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Abstract 
We present a methodcllogy for synthesizing hybrid con- 
trollers that meet multiple control objectives. Our 
methodology uses game theoretic techniques to classify 
all controls that can be used to meet the high prior- 
ity objectives. Lower priority objectives are then opti- 
mized within this class. 

1 l[ntroduction 
Hybrid systems, that is systems that involve the inter- 
action of discrete and continuous dynamics, have re- 
cently attracted considerable attention (for a discus- 
sion of research directions in this field see [l]). In this 
paper we address hybrid control problems, in particu- 
lar ones where multiple requirements are imposed on 
the design. In such st multi-objective setting some of 
the requirements are usually assumed to be more im- 
portant than others, either explicitly or implicitly. For 
simplicity we restrict lour attention to two performance 
criteria. We will use ~ a f e t y  to refer to the high priority 
criterion and ef ic ienc y to refer to the low priority one. 
Using optimal control tools we attempt to determine 
the largest controlled invariant safe set ,  i.e. the largest 
set of states for which there exists a control such that 
the safety objective ciln be met. In the process we also 
determine the class of least restrictive safe controls, i.e. 
all the controls that can be used to meet the safety ob- 
jective from the safe states. The efficiency objective 
can then be optimized within this class. The resulting 
controller will typically be hybrid as it involves switch- 
ing between the safe and efficient controllers. 

Our analysis is based on the hybrid system modeling 
formalism introduced in [2]. The design algorithm (Sec- 
tion 2) is motivated by three examples. The first is 
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purely discrete and involves the control of finite au- 
tomata. The second is hybrid, a continuous process 
(the level of water in a boiler) is controlled using dis- 
crete controls (pumps being switched on and off). Fi- 
nally, the third example is primarily continuous and is 
motivated by the design of a flight vehicle management 
system. The details of the calculations and the proofs 
have been omitted from the examples; the interested 
reader is referred to [l] . 

2 Multi-objective Controller Design 
2.1 Modeling Framework 
To introduce the necessary terminology and nota- 
tion we briefly review the modeling framework of 
[2]. A hybrid dynamical system,  H ,  is a collection 
(X ,U ,Y ,  I ,  f, E,h ) ,  with X = XD x&,  U = X ~ C ,  

Y = YD XYc, I C x ,  f : x X U -+ T X c ,  E C 
X x U x X ,  and h : X x U -+ Y .  X c , U c , Y c  are re- 
spectively open subsets of Rn, R”, RP, for some finite 
integers n,  m, p .  X D ,  U D ,  YD are countable sets and 
T X c  represents the tangent space of X c .  X ,  U and Y 
are referred to as the state, input and output variables 
respectively. 

We consider the system evolution over a set of times 
of the form T = [td,tf] c Iw. Variables evolve either 
continuously as a function of time or in instantaneous 
jumps. Trajectories will therefore be defined over sets 
of the form [ri, rl][r{, rz] . . . [ T ; - ~ ,  rn] with ri E T for 
all i, T; = t i ,  r, = t f  and ri = r: 5 ri+l for all i = 
1,2 ,  . . . , n - 1. The implication is that rj are the times 
when discrete jumps occur. We will use 7 to denote 
the set of all such “super-dense” time trajectories over 
T and T to denote an element of 7. 
A run of the hybrid dynamical system H over an 
interval T is a collection ( r ,q , z , y ,u )  with r E 7, 
q :  r --+ X D ,  1:: r -* X c ,  y : r --+ Y ,  and U :  r -+ U ,  
satisfying: 

mailto:sastry@eecs.berkeley.edu


1. ( P ( 6 ) ,  .(a> E 1. 
2. For all i, either (q(Tj), X(T*), u ( T ~ ) ,  Q(T;), z(T;)) E 

E and ( q ( ~ i ) , z ( ~ i ) )  # (q(~a'),z(~;)) 01 ~(7:) # 

3. For all i with T: < q + l  and for all t E [T:, ~ j + 1 ] ,  

U(7i). 

j.(t) = f ( n ( t ) , z ( t ) , W ) ,  n(t> = d.:) and 
( d t ) ,  z:(t>, 4 t h  d t ) ,  z:(t>) E E.  

