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Abstract. Motivated by our work on Automated Highway Systems

(AHS), we consider a physical system, the string of vehicles and con-

struct a natural model for it in the Hybrid Input/Output Automaton

formalism. We describe a special maneuver that may have to be exe-

cuted by the system, the emergency deceleration maneuver, and derive

necessary and su�cient conditions on the system parameters under which

this maneuver can be executed in safety. We conclude by giving a brief

discussion of the implications of our results for the design of an AHS

that allows the formation of platoons of vehicles.

1 Introduction

Hybrid systems have attracted the attention of both computer theorists and

control engineers. Our work ultimately aims at a rapprochement of these two

perspectives. Here we use a combination of techniques from the two areas to

address a speci�c problem in transportation. This is the problem of the safety of

a collection of vehicles traveling one behind the other in a single lane; we refer

to such a collection as a string of vehicles. The problem is hybrid as it involves

both continuous vehicle motion and (possibly) collisions, which in our setting

are treated as discrete velocity changes. We try to establish conditions under

which a string of vehicles will be safe while executing a particular maneuver.

We start by developing a detailed model for the system in the Hybrid In-

put/Output Automaton modeling framework (Section 2). Modest extensions of

the original framework of [1] are needed to capture all the phenomena of interest

for this problem. Then, in Section 3 we introduce the emergency deceleration

?
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maneuver, whose safety analysis is the primary focus of this paper. We give some

necessary and some su�cient conditions under which the safety of the maneu-

ver can be guaranteed. Finally, in Section 4, we discuss the implications of our

results in the context of platooning of vehicles.

We believe our work is potentially of both theoretical and practical impor-

tance. On the theoretical side we hope that the results presented here will be

extended to a general methodology for dealing with hybrid systems, one where

continuous and discrete techniques are combined in a coherent framework. The

practical implications of our work are more immediate. Our results indicate that

the design of specialized emergency maneuvers may be crucial to the success of

an automated highway system that allows for the formation of platoons.

2 Vehicle String Model

2.1 Overview of the Modeling Formalism

Based on the work of [1], we consider a hybrid automaton, A, as a dynami-

cal system that describes the evolution of a �nite collection of variables, V

A

.

Variables are typed; for each v 2 V

A

let type(v) denote the type of v. For each

Z � V

A

, a valuation of Z is a function that to each v 2 Z assigns a value in

type(v). Let Z denote the set of valuations of Z; we refer to s 2 V

A

as a system

state. In this paper we assume that the evolution of the variables is over the set

T

�0

= ft 2 Rjt � 0g. The evolution of the variables involves both continuous

and discrete dynamics. Continuous dynamics are encoded in terms of trajectories

over V

A

, that is functions that map intervals of T

�0

to V

A

. Discrete dynamics

are encoded by actions. Upon the occurrence of an action the system state in-

stantaneously \jumps" to a new value. We use �

A

to denote the set of actions

that a�ect the evolution of A.

More formally, a hybrid automaton, A is a collection (U

A

, X

A

, Y

A

, �

in

A

, �

int

A

,

�

out

A

, �

A

, D

A

, W

A

) consisting of:

{ Three disjoint sets U

A

, X

A

, and Y

A

of variables, called input, internal, and

output variables, respectively. We set V

A

= U

A

[X

A

[ Y

A

.

{ Three disjoint sets �

in

A

, �

int

A

, and �

out

A

of actions, called input, internal, and

output actions, respectively. We set �

A

= �

in

A

[�

int

A

[�

out

A

.

{ A non-empty set �

A

� V

A

of initial states.

{ A set D

A

� V

A

��

A

�V

A

of discrete transitions.

{ A set W

A

of trajectories over V

A

.

Some technical axioms are imposed on the above sets to guarantee that the

de�nitions are consistent. The axioms introduced in [1] are too restrictive for

the application considered here; fortunately the extensions needed are fairly

straightforward.

An execution, �, of A is an alternating sequence � = w

0

a

1

w

1

a

2

w

2

� � �, �nite

or in�nite, where for all i, a

i

2 �

A

, w

i

2 W

A

de�ned over a left closed time

interval and fstate(w

0

) 2 �

A

. In addition, if � is a �nite sequence then it ends



with a trajectory and if w

i

is not the last trajectory its domain is right-closed

and (lstate(w

i

); a

i+1

; fstate(w

i+1

)) 2 D

A

. Here fstate(w) and lstate(w) denote

the initial and �nal states of a trajectory w. An execution is called �nite if it is

a �nite sequence and the domain of its �nal trajectory is a right-closed interval.

A state s 2 V

A

is called reachable if it is the last state of a �nite execution.

Hybrid automata \communicate" through shared variables and shared ac-

tions. Consider two automata A and B with X

A

\V

B

= X

B

\V

A

= Y

B

\Y

A

= ;

and �

int

B

\ �

A

= �

int

A

\ �

B

= �

out

A

\ �

out

B

= ;. Under some mild techni-

cal assumptions, the composition, A � B, of A and B can be de�ned as a new

hybrid automaton with U

A�B

= (U

A

[ U

B

) n (Y

A

[ Y

B

), X

A�B

= X

A

[ X

B

,

Y

A�B

= Y

A

[ Y

B

and similarly for the actions. �

A�B

, D

A�B

and W

A�B

are

such that the executions of A� B are also executions of each automaton when

restricted to the corresponding variables and actions.

