
1Verifying Timing Properties of Concurrent AlgorithmsVictor Luchangco, Ekrem S�oylemez, Stephen Garland, and Nancy Lyncha�aMIT Laboratory for Computer Science, Cambridge, MA 02139
This paper will appear in the FORTE'94 Proceedings.
This paper presents a method for computer-aided veri�cation of timing properties ofreal-time systems. A timed automaton model, along with invariant assertion and simula-tion techniques for proving properties of real-time systems, is formalized within the LarchShared Language. This framework is then used to prove time bounds for two samplealgorithms|a simple counter and Fischer's mutual exclusion protocol. The proofs arechecked using the Larch Prover. Keywords: I.3, I.8, I.6/II.12: Larch, III.1, IV.81. IntroductionTechniques based on simulations are widely accepted as useful for verifying the cor-rectness of (untimed) concurrent systems. These methods involve describing both theproblem speci�cation and an implementation as state machines, establishing a correspon-dence known as a simulation mapping between their states, and proving that the mappingis preserved by all transitions of the