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Abstract

The combination of two security protocols, a simple
shared-key communication protocol and the Diffie-Hellman
key distribution protocol, is modeled formally and proved
correct. The modeling is based on the I/O automaton model
for distributed algorithms, and the proofs are based on in-
variant assertions, simulation relations, and compositional
reasoning. Arguments about the cryptosystems are handled
separately from arguments about the protocols.

1. Introduction

Security protocols must satisfy important correctness re-
quirements, which means that it is important to be able to
think about them clearly and precisely. But they can also
be large and complicated, which makes such reasoning dif-
ficult. One needs ways of decomposing the task into clearly
separable pieces. This includes separating different types of
concerns, for example, distributed algorithms issues, cryp-
tosystem computability issues, probabilistic issues, and is-
sues of accurate modeling of reality. It also includes decom-
posing the protocols using the normal techniques for decom-
posing distributed algorithms, based on levels of abstraction
and parallel composition of interacting components.

This paper describes an experiment in modeling and an-
alyzing security protocols, using I/O automata [14, 12] and
the usual techniques that go along with them—a combina-
tion of invariant assertions, simulation relations, and com-
positional reasoning using traces. The aim of the experiment
is to explore how these methods can help in decomposing
the task of reasoning about security protocols. This model
and these methods have been used successfully for decom-
posing the reasoning about many standard distributed algo-
rithms (see, e.g., [12, 16, 13]), and about several distributed
system designs (see, e.g., [6, 7, 9, 10]), so it is worth discov-
ering what they can do for security protocols.

The experiment involves combining simple shared-key
communication and key distributionprotocols to implement

private communication. In the case we describe in detail
here, simple Diffie-Hellman key distribution [4] is used,
the protocols tolerate only passive eavesdroppers, and only
safety properties are considered. In another case in progress,
discussed briefly here, the more complex Diffie-Oorschot-
Weiner key distribution protocol [5], which tolerates adver-
saries that can intrude more actively, is studied. Later work
will include liveness guarantees, formulated in terms of tim-
ing properties.

Our main guideline in studying these protocols is to try
to decompose the reasoning as much as possible, identify-
ing sub-problems that can be treated separately. (Although
the examples in this paper are simple enough to be under-
stood informally, we believe that understanding how best
to decompose them is a good first step toward understand-
ing how to decompose more complex examples.) The han-
dling of each piece should be appropriately abstract. For
example, in discussing protocol issues, cryptosystem com-
putability issues should be summarized by assumptions say-
ing that certain values are not “easily computable” from oth-
ers; number-theoretic arguments about why these values are
not (likely to be) easily computable should be treated at a
lower level, as mechanisms to achieve the more abstract
non-computability guarantees. Probabilistic issues should
be treated separately, as far as possible. After dividing up
the problems in this way, we expect that the main benefit of
the I/O automaton-based methods will be in clarifying the
distributed algorithm issues. Cryptosystem issues, for ex-
ample, may be better treated by other means, for example,
the inductive techniques of Paulson [15]. However, a gen-
eral framework should provide a rigorous way of combining
the different types of issues.

In treating the distributedalgorithmsthemselves, we sim-
ilarly try to decompose them as much as possible. The most
obvious form of decomposition involves treating the two
sub-protocols separately, then trying to paste them together
using general theorems about automaton composition. An-
other form involves giving very high level automaton spec-
ifications for services, giving separate descriptions of im-
plementing algorithms, and showing, by means of simula-



tion relations, that the algorithms implement the services.
Still another form involves first studying a protocol using a
natural, simple cryptosystem, and later trying to show that
its correctness properties extend to modified versions that
use more elaborate cryptosystems. And still another form of
decomposition involves combining adversaries that interact
with separate protocols into a single “colluding” unit.

Because I/O automata are composed by means of shared
actions, and because we are considering only safety proper-
ties in this paper, it is natural to describe external behavior of
automata in terms of sets of traces (i.e., sequences of exter-
nal actions). The simple trace semantics yields simple and
powerful projection and pasting theorems (see, e.g., [12], p.
211), for the behavior of compositions of automata. How-
ever, in order to enable compositional reasoning about par-
ticular kinds of properties, the traces must contain all the
information relevant for those properties. For example, in
treating fault-tolerance properties such as wait-free termina-
tion and f-failure termination compositionally, in terms of
traces, it is convenient to allow the traces to contain specialfail input actions that signal the occurrence of failure events
(see, e.g., [12, 13]). Sometimes it is convenient to consider
different strengths of failure actions (e.g., the good , bad , andugly failure actions in [7]). Also, in order to treat timing
properties compositionally, it is useful to introduce timing
information into the traces.

In the case of security protocols, important properties in-
volve lack of knowledge. To treat this compositionally, one
should include something about knowledge in the traces.
Our approach here is to give explicit learn input actions andreveal output actions by which a component can learn new
information and reveal its knowledge, and to constrain the
component’s behavior in terms of these actions.

Specifically, the paper contains the following. Section
2 contains math preliminaries. Section 3 presents a model
for cryptosystems, which describe the data types encoun-
tered in the protocols, including (cleartext and ciphertext)
messages, keys, and lower-level data from which keys are
constructed. This data model also describes the functions
that manipulate data, and the reachability (computability)
relationships that say which values can be computed eas-
ily from which others. This model is similar to others in
the literature. Section 4 then describes some “standard”
types of automata that model certain components appearing
in many systems—service environments, insecure channels,
and eavesdroppers.

Section 5 gives I/O automaton specifications for the two
main security services considered in this paper—private
communication and key distribution. The specification for
private communication is abstract: it talks only about com-
munication and revealed information, and not about keys.
Section 6 models and analyzes the implementation of pri-
vate communication using an abstract key distribution ser-

vice, and Section 7 treats the Diffie-Hellman implementa-
tion of key distribution. These protocols use particular cryp-
tosystems, and the protocol proofs assume the limitations on
easy computability expressed by those cryptosystems. The
proofs are based on invariant assertions and on simulation
relations relating the protocols to the specifications for the
services they are intended to implement.

Section 8 shows what is involved in moving from a de-
scription of each of the two individual protocols in terms of
its own natural cryptosystem to a description in terms of a
common, richer cryptosystem. For example, the shared key
protocol is initially analyzed in terms of abstract, unstruc-
tured keys taken from a simple “shared-key cryptosystem”.
However, when one combines this protocol with Diffie-
Hellman, it is necessary to consider a version that uses struc-
tured keys, taken from a richer “structured-key cryptosys-
tem”.

Section 9 puts the pieces together, to get an implemen-
tation of private communication that uses shared-key com-
munication with Diffie-Hellman key distribution. Most of
this is accomplished automatically from the general projec-
tion and pasting theorems for I/O automata; special argu-
ments must be made for combining the insecure channels
used in the two protocols, and for combining the two adver-
saries into one. Section 10 gives a final discussion. Because
of limited space, most of the proofs have been omitted from
this version; the rest will appear in a technical report [].