A derived variable of A is a function on V

A

. Derived variables will be used

to simplify the system description, but also to facilitate the analysis. A property

of A is a boolean derived variable. A property is stable if whenever it is true at

some state it is also true at all states reachable from that state. A property is

invariant if it is true at all reachable states. Typically properties will be shown

to be stable or invariant by an induction argument on the length of an execution.

It is easy to show that:

Lemma 1 Assume that for all reachable states s of A, P true at s implies P true

at s

0

for all s

0

such that either there exists w 2 W

A

with right closed domain and

fstate(w) = s and lstate(w) = s

0

, or, there exists a 2 �

A

with (s; a; s

0

) 2 D

A

.

Then P is a stable property. If further P is true at all s 2 �

A

, then P is an

invariant property.

In some places di�erential equations will be used to simplify the description

of the set W

A

. In such cases W

A

is assumed to be populated by all trajec-

tories generated by the di�erential equation in the usual way. To simplify the

description of D

A

, we will assign a precondition and an e�ect to each action. The

precondition is a predicate on V

A

while the e�ect is a predicate on V

A

�V

A

.

The action can take place only from states that satisfy the precondition; more-

over, the states before and after the transition should be such that the e�ect is

satis�ed. When no confusion can arise we use v

0

to denote the value of variable

v after an action.

2.2 String Model

Consider a string ofN vehicles (Figure 1) moving one behind the other in a single

lane, with vehicle 0 coming �rst. The overall model will be the composition

of a number of automata (Figure 2). The plant will be a hybrid automaton

containing the dynamics of all the vehicles in the string. Each vehicle is equipped

with sensors and controllers. The sensor automaton S

i

reads the values of the

plant output variables as inputs and produces real valued output variables. The

controller automaton, C

i

, reads the corresponding sensor output variables and
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Fig. 1. A string of vehicles

uses them to generate the input variables of the plant. The S

i

and C

i

may

have internal variables and actions. In this paper we assume that the sensor

and controller automata are simple input/output maps and concentrate on the

development of a realistic plant model.

The plant is modeled by an automaton P = (U

P

, X

P

, Y

P

, �

in

P

, �

int

P

, �

out

P

,

�

P

, D

P

, W

P

). P has no input and no output actions, hence �

in

P

= �

out

P

= ;.

Here we are only interested in answering questions of \safety", encoded in terms

of possible collisions among the vehicles of the string. The answers to these ques-

tions will depend on the relative spacing and the velocities of the vehicles, but

not their absolute position on the road. Let �x

i

denote the spacing between

vehicle i and i� 1, v

i

the speed of vehicle i, acc

i

its acceleration and u

i

its com-

manded acceleration

2

and de�ne x

i

= [�x

i

v

i

] 2 R

2

, x = [x

0

: : : x

N�1

] 2 R

2N

and u = [u

0

: : : u

N�1

] 2 R

N

. Also consider a collection of boolean variables

Touching = fTouching

1

; : : :Touching

N�1

g; the evolution of these variables (Sec-

tion 2.2) will be such that Touching

i

is true whenever vehicle i is touching vehicle

i � 1. De�ne the internal and input variables as X

P

= fx; acc;Touchingg and

U

P

= fug respectively. Physical limitations constrain the valuations of the input

variables to lie in a rectangular compact set, i.e. u

i

(t) 2 [a

min

i

; a

max

i

] for all i

and for all t. The values of a

min

i

and a

max

i

are determined by the vehicle char-

acteristics (engine, brakes, tires, etc.). To ensure that the model is realistic we

impose the following assumption on �

P

and the input constraints.

Assumption 1 For all i, �x

i

(0) � 0, v

i

(0) � 0, Touching

i

(0) = False and

a

min

i

< 0 < a

max

i

.

Discrete Dynamics The continuous system evolution can be interrupted by

three classes of internal actions: collisions, vehicles touching with zero relative

velocity (and subsequently \pushing" against one another) and vehicles moving

apart (after having touched). We assume that the continuous evolution stops

as soon as the precondition of an action becomes true, to allow the action to

take place. All variables not explicitly mentioned in the e�ect are assumed to be

una�ected by the action.

2

As discussed in Section 2.2, the commanded and actual acceleration may di�er when

vehicles are touching and pushing each other.
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Consider �rst the case of collisions. Let Collision

i

be an internal action that

takes place whenever vehicle i collides with vehicle i � 1. The precondition for

Collision

i

is:

(�x

i

= 0) ^ (v

i

> v

i�1

) (1)

To determine the e�ect of the action we use a simple collision model. To deter-

mine v

i

and v

i�1

after the collision we solve a pair of equations:

M

i

v

0

i

+M

i�1

v

0

i�1

=M

i

v

i

+M

i�1

v

i�1

(2)

v

0

i�1

� v

0

i

= (v

i

� v

i�1

)�

i

(3)

where M

i

is the mass of vehicle i and �

i

is the coe�cient of restitution, a

measure of the energy lost in the collision. Equation (2) is the conservation of

momentum equation while Equation (3) is referred to as the restitution equation.