4. For all t E T, y(t) = h(q(t) ,  z ( t ) ,  u(t)). 

Like conventional control systems, hybrid dynamical 
systems can be composed by input-output interconnec- 
tions. It can be shown that, under some mild tech- 
nical assumptions, an interconnection of hybrid dy- 
namical systems is another hybrid dynamical system. 
To simplify the notation we will assume Y = X and 
h(q, 2, U )  = (n, .>. 
2.2 Controller Synthesis 
We assume that we are given a plant modeled in the 
above framework, whose inputs are subdivided into two 
classes, controls denoted by U and disturbances, de- 
noted by d. The input space is accordingly split into 
two subspaces, U x D. The interpretation is that the 
designer can influence the controls but not the distur- 
bances. This implies that the controller design should 
be such that the desired performance is achieved de- 
spite the actions of the disturbances. Let PC de- 
note the space of piecewise continuous functions of 
the reals and define the set of admissible controls by 
U = { U  E PClu(t) E U,Vt} and the set of admissible 
disturbances by D = { d  E PCld(t) E D,Vt} .  

For simplicity, we restrict our attention to the case 
where two requirements are imposed on the system per- 
formance; we refer to them as safety and eficiency. We 
assume that these requirements can be encoded by a 
pair of cost functions, J1 and J2 respectively, on the 
runs of the hybrid dynamical system. Here we restrict 
our attention to the case where each (u ,d )  generates 
a unique state trajectory for a given initial condition 
(q ' ,  z'). We informally refer to hybrid dynamical sys- 
tems that possess this property as deterministic hybrid 
dynamical systems. In this case the cost function can 
be thought of as a map: 

We assume that a threshold, Ci, is given for each cost 
function and say that a trajectory, ( (q ' ,  z'), U, d ) ,  meets 
objective i if J i ( ( q o ,  zo), U ,  d )  5 Cj. 
To guarantee that the performance specifications are 
met despite the action of the disturbances we cast the 
design problem as a zero sum dynamic game. The two 
players in the game are the control U and the distur- 
bance d and they compete over the cost functions J1 
and J2. As higher priority is given to safety, we solve 
the game for J1 first. Assume that the game admits a 
saddle solution, i.e. there exist input and disturbance 

trajectories, U ;  and d; such that: 

maxminJl(qo, zo, U ,  d)  
d € V  uEU 

= minmaxJl(qo, x', U ,  d)  
uEU d E V  

Then the set VI = { (q , z )  E X l J : ( q , z )  5 C,} con- 
tains all states for which there exists a control such 
that the safety objective is met for the worst possible 
admissible disturbance (and hence for any admissible 
disturbance). If U T  is used as the control it will guar- 
antee that J1 is minimized for the worst possible dis- 
turbance; moreover, if the initial state is in VI it will 
also guarantee that the safety objective is met. 

U ;  does not take into account 5 2 ,  however. To intro- 
duce efficiency let: 

( 2 )  U1(qo, zo) = { U  E U1 maxJ1(qo, z', U ,  d )  5 CI} 
dE'D 

U1 can be thought of as a feedback map U1 : X -+ p, 
that to each state assigns the subset of admissible con- 
trols which guarantee that the safety objective will be 
met; the least restrictive class of safe controls. Within 
this class we would like to select the control that 
minimizes the cost function 52. We again pose the 
problem as a two person zero sum game. Assume 
that a saddle solution, ( u f , d $ )  exists. Then the set 
VZ = { ( q , ~ )  E XIJ2(q,  2, ( U ; ,  d f ) )  5 CZ} contains the 
initial conditions for which there exists a control such 
that for any admissible disturbance both safety and ef- 
ficiency objectives are met. The control law U ;  and the 
set & are such that for all (q', z') E I n Vz and for all 
d E D, Ji(q', z', U $ ,  d)  5 Cj for i = 1,2 .  

As V2 c VI there may still be states for which the safety 
objective can be met whereas the efficiency objective 
can not. If the saddle solutions are in feedback form, 
the controller can be extended to these states using the 
simple switching scheme: 

This will make the operation of the controller hybrid, 
even when the plant is purely continuous. 