Related work: Of the formal work on modeling and ana-
lyzing cryptographic protocols, the efforts that seem closest
in spirit to ours are those of Abadi and of Paulson. Abadi has
developed a framework for formal study of composable se-
curity protocols [2, 1], and Paulson has developed inductive
reasoning methods, which appear valuable both for proving
assertions and for determining cryptosystem reachability re-
lationships [15]. Others have stated and proved invariant as-
sertions for security protocols, though we do not know of
other work on simulation relations for such protocols. We
also do not know about other work using traces with explicitlearn and reveal actions as an approach to compositional
reasoning about security protocols. Wing and Cheiner are
currently modeling security protocols using the approach of
this paper, including verifying assertions using the PVS the-
orem prover.
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sions about this project. Martin Abadi, Oleg Cheiner, But-
ler Lampson, Victor Luchangco, Anna Lysyanskaya, Dalia
Malkhi, Mike Reiter, and Jeannette Wing provided useful
comments and encouragement.



2. Mathematical Preliminaries� denotes the empty string. We use I/O automata as de-
fined in [12]. Since we do not deal with liveness in this pa-
per, the tasks are irrelevant. If A and B are I/O automata
with the same external signature, then we say that A imple-
ments B provided that every trace of A is also a trace of B.
Invariants and simulation relations are defined, for example,
in [12].

3. Data Model

This section gives a basic model for the data types used
in the protocols.

3.1. Cryptosystems

A cryptosystem signature S consists of:� TN S , a set of type names.� FN S , a set of function names.� domainS , a mapping from FN S to (TN S )�.� rangeS , a mapping from FN S to TN S .� EN S � FNS , a set of easy function names.

A constant name is a function name f such thatdomainS(f) = �. Let CN S � FN S denote the set
of constant names of C. We omit the subscript S where no
confusion seems likely. A cryptosystem C consists of:� A cryptosystem signature sigC. We write TN C as

shorthand for TN sigC , etc.� setC, a mapping from TN C to disjoint sets.� funC , a mapping from FN C to functions; We require
that if domainC(f) = (t1; : : : ; tk) and rangeC(f) = t
then funC(f) : setC(t1)� � � � � setC(tk) ! setC(t).

We write setC for
St2TN C setC(t). We omit the subscriptC where no confusion seems likely. If X [ fyg � setC, we

say that y is easily reachable from X in C provided that y
is obtainable starting from elements of X, by applying only
functions denoted by function names in EN C .

3.2. Term Cryptosystems

If S is a cryptosystem signature, then the terms of S, and
their types, are defined recursively, as follows:

1. If c 2 CN S and rangeS(c) = t, then c is a term andtypeS (c) = t.

2. If f 2 FN S , domainS(f) = t1; t2; : : : ; tk, wherek � 1, rangeS (f) = t, and e1; : : : ; ek are terms of
types t1; : : : ; tk, respectively, then the expression e =f(e1; : : : ; ek) is a term, and typeS(e) = t.

Let TermsS (t) denote the set of terms of S of type t. LetTermsS denote the set of all terms of S.
Some of the cryptosystems we consider are best under-

stood as term algebras derived from cryptosystem signa-
tures. In these cases, the values of the various types are, for-
mally, equivalence classes of terms: An equivalence relationR on TermsS is said to be a congruence provided that the
following hold.

1. If eRe0 then typeS(e) = typeS (e0).
2. Suppose that f 2 FN S , domainS(f) = t1; t2; : : : ; tk,

where k � 1, rangeS (f) = t, e1; : : : ; ek are terms
of types t1; : : : ; tk, respectively, e01; : : : ; e0k are terms of
types t1; : : : ; tk, respectively, and for all i, 1 � i � k,eiRe0i. Then f(e1; : : : ; ek)Rf(e1; : : : ; ek).

Let S be a cryptosystem signature and R a congruence onTermsS . Then the term cryptosystem C for S and R is the
unique cryptosystem satisfying:� sigC = S.� If t 2 TN C , then setC(t) is the set of allR-equivalence

classes of terms of type t in TermsC .� If f 2 FN C, domainC(f) = (t1; : : : ; tk) andrangeC(f) = t then funC(f) is the function fromsetC(t1) � � � � � setC(tk) to setC(t) defined as fol-
lows. Suppose that ei 2 setC(ti) for all i, 1 �i � k. Then funC(f)([e1]R; : : : ; [ek]R) is defined to
be [f(e1; : : : ; ek)]R. (Since R is a congruence, this is
well-defined.)

We use the notation RC for the congruence relation R of C.
If e 2 TermsC , then we write [e]C for the equivalence class
of ewith respect toRC. Also, ifE � TermsC then we write[E]C for the set of equivalence classes [e]C for e 2 E.

3.3. Cryptosystem Examples

In this subsection we give the cryptosystems used later
in the paper. The first kind of cryptosystem, a shared-key
cryptosystem, is used in shared key communication. The
second kind, a base-exponent cryptosystem, is used in the
Diffie-Hellman protocol. The third kind, a structured-key
cryptosystem, is essentially a combination of the two others.
It is used when the two protocols are combined.



3.3.1 Shared-key cryptosystems

A shared-key cryptosystem C is a term cryptosystem. The
signature S = sigC is defined as follows. TN S consists of
two type names: “M” for messages and “K” for keys. FN S
consists of:� enc, with domain(enc) = (“M”; “K”) andrange(enc) = “M”.� dec, with domain(dec) = (“M”; “K”) andrange(dec) = “M”.� MConstS , a set of message constant names, withrange(m) = “M” for all m 2MConstS .� KConstS , a set of key constant names, withrange(k) = “K” for all k 2 KConstS .EN S = fenc; decg. The relation R is defined by means of
all equations of the form:� dec(enc(m; k); k) = m, where m; k 2 TermsS ,type(m) = “M”, type(k) = “K”.

Specifically, we want the smallest congruence relation onTermsS that equates all terms that are related by the given
equations.

3.3.2 Base-exponent cryptosystems

A base-exponent cryptosystem C is a term cryptosystem in
which, letting S = sigC : TN S consists of two type names,
“B” for bases and “X” for exponents. FN S consists of:� exp, with domain(exp) = (“B”; “X”) andrange(exp) = “B”.� BConstS , a set of base constant names, withrange(b) = “B” for all b 2 BConstS .� XConst1S and XConst2 S , two disjoint sets of ex-

ponent constant names, with domain(x) = � andrange(x) = “X” for all x 2 XConst1S [XConst2S .EN S = fexpg [ BConstS . The relation R is defined by
means of all equations of the form:� exp(exp(b; x); y) = exp(exp(b; y); x), where b; x; y 2TermsS , type(b) = “B”, type(x) = type(y) = “X”.

Define B2S to be the set of all terms of the formexp(exp(b; x); y), where b 2 BConstS , x 2 XConst1 S
and y 2 XConst2S . An augmented base-exponent cryp-
tosystem is a base-exponent cryptosystem together with a
distinguished element b0S of BConstS .

