintermingledin one descrip-
tion.

PC(U, P, M, A):
Signature:

Input:
PC-send(m)p,q,m € M,p,q € P,p#q

Output:
PC-receive(u)p,qou €U, p,g € P,p#q
reveal(u)a,u € U,a € A

States:

for every pairp,q € P,p # q:
buffer (p,q), amultiset of M

Transitions:
PC-send(m)p,q reveal(u)q
Effect: Precondition:
add m to buffer(p, q) uw g M
Effect:
PC-receive (u)p,q none
Precondition:
u € buffer(p,q)
Effect:

remove one copy of x
from buffer(p, q)

The first two properties listed above, which amount to at-
most-once delivery of messages that were actually sent, are
expressed by the transition definitions for PC-send and
PC-receive. Thethird property, privacy, isexpressed by the
constraint for reveal.

5.2. Key Distribution

Thisis a drasticaly smplified key distribution service,
which distributes a single key to several participants. We
do not model requests for the keys, but assume that the
service generates the key spontaneously. The simplified

key distribution problem is specified by the automaton
KD(U, P, K, A),whereU isauniversa set of data values,
P isan arbitrary finite set of client ports, X' C U isaset of
keys, and A isafinite set of adversary ports.

KD(U, P, K, A):

Signature:
Input: Internal:
none choose-key
Output:

grant(u)p,u €U, p € P
reveal(u)a,u € U,a € A

States:

chosen-key,anelementof K u {L},initialy L
notified C P, initialy @

Transitions:
choose-key reveal(u)q
Precondition: Precondition:
chosen-key = L u g K
Effect: Effect:
chosen-key 1= none
choosek € K
grant(u)p
Precondition:

chosen-key # L
u = chosen-key
p & notified
Effect:
notified :=
notified U{p}

6. Implementing Private Communication us-
ing Shared Keys

Thissection describes astrai ghtforward shared-key com-
munication protocol. The protocol simply usesa shared key,
obtained from a key distribution service, to encode and de-
code messages. Throughout the section, we assume that C
is a shared-key cryptosystem, P isaset (of clients) with at
least 2 elements, and A is a nonempty finite set (of adver-
saries).

6.1. The Encoder and Decoder

We define parameterized encoder and decoder automata,
parameterized by the shared-key cryptosystem C, the set P
of clients, and elementsp, ¢ € P, p # ¢. Notethat, inthe
codefor IC-send(u), we are using the abbreviation enc for
fung(enc)—that is, we are suppressing mention of the par-
ticular cryptosystem C.

Ence(C,P), 4, Wherep, g e P,p# q:
Signature:



Input:
PC-send(m)p,q, m € [MConstc]
grant(u)p, u € setc

Output:
IC-send(u)p,q, u € sete

States:

buffer, amultiset of elementsof [M Constc], initially empty
shared-key € [KConstc] U {L}, initialy L

Transitions:
PC-send(m)p,q grant(u)p
Effect: Effect:

add m to buffer if w € [KConstc] then
shared-key := u
IC-send(u)p,q
Precondition:
m isin buffer
shared-key # L
u = enc(m, shared-key)
Effect:
remove one copy of m
from buffer

More-or-less symmetrically, we have:

Dec(C,P), 4, Wherep, g€ P,p#£q:
Signature:
Input:

IC-receive(u)p,q, v € sete
grant(u)q, u € sete

Output:
PC-receive(u)p,q, u € sete

States:

buffer, amultiset of elementsof setc (“M”), initially empty
shared-key € [KConstc]u {L},initidly L

Transitions:
IC-receive (u)p,q grant(u)q
Effect: Effect:

if u € sete(“M”) then
add « to buffer

if u € [KConstc] then
shared-key = u

PC-receive (u)p,q
Precondition:
m isin buffer
shared-key # L
u = dec(m, shared-key)
Effect:
remove one copy of m
from buffer

6.2. The Complete mplementation

In the rest of this section, we assume: U = sele;, M =
[MConstc]; K = [KConste]; N = M UK; U’ isan arbi-
trary set with K C U’; A’ isan arbitrary set, digoint from
A.

PC-
‘ C-receive 12
Dec , [P

U

<« Dec, |

PC-receive '
2,1

E"C2,1 | E—

\\_/ PC-send 21

21 T Ic-
IC-send 21
eavesdrop 3

reveal
3

Figure 1. S;; P ={1,2}, A ={3}; A1 ={4}

The implementation consists of encoder and decoder
components, an insecure channel, eavesdropper and envi-
ronment, plusakey distributionservice. Moreprecisdly, the
implementation, S;(C, P, A,U’, A"), is obtained by com-
posing the following automata and then hiding certain ac-
tions.

e Enc(C,P)pq, Dec(C,P)pq, 0,9 € P,p#q.
o IC(U, P, A), Eve(C, P, A), Env(U, A, N).
o KD(U', P, K, A", akey distribution service.