The above algorithm may run into technical difficul- 
ties, as there is no guarantee that the dynamic games 
will have a saddle solution, there is no straightforward 
way of computing Ul(qo ,  zo) and there is no guarantee 
that the sets VI (and consequently Ul(qo,zo)) and V2 

will be non-empty. Fortunately, in the examples con- 
sidered here (as well as the ones [3, 41) solutions can 
be obtained analytically, or by using simple numerical 
calculations. 

3 Reachability in Finite Automata 
Consider a standard, deterministic finite automaton 
G = (Q ,C ,S ,Qo)  where Q is a finite set of states, C a 
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finite set of events, S : Q x C + Q a transition relation 
and Qo C Q a set of initial states. Let L(G) denote the 
strings of events (language) generated by G. Follow- 
ing [5] we assume that the set of events is partitioned 
into two subsets, C = E,, U E,, where the events in C ,  
are controllable (in the sense that they can be disabled 
at  will) while the events in E, are uncontrollable. In 
this setting problems of safety are usually cast as ques- 
tions of reachability: can the designer ensure that the 
automaton state will not enter a “bad” set QB c Q. 
Efficiency typically corresponds to questions of fairness 
or liveness. 

We first write the finite automaton G as a hybrid dy- 
namical system H .  As there are no continuous vari- 
ables, Xc, U c ,  Yc and .f will be omitted. To ensure 
that H will not block for the saddle solutions (soon to 
be calculated) we add two new states, qG and qB,  and 
define X = Q U { q G ,  q B } ,  U = C, U { E } ,  D = C, U { E } ,  

QB = QB U { Q B }  and I = I U { Q G } .  We then complete 
the transition relation b,y defining: 

E = { ( Q l , ( d , 4 , 4 2 )  Ef x x ( D  x U )  x XI 
42 = b(qi ,  d )  
q2 = qG 
42 = 6(9i, U) 

q2 QB 
q2 = PG 
q2 = qB 

if q i  E Q ,  d # 6 ,  U = 6 , 6 ( q i ,  d ) !  
~f q i  E Q ,  d # E ,  U = E ,  6 ( q i ,  d )  !/ 
if q i  E Q,  d = 6 ,  U # E ,  ~ ( Q I ,  U)! 

if qi E Q, d = E ,  U # E ,  6(qi l  U) $‘ 
lf 41 E Q,  d # E ,  U # ~ , 6 ( q i ,  d )  Y 
1f qi E Q, d # 6 ,  U # ~ , 6 ( q i ,  d ) !  

Q2 = 91 
42 = QB 
42 = QG 

d q1 E Q , d  = E , U  = E 

If q1 = qB 
if q1 = Q G }  

6 ( q , e ) !  denotes that the map 6 is defined for the pair 
( q , e )  and 6 ( q , e )  !/that it is not. It can be shown that 
the runs of H that do not involve qB and qG are in 1-1 
correspondence with L(G), modulo (cl c) transitions. 

To cast the problem in the setting of Section 2 con- 
sider a discrete metric, m : Q x Q -+ R,  defined by 
m ( q 1 , q z )  = 0 if q1 = q2 and 1 if 41 # q2. The metric 
induces a map on pairs cf subsets of Q by M(Q1,  Q 2 )  = 

denote a sequence in D and U = {u l ,  u2, . . .} E U* de- 
note a sequence in U and define their interleaving as 
(d,u) = { ( d l , u ~ ) ,  ( d 2 ,  U:!), . . .} E ( D  x U ) * .  As G is as- 
sumed to be determinis tic, the above transition struc- 
ture defines a unique state trajectory 2 = ( 4 0 ,  q1, . . .} E 
X* for every qo E I and every ( d , u )  E ( D  x U ) * .  
The defining relationship is (q i ,  ( & + I ,  u i+l) ,  q i+ l )  E E.  
The metric can be used to assign a cost to this run by 
J l (qo ,  ( d ,  U)) = - mingEz M ( { q } ,  QB) .  The reachabil- 
ity problem can now be thought of as a game between 
U and d over the cost fuiiction J1.  Consider “feedback” 
maps D : X -+ 2O ant1 e : X -+ 2u. The following 
algorithm provides the safe states and controls. 