3.3.3 Structured-key cryptosystems

A structured-key cryptosystem is a combination of a shared-
key cryptosystem and a base-exponent cryptosystem, where
certain terms of the base-exponent cryptosystem are iden-
tified with the keys. A structured-key cryptosystem C is a
term cryptosystem in which, letting S = sigC : TN S con-
sists of the type names “M”, “B”, and “X”. FN S consists
of:� enc, with domain(enc) = (“M”; “B”) andrange(enc) = “M”.� dec, with domain(dec) = (“M”; “B”) andrange(dec) = “M”.� exp, with domain(exp) = (“B”; “X”) andrange(exp) = “B”.� MConstS , a set of message constant names, withrange(m) = “M” for all m 2MConstS .� BConstS , a set of base constant names, withrange(b) = “B” for all b 2 BConst .� XConst1 S and XConst2 S , two disjoint sets of expo-

nent constant names, with range(x) = “X” for allx 2 XConst1S [XConst2S .EN S = fenc; dec; expg [BConstS . The relation R is de-
fined by means of all equations of the form:� dec(enc(m; b); b) = m, where m; b 2 TermsS ,type(m) = “M”, type(b) = “B”.� exp(exp(b; x); y) = exp(exp(b; y); x), where b; x; y 2TermsS , type(b) = “B”, type(x) = type(y) = “X”.

Once again, we write B2S for the set of terms of the formexp(exp(b; x); y), where b 2 BConstS , x 2 XConst1S ,
and y 2 XConst2S . An augmented structured-key cryp-
tosystem is a structured-key cryptosystem together with a
distinguished element b0S of BConstS .

4. Some Generally-Useful Automata

In this section, we give automaton models for some sys-
tem components that will appear in many settings: environ-
ments for security services, insecure channels, and eaves-
droppers. They are presented in a parameterized fashion so
that they can be used in different contexts. We model these
components as automata (rather than, e.g., by trace proper-
ties) for uniformity with the way we will model algorithms
and system specs, and because this makes it possible to rea-
son about them assertionally.



4.1. Environment Automata

Here we assume thatU is a universal set of data values,A
is an arbitrary finite set of adversary ports, that is, locations
where information can be communicated to the adversary,
and N � U . The environment automaton Env (U;A;N )
models any entities other than the channels from which an
eavesdropper may learn information. It says that the envi-
ronment is capable of communicating elements of U at any
adversary port a 2 A, but in fact does not communicate any
elements of N .Env (U;A;N ) :
Signature:

Input:
None

Output:learn(u)a, u 2 U , a 2 A
States:

No variables

Transitions:learn(u)a
Precondition:u =2 N
Effect:none

4.2. Insecure Channel Automata

Here we assume that U is a universal set of data values,P is an arbitrary finite set of client ports, and A is an arbi-
trary finite set of adversary ports. The insecure channel ad-
mits send and receive actions for all elements ofU and also
has eavesdrop output actions, by which information in tran-
sit passes to an outsider. The insecure channel allows any
message in transit to be communicated to an outsider.IC (U;P;A):
Signature:

Input:IC-send(u)p;q , u 2 U , p; q 2 P , p 6= q
Output:IC-receive(u)p;q , u 2 U , p; q 2 P , p 6= qeavesdrop(u)p;q;a , u 2 U , p; q 2 P , p 6= q, a 2 A

States:
for every p; q 2 P , p 6= q:bu�er (p; q), a multiset of U , initially empty

Transitions:IC-send(u)p;q
Effect:

add u to bu�er (p; q)IC-receive(u)p;q
Precondition:u 2 bu�er(p; q)
Effect:

remove one copy of u
from bu�er(p; q) eavesdrop(u)p;q;a

Precondition:u 2 bu�er (p; q)
Effect:none

4.3. Eavesdropper Automata

Here we assume that C is a cryptosystem, P is an arbi-
trary finite set of client ports, and A is an arbitrary finite set
of adversary ports. We define a model for an eavesdropper,
as a nondeterministic automaton Eve(C; P;A). Eve sim-
ply remembers everything it learns and hears, and can re-
veal anything it has, at any time. It does this by maintain-
ing a variable has , initially;. The value of has may change
only in restricted ways: Namely, when eavesdrop(u)p;q;a orlearn(u)a occurs, u gets added to has . When an internalcompute action occurs, the value resulting from applying an
easy function (one in EN C) to values in has may be added
to has . We restrict the reveal(u) output so that u 2 has ,
that is, Eve can only report a value that it has.Eve(C; P;A):
Signature:

Input:eavesdrop(u)p;q;a , u 2 setC , p; q 2 P , p 6= q, a 2 Alearn(u)a, u 2 setC , a 2 A
Output:reveal (u)a, u 2 setC , a 2 A
Internal:compute(u; f)a, f 2 EN C , a 2 A

States:has � setC , initially ;
Transitions:eavesdrop(u)p;q;a

Effect:has := has [ fuglearn(u)a
Effect:has := has [ fug reveal (u)a

Precondition:u 2 has
Effect:nonecompute(u; f)a
Precondition:fu1; : : : ; ukg � s:hasu = f(u1; : : : ; uk)
Effect:has := has [ fug

5. The Services

In this section, we describe the two services that are im-
plemented by the protocols in this paper. They are described
as automata, which is convenient for assertional reasoning.
The use of input and output actions provides convenient
ways of composing these automata with others, and of de-
scribing what is preserved by implementation relationships.
For simplicity, we write these specifications to describe only
safety properties, although the same methods can be used to
handle liveness properties, formulated as time bounds (see,
e.g., [11, 12]).



5.1. Private Communication

This section contains a specification of the problem of
achieving private communication among the members of a
finite collection P of clients. The specification expresses
three properties: (1) only messages that are sent are deliv-
ered, (2) messages are delivered at most once each, and (3)
none of the messages is revealed by an “adversary”. We de-
scribe the problem using a high-level I/O automaton speci-
fication PC (U;P;M;A), where U is a universal set of data
values, P is an arbitrary finite set of client ports, M � U is
a set of messages, and A is an arbitrary finite set of adver-
sary ports. This specification does not mention distribution
or keys; these aspects will appear in implementations of this
specification, but not in the specification itself. The specifi-
cation simply describes the desired properties, as an abstract
machine. As usual for automaton specifications, the proper-
ties, listed separately above, are intermingled in one descrip-
tion.PC (U;P;M;A):
Signature:

Input:PC-send(m)p;q , m 2M , p; q 2 P , p 6= q
Output:PC-receive(u)p;q , u 2 U , p; q 2 P , p 6= qreveal (u)a, u 2 U , a 2 A

States:

for every pair p; q 2 P , p 6= q:bu�er (p; q), a multiset of M
Transitions:PC-send(m)p;q

Effect:
add m to bu�er(p; q)PC-receive(u)p;q

Precondition:u 2 bu�er(p; q)
Effect:

remove one copy of u
from bu�er(p; q) reveal (u)a

Precondition:u =2M
Effect:none

The first two properties listed above, which amount to at-
most-once delivery of messages that were actually sent, are
expressed by the transition definitions for PC-send andPC-receive. The third property, privacy, is expressed by the
constraint for reveal.
5.2. Key Distribution