By appropriate choice of � (possibly as a function of the speeds) this collision

model can capture a wide range of collision scenarios. To maintain a certain

level of generality in the subsequent discussion we will typically assume that the

coe�cient of restitution is a function of the relative velocity v

i�1

� v

i

at impact

and will denote it by �

i

(�). To ensure that the model is realistic we impose the

following assumption:

Assumption 2 For all i, M

i

> 0 and �

i

(v) 2 [0; 1] for all v > 0.

Note that in general vehicles may end up going backwards as a result of collisions

if, for example, a light vehicle elastically hits a slowly moving heavy vehicle (i.e.

M

i

�M

i�1

, �

i

� 1 and v

i�1

� 0).

Multiple instantaneous collisions are also possible in this setting. These are

situations where there exist N

1

and N

2

with 0 � N

1

< N

2

< N such that

�x

N

1

6= 0, �x

N

2

+1

6= 0 (if any) and for all i with N

1

< i � N

2

, �x

i

= 0

and v

i

> v

i�1

. The value, x

0

, of the state after the collision again satis�es

�x

0

i

= �x

i

for all i and v

0

i

= v

i

for all i < N

1

or i > N

2

. To determine the

values of v

i

for N

1

� i � N

2

we resolve the multiple collision as a sequence of



pairwise collisions, according to equations (2) and (3). The pairwise resolutions

will keep taking place as long as there exists a j with N

1

< j � N

2

such that

v

j

> v

j�1

. When this condition is violated we will say that the multiple collision

has been resolved. It turns out that, if the masses of the vehicles are unequal or

the restitution coe�cients �

i

are not identically equal to 1, one can construct

scenarios where the velocities of the vehicles after the multiple collision has been

resolved depend on the order in which the pairwise resolutions were executed.

To circumvent this problem we state our theorems and proofs in a way that the

results hold for all possible orderings of the pairwise resolutions.

Next, let Touch

i

be an internal action that takes place whenever vehicle i

touches vehicle i� 1 with zero relative velocity. The precondition for Touch

i

is:

(Touching

i

= False) ^ (�x

i

= 0) ^ (v

i

= v

i�1

) ^ (acc

i

� acc

i�1

) (4)

The e�ect of Touch

i

is to declare the two vehicles as touching, i.e. Touching

0

i

=

True.

Finally, consider what happens when vehicles that are touching start moving

away from one another. Let Separate

i

be an internal action that takes place

whenever vehicle i is already touching vehicle i�1 and starts to move away. The

precondition for Separate

i

is:

(Touching

i

= True) ^ [(acc

i

< acc

i�1

) _ (v

i

< v

i�1

)] (5)

The e�ect of Separate

i

is to declare the two vehicles as no longer touching, i.e.

Touching

0

i

= False.

Continuous Dynamics The set of trajectories W

P

will be generated by a

dynamical system. Assume there are no vehicles ahead of the string and set

�x

0

�1. Then, for i = 1; : : : ; N � 1 the laws of motion imply that:

_

�x

i

(t) = v

i�1

(t)� v

i

(t)

_v

i

(t) = acc

i

(t)

The value of the actual acceleration, acc

i

, of vehicle i depends on the acceleration

commanded by the controller of that vehicle, u

i

, and on whether the vehicle

is touching vehicle i � 1 or vehicle i + 1. In the case when the vehicles are

not touching we simply set the actual acceleration equal to the commanded

acceleration. The case where vehicles are touching is more complicated. The

reason is that when vehicles are pushing against one another, there are forces

exerted from one vehicle to the other. Therefore, the actual acceleration of a

vehicle depends not only on the acceleration commanded by its own controller,

but also on the accelerations commanded by the controllers of the neighboring

vehicles that are pushing against it.

To resolve this issue we �rst introduce some abstract de�nitions. Consider

a nonempty �nite subset of the natural numbers S � N. S is a segment if it

consists of consecutive numbers. A subsegment of a segment S is any subset of

S that is also a segment. For segments S

1

and S

2

with min(S

2

) = max(S

1

) + 1



we de�ne their concatenation (denoted by S

1

S

2

) as the segment S

1

[ S

2

. A

weighted average function on S is any function a : 2

S

! R such that for all L;R

subsegments of S:

minfa(L); a(R)g � a(LR) � maxfa(L); a(R)g (6)

whenever the concatenation LR is de�ned. A segment S with a weighted average

function a is unsplitable if:

S = LR) a(L) � a(R)

A partition of S is a �nite collection S

1

; : : : ; S

n

where S = [

n

k=1

S

k

and for all

k, S

k

is a segment and S

k

\ S

l

= ; for l 6= k. Without loss of generality assume

that min(S) = min(S

1

) and for all 1 < k � n, min(S

k

) = max(S

k�1

) + 1 and

write S = S

1

S

2

: : : S

n

. A partition of S

1

: : : S

n

of S is called a maximal partition

if for all k = 1; : : : ; n, S

k

is unsplitable and either n = 1 or for all k = 2; : : : ; n,

a(S

k�1

) > a(S

k

).

Theorem 1 For every segment, S, and every weighted average function, a, on

S there exists a unique maximal partition.