Algorithm: Safe Stakes and Controls 

Step 0: Set i = 1 and define Q‘, = Q B ,  h ( q )  = {c}  

and U ( q )  = U for all q cf qB. 

min(elrpa)EQl.Q,m(ql,92). Let d =  { d l , d 2 , - . - }  E D* 

Step i: Define: 

with ( q ,  ( 4 ,  € 1 ,  q’) E E }  

If NewQB # 8 increment i and for all q E NewQB 
define o ( q )  = U and 5(q) = {da E D13q’ E 
91, with ( q , ( d i , E ) , q ’ )  E E } .  Redefine Qb = QL U 
NewQB and return to step i. 

If NewQB = 8, then for all q E X\QL define h ( q )  = D 
and o(q) = {ui E Ul(q ,  ( c , U i ) , q ’ )  E E 3 q‘ # Q’,}. 
Define the safe set as & = Q \ QL. Terminate. 

Lemma 1 The  algorithm terminates  in  at most  IQ1 
steps.  The  sy s t em is guaranteed t o  be safe i f  and only 
if I c fi and along the trajectory U E U ( q ) .  

Note that J i (q0)  = -1 if qo E VI and J; (qo)  = 0 
otherwise. As J1 can take on only two values, any pair 
( u * , d * )  that satisfies d$ E f i ( q j - 1 )  and U$ E O(qi-1)  

for the corresponding run 2 = { q o ,  q1, . . .} is a min-max 
solution. 

4 The Steam Boiler 
Our analysis of the steam boiler problem is based on the 
description of [6]. The steam boiler consists of a tank 
containing water and a heating element that causes the 
water to boil and escape as steam. The water is replen- 
ished by two pumps which at time t pump water into 
the boiler at rates p l ( t )  and &(t)  respectively. Pump 
i can either be on &(t) = Pi) or off (lj;(t) = 0). There 
is a delay Tp, between the time pump i is ordered to 
switch on and the time p i  switches to Pi. There is no 
delay when the pumps are switched off. The objective 
is to keep the water level between two values A 4 1  and 
M2. 

The boiler is modeled by a hybrid dynamical system, 
= {XB,UB~YB,IB, fB,EB,hB}, with asingkdis- 

Crete state (suppressed to simplify the notation) and 
two continuous states, the water level w and the rate 
at which steam escapes, r. We assume that both states 
are available for measurement, i.e. YB = X B  and 
~B(ZB,UB) = XB. The system evolution is influenced 
by two discrete inputs, p1 and p z  and one continuous 
input, the derivative of the steam rate, d .  The physical 
properties of the boiler impose bounds on the states 
and inputs: ZB = ( w , r )  E XB = R x [O,W] and 

where W, U1, U2, PI and P2 are positive constants. Fol- 
lowing [ 6 ] ,  the dynamics are given by: 

UB = ( & , @ 2 , d )  E UB = {o,pl} x {o,p2} x [ - U 2 , u l ] ,  

The set EB does not allow any discrete jumps 

Each pump can also be modeled by a hybrid dynamical 

two discrete states qi = 0 and qi = Pi that reflect if the 
system, Hp, = W P , ,  up,, yp,, I p , ,  fp,, Ep,, h p J ,  with 
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w = wo achieve the same value of J ' .  As w = ql-tqz-r, 
the boundary between safe and unsafe states is such 
that wo = M2 and ro = i(T:,Ti) where: 

if T: < Tpl and Ti  < TPa 
if T: 2 Tpl and T i  < TPa 
if T: < Tpl and T i  2 TPa 

PI 
P2 

q ~ p ,  T;) = 

Any initial condition such that either W O  < Mz or WO = 
Mz and ro > i;(T;,T;) is safe with respect to J ' .  

The calculation of the safe set also allows us to classify 
the controls that can keep the system safe (water level 
between MI and Mz)  provided it starts safe (wo and 
ro in the ranges discussed above). The class of safe 
controls is given in a state feedback form. 

T I  0 0  

Figure 1: Lower limit on w to avoid draining 
pump is on or off and one continuous state, q, that 
reflects the time that has elapsed since the pump was 
commanded to switch on. The evolution of the state is 
affected by a discrete input, ui E ( 0 , l )  that takes the 
value 0 if the pump is commanded to switch off and 1 
if the pump is commanded to switch on. We assume 
that the pump state is available for measurement, i.e. 