This is a drastically simplified key distribution service,
which distributes a single key to several participants. We
do not model requests for the keys, but assume that the
service generates the key spontaneously. The simplified

key distribution problem is specified by the automatonKD(U;P;K;A), where U is a universal set of data values,P is an arbitrary finite set of client ports, K � U is a set of
keys, and A is a finite set of adversary ports.KD(U;P;K;A):
Signature:

Input:
none

Output:grant(u)p, u 2 U , p 2 Preveal (u)a, u 2 U , a 2 A Internal:choose-key
States:chosen-key , an element of K [ f?g, initially ?noti�ed � P , initially ;
Transitions:choose-key

Precondition:chosen-key = ?
Effect:chosen-key :=

choose k 2Kgrant(u)p
Precondition:chosen-key 6= ?u = chosen-keyp =2 noti�ed
Effect:noti�ed :=noti�ed [ fpg

reveal (u)a
Precondition:u =2K
Effect:none

6. Implementing Private Communication us-
ing Shared Keys

This section describes a straightforward shared-key com-
munication protocol. The protocol simply uses a shared key,
obtained from a key distribution service, to encode and de-
code messages. Throughout the section, we assume that C
is a shared-key cryptosystem, P is a set (of clients) with at
least 2 elements, and A is a nonempty finite set (of adver-
saries).

6.1. The Encoder and Decoder

We define parameterized encoder and decoder automata,
parameterized by the shared-key cryptosystem C, the set P
of clients, and elements p; q 2 P , p 6= q. Note that, in the
code for IC-send(u), we are using the abbreviation enc forfunC(enc) – that is, we are suppressing mention of the par-
ticular cryptosystem C.Enc(C; P )p;q, where p; q 2 P , p 6= q :
Signature:



Input:PC-send(m)p;q , m 2 [MConstC]grant(u)p, u 2 setC
Output:IC-send(u)p;q , u 2 setC

States:bu�er , a multiset of elements of [MConstC], initially emptyshared-key 2 [KConstC] [ f?g, initially ?
Transitions:PC-send(m)p;q

Effect:
add m to bu�erIC-send(u)p;q

Precondition:m is in bu�ershared-key 6= ?u = enc(m; shared-key)
Effect:

remove one copy of m
from bu�er grant(u)p

Effect:
if u 2 [KConstC] thenshared-key := u

More-or-less symmetrically, we have:Dec(C; P )p;q, where p; q 2 P , p 6= q :
Signature:

Input:IC-receive(u)p;q , u 2 setCgrant(u)q , u 2 setC
Output:PC-receive(u)p;q , u 2 setC

States:bu�er , a multiset of elements of setC(“M”), initially emptyshared-key 2 [KConstC] [ f?g, initially ?
Transitions:IC-receive(u)p;q

Effect:
if u 2 setC(“M”) then

add u to bu�erPC-receive(u)p;q
Precondition:m is in bu�ershared-key 6= ?u = dec(m; shared-key )
Effect:

remove one copy of m
from bu�er grant(u)q

Effect:
if u 2 [KConstC] thenshared-key := u

6.2. The Complete Implementation

In the rest of this section, we assume: U = setC; M =[MConstC]; K = [KConstC]; N = M [K; U 0 is an arbi-
trary set with K � U 0; A0 is an arbitrary set, disjoint fromA.
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Figure 1. S1; P =f1,2g,A =f3g;A0 =f4g
The implementation consists of encoder and decoder

components, an insecure channel, eavesdropper and envi-
ronment, plus a key distributionservice. More precisely, the
implementation, S1(C; P;A; U 0; A0), is obtained by com-
posing the following automata and then hiding certain ac-
tions.� Enc(C; P )p;q, Dec(C; P )p;q, p; q 2 P , p 6= q.� IC (U;P;A), Eve(C; P;A), Env (U;A;N ).� KD(U 0; P;K;A0), a key distribution service.

In this system, the eavesdropper Eve does not acquire any
information directly from the KD component. Later, in
Section 9, we combine this eavesdropper with another that
arises in the key distribution service implementation.

To get S1(C; P;A; U 0; A0), we hide the following actions
in the composition just defined: eavesdropp;q;a, p; q 2 P ,a 2 A; IC-sendp;q, IC-receivep;q, p; q 2 P ; grantp,p 2 P ; learna, a 2 A; reveala, a 2 A0. We sometimes
omit explicit mention of parameters of S1, or of other sys-
tems and components, when we think that confusion is un-
likely. Figure 1 contains an interaction diagram for S1.

Our system model says that the eavesdropper learns no
elements of N = M [K from outside sources. That choice
of N is fine for this protocol, but we do not now have a gen-
eral prescription for how to choose “good” setsN for all pro-
tocols. (“Good” here means that the set shouldhave a simple
definition, should be large enough to include all values that
the adversary could use to break the protocol, and should be
small enough to exclude values produced by other protocols
with which the given protocol is to be composed.)



6.3. Invariants

In system S1, we use Encp;q , Decp;q, IC , Eve, and KD
as “handles” to help in naming state variables in the com-
posed state. This handle naming device for state variables is
taken from Vaziri’s work [17]. The first invariant says that
the keys granted by the key distribution service are consis-
tent.

Lemma 6.1 In all reachable states of S1, the following are
true:

1. If Encp;q:shared-key 6= ? then Encp;q:shared-key =KD :chosen-key .

2. If Decp;q:shared-key 6= ? then Decp;q :shared-key =KD :chosen-key .

The next invariant says that no N elements appear inEve:has or in the insecure channel.

Lemma 6.2 In all reachable states of S1, the following are
true:

1. For all p; q 2 P , p 6= q, and all u 2 N , u =2IC :bu�er(p; q).
2. If u 2 N then u =2 Eve:has.

Lemma 6.3 In all reachable states of S1, the following are
true:

1. If u 2 N then u is not easily reachable fromEve :has[(U � N ) in C.

The proofs of the first two of these invariants are straight-
forward inductive arguments. In some of the steps (e.g., theIC-send steps in Part 1 of Lemma 6.2), facts about the cryp-
tosystem are used (in this case, some inequivalence facts for
terms). The third invariant follows from the second.

6.4. Implementation Proof

We show that S1 implements PC (U;P;M;A), using a
simulation relation from S1 to PC (U;P;M;A). The rela-
tion F is defined by saying that (s; t) 2 F provided that the
following condition holds:
For each p; q 2 P , p 6= q, t:bu�er(p; q) is the multiset union
of three multisets, A1; A2; A3, of U , where:

1. A1 = s:Encp;q:bu�er .

2. A2 = dec(s:IC :bu�er(p; q); s:KD :chosen-key) ifs:KD :chosen-key 6= ? else ;.

3. A3 = dec(s:Decp;q:bu�er ; s:KD :chosen-key) ifs:KD :chosen-key 6= ? else ;.

That is, each high-level multiset of messages in transit is ob-
tained from the messages in the buffers at the encoder and
decoder, plus those in transit in the low-level insecure chan-
nels. The messages in the insecure channels and in the de-
coder buffer must be decoded for the correspondence.