In this system, the eavesdropper Eve does not acquire any
information directly from the KD component. Later, in
Section 9, we combine this eavesdropper with another that
arises in the key distribution service implementation.

Toget S1(C, P, A, U’, A"), wehidethefollowing actions
in the composition just defined: eavesdrop, , ., p,q¢ € P,
a € A, IC-sendy ,, IC-receivey 4, p,q € P, gmntp,
p € P;learn,, a € A; reveal,, a € A’. We sometimes
omit explicit mention of parameters of 51, or of other sys-
tems and components, when we think that confusion is un-
likely. Figure 1 contains an interaction diagram for ;.

Our system model says that the eavesdropper learns no
elementsof N = M U K from outside sources. That choice
of N isfinefor thisprotocol, but we do not now have agen-
eral prescriptionfor how to choose* good” sets N for al pro-
tocols. (“Good” here meansthat the set shouldhaveasimple
definition, should be large enough to include al values that
the adversary could use to break the protocol, and should be
small enough to exclude val ues produced by other protocols
with which the given protocol isto be composed.)



6.3. Invariants

Insystem S, weuse Ency, 4, Decy 4, IC, Bve, and KD
as “handles’ to help in naming state variables in the com-
posed state. Thishandle naming devicefor state variablesis
taken from Vaziri’swork [17]. The first invariant says that
the keys granted by the key distribution service are consis-
tent.

Lemma6.1l Inall reachable statesof .S, the followingare
true:

1 If Ency g.shared-key # L then Ency ,.shared-key =
KD.chosen-key.

2. If Decp 4.shared-key # L then Dec,, ,.shared-key =
KD.chosen-key.

The next invariant says that no N eements appear in
Fve.has or in theinsecure channel.

Lemma6.2 Inall reachable statesof .S, the followingare
true;

1 Forallpg € P,p # ¢gandal u € N, u ¢
IC buffer(p, q).

2. Ifue Nthenu & FEve.has.

Lemma6.3 Inall reachable states of .S, the followingare
true:

1. Ifu € N thenuisnot easily reachablefrom Eve.has U
(U —=N)inC.

The proofsof thefirst two of these invariantsare straight-
forward inductive arguments. In some of the steps (e.g., the
1C-send stepsin Part 1 of Lemma 6.2), facts about the cryp-
tosystem are used (inthis case, someinequivalencefactsfor
terms). The third invariant followsfrom the second.

6.4. Implementation Proof

We show that .S} implements PC' (U, P, M, A), using a
simulation relation from Sy to PC(U, P, M, A). Therda
tion I isdefined by saying that (s,t) € F' provided that the
following condition holds:

Foreachp,q € P,p # q,t.buffer(p, q) isthemultiset union
of three multisets, A, A, As, of U, where:

1. Ay = s.Encp 4. buffer.

2. Ay = dec(s.IC . buffer(p,q), s.KD.chosen-key) if
s.KD.chosen-key # 1 dsel.

3. Ay = dec(s.Decy 4. .buffer, s. KD .chosen-key) if
s.KD.chosen-key # 1 dsel.

That is, each high-level multiset of messagesintransitisob-
tained from the messages in the buffers at the encoder and
decoder, plusthoseintransit in thelow-level insecure chan-
nels. The messages in the insecure channels and in the de-
coder buffer must be decoded for the correspondence.

Theorem 6.4 I'isa simulationrelation.

Proof: By standard assertional methodsfor proving simula
tions, see, eg., [12], p. 225. Theinvariantsof the preceding
section are used here. 0

Theorem 6.5 S;(C, P, A, U’, A") implements
PC(U,P, M, A).

Proof: Followsfrom Theorem 6.4. 0

7. DiffieeHellman Key Distribution Protocol

This section describes the Diffie-Hellman key distribu-
tion protocol. Throughout the section, we assume C is an
augmented base-exponent cryptosystem, P = {pl, p2},and
A isanonempty set.

7.1. The Endpoint Automata

We define two symmetric automata, for the two elements
of P.