Though interesting, the proof of Theorem 1 is omitted here as it is not necessary

for the safety results. An algorithm to construct the maximal partition has also

been developed.

Intuitively (returning to the vehicle example) a maximal partition is such

that vehicles in an element of the partition are pushing against one another

while vehicles in di�erent elements of the partition are moving away from one

another. Assume there exist i; j with 0 < i < j < N such that vehicles i to j

are touching each other. De�ne the segment S = fi; : : : ; jg and for every subset

S

0

� S consider the function:

a(S

0

) =

P

k2S

0

M

k

u

k

P

k2S

0

M

k

(7)

One can show that a is a weighted average function on S. To determine the

acceleration of the vehicles in this collection at a given instant, let S

1

: : : S

n

be

the maximal partition of S at that instant and for all k = 1; : : : ; n set:

acc

l

= a(S

k

) for all l 2 S

k

(8)

If one assumes that the force exerted on a vehicle by the road depends only

on the commanded acceleration of that vehicle (and not on whether the vehi-

cle is touching other vehicles), then this choice is what one would expect from

physical intuition. The total force commanded by all the vehicles determines the

acceleration of their combined mass.



2.3 Output Evolution

The output evolution is determined as a function of the evolution of the inputs

and states. We assume that in principle all the internal variables can be made

available to the controllers. Limitations imposed by current sensing and com-

munication technology should be incorporated in the sensor automata. There-

fore the information made available by vehicle i is y

p

i

(t) = [x

i

(t) acc

i

(t)]. Let

y

p

=

�

y

p

0

: : : y

p

N�1

�

2 R

3N

and de�ne the output variables as Y

P

= fy

p

g.

2.4 Model Consistency & Safety Requirements

The following lemma suggests the proposed plant model agrees with basic phys-

ical intuition:

Lemma 2 The plant automaton is such that:

1. If E and E

0

are the kinetic energy before and after Collision

i

, then E

0

� E.

2. ^

N�1

i=0

[�x

i

� 0] is an invariant property of the plant.

3. ^

N�1

i=1

[(Touching

i

= True)) (�x

i

= 0)] is an invariant property of the plant.

The kinetic energy of the string is de�ned as:

E =

N�1

X

i=0

1

2

M

i

v

i

The �rst property shows that (as expected) no energy is generated as a result of

the collisions. The second property shows that the model does not allow vehicles

to run over one another (a physical impossibility). The last property shows that

vehicles are declared as touching by the model only when they are physically

touching.

We are interested in de�ning the system performance in terms of the severity

of the collisions experienced by the vehicles. Following [2], we assume that a

collision is safe if the relative velocity at impact is below a certain threshold, v

A

.

A commonly cited threshold is v

A

= 3ms

�1

[2].

De�nition 1 A string is safe if

V

N�1

i=1

[(�x

i

= 0)) (v

i

� v

i�1

+ v

A

)] is an in-

variant property.

The main limitation of our model is that is does not account for the lateral

motion of the vehicles. We assume that all vehicles e�ectively move along a

straight line. This assumption may be unrealistic, especially in the presence

of collisions when large forces and moments can be exerted from one vehicle to

another. The situation will be even worse when the vehicles move along a curved

road.



3 Safety Conditions for Emergency Deceleration

3.1 Background

The emergency deceleration maneuver is a situation where the �rst vehicle in the

string applies maximum deceleration until it comes to a stop, thus endangering

the remaining vehicles of the string. It is assumed that the emergency deceler-

ation of vehicle 0 is caused by some abnormal condition, such as a mechanical

malfunction or an obstacle. We would like to determine the conditions under

which the remaining vehicles can maintain their safety despite this \malicious"

behavior of the leader.

The safety of general strings of vehicles has been analyzed using a number of

techniques. Most results in the literature start by partly characterizing the string

by determining \automata" for the sensors and controllers and then trying to

establish the range of initial conditions and parameters for which the string is

safe. This type of analysis has led to conditions under which pairs of vehicles are

guaranteed not to collide [3, 4] or experience safe collisions [4, 5]. In some cases

the conditions have also been extended to longer or even in�nite strings [6, 7].

Perhaps the most challenging problem in this area has been the design of

controllers for platoons of vehicles. A platoon is a string of very tightly spaced

vehicles. Typically intra-platoon spacings are of the order of 1-2 meters. The

safety of the intra-platoon controllers [6] relies on the assumption that the be-

havior of the �rst vehicle is in some sense \reasonable". This means that the

controller C

0

takes into account the limitations of the rest of the vehicles in the

string when calculating u

0

. This requirement is clearly violated in the case of

the emergency deceleration maneuver. It is conjectured however that the platoon

is going to be safe even in this case [8]. The justi�cation is that collisions are

going to take place in rapid succession, because the vehicles are all close to one

another. Therefore, if the speeds of all vehicles are initially the same, the relative

velocity at the time of collision is going to be small. We attempt to establish

conditions under which this conjecture is true.