Theorem 6.4 F is a simulation relation.

Proof: By standard assertional methods for proving simula-
tions, see, e.g., [12], p. 225. The invariants of the preceding
section are used here.

Theorem 6.5 S1(C; P;A; U 0; A0) implementsPC (U;P;M;A).
Proof: Follows from Theorem 6.4.

7. Diffie-Hellman Key Distribution Protocol

This section describes the Diffie-Hellman key distribu-
tion protocol. Throughout the section, we assume C is an
augmented base-exponent cryptosystem,P = fp1; p2g, andA is a nonempty set.

7.1. The Endpoint Automata

We define two symmetric automata, for the two elements
of P .DH (C; P )p1:
Signature:

Input:IC-receive(b)p2;p1, b 2 setC(“B”)
Output:IC-send(b)p1;p2 , b 2 setC(“B”)grant(b)p1, b 2 setC(“B”)
Internal:choose-expp1

States:chosen-exp 2 [XConst1C] [ f?g, initially ?base-sent , a Boolean, initially falsercvd-base 2 setC(“B”)[ f?g, initially ?granted , a Boolean, initially false
Derived variables:chosen-base 2 setC(“B”) [ f?g, given by:

if chosen-exp 6= ? then exp([b0C]; chosen-exp) else ?
Transitions:



choose-expp1
Precondition:chosen-exp = ?
Effect:chosen-exp :=

choose x 2 [XConst1C ]IC-send(b)p1;p2
Precondition:chosen-exp 6= ?b = chosen-basebase-sent = false
Effect:base-sent := true

IC-receive(b)p2;p1
Effect:rcvd-base := bgrant(b)p1
Precondition:chosen-exp 6= ?rcvd-base 6= ?b = exp(rcvd-base ;chosen-exp)granted = false
Effect:granted := true

The automaton for p2 is the same, but interchanges uses
of p1 and p2, and likewise of XConst1 and XConst2 .

7.2. The Complete Implementation

In the rest of this section, we assume: U = setC; K =[B2C ]; X = [XConst1 C] [ [XConst2C ]; N = K [X.
The implementation consists of two endpoint automata,

an insecure channel, an eavesdropper and an environment.
Specifically, implementationS2(C; P;A) is the composition
of the following automata, with certain actions hidden:� DH (C; P )p, p 2 P , endpoint automata.� IC (U;P;A), Eve(C; P;A), Env (U;A;N ).
To get S2(C; P;A), we hide: eavesdropp;q;a, p; q 2 P , p 6=q, a 2 A; IC-sendp;q , IC-receivep;q, p; q 2 P , p 6= q;learna, a 2 A. Figure 2 contains an interaction diagram forS2.

7.3. Invariants

In system S2, we use DH (p) for p 2 P , IC , and Eve as
handles to help in naming state variables in the composed
state. The first invariant says that messages that have been
received or are in transit are correct:

Lemma 7.1 In all reachable states of S2, the following are
true:

1. If DH (p):rcvd-base 6= ? and q 6= p thenDH (q):chosen-exp 6= ?, and DH (q):rcvd-base =DH (p):chosen-base .

2. If u 2 IC :bu�er (p; q), thenDH (p):chosen-exp 6= ?,
and u = DH (p):chosen-base.

Lemma 7.2 In all reachable states of S2, the following are
true:

1. For all p; q 2 P , p 6= q, and all u 2 N , u =2IC :bu�er(p; q).
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Figure 2. S2; P =f1,2g; A =f4g
2. If u 2 N then u =2 Eve:has .

Lemma 7.3 In all reachable states of S2, the following are
true:

1. If u 2 N then u is not easily reachable fromEve :has[(U � N ) in C.

7.4. Implementation Proof

We show that S2 implements KD(U;P;K;A) using a
simulation relation. The relationF is defined by saying that(s; t) 2 F provided that:

1. If s:DH (p):chosen-exp 6= ? for all p 2 P , thent:chosen-key =exp(s:DH (p1):chosen-base ; s:DH (p2):chosen-exp),
and otherwise t:chosen-key = ?.

2. t:noti�ed = fp 2 P : s:DH (p):grantedg.

Theorem 7.4 F is a simulation relation.

Proof: By induction.
Base: Easy.
Inductive step: Consider (s; �; s0) and t and consider cases.
The most interesting cases are:

1. � = choose-expp.

If s:DH (q):chosen-exp = ?, where q 6= p then this
maps to the trivial one-state execution fragment t.
The correspondence is trivially preserved (part 1 is
vacuous). Otherwise, this corresponds to choose-key ,



with a chosen value ofexp(s0:DH (p1):chosen-base; s0:DH (p2):chosen-exp).
Enabling is straightforward, as is the preservation of
the simulation.

2. � = grant(b)p
This corresponds to grant(b)p in the speci-
fication. The interesting fact to show here
is the enabling, specifically, that the valueb = exp(s:DH (p):rcvd-base; s:DH (p):chosen-exp)
is equal to t:chosen-key . But Lemma 7.1 implies thatb = exp(s:DH (q):chosen-base ; s:DH (p):chosen-exp).
and equations in the cryptosystem imply that this is
equal toexp(exp([b0]; s:DH (p1):chosen-exp); s:DH (p2):chosen-exp). But the definition of F says that this is
equal to t:chosen-key , as needed.

3. � = reveal(u)a
This corresponds to reveal(u)a in the specification.
We must show that u =2 K. The precondition forreveal(u)a (in Eve) implies that u 2 s:Eve:has .
Lemma 7.2 implies that u =2 N , which implies thatu =2 K.

Theorem 7.5 S2(C; P;A) implements KD(U;P;K;A).
Proof: By Theorem 7.4.

8. Algorithms Using Structured-Key Cryp-
tosystems

In this section, we extend the implementations of private
communication and of key distribution so that they use a
structured-key cryptosystem, in place of a shared key cryp-
tosystem or base-exponent cryptosystem. For the rest of the
paper, fix C to be any augmented structured-key cryptosys-
tem.

8.1. Private Communication

8.1.1 Notation and assumptions

We define a shared-key cryptosystem C0 directly from C, by
saying thatMConstC0 = MConstC andKConstC0 = B2 C .
That is, we use the B2 terms in C as “names” for keys inC0. In this subsection, we assume: P is an arbitrary set with
at least 2 elements; A is an arbitrary set; U = setC; M =[MConstC]; K = [B2 C ];X = [XConst1 C][ [XConst2C].

Also, W is the set of all elements w 2 setC(“M”)
that can be obtained as follows: In cryptosystem C, w is

obtained from an element m 2 setC0(“M”) by applying
some number of enc operations with second arguments insetC(\B00)�K. (That is, w is obtained by “wrapping” the
element.) Furthermore,N = W [K[X; U 0 = U = setC ;A0 is an arbitrary set, disjoint from A.