DH(C, P),::

Signature:

Input:
IC-receive (b)p2,p1, b € setc("B”)
Output:
IC-send(b)p1,p2, b € sete(“B”)
grant(b)p1,b € setc("B”)

Internal:
choose-exp

States:

chosen-exp € [XConstl ] U{L}, initidly L
base-sent, aBoolean, initidly false

revd-base € sete(“B")U{L},initidly L
granted, aBoolean, initidly false

Derived variables:

chosen-base € sete(“B") U{L}, givenby:
if chosen-exp # L then exp ([b0c], chosen-exp) else L

Transitions:



choose-exp IC-receive (b)po,p1

Precondition: Effect:
chosen-exp = L revd-base := b
Effect:
chosen-exp := grant(b)p
choosex € [XConstic] Precondition:

chosen-exp # L

revd-base £ L

b = exp(rcvd-base,
chosen-exp)

granted = false

IC-send(b)p1,p2
Precondition:
chosen-exp # L
b = chosen-base

base-sent = false Effect:
Effect: granted 1= true
base-sent := true

The automaton for p2 is the same, but interchanges uses
of pl and p2, and likewise of XConsti and XConst2.

7.2. The Complete mplementation

In the rest of this section, we assume: U = setc; K =
[B2¢]; X = [XConstlc)U[XConst2e]; N = K U X.

The implementation consists of two endpoint automata,
an insecure channel, an eavesdropper and an environment.
Specifically, implementation S»(C, P, A) isthecomposition
of the following automata, with certain actions hidden:

e DH(C,P),, p € P, endpoint automata.
o IC(U,P,A), Eve(C, P, A), Env(U, A, N).

Toget S»(C, P, A), wehide: eavesdrop, , ., p,q € P,p #
g, a € A; IC-sendy 4, {C-receive, ¢, p,q € P, p # ¢
learng, a € A. Figure2 containsan interaction diagram for
Ss.

7.3. Invariants

Insystem S,, weuse DH (p) forp € P, IC, and Eve as
handles to help in naming state variables in the composed
gtate. The first invariant says that messages that have been
received or are in transit are correct:

Lemma7.1 Inall reachable statesof .S, the followingare
true:

1. If DH(p).rcvd-base # L and ¢ # p then
DH(q).chosen-exp # 1, and DH(q).rcvd-base =
DH (p).chosen-base.

2. Ifu € IC .buffer(p, q),then DH (p).chosen-exp # L,
and u = DH (p).chosen-base.

Lemma7.2 Inall reachable states of .S, the followingare
true:

1 Forallpg € P,p # ¢gandal u € N, u ¢
IC buffer(p, q).

IC-receive 1 2/ \ grant

DHy [—P

| Ic-send 21
47'

eavesdrop
4

Figure 2. 5;; P ={1,2}; A ={4}

2. Ifue Nthenu ¢ Eve.has.

Lemma7.3 Inall reachable states of .S, the following are
true;

1. Ifu € N thenu isnot easily reachablefrom Eve.has U
(U —=N)inC.

7.4. Implementation Proof

We show that S2 implements KD(U, P, K, A) using a
simulationrelation. Thereation I isdefined by saying that
(s,t) € F provided that:

1. If s.DH(p).chosen-exp # L foradlp € P, then
t.chosen-key =
exp(s.DH (pl).chosen-base, s. DH (p2).chosen-exp),
and otherwiset.chosen-key = L.

2. t.notified = {p € P : s.DH(p).granted}.
Theorem 7.4 I isa simulationrelation.

Proof: By induction.

Base: Easy.

Inductive step: Consider (s, 7, s') and ¢ and consider cases.
The most interesting cases are:

1. 7 = choose-exp,.

If s.DH(q).chosen-exp = L, whereq # p thenthis
maps to the trivial one-state execution fragment ¢.
The correspondence is trivialy preserved (part 1 is
vacuous). Otherwise, this correspondsto choose-key,



with a chosen value of

exp(s’.DH (pl).chosen-base, s'.DH(p2).chosen-exp).
Enabling is straightforward, as is the preservation of
the simulation.

2. = grant(b),

This corresponds to grant(b), in the speci-
fication. The interesting fact to show here
is the enabling, specificadly, that the value
b = exp(s.DH(p).rcvd-base, s.DH(p).chosen-exp)
isequa tot.chosen-key. But Lemma 7.1 impliesthat
b= exp(s.DH(q).chosen-base,s.DH (p).chosen-cxp).
and equations in the cryptosystem imply that thisis
equd to

exp(exp([b0], s.DH (pl).chosen-cxp), s. DH (p2).
chosen-exp). But the definition of F' says that thisis
equal tot.chosen-key, as needed.