The safety of the string under an emergency deceleration maneuver depends

on the response of the remaining vehicles of the string to the deceleration of the

leader. Here we consider a very simple default deceleration strategy. Assume that

at time t = 0 the leading vehicle applies maximum deceleration, a

min

0

, until it

stops at which point its commanded acceleration becomes 0. After a delay d

i

vehicle i also applies a

min

i

until it comes to a stop. This scenario can be easily

encoded in the model discussed above by simple sensor and controller automata.

The results discussed here refer to the case d

i

= 0; some of them directly extend

to the more general case.

3.2 Safety Conditions For Strings of Length N=2

We �rst develop conditions for a string of two vehicles to be safe under the default

deceleration strategy. These conditions will form the basis of safety results for

longer strings. We refer to a two vehicle string as a pair. One can easily show

that:



Proposition 1 (v

0

� 0) and (v

1

� 0) are stable properties for a pair. If (v

1

� 0)

the pair is safe (in particular Collision

1

cannot occur).

To derive more meaningful safety properties consider the derived variables:

C

1

(�x

1

; v

1

; v

0

) = (a

min

1

+ a

min

0

)v

2

0

� 2a

min

0

v

0

v

1

� 2(a

min

0

)

2

�x

1

(9)

C

2

(�x

1

; v

0

; v

1

) =

a

min

1

a

min

0

v

0

� v

1

(10)

P

1

(�x

1

; v

0

; v

1

) = (v

0

� v

1

)

2

� 2(a

min

0

� a

min

1

)�x

1

� v

2

A

(11)

P

2

(�x

1

; v

0

; v

1

) = v

2

1

�

a

min

1

a

min

0

v

2

0

+ 2a

min

1

�x

1

� v

2

A

(12)

To simplify the notation we will explicitly mention the function arguments only

when necessary. We also introduce a derived boolean variable C given by the

expression:

C =

�

(C

1

� 0) ^ (a

min

0

� a

min

1

)

�

_

�

(C

2

� 0) ^ (a

min

0

� a

min

1

)

�

_ [(v

0

= 0)] (13)

P

1

; P

2

and C are used to construct safety invariants. A collision can take place

either while both vehicles are moving or while vehicle 1 is moving and vehicle 0

has stopped (by Proposition 1 collisions cannot take place once vehicle 1 stops).

The property (P

1

� 0) will encode conditions that guarantee safety if a collision

takes place while both vehicles are still moving. (P

2

� 0) will encode conditions

that guarantee that either no collision takes place or a safe collision takes place

after vehicle 0 has stopped. The predicate C will be used to distinguish the two

cases.

Lemma 3 (P

1

� 0) _ (v

1

� 0) is a stable property of the pair.

Proof. (P

1

� 0) _ (v

1

� 0) is preserved by Touch

1

and Separate

1

, as both these

actions leave �x

1

; v

0

and v

1

una�ected. Assume (P

1

� 0) _ (v

1

� 0) is true

when Collision

1

occurs. By Proposition 1 (v

1

� 0) can not be true in this case.

Therefore (P

1

� 0) is true, i.e. P

1

(�x

1

; v

0

; v

1

) = P

1

(0; v

0

; v

1

) � 0. Hence, by

the restitution equation (3), (v

0

0

� v

0

1

)

2

= (v

0

� v

1

)

2

�

2

1

� (v

0

� v

1

)

2

� v

2

A

, as

�

1

2 [0; 1] by Assumption 2. Therefore, P

1

(�x

0

1

; v

0

0

; v

0

1

) = P

1

(0; v

0

0

; v

0

1

) � 0 and

(P

1

� 0) _ (v

1

� 0) is again true after Collision

1

.

Assume at some state, s, (P

1

� 0) _ (v

1

� 0) is true and consider all trajec-

tories that start at s. If (v

1

� 0) is true at s it will also be true at the last state

of the trajectory by Proposition 1. If (P

1

� 0) ^ (v

1

> 0) is true at s, consider

the variation of P

1

along a trajectory:

d

dt

P

1

= 2(v

0

� v

1

)(acc

0

� acc

1

)� 2(a

min

0

� a

min

1

)(v

0

� v

1

)

=

8

<

:

0 if (v

0

> 0) ^ (v

1

> 0) ^ :Touching

1

2a

min

0

v

1

if (v

0

= 0) ^ (v

1

> 0) ^ :Touching

1

�2(a

min

0

� a

min

1

)(v

0

� v

1

) if Touching

1



In the cases where Touching

1

= False,

_

P

1

� 0, therefore (P

1

� 0) will be true

at least until (v

1

� 0) becomes true. If Touching

1

= True and v

0

< v

1

(resp.

v

0

> v

1

) action Collision

1

(resp. Separate

1

) occurs and the trajectory stops. If

Touching

1

= True and v

0

= v

1

, then

_

P

1

= 0. Overall, (P

1

� 0) _ (v

1

� 0) will

be true at the last state of the trajectory.

Lemma 4 If (P

1

� 0) _ (v

1

� 0) is true then the pair is safe.

Proof. If (v

1

� 0) is true the pair is safe by Proposition 1. If (P

1

� 0), at the time

when �x

1

= 0, P

1

(�x

1

; v

0

; v

1

) = P

1

(0; v

0

; v

1

) � 0, therefore (v

0

� v

1

)

2

� v

2

A

.

Hence, v

1

� v

0

+ v

A

and the pair is safe.