A control law fo r  (ul ,  u2)  is safe with re- 
spect t o  M I  if and only if u1 = 1 whenever w(r,  0,O) > 
w > G(r,Tl,O),  u2 = 1 whenever G(r,O,O) > w > 
w(r,  0 ,  T2) and u1 = uz = 1 whenever w 5 G(r,  TI, Tz). 

hPI(zp,,ui) = xp,. The combined system can be ob- 
tained as an interconnection of H g ,  HpI and H p 2 .  The 
resulting system will have two discrete and four con- 
tinuous states. We will use 2 = ( ( q l ,  q z ) ,  (.i,r,Tl,T2)) 
to denote the overall state. 

Our goal is to design a feedback controller for u1 
and u2 that keeps the water level in the interval 
w( t )  E [M1,M2] for all t 2 0. This requirement can 

Note that,  as w is monotone in TI and T2, the condi- 
tion on the last case is enabled if and only if all other 
conditions fail. The two middle conditions may over- 
lap however. Therefore there is some nondeterminism 
in the choice of safe controls: some states may be safe 
with either one or the other pump on, but not neither. 
The controls that are safe with respect to J: can simi- 
larly be calculated. 

5 Flight Vehicle Management Systems 

ple is based on the dynamic aircraft equations and 
the design specification of [7]. The equations model 
the speed and the flight path angle dynamics of a 
commercial aircraft in still air. The control inputs 
to the equations are the thrust T, accessed through 
the engine throttle, and the pitch angle 8, accessed 
through the elevators. The outputs we wish to con- 
trol are the speed V and the flight path angle y. There 
are three primary modes of operation. In Mode l, 
the thrust T is between its specified operating limits 
(Tmin < < Tmac), the inputs are and 8, 
and both Outputs. In Mode 2, 
the thrust saturates (T = Tmin VT = Tmax) and thus it 

is 0 ,  and the only controlled output is V .  Finally, in 

be encoded by two cost functions J1(zo,u1,u2,d) = 
- inft2o w ( t )  and J i (zo ,  u1, u2, d )  =  SUP,^^ w ( t ) .  For 
a given run the safety objective is met if and only if The flight vehicle management (FVMS) exam- 

J1 5 -M1 and Ji 5 M z .  
For the game with cost J1 consider the candidate saddle 
solution U: E 1 and d*( t )  = U1 if r < W or d* ( t )  = 0 
if r = w. Likewise, for cost J: ,  consider the candidate 
saddle solution U? E 0 and d'*(t) = -U2 if > 0 or 
d'*( t )  = 0 if T = 0. It can be shown that: 
Lemma 2 ( U T ,  U ; ,  d*)  and (U?,  U';", &*) are saddle so- 
lutaons for the game between (u1, u2) and d over J1 and 
J (  respectzvely. 
The saddle solutions allow us to determine the set of 
states for which there exists inputs for the pumps such 
that the water level is guaranteed to remain between 

between safe and unsafe states can be thought of as a 

and 'Y 

the specified limits for any steam rate. The boundary is no longer a input; the Only input 

function & : [O, W ]  x R t  + R, which maps ( T O ,  Tf, T') 
to the minimum water level required for safety. An 

Mode 3, the thrust saturates (T = Tmin V T  = T~c%z); 
the input is again 8, and the contfolled output is Y. 

example of level sets of 2i, for Ti = 0 and for Ti  > Tp2 
is shown in Figure 1. As expected the higher the value 
o€ T2 the more slates are safe (lhe surface moves down). 
Safety ( w ( l )  2 M i )  can be maintained as long as the 
water level is on or above the corresponding surface. 

As J '*(xo)  = wo any state with 20' 5 M2 is safe with 
respect to J ' ,  However, the U: are not the unique min- 

Within Modes 2 and 3 there are two submodes depend- 
ing On whether Tmax 
(maximum thrust). 