3. 7 = reveal(u),

This corresponds to reveal(u), in the specification.
We must show that w ¢ K. The precondition for
reveal(u), (in Fve) impliesthat « € s.FEve.has.
Lemma 7.2 implies that v ¢ N, which implies that
ug K.

Theorem 7.5 S5(C, P, A) implements KD(U, P, K, A).

Proof: By Theorem 7.4. 0

8. Algorithms Using Structured-Key Cryp-
tosystems

In this section, we extend theimplementations of private
communication and of key distribution so that they use a
structured-key cryptosystem, in place of a shared key cryp-
tosystem or base-exponent cryptosystem. For therest of the
paper, fix C to be any augmented structured-key cryptosys-
tem.

8.1. Private Communication

8.1.1 Notation and assumptions

We define a shared-key cryptosystem €’ directly from C, by
sayingthat MConste:r = MConste and KConster = B2c.
That is, we use the B2 termsin C as “names’ for keys in
C’. Inthissubsection, we assume: P isan arbitrary set with
at least 2 elements; A isan arbitrary set; U = sete; M =
[MConstc]; K = [B2c]; X = [XConstlc]U[XConst2c].

Also, W is the set of dll dements w € sete("M")
that can be obtained as follows: In cryptosystem C, w is

obtained from an element m € sete(“M”) by applying
some number of enc operations with second arguments in
sete(“B'")— K. (That is, w is obtained by “wrapping” the
element.) Furthermore, N = WU KU X; U’ = U = selc;
A’ isan arbitrary set, digoint from A.

The most interesting part of thisis the definition of 1V,
whichisintended to designate theel ements of type*“ A" that
are to be avoided. Set 11 must be sufficiently large to in-
clude al elements of type“ A/” that could help to compute
elementsthat are supposed to remain unknown. But 137 must
be sufficiently small to exclude el ementsthat might be com-
municated in other protocols with which the present proto-
col is going to be composed. And, W must be defined rea-
sonably simply. Coming up with agood choice of I/ seems
at this point to be something of an art, similar to coming up
with agood invariant.

The choice we have made above is one of several possi-
bilities. We think it looks a little messy, especialy because
it does not fall into a formalized style that might suggest
how similar definitionsmight bemade for more complicated
protocols. A simpler choice that would work for this pa
per would be W = setc(“M"), but that seems to be rul-
ing out more than would beideal. Another choice would be
asmaller 1V, for instance the set of elements of U that are
easily reachable from M U (setc(“B”)— K) inC. Weleave
thisfor later work.

8.1.2 New encoder and decoder automata

The formal definitionsof Enc3 and Dec$ are nearly identi-
cal tothose of Enc and Dec. The difference isthat the new
automata use elements of type“ B” in place of KConst. Of
course, the parameters have new meanings, as defined just
above,

8.1.3 New implementation

We define S to be the algorithm from Section 6, but imple-
mented using the structured-key cryptosystem € rather than
a shared key cryptosystem. That is, Ss(C, P, A,U’, A") is
the composition of the following automata, with some ac-
tions hidden:

e Enc3(C,P)pqand Dec3(C,P)p g p,q € Pp#q.

o IC(U, P, A), Eve(C, P, A), Env(U, A, N).

o KD(U', P, K,A).
To get S5(C, P, A,U’, A"), we hide: eavesdrop, , ., p,q €
P,a € A; IC-send, 4, [C-receive, 4, p, g € P, grant,,

p € P;learng, a € A; reveal,, a € A’. We want to show
that thissystem implements PC'(U, P, M, A).



8.1.4 Invariants

Lemma8.1 Inall reachable states of S5, the followingare
true:

1. Forall p, Enc3, 4.shared-key € K U {L}.
2. For all p, Dec3,, 4.shared-key € K U {L}.

3. For al p,q, if u € IC.buffer(p,q) then u =
enc(m, k), wherem € M andk € K.

4. Forall p,q,alx € X, z & IC.buffer(p, q).

Lemma8.2 Inall reachable states of S5, the followingare
true;

1. Nodement of X isin Eve.has.

2. Assumethat (M U K) N Eve.has = 0. Ifw € W N
Fve.has andv € sete: (* M) iseasily reachablefrom
{w} U (setc(“B”)— K)inC,thenv € Eve.has.