The conditions of Lemma 4 can be relaxed by introducing P

2

. Consider:

I = [P

1

� 0] _ [C ^ (P

2

� 0)] (14)

Lemma 5 I _ (v

1

� 0) is a stable property of the pair.

Proof. If (P

1

� 0) _ [C ^ (P

2

� 0)] _ (v

1

� 0) is true at the pre-state of Touch

1

or Separate

1

it will also be true at the post-state as both actions leave �x

1

; v

0

and v

1

una�ected. Assume (P

1

� 0) _ [C ^ (P

2

� 0)] _ (v

1

� 0) is true when

Collision

1

occurs. If (P

1

� 0)_(v

1

� 0) is true, it will also be true after Collision

1

by Lemma 3. Assume Collision

1

occurs while C^(P

2

� 0) is true. We distinguish

the following cases:

Case 1: (v

0

= 0) ^ (P

2

� 0) is true. Then, at �x

1

= 0, v

2

1

� v

2

A

� 0, therefore

v

1

= v

1

� v

0

� v

A

.

Case 2: (C

1

� 0) ^ (a

min

0

� a

min

1

) ^ (P

2

� 0) is true. Then, 0 <

a

min

0

+a

min

1

2a

min

0

� 1

and at �x

1

= 0,

a

min

0

+a

min

1

2a

min

0

v

0

� v

1

. Therefore, v

0

� v

1

and hence (C

1

� 0) ^

(a

min

0

� a

min

1

) ^ (P

2

� 0) cannot be true when Collision

1

occurs.

Case 3: (C

2

� 0)^(a

min

0

� a

min

1

)^(P

2

� 0) is true. This implies that

a

min

1

a

min

0

� 1,

a

min

1

a

min

0

v

0

� v

1

and, at �x

1

= 0, v

2

1

�

a

min

1

a

min

0

v

2

0

� v

2

A

� 0. These three inequalities

imply that (v

0

� v

1

)

2

� v

2

A

� 0.

In all cases where Collision

1

is possible, 0 < v

1

� v

0

� v

A

. Therefore (v

0

�

v

1

)

2

� v

2

A

and hence (v

0

0

� v

0

1

)

2

� v

2

A

(by equation (3) and Assumption 2).

Therefore, if Collision

1

occurs while C ^ (P

2

� 0) is true, (P

1

� 0) will be true

after the collision. Overall, if (P

1

� 0) _ [C ^ (P

2

� 0)] _ (v

1

� 0) is true when

Collision

1

occurs it will also be true afterwards.

Assume at some state, s, (P

1

� 0) _ [C ^ (P

2

� 0)] _ (v

1

� 0) is true and

consider the trajectories that start at this state. If (P

1

� 0) _ (v

1

� 0) is true

at s it will also be true at the last state of the trajectory, by Lemma 3. If

C ^ (P

2

� 0) ^ (v

1

> 0) is true at s, consider the derivatives of the functions

C

1

; C

2

and P

2

along the trajectory:

d

dt

C

1

= 2(a

min

0

+ a

min

1

)v

0

acc

0

� 2a

min

0

acc

0

v

1

� 2a

min

0

v

0

acc

1

� 2(a

min

0

)

2

(v

0

� v

1

)



=

8

<

:

0 if (v

0

> 0) ^ :Touching

1

2(a

min

0

)

2

v

1

if (v

0

= 0) ^ :Touching

1

2(a

min

1

v

0

� a

min

0

v

1

)acc

0

� 2(a

min

0

)

2

(v

0

� v

1

) if Touching

1

d

dt

C

2

=

a

min

1

a

min

0

acc

0

� acc

1

=

8

>

<

>

:

0 if (v

0

> 0) ^ :Touching

1

�a

min

1

if (v

0

= 0) ^ :Touching

1

�

a

min

1

a

min

0

� 1

�

acc

0

if Touching

1

d

dt

P

2

= 2v

1

acc

1

� 2

a

min

1

a

min

0

v

0

acc

0

+ 2a

min

1

(v

0

� v

1

)

=

(

0 if :Touching

1

2

a

min

0

v

1

�a

min

1

v

0

a

min

0

acc

0

+ 2a

min

1

(v

0

� v

1

) if Touching

1

Consider �rst the variation of P

2

. If Touching

1

= False and as long as v

1

> 0,

_

P

2

= 0. Therefore, if (P

2

� 0) is true at s, (P

2

� 0)_ (v

1

� 0) will be true at the

last state of the trajectory. If Touching

1

= True and v

1

6= v

0

the trajectory stops

(as the precondition of either Collision

1

or Separate

1

is satis�ed). If Touching

1

=

True and v

1

= v

0

then

_

P

2

= 2(a

min

0

� a

min

1

)v

0

acc

0

=a

min

0

. If a

min

0

> a

min

1

the

trajectory stops and action Separate

1

occurs. Otherwise,

_

P

2

� 0, therefore (P

2

�

0) will be true at the last state of the trajectory.