The most interesting part of this is the definition of W ,
which is intended to designate the elements of type “M” that
are to be avoided. Set W must be sufficiently large to in-
clude all elements of type “M” that could help to compute
elements that are supposed to remain unknown. ButW must
be sufficiently small to exclude elements that might be com-
municated in other protocols with which the present proto-
col is going to be composed. And, W must be defined rea-
sonably simply. Coming up with a good choice of W seems
at this point to be something of an art, similar to coming up
with a good invariant.

The choice we have made above is one of several possi-
bilities. We think it looks a little messy, especially because
it does not fall into a formalized style that might suggest
how similar definitionsmight be made for more complicated
protocols. A simpler choice that would work for this pa-
per would be W = setC(“M”), but that seems to be rul-
ing out more than would be ideal. Another choice would be
a smaller W , for instance the set of elements of U that are
easily reachable fromM [(setC(\B00)�K) in C. We leave
this for later work.

8.1.2 New encoder and decoder automata

The formal definitions of Enc3 and Dec3 are nearly identi-
cal to those of Enc and Dec. The difference is that the new
automata use elements of type “B” in place of KConst. Of
course, the parameters have new meanings, as defined just
above.

8.1.3 New implementation

We define S3 to be the algorithm from Section 6, but imple-
mented using the structured-key cryptosystem C rather than
a shared key cryptosystem. That is, S3(C; P;A; U 0; A0) is
the composition of the following automata, with some ac-
tions hidden:� Enc3 (C; P )p;q and Dec3 (C; P )p;q, p; q 2 P , p 6= q.� IC (U;P;A), Eve(C; P;A), Env (U;A;N ).� KD(U 0; P;K;A0).
To get S3(C; P;A; U 0; A0), we hide: eavesdropp;q;a, p; q 2P , a 2 A; IC-sendp;q, IC-receivep;q, p; q 2 P ; grantp,p 2 P ; learna, a 2 A; reveala, a 2 A0. We want to show
that this system implements PC (U;P;M;A).



8.1.4 Invariants

Lemma 8.1 In all reachable states of S3, the following are
true:

1. For all p, Enc3 p;q:shared-key 2 K [ f?g.

2. For all p, Dec3 p;q:shared-key 2 K [ f?g.

3. For all p; q, if u 2 IC :bu�er(p; q) then u =enc(m; k), where m 2M and k 2 K.

4. For all p; q, all x 2 X, x =2 IC :bu�er(p; q).
Lemma 8.2 In all reachable states of S3, the following are
true:

1. No element of X is in Eve:has.

2. Assume that (M [ K) \ Eve :has = ;. If w 2 W \Eve:has and v 2 setC0 (“M”) is easily reachable fromfwg [ (setC(\B00)�K) in C, then v 2 Eve :has.

Part 2 of invariant 8.2 has a somewhat different style from
those we have used so far. It basically says that if a “wrapped
version” of an element of setC0 (“M”) is in has , then the ac-
tual element of setC0(“M”) must also be there. Note that
we did not give any invariants here saying that K elements
or M elements do not appear in Eve :has, as we did in Sec-
tion 6.3. This is because (in the interests of decomposition)
we are trying to avoid proving facts that have already been
proved for the more abstract version of the algorithm. In-
stead, we are trying to rely on the simulation relation, de-
scribed in the next subsection, to give such facts.

8.1.5 Implementation proof

We prove the correctness of S3 as a consequence of that of
the analogous system S1(C0; P;A; U 0; A0). By our previous
result about S1, Theorem 6.5:

Lemma 8.3 S1(C0; P;A; U 0; A0) implementsPC (setC0 ; P;M;A).
In order to prove correctness of S3(C; P;A; U 0; A0),

we would like to demonstrate a simulation relationship
from S3(C; P;A; U 0; A0) to S1(C0; P;A; U 0; A0). To do
this, we first make the interfaces consistent, by defin-
ing S03(C; P;A; U 0; A0) from S3 by hiding the actionsreveal(u)a, u 2 U � setC0 .
Lemma 8.4 If � is a trace of S3(C; P;A; U 0; A0) then �
with all reveal(u) actions removed, u 2 U�setC0 , is a trace
of S03(C0; P;A; U 0; A0).

Now we define the relationF from S03(C; P;A; U 0; A0) toS1(C0; P;A; U 0; A0): (s; t) 2 F provided:

1. For all components except Eve, all state components
are identical.

2. Ifu 2 setC0 andu is easily reachable from s:Eve :has[(setC � N ) in C then u is easily reachable fromt:Eve:has [ (setC0 � (M [K)) in C0.
Theorem 8.5 F is a simulation relation.

Proof: For the initial condition, let s and t be the unique
start states of S03(C; P;A; U 0; A0) and S1(C0; P;A; U 0; A0),
respectively. We must check that (s; t) 2 F . The key is
to show that if u 2 setC0 and u is easily reachable fromU � (W [ K [ X) in C then u is easily reachable fromsetC0 � (M [K) in C0. But properties of the cryptosystem
imply that there is no such element u, so this is vacuously
true. For the step condition, the most interesting cases are:

1. � = reveal(u)a, a 2 A
We must show that u =2 M . So suppose for the sake
of contradiction that u 2 M . By the precondition,
we know that u 2 s:Eve:has . Since u 2 setC0 , the
definition of F implies that u is easily reachable fromt:Eve:has [ (setC0 � (M [K)) in C0. But Lemma 6.3
implies that no element of M is easily reachable fromt:Eve:has [ (setC0 � (M [K)) in C0. This yields the
needed contradiction.

2. � = compute(u; f)
This maps to the trivial fragment. We must argue that(s0; t) 2 F . It suffices to show that any element u 2setC0 that is easily reachable from s0:Eve:has [ (U �N ) is also easily reachable from s:Eve:has [ (U �N ). But this follows from general properties of thecompute action in Eve .

3. � = learn(u)a
We consider two cases:

(a) u 2 setC0
Then the corresponding fragment consists of a
single step, with the same action. To see that this
is enabled, note that u =2 N , by the precondition
in S03. In particular, u =2 M [ K. This implies
that learn(u) is enabled in S1.

To show that (s0; t0) 2 F , suppose that v 2 setC0
and v is easily reachable from s0:Eve:has [ (U �N ) inC. Then since u 2 U�N , we have also thatv is easily reachable from s:Eve:has[(U�N ) inC. Then since (s; t) 2 F , we have that v is easily
reachable from t:Eve:has[(setC0�(M[K)) inC0, which implies that v is easily reachable fromt0:Eve:has[(setC0�(M[K)) inC0. This proves
that (s0; t0) 2 F .



(b) u 2 U � setC0
Then the corresponding fragment consists of the
single state t. We must show that (s0; t) 2 F . It
suffices to show that any element v 2 setC0 that is
easily reachable from s0:Eve:has [ (U �N ) in C
is also easily reachable from s:Eve:has[(U�N )
in C. But the precondition implies that u 2 U �N , so s0:Eve:has[(U�N ) = s:Eve:has[(U�N ), so this is obvious.