Let z = (V, 7 )  6 JR x S1. The flight path angle dynam- 
ics can be modeled by: 

= Tmin (idle thrust) Of T 

1 imizers of J ' ,  as any controls such that w 5 0 whenever 21 t y . 2  
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where m is the mass of the aircraft, g is gravitational 
acceleration, aL and a D  are the lift and drag coefficients 
and c is a small positive constant. Physical considera- 
tions impose Constraints on the inputs. 

U = [Tmin, %QX] [O,i?Z, e?72QE] (4) 

Safety regulations for the aircraft dictate that V and y 
must remain within specified limits: for ease of presen- 
tation we simplify the s a f e i y  envelope, S, of [7] to: 

S = {(V,y)l(Lin 5 V 5 V k x )  n (ymin 5 L ymax)) 

where V&, V,,, , ymin, ymox are constant values. In 
addition, constraints an: imposed on the linear and an- 
gular accelerations for passenger comfort: 

Ikl(t)l 5 0.19, Iz1(t)iz(t)l I 0 . b  (5) 

5.1 Optimal Controls and Set of Safe States 
Safety is maintained by operating within the largest 
subset, K, of S which can be rendered invariant by 
control inputs U E U. Let 8s denote the boundary of 
S, dV1 denote the boundary of VI .  We calculate the 
set VI by solving an optimal control problem over a 
time interval [t,tj]. We define t j  to be the first time 
at which the state leaves S and let t be free. If t f  
exists, we set t f  = 0 and consider negative initial times 
t (without loss of generality, as the dynamics are time 
invariant). The cost function J~(z,t, U(.)) depends only 
on the state at the terminal time: 

Jl(2, t ,  4.1) = l(z(0)) (6) 

with 1(z) such that I(z) > 0 if z E S\8S [Safe], l ( z )  = 0 
if z E dS [Boundary] arid 1(z) < 0 if z E Rn\S [Unsafe]. 
The Hamiltonian is then simply Hl(z ,p ,  U) = p f ( z ,  U),  

where p E T*R2 is the costate. Let H r ( z , p )  denote the 
optimal Hamiltonian, i.e.: 

H;(z ,P)  = m*axHl(z,P, U) = pf(z, U*) 
UI,U 

If J,*(z,t) is a smooth function of z and t then it sat- 
isfies the Hamilton-Jacobi equation: 

(7) 

with boundary condition J;(z, 0) = Z(z). 

For a given initial time t ,  the safe set of states is Vl(t) = 
{z E SIJ,*(z,t) 2 0). If we let t -+ -00, the set Vl(t) 
becomes the “steady state” safe set: VI E Vl(-.o) = 
{z E SlJ;(z,-oo) 2 0}, with boundary dV1 = {z E 
s l J i ( z , - ~ ~ )  3 0). In order to compute the steady 
state solution Ji(z,-m) of (7), we assume that no 
shocks exist, and set the left hand side to zero. Then, 
SJ;(.V,-W) 

We construct bV1 one edge at a time. Define each edge 
of bS separately, by li (z) = 21 - Vnain, Z:(z) = -22 + 

is normal to the vector field f(z, U*). 

c v  

Figure 2: The safe set of states, Vi ,  and its boundary 8% 

?;nax, lT(z) = -21+Vmaz and I;(z) = z2--ymin and let 
Ji(z,t, U(.)) = lI(z(0)) be the cost function for edge i, 
Hf (z, p ,  U) be the corresponding Hamiltonian, and pi = 
i31i(z)/dz be the inward pointing normal to l i ( z )  = 0. 
Start with l i (z) .  Define (Vmin,ya) = {z E Slli(z) = 
0 n H,’ (z) = 0). yo is given by: 

Integrate the system dynamics backwards from z(0) = 
(Vmin,ya) at t = 0 until the solution intersects {z E 
Sll:(z) = 0). Denote the point of intersection by 
(Vu, ymax) ,  and the solution between (V,in, yQ) and 

The optimal control U* is required for this calculation. 
pl  = [l,0lT, so along the I1 boundary, U’; = T,,, 
but uz is indeterminate. Because of the loss of de- 
pendency of the optimal Hamiltonian on UZ, the points 
in {z E S(Z:(z) = 0) are abnormal extremals. At the 
abnormal extremal ( Vmin, y,), any uz E [emin, e,,,] 
may be used. However, w we integrate, we instanta- 
neously leave the abnormal extremal regardless of the 
choice of 212. From then on U; is uniquely determined. 
For all uz E [Omin, Om,,], for all 6 E R+, the inward 
pointing normal to f(z(-6), [U; u2IT) is such that p2 

is negative, thus, U$ = emin. In this example, the ab- 
normal extremal was not complicated enough to cause 
difficulties in the construction; the general situation is 
considered in [8]. 