Part 2 of invariant 8.2 hasa somewhat different stylefrom
thosewehave used sofar. It basically saysthat if a“wrapped
version” of an element of setc: (“M”) isin has, thentheac-
tual element of sete/(“M”) must also be there. Note that
we did not give any invariants here saying that K elements
or M elements do not appear in Eve.has, aswedid in Sec-
tion 6.3. Thisisbecause (in the interests of decomposition)
we are trying to avoid proving facts that have already been
proved for the more abstract version of the agorithm. In-
stead, we are trying to rely on the simulation relation, de-
scribed in the next subsection, to give such facts.

8.1.5 Implementation proof

We prove the correctness of S5 as a consequence of that of
the analogous system S, (C’, P, A, U’ A"). By our previous
result about .S;, Theorem 6.5:

Lemma8.3 Si(C', P, A, U’, A') implements
PC(Setc/, P, M, A)

In order to prove correctness of S3(C, P, A,U’, A),
we would like to demonstrate a simulation relationship
from S5(C, P, A,U’', A’) to Si(C', P, A,U’, A"). To do
this, we first make the interfaces consistent, by defin-
ing S4(C,P,A,U', A") from S3 by hiding the actions
reveal(u)q, u € U — seter.

Lemma84 If g isa trace of S3(C, P, A,U’, A") then 3
withall reveal(u) actionsremoved, u € U —setcr, isatrace
of S4(C’, P, A, U', A").

Now we definetherelation 7' from S5(C, P, A, U’, A") to
S1(C, P, AU A'Y: (s,t) € F provided:

1. For al components except Ewve, all state components
areidentical.

2. Ifu € sete: andu iseasily reachablefroms. Eve . hasU
(setc — N) in C then u is easily reachable from
t.Fve.has U (setcr — (M U K))inC'.

Theorem 8.5 I'isa simulationrelation.

Proof: For the initia condition, let s and ¢ be the unique
start states of S5(C, P, A,U’, A"y and S, (C', P, A, U’, A",
respectively. We must check that (s,¢) € F. Thekey is
to show that if u € sete: and u is easily reachable from
U—-(WUKUX)inC then u is easily reachable from
seter — (M U K) inC’'. But properties of the cryptosystem
imply that there is no such element «, so thisis vacuously
true. For the step condition, the most interesting cases are:

1 7= reveal(u)g,a € A

We must show that w ¢ M. So suppose for the sake
of contradiction that « € A{. By the precondition,
we know that v € s.FEve.has. Sinceu € setcr, the
definition of I impliesthat u is easily reachable from
t.Fve.has U (seter — (M UK))inC'. ButLemma6.3
impliesthat no element of A iseasily reachable from
t.Fve.has U (seter — (M U K))inC’. Thisyiedsthe
needed contradiction.

2. m = compute(u, f)

This maps to the trivial fragment. We must argue that
(s',t) € F. Itsuffices to show that any element u €
seter that iseasily reachable from s'. Eve.has U (U —
N) is dso easily reachable from s. Eve.has U (U —
N). But this follows from generd properties of the
compute actionin Eve.

3. 7 = learn(u)q

We consider two cases:

(8 u € setes

Then the corresponding fragment consists of a
single step, with the same action. To see that this
isenabled, notethat u ¢ N, by the precondition
in S5, Inparticular, w ¢ M U K. Thisimplies
that learn(u) isenabled in S;.

Toshow thet (s',¢) € F, supposethat v € sete
and v iseasily reachablefrom s’. Eve.has U (U —
N)inC. Thensinceu € U— N, wehavea sothat
v iseasily reachablefrom s. Eve .hasU(U —N) in
C. Thensince(s,t) € F, wehavethat v iseasily
reachable from¢. Eve.hasU (setc: —(MUK))in
C’, which impliesthat v is easily reachable from
t'.Eve.hasU(seter —(MUK))inC'. Thisproves
that (s',t') € F.



(b) uwe U — sete

Then the corresponding fragment consists of the
single state t. We must show that (s',¢) € F. It
sufficesto show that any element v € sete: thatis
easily reschablefrom s’. Eve.has U (U — N) inC
isalsoeasily reschablefroms. Eve hasU(U —N)
in C. But the preconditionimpliesthatu € U —
N,s0s" . Fve.hasU(U—N) = s.Eve.hasU(U —
N), sothisisobvious.

Theorem 8.6 S4(C, P, A, U’, A") implements
S1(C', P AU AN

Lemma8.7 If 3 is a trace of S3(C, P, A, U’, A") then 3
with all reveal(u) actions removed, for u € U — setcs, IS
atraceof S, (C', P, A, U, A).

Proof: By Theorem 8.6 and Lemma 8.4. 0

Theorem 8.8 S3(C, P, A, U’, A’) implements
PC(U, P, M, A).