Now consider the variation of C. Recall that C ^ (v

1

> 0) is assumed to be

true at s. Distinguish two cases:

Case A: (C

1

� 0) ^ (a

min

0

� a

min

1

) is true at s. If Touching

1

= False and

as long as v

1

> 0 and v

0

> 0,

_

C

1

= 0. If Touching

1

= True and v

1

6= v

0

the trajectory stops (as the precondition of either Collision

1

or Separate

1

is

satis�ed). If Touching

1

= True and v

1

= v

0

then

_

C

1

= 2(a

min

1

�a

min

0

)v

0

acc

0

� 0

as a

min

0

� a

min

1

. Overall, [(C

1

� 0) ^ (a

min

0

� a

min

1

)] _ (v

0

= 0) _ (v

1

� 0) will

be true at the �nal state of the trajectory.

Case B: (C

2

� 0) ^ (a

min

0

� a

min

1

) is true at s. If Touching

1

= False and

as long as v

1

> 0 and v

0

> 0,

_

C

1

= 0. If Touching

1

= True and v

1

6= v

0

the

trajectory stops (as the precondition of either Collision

1

or Separate

1

is satis�ed).

If Touching

1

= True and v

1

= v

0

then

_

C

2

= (a

min

1

� a

min

0

)acc

0

=a

min

0

� 0, as

a

min

0

� a

min

1

. Therefore, [(C

2

� 0)^ (a

min

0

� a

min

1

)]_ (v

0

= 0)_ (v

1

� 0) will be

true at the �nal state of the trajectory.

Overall, if (P

1

� 0) _ [C ^ (P

2

� 0)] _ (v

1

� 0) is true at the �rst state of a

trajectory, it will also be true at the last state.

Theorem 2 (Su�cient Condition for Pair Safety) If I is initially true the

pair is safe.

Proof. I initially true and Lemma 5 imply [P

1

� 0] _ [C ^ (P

2

� 0)] _ (v

1

� 0)

is an invariant property of the pair. If (P

1

� 0) _ (v

1

� 0) is true safety is

guaranteed by Lemma 4. If C ^ (P

2

� 0) is true, the proof of Lemma 5 indicates

that at �x

1

= 0, v

1

� v

0

� v

A

, which again implies safety.



Conditions under which the string is unsafe can be obtained in a similar way.

Consider a derived boolean variable Collided which is initially false and becomes

true when the actions Collision

1

occurs. Let:

C

0

= (C

1

� 0) (15)

I

0

= [:C

0

^ (P

1

> 0)] _ [(C

0

_ (v

0

= 0)) ^ (P

2

> 0)] (16)

Theorem 3 (Necessary Condition for Pair Safety) If I

0

^ (v

1

> 0) ^

:Collided is true initially then the pair is unsafe.

The proof involves an argument similar to the one used for Theorem 2. The proof

of Theorem 2 indicates that if the �rst collision is safe, all subsequent collisions

will also be safe. The condition of Theorem 3 is therefore such that the �rst

collision between the two vehicles is unsafe. More unsafe collisions may follow.

3.3 Safety Conditions for Strings of Length N > 2

Next, we derive a very simple su�cient condition for a string of arbitrary length

to be safe. Even though the condition is conservative, interesting conclusions

about the safety of platoons of vehicles can be derived from it (see Section 4). A

string is near uniform mass if �

i

(v) � � and �M

k�1

�M

k

�M

k�1

=�. The near

uniform mass condition allows us to put some bounds on the change of speed

that a collision can induce. For example, it can be shown that:

Proposition 2

V

N�1

i=0

(v

i

� 0) is an invariant property of a near uniform mass

string.

Recall that in general vehicles may end up going backwards due to a collision.

We construct invariant properties that allow us to characterize the safety of

such a string. Let â

min

= min

0�k<N

a

min

k

and â

max

= max

0�k<N

a

min

k

and for

0 � i < j � N � 1 de�ne �x

ij

=

P

j

k=i+1

�x

k

. For any pair of vehicles i < j,

consider the function:

P (�x

ij

; v

i

; v

j

) = v

j

�

â

max

â

min

v

i

� v

A

(17)

Theorem 4 (Su�cient Condition for String Safety) A near uniform mass

string of N vehicles is safe if initially P (�x

ij

; v

i

; v

j

) � 0 for all i; j with 0 �

i < j � N � 1.

The proof is again by induction. Note that the conditions of Theorem 4 involve

all pairs in the string and not just adjacent vehicles.

Finally, we establish conditions such that any string formed by a collection

of vehicles satisfying:

a

min

i

2 [a; a]; M

i

2 [M;M ]; �

i

(v) � 1 (18)

is guaranteed to be safe. Assume that all vehicles in the string are initially

moving with velocity v.



vi

i . . . .i+2i+1 j-1 j

ε

vi+1 v vj-1 vi+2 j

Fig. 3. Final con�guration for theorem proof

Theorem 5 (Necessary Condition for String Safety) All strings of N ve-

hicles satisfying (18) are safe under the default deceleration strategy only if ini-

tially (P

1

(�x

ij

; v; v) � 0) _ (P

2

(�x

ij

; v; v) � 0) is true for all i; j with 0 � i <

j � N � 1 and for all a

min

i

; a

min

j

2 [a; a].