Theorem 8.6 S03(C; P;A; U 0; A0) implementsS1(C0; P;A; U 0; A0).
Lemma 8.7 If � is a trace of S3(C; P;A; U 0; A0) then �
with all reveal(u) actions removed, for u 2 U � setC0 , is
a trace of S1(C0; P;A; U 0; A0).
Proof: By Theorem 8.6 and Lemma 8.4.

Theorem 8.8 S3(C; P;A; U 0; A0) implementsPC (U;P;M;A).
Proof: By Lemmas 8.7 and 8.3. Let � be a trace ofS3(C; P;A; U 0; A0). Then Lemma 8.7 implies that �1 is a
trace of S1(C0; P;A; U 0; A0), where �1 is equal to � with
all reveal(u) actions removed, for u 2 U � setC0 . Then
Lemma 8.3 implies that �1 is a trace ofPC (setC0 ; P;M;A).
It follows that �1 is a trace of PC (setC; P;M;A). Now,
since � differs from �1 only by including some reveal ac-
tions for elements in U � setC0 , it follows that � is a trace
of PC (setC; P;M;A).

The proofs of the results in this and the next subsection
deal with specific cryptosystems. It would be interesting to
extract general theorems that could be applied to get such
results. Such theorems would involve some kind of notion
of “embedding” of one cryptosystem in another, and state-
ments articulating when a protocol that works with a cryp-
tosystem also works with any cryptosystem in which that
cryptosystem is embedded.

8.2. Key Distribution

8.2.1 Notation and assumptions

We define an augmented base-exponent cryptosystem C0
directly from C, by saying BConstC0 = BConstC ,XConst1C0 = XConst1C , XConst2 C0 = XConst2 C, andb0C0 = b0C. In this subsection, we assume: P = fp1; p2g;A is an arbitrary set; U = setC ; K = [B2 C]; X =[XConst1C ][ [XConst2C ]; N = K [X.

8.2.2 New implementation

The new endpoint automata are syntactically the same as the
old endpoint automata. The only difference is that the sub-
script C now refers to a structured-key cryptosystem. We de-
fine S4 to be the algorithm from Section 7, but implemented
using the structured-key cryptosystem C rather than a base-
exponent cryptosystem. That is, S4(C; P;A) is the compo-
sition of the following automata, with some actions hidden:� DH (C; P )p, p 2 P .� IC (U;P;A), Eve(C; P;A), Env (U;A;N ).
To get S4(C; P;A), we hide: eavesdropp;q;a, p; q 2 P , a 2A; IC-sendp;q, IC-receivep;q, p; q 2 P ; learna, a 2 A. We
want to show that this system implements KD(U;P;K;A).

We prove the correctness of S4 as a consequence of that
of the analogous system S2(C0; P;A). By our previous re-
sult about S2, Theorem 7.5:

Lemma 8.9 S2(C0; P;A) implements KD(setC0 ; P;K;A).
Lemma 8.10 If � is a trace of S4(C; P;A) then � with allreveal(u) actions removed, for u 2 U � setC0 , is a trace ofS04(C0; P;A).
Now we define the relation F from S04(C; P;A) toS2(C0; P;A): (s; t) 2 F provided:

1. For all components except Eve, all state components
are identical.

2. Ifu 2 setC0 andu is easily reachable from s:Eve :has[(setC � N ) in C then u is easily reachable fromt:Eve:has [ (setC0 � N ) in C0.
Theorem 8.11 F is a simulation relation.

Proof: Analogous to that of Theorem 8.5.

Theorem 8.12 S04(C; P;A) implements S2(C0; P;A).
Lemma 8.13 If � is a trace of S4(C; P;A) then � with allreveal(u) actions removed, for u 2 U � setC0 , is a trace ofS2(C0; P;A).
Theorem 8.14 S4(C; P;A) implements KD(U;P;K;A).
9. Putting the Pieces Together

Now we describe how to put the previous results to-
gether, to get an implementation of private communication
that uses the shared-key communication protocol in combi-
nation with the Diffie-Hellman key distributionservice. The
first step combines the two protocols, but still keeps the inse-
cure channels, eavesdroppers, and environments for the two
algorithms separate. The second step combine the two chan-
nels into one and likewise for the eavesdroppers and the en-
vironments.
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Figure 3. S5
9.1. Composing Diffie-Hellman and Shared-Key

Communication to get Private Communica-
tion

Recall that we have already fixed C to be an augmented
structured-key cryptosystem. We now fix, for the rest of
the paper: U = setC; P = fp1; p2g; P 0 = fp10; p20g;A is an arbitrary set; M = [MConstC ]; K = [B2 C];X = [XConst1C ] [ [XConst2 C]; W is the set of elements
of setC(“M”) that can be obtained from setC0(“M”) [(setC(\B00)�K) in C using enc; N = W [K [X; A0 is
an arbitrary set, disjoint from A. The combined system S5
consists of the following pieces:� Enc3 (C; P )p;q, Dec3 (C; P )p;q, p; q 2 P , p 6= q.� DH5 p, p 2 P ; each of these is a renamed ver-

sion of DH (C; P )p, with the subscripts in IC-sendp;q
and IC-receiveq;p actions renamed to their primed ver-
sions.� IC (U;P;A), Eve(C; P;A), Env (U;A;N ).� IC (U;P 0; A0), Eve(C; P 0; A0), Env (U;A0; N 0).S5 hides all the actions except for the PC-send ,PC-receive, and reveala actions for a 2 A.

Figure 3 contains an interaction diagram for S5.

Theorem 9.1 S5 implements PC (U;P;M;A).
Proof: This follows from Theorems 8.14 and 8.8, using gen-
eral projection and pasting lemmas for I/O automata.

9.2. Merging Channels, Adversaries, and Environ-
ments

The final implementation, S6, is obtained from S5 by
merging the two separate insecure channels into one, and
likewise for the two adversaries and the two environments.
To do this, and yet keep the same interfaces, we extend
the definitions of IC and Eve to allow two types of ports,
primed and unprimed. Specifically, S6 consists of:� Enc3 (C; P )p;q, Dec3 (C; P )p;q, p; q 2 P , p 6= q.� DH5 p, p 2 P .� IC (U;P;A; P 0; A0).� Eve(C; P;A; P 0; A0).� Env (U;A [A0; N [N 0).
Here, the extended IC is the same as IC (U;P [ P 0; A [A0) but only has actions with subscripts p; q; awhere eitherp; q 2 P , a 2 A or p; q 2 P 0, a 2 A0. Similarly for
the extended Eve. Also, S6 hides all actions except for thePC-send , PC-receive, and reveala actions for a 2 A.

The combined eavesdropper eavesdrops and learns on all
adversary ports in A [ A0, and can use all this informa-
tion in calculating its has information, which resides in a
single state component. The combined environment avoids
communicating any information in N [ N 0. We claim
that S6 implements S5, which implies that S6 implementsPC (U;P;M;A). To prove this result, we define S7, which
is just likeS5 except that it combines the eavesdroppers, but
not the channels or environments.