The calculation can be repeated for the remaining three 
boundaries. Only {z E Sllf(z) = 0) contains a point 
at which H;(z) vanishes. We denote this point by 
(Vkx  ya) where: 

(VQ, YmQX) by av? (Figure 

and calculate aV/ and V, similarly. 

(9) 
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6 Conclusions 
We presented a methodology for synthesizing con- 
trollers for hybrid systems to meet multiple control ob- 
jectives. We restricted our attention to two objectives, 
safety and efficiency; the methodology easily extends 
to an arbitrary number. The notions of “maximal safe 
set” and “least restrictive safe controllern are central to 
our formulation. They allow us to deal with the multi- 
objective nature of the problem by solving a sequence 
of nested two player, zero sum games. These notions 
are also important in a hierarchical context, as they 
can provide sufficient conditions for a supervisor that 
switches between controllers to be safe [4]. 
In the examples considered here the maximal safe sets 
and least restrictive safe controllers naturally emerged 
from the calculations. We would like to develop a for- 
mal methodology to capture this procedure. The tech- 
niques used in the last example (FVMS) seem to be the 
most promising in this respect. We are currently work- 
ing on formalizing these techniques in the context of 
semi-permeable surface calculation in pursuit evasion 
games. Semi-permeable surfaces form the boundary of 
the maximal safe set and define regions where there are 
limitations on the allowable controls. 

1 - c y  mgcosy 
U L V 2 C  

Lemma 4 The safe set is enclosed by: 

ah = {(V,Y)I (V = Vmin) A (Ymin 5 Y 5 ~ a )  avp V 
(Y = ymax) A ( K  5 V 5 Vmax) V 
(V = Vmax) A ( ~ a  5 5 ~ m a x )  V 
av:, V 
(Y = Ymin) A (Vmin I: V I: vb)} 

V 

The safe controls U1 can now be characterized as a set- 
valued feedback map U1 : S -+ 2u: 

Lemma 5 Ul(x )  = U n Ul(x), with: 

O.lmg 
GVG 

where Ta(y) = UDV;~, + mgsiny, Tb(y)  = UDV&, + 
1 cos moo - aLV(1-Cym,,) mgsin7, ec(v) = * ( 9  v’ 

and ed(V)  = 
m 

1. gCOSYmzf i  - aLV( l - cym*f i )  
( v  m 

In Figure 2, the portions of aV1 for which all control 
inputs are safe (Ul(x) = U ( x ) )  are indicated with solid 
lines; those for which only a subset are safe (U,(z) c 
U ( x ) )  are indicated with dashed lines. The map defines 
the least restrictive safe control scheme and determines 
the mode switching logic. On aV;l and aV,b, the system 
must be in Mode 2 or Mode 3. Anywhere else in V I ,  
any of the three modes is valid as long as the input 
constraints of Lemma 5 are satisfied. In the regions 
S\Vl (the upper left and lower right corners of S ) ,  no 
control inputs are safe (Ul ( z )  = 0). 
5.2 Passenger Comfort Constraints 
Cost functions involving the linear and angular accel- 
erations can be used to encode passenger comfort: 

The requirement that the linear and angular accelera- 
tion remain within the limits determined for comfort- 
able travel are encoded by thresholds Jz(z, U ( . ) )  < 0.lg 
and J i ( x ,u ( . ) )  5 0.lg. Within the class of safe con- 
trols, a control scheme which meets the passenger com- 
fort (efficiency) objective can be constructed. The sets 
of comfortable states and controls can be easily calcu- 
lated by substituting the bounds on the accelerations 
into the system dynamics, to get: 

IT - u o V 2  - mgsinyl 5 O.lmg 
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