Proof: By Lemmas 8.7 and 83. Let 5 be a trace of
S3(C, P, A,U', A"). Then Lemma 8.7 impliesthat 3, isa
trace of S1(C’, P, A,U’, A"), where 3, is equa to 3 with
al reveal(u) actions removed, for u € U — seter. Then
Lemma8.3impliesthat 3, isatraceof PC(seter, P, M, A).
It follows that 3, is atrace of PC(sete, P, M, A). Now,
since 5 differs from /; only by including some reveal ac-
tionsfor dementsin U — selc:, it followsthat 5 isatrace
of PC(sete, P, M, A). 0

The proofs of the resultsin this and the next subsection
deal with specific cryptosystems. It would be interesting to
extract genera theorems that could be applied to get such
results. Such theorems would involve some kind of notion
of “embedding” of one cryptosystem in another, and state-
ments articulating when a protocol that works with a cryp-
tosystem also works with any cryptosystem in which that
cryptosystem is embedded.

8.2. Key Distribution

8.2.1 Notation and assumptions

We define an augmented base-exponent cryptosystem ¢’
directly from C, by saying BConstc: =  BConstc,
XConstlcr = XConstle, XConst2¢ = XConst2c, and
b0c = b0c. Inthissubsection, we assume: P = {pl, p2};
Alisan arbitrary set; U = sele; K = [B2¢]; X =
[XConstlc]U[XConst2c]; N = KU X.

8.2.2 New implementation

The new endpoint automata are syntactically the same asthe
old endpoint automata. The only difference isthat the sub-
script C now refersto astructured-key cryptosystem. Wede-
fine S, to be thealgorithm from Section 7, but implemented
using the structured-key cryptosystem C rather than a base-
exponent cryptosystem. That is, S4(C, P, 4) isthe compo-
sition of thefollowing automata, with some actions hidden:

o DH(C,P), p€EP.
o IC(U, P, A), Eve(C, P, A), Env(U, A, N).

To get S4(C, P, A), wehide: eavesdrop, , ,,p,q € P,a €
A, IC-sendy 4, [C-recetvey ¢, p,q € P;learng, a € A. We
want to show that thissystemimplements KD(U, P, K, A).

We prove the correctness of .S, as a consequence of that
of the analogous system S»(C’, P, A). By our previous re-
sult about S», Theorem 7.5:

Lemma8.9 S»(C’, P, A) implements KD (setcr, P, K, A).

Lemma8.10 If 3 isatraceof S4(C, P, A) then 3 with all
reveal(u) actionsremoved, for u € U — setcr, isatrace of
S4(C', P A).

Now we define the relation F from S4(C, P, A) to
S5(C', P, A): (s,t) € F provided:

1. For al components except Ewve, all state components
areidentical.

2. Ifu € sete: andu iseasily reachablefroms. Eve . hasU
(setc — N) in C then u is easily reachable from
t.Bve.has U (seter — N)inC'.

Theorem 8.11 F'isasimulationreation.

Proof: Anaogousto that of Theorem 8.5. 0

Theorem 8.12 S(C, P, A) implements S»(C', P, A).

Lemma8.13 If 3 isatrace of S4(C, P, A) then 3 with all
reveal(u) actionsremoved, for u € U — setcr, isatrace of
Sy(C', P, A).

Theorem 8.14 S,(C, P, A) implements KD(U, P, K, A).
9. Putting the Pieces Together

Now we describe how to put the previous results to-
gether, to get an implementation of private communication
that uses the shared-key communication protocol in combi-
nationwith the Diffie-Hellman key distributionservice. The
first step combinesthetwo protocols, but still keepstheinse-
cure channels, eavesdroppers, and environmentsfor thetwo
algorithmsseparate. The second step combinethetwo chan-
nelsinto one and likewisefor the eavesdroppers and the en-
vironments.
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Figure 3. Ss

9.1. Composing DiffieHellman and Shared-Key
Communication to get Private Communica-
tion

Recall that we have aready fixed C to be an augmented
structured-key cryptosystem. We now fix, for the rest of
thepaper: U = sele; P = {pl,p2}; P = {pl',p2'};
Alisan abitrary set; M = [MConstc]; K = [B2¢];
X = [XConstlc]U[XConst2c]; W isthe set of elements
of setc(“M") that can be obtained from sete/(*M”") U
(setc(“B")— K)inCusingenc; N =WUKUX,; A'is
an arbitrary set, digoint from A. The combined system S5
consists of the following pieces:

o Enc3(C,P)pq, Dec3(C,P)p g p,q € Pp#q.

e DIl5,, p € P, each of these is a renamed ver-
sonof DH(C, P),, with the subscriptsin IC-send, ,
and IC-receive, , actions renamed to their primed ver-
sions.

o IC(U,P,A), Eve(C, P, A), Env(U, A, N).
o IC(U, P, A", Eve(C, P, A", Env(U, A', N').