Lemma 9.2 S7 implements S5.

The essence of this lemma is that information that an
eavesdropper can acquire in either protocol does not upset
the requirements of the other protocol. It would be nice to
show that Eve(C; P;A; P 0; A0) implements Eve(C; P;A)�Eve(C; P 0; A0). But this is not quite correct: the implemen-
tation relationship requires assumptions about the contexts
in which the eavesdroppers run, (and also, the relationship
does not preserve the learn actions). So we just prove an
implementation relationship for the eavesdroppers in their
contexts. However, it is clear that the argument uses only
minimal information about the particular contexts, namely,
what kind of information they can contribute in eavesdrop
and learn actions; it should be possible to extract a general
lemma stating these restrictions on contexts explicitly.
Proof: We use a simulation relationF fromS7 toS5 defined
so that (s; t) 2 F exactly if:

1. Everything except for has components is the same in s
and t.



2. If u 2 s:has then u is easily reachable fromt:Eve(C; P;A):has [ (U �N ) in C.

3. If u 2 s:has then u is easily reachable fromt:Eve(C; P 0; A0):has [ (U �N 0) in C.

This mapping says, essentially, that any information that the
combined eavesdropper acquires is something that either of
the individual eavesdroppers could have acquired anyway.
We show that this is a simulation. The initial conditions are
immediate, because s:has is empty. We consider steps:

1. reveal(u)a, a 2 A
We know that u 2 s:has. So by definition
of F , we have that u is easily reachable fromt:Eve(C; P;A):has [ (U � N ). Let this step corre-
spond to a sequence of learna and computea actions
sufficient to put u into Eve(C; P;A):has, followed by
the same reveal(u)a action. The sequence of learns
and computes guarantees that the action is enabled in
the spec.

2. reveal(u)a, a 2 A0
Analogous to the previous case.

3. learn(u)a, a 2 A [A0
Map this to the trivial execution fragment. By the
precondition, this adds something in U � (N [N 0) to s:has . But this is obviously easily reach-
able from t:Eve(C; P;A):has [ (U � N ) and fromt:Eve(C; P 0; A0):has [ (U � N 0). So the correspon-
dence is preserved.

4. compute(u; f)a, a 2 A [A0
Map to the trivial fragment. The precondition im-
plies that u is easily reachable from s:has. By
the inductive step, all the elements of s:has that
are needed for this computation are easily reach-
able from t:Eve(C; P;A):has [ (U � N ) and fromt:Eve(C; P 0; A0):has [ (U � N 0). So u is also easily
reachable from t:Eve(C; P;A):has[(U�N ) and fromt:Eve(C; P 0; A0):has[(U�N 0) (using one more step).

5. eavesdrop(u)a, a 2 A
Then Lemma 8.1 implies that u is of the formenc(m; k), m 2 M , k 2 K. Therefore, u 2 U � N 0.
Let this correspond to the same action in the spec.
We must show that (s0; t0) 2 F . This means
we must show that u is easily reachable fromt0:Eve(C; P;A):has [ (U � N ) in C and u is easily
reachable from t0:Eve(C; P 0; A0):has [ (U � N 0) inC.

By the effect of the action in the spec, u 2t0:Eve(C; P;A):has, so u is obviously easily reachable

from t0:Eve(C; P;A):has [ (U �N ) in C. Also, sinceu 2 U � N 0, u is obviously easily reachable fromt0:Eve(C; P 0; A0):has [ (U �N 0) in C.

6. eavesdrop(u)a, a 2 A0
Then u is of the form exp(b0; x) 2 U � N Let
this correspond to the same action in the spec.
We must show that (s0; t0) 2 F . This means
we must show that u is easily reachable fromt0:Eve(C; P;A):has [ (U � N ) in C and u is easily
reachable from t0:Eve(C; P 0; A0):has [ (U � N 0) inC.

By the effect of the action in the spec, u 2t0:Eve(C; P 0; A0):has, so u is obviously easily
reachable from t0:Eve(C; P 0; A0):has [ (U � N 0) inC. Since u 2 U � N , u is obviously easily reachable
from t0:Eve(C; P;A):has [ (U �N ) in C.

Lemma 9.3 S6 implements S7.

The proof of Lemma 9.3 is easy, based on the following
two lemmas:

Lemma 9.4 Env (U;A [A0; N [N 0) implementsEnv (U;A;N )� Env (U;A0; N 0).
Lemma 9.5 IC (U;P;A; P 0; A0) implementsIC (U;P;A)� IC (U;P 0; A0).

This all yields:

Lemma 9.6 S6 implements S5.

Proof: By Lemmas 9.3 and 9.2.

Theorem 9.7 S6 implements PC (U;P;M;A).
Proof: By Lemmas 9.6 and Theorem 9.1.

10. Discussion

In this paper, we have modeled and analyzed the com-
bination of simple shared key communication with Diffie-
Hellman key distribution, in the presence of an eavesdrop-
per adversary. Although this example is very simple, many
kinds of decomposition are evident in its presentation. Un-
derstanding these in a simple context is a prerequisite for ex-
tending them to more complicated protocols.

We believe that this type of presentation is useful in clari-
fying protocol issues. It also helps in separating the protocol
issues from other issues, such as cryptosystem reachability
issues, which can be treated separately. It appears possible



to decompose the presentation in this paper even more, for
example, by defining a notion of embeddings of cryptosys-
tems and obtaining the results of Section 8 as consequences
of such theorems.

In work in progress, we are extending these ideas to more
complex protocols like that of Diffie, Oorschot, and Weiner
[5], which tolerate more active adversaries. So far, it ap-
pears that the modeling/analysis ideas of this paper scale
well to the more complicated examples. Some issues that
arise in modeling the protocol of [5] are: The cryptosystems
are more complicated, so more complicated arguments need
to be made about reachability; for example, the analogues
of the set W defined in Section 8.1.1 become more compli-
cated. Also, because the adversary has more active control
of the communication system, it is convenient to combine
them into a single automaton model. (The has component
of that automaton is now used to decide what may be deliv-
ered to the client, as well as what may be revealed.) Also, the
correctness guarantees are weaker—for instance, repeated
deliveries of the same message, and deliveries to the wrong
recipient, are possible. A more complicated key distribution
service specification will also be needed, including key re-
quests and granting of multiple keys.

The work of this paper has not mentioned liveness prop-
erties. For the simple case of this paper, with a passive
eavesdropper, liveness claims are certainly possible. They
can be incorporated easily into the model in the form of time
bounds, and proved using the usual assertional methods for
timing analysis, such as those appearing in [3, 11]. For more
active adversaries, more sophisticated algorithms can also
guarantee liveness properties, which could also be formu-
lated as time bounds and proved similarly.

Another interesting research direction is the modular in-
troduction of probabilistic considerations. We expect that it
is possible to accomplish a great deal at a high level of ab-
straction, by simply assuming that certain low probability
“bad” events do not occur. The low probability bad events
could then be introduced separately, with general theorems
used to limit their impact on system behavior. But such gen-
eral theorems remain to be developed.
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