Theorem 5 e�ectively states that a string may be unsafe if any two vehicles in it

are unsafe. The proof is constructive: we show that, if two vehicles i and j violate

the conditions of the theorem, one can chose the deceleration capabilities, a

min

k

,

and the masses, M

k

, of vehicles k = i + 1; : : : ; j � 1 so that the string exhibits

unsafe collisions. The idea of the construction is to bring the vehicles from their

initial arrangement to the �nal arrangement of Figure 3, without any collisions

taking place. The construction will be such that after resolving the multiple

collision between vehicles i + 1; : : : ; j the velocity of vehicle i + 1 will be the

same as the velocity of vehicle j before the collision. For � small enough, the

next collision will be between vehicles i + 1 and i and the relative velocity will

be � close to the relative velocity with which vehicles j and i would have collided

if vehicles i+ 1; : : : ; j � 1 were not there.

4 Implications for Platooning

We establish bounds on the system parameters (in particular the di�erence in

deceleration capability between the vehicles) for a string to be safe. We start with

the su�cient condition of Section 3.3. Consider a near uniform mass string and

let a� a = �. Then, all strings whose vehicles satisfy (18) are guaranteed to be

safe under the default deceleration strategy if

�

1�

a

a

�

v�v

A

� 0 or equivalently:

� � �

av

A

v

(19)

Substituting \typical" values of a = �9ms

�2

and v

A

= 3ms

�1

leads to � � 1:08

for v = 25ms

�1

and � � 0:9 for v = 30ms

�1

.

For the necessary conditions of Section 3.3, note that:

@P

1

@a

min

i

= �2�x

ij

� 0

@P

1

@a

min

j

= 2�x

ij

� 0

@P

2

@a

min

i

=

a

min

j

(a

min

i

)

2

v

2

i

� 0

@P

2

@a

min

j

= �

v

2

i

a

min

i

+ 2�x

ij

� 0



N � (ms

�2

)

v = 25ms

�1

, F = 1m v = 30ms

�1

, F = 1m v = 25ms

�1

, F = 2m

2 4.5 4.5 2.25

3 2.25 2.25 1.125

4 1.5 1.5 1.125

5 1.125 1.125 1.125

� 6 1.125 0.9 1.125

Table 1. Maximum allowable di�erence in deceleration capability

Therefore, the condition (P

1

(�x

ij

; v; v) � 0) _ (P

2

(�x

ij

; v; v) � 0) for all a

min

i

and a

min

j

2 [a; a] is equivalent to (P

1

(�x

ij

; v; v) � 0) _ (P

2

(�x

ij

; v; v) � 0) for

a

min

i

= a and a

min

j

= a. To further simplify the calculation assume that initially

the string is uniformly spaced, i.e.�x

i

= F for all i. Then the necessary condition

for string safety requires that for all i � j:

� � max

�

v

2

A

2(j � i)F

;

2(j � i)a

2

F � av

2

A

v

2

� 2(j � i)aF

�

Table 1 shows the necessary condition for �. The numbers indicate that the

su�cient condition is conservative for small strings but approaches the necessary

condition as the string size increases (the number for N = 2 in Table 1 is both

necessary and su�cient).

If the string represents a platoon and based on the characteristics of vehi-

cles on current highways, the bound on � is reasonable for N = 2 but rather

restrictive for higher platoon sizes (even under perfect road conditions). Note

also that the calculation saturates after the �rst few vehicles; a similar observa-

tion was made in [6] about the increase in deceleration e�ort required along a

platoon for \string stability". Overall, The above calculations indicate that the

safety of the platooning system under emergency braking can only be guaran-

teed under rather limited conditions, in particular for small platoons consisting

of vehicles of similar deceleration capabilities. This observation is in agreement

with the numerical study of [9]. One can improve the situation by modifying the

system parameters, by arranging the vehicles in a platoon in a particular order

(e.g. in the order of increasing deceleration capability) and by designing better

deceleration controllers. All these alternatives are the topic of current research.

5 Concluding Remarks

The string system introduced here is an interesting example for trying out dif-

ferent hybrid systems techniques. The system is simple enough to approach an-

alytically, yet it can produce executions with very complex continuous-discrete

interaction, even for string sizes as small as N = 3. Here we used induction



arguments to answer safety questions; induction proofs are ideally suited to the

structure imposed by the HIOA modeling formalism used to encode the system.

We are currently working on extending the results discussed here to account

for phenomena like sensing and actuation uncertainties and delays. These ex-

tensions are likely to involve the use of simulation relations and abstraction

mappings (similar analysis was carried out in [5] for a simpler system). We are

also trying to investigate the e�ect of di�erent deceleration strategies. Allowing

di�erent deceleration strategies makes the problem much more challenging; for

example more sophisticated analysis techniques may be needed to ensure that

the proposed controllers do not resort to \Zeno" executions to ensure the safety

of the system

3

. The ultimate goal is of course to construct an optimal deceler-

ation strategy for a each string; powerful optimal control tools are likely to be

needed for this purpose. Hopefully solution to these problems will suggest ways

in which control theory and computer science techniques can be used in tandem

to address complicated questions in hybrid systems.
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This is not an issue for the default deceleration strategy considered here, as it is easy

to show that all vehicles come to a stop in �nite time and after a �nite number of

collisions.
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