Ss hides al the actions except for the PC-send,
PC-recetve, and reveal,, actionsfor a € A.
Figure 3 contains an interaction diagram for Ss.

Theorem 9.1 S5 implements PC'(U, P, M, A).

Proof: Thisfollowsfrom Theorems 8.14 and 8.8, using gen-
eral projection and pasting lemmas for 1/O automata. 0

9.2. Merging Channes, Adversaries, and Environ-
ments

The fina implementation, Ss, is obtained from S5 by
merging the two separate insecure channels into one, and
likewisefor the two adversaries and the two environments.
To do this, and yet keep the same interfaces, we extend
the definitions of /C' and Eve to allow two types of ports,
primed and unprimed. Specifically, S consists of:

o Enc3(C, Plyy, Dec3(C, Plyyuprq € Pop# 4.
o DH5,,pe P.

o IC(U, P, A, P A).

o Fve(C,P,A P A).

o Env(U,AUA',NUN).

Here, the extended /C' isthe same as IC(U, P U P, A U
A”) but only has actions with subscripts p, ¢, « where either
p,qg € P,a € Aorp,q € P,a € A. Smilaly for
the extended Eve. Also, Sg hides al actions except for the
PC-send, PC-receive, and reveal, actionsfora € A.

The combined eavesdropper eavesdrops and learnson all
adversary portsin A U A’, and can use al this informa-
tion in calculating its has information, which resides in a
single state component. The combined environment avoids
communicating any information in N U N’. We claim
that Ss implements Ss, which implies that S implements
PC(U, P, M, A). To prove thisresult, we define S7, which
isjust like S5 except that it combinesthe eavesdroppers, but
not the channels or environments.

Lemma9.2 S7 implements Ss.

The essence of this lemma is that information that an
eavesdropper can acquire in either protocol does not upset
the requirements of the other protocol. It would be nice to
show that Eve(C, P, A, P’, A’) implements Eve(C, P, A) x
Eve(C, P', A"). Butthisisnot quitecorrect: theimplemen-
tation relationship requires assumptions about the contexts
in which the eavesdroppers run, (and aso, the relationship
does not preserve the learn actions). So we just prove an
implementation relationship for the eavesdroppers in their
contexts. However, it is clear that the argument uses only
minimal information about the particular contexts, namely,
what kind of information they can contributein eavesdrop
and learn actions; it should be possible to extract a general
lemma stating these restrictions on contexts explicitly.
Proof: Weuseasimulationrelation F' from S~ to S5 defined
sothat (s,t) € I exactly if:

1. Everything except for has componentsisthesamein s
andt.



2. If uw € s.has then u is easily reachable from
t.Fve(C, P, A).has U (U — N)inC.

3. If u € s.has then u is easily reachable from
t.Bve(C, P, A").has U (U — N")inC.

Thismapping says, essentially, that any information that the
combined eavesdropper acquiresis something that either of
the individual eavesdroppers could have acquired anyway.
We show that thisisa simulation. Theinitial conditionsare
immediate, because s.has isempty. We consider steps:

1. reveal(u)q,a € A

We know that v« € s.has. So by définition
of F, we have that u is easily reachable from
t.Eve(C, P, A).has U (U — N). Let this step corre-
spond to a sequence of learn, and compute , actions
sufficient to put « into Eve(C, P, A).has, followed by
the same reveal(u), action. The sequence of learns
and computes guarantees that the action is enabled in
the spec.

2. reveal(u)q,a € A’
Analogousto the previous case.

3. learn(u)g,a € AU A’

Map this to the trivial execution fragment. By the
precondition, this adds something in U — (N U
N') to s.has. But this is obviously essily reach-
able from ¢. Eve(C, P, A).has U (U — N) and from
t.Eve(C, P', A").has U (U — N'). So the correspon-
denceis preserved.

4. compute(u, f)g,a € AU A’

Map to the trivia fragment. The precondition im-
plies that « is easily reachable from s.has. By
the inductive step, al the elements of s.has that
are needed for this computation are essily reach-
able from ¢. Eve(C, P, A).has U (U — N) and from
t.Fve(C, P', A").has U (U — N'). Sou isdso easily
reachablefromt. Eve(C, P, A).hasU(U —N) andfrom
t.Eve(C, P’, A’).hasU(U — N’) (usingonemore step).

5. eavesdrop(u)g, a € A

Then Lemma 8.1 implies that « is of the form
enc(m,k),m € M,k € K. Therefore, u € U — N'.
Let this correspond to the same action in the spec.
We must show that (s',¢') & F. This means
we must show that « is easly reachable from
t'.Fve(C, P, A).has U (U — N)inC and u is easily
reachable from ¢'. Eve(C, P, A").has U (U — N') in
C.

By the effect of the action in the spec, « €
t'.Eve(C, P, A).has, sou isobvioudly essily reschable

fromt’. Eve(C, P, A).has U (U — N)inC. Also, since
u € U — N', uisobviousy easily reachable from
t'. Fve(C,P', A").has U(U — N')inC.

6. eavesdrop(u)g, a € A

Then w is of the form ezp(b0,2) € U — N Let
this correspond to the same action in the spec.
We must show that (s',t') & F. This means
we must show that « is easily reachable from
t'. Fve(C, P, A).has U (U — N)inC and u is easily
reachable from ¢'. Eve(C, P', A").has U (U — N') in
C.

By the effect of the action in the spec, « €
t'.Eve(C,P', A").has, s0 u is obviously easly
reachable from ¢. Eve(C, P’, A’).has U (U — N') in
C. Sinceu € U — N, uisobviously easily reachable
from¢'. Eve(C, P, A).has U (U — N)inC.

Lemma9.3 Ss implements S-.

The proof of Lemma 9.3 is easy, based on the following
two lemmas:

Lemma9.4 Env(U, AU A’ N UN')implements
Env(U, A, N) x Env(U, A", N').

Lemma9.5 IC(U, P, A, P, A") implements
IC(U, P, A) x IC(U, P'; A").

Thisal yields:
Lemma9.6 Ss implements Ss.

Proof: By Lemmas 9.3 and 9.2. 0

Theorem 9.7 Sg implements PC(U, P, M, A).

Proof: By Lemmas 9.6 and Theorem 9.1. 0

10. Discussion

In this paper, we have modeled and analyzed the com-
bination of simple shared key communication with Diffie-
Hellman key distribution, in the presence of an eavesdrop-
per adversary. Although this exampleisvery simple, many
kinds of decomposition are evident in its presentation. Un-
derstandingthesein asimplecontext isaprerequisitefor ex-
tending them to more complicated protocols.

Webelievethat thistype of presentationisuseful in clari-
fying protocol issues. It aso hel psin separating the protocol
issues from other issues, such as cryptosystem reachability
issues, which can be treated separately. It appears possible



to decompose the presentation in this paper even more, for
example, by defining a notion of embeddings of cryptosys-
tems and obtaining the results of Section 8 as consequences
of such theorems.

Inwork in progress, we are extending theseideasto more
complex protocolslikethat of Diffie, Oorschot, and Weiner
[5], which tolerate more active adversaries. So far, it ap-
pears that the modeling/analysis idess of this paper scale
well to the more complicated examples. Some issues that
ariseinmodeling the protocol of [5] are: The cryptosystems
are more complicated, so more complicated arguments need
to be made about reachability; for example, the analogues
of the set I/ defined in Section 8.1.1 become more compli-
cated. Also, because the adversary has more active control
of the communication system, it is convenient to combine
them into a single automaton model. (The has component
of that automaton is now used to decide what may be deliv-
eredtotheclient, aswell aswhat may berevealed.) Also,the
correctness guarantees are weaker—for instance, repeated
deliveries of the same message, and ddliveriesto the wrong
recipient, are possible. A more complicated key distribution
service specification will also be needed, including key re-
quests and granting of multiple keys.

Thework of thispaper has not mentioned liveness prop-
erties. For the simple case of this paper, with a passive
eavesdropper, liveness claims are certainly possible. They
can beincorporated easily into the model intheform of time
bounds, and proved using the usua assertional methods for
timing analysis, such asthose appearingin[3, 11]. For more
active adversaries, more sophisticated algorithms can also
guarantee liveness properties, which could aso be formu-
lated as time bounds and proved similarly.

Another interesting research direction is the modular in-
troduction of probabilistic considerations. We expect that it
is possible to accomplish agreat deal a a high leve of ab-
straction, by simply assuming that certain low probability
“bad” events do not occur. The low probability bad events
could then be introduced separately, with genera theorems
used to limit their impact on system behavior. But such gen-
eral theorems remain to be devel oped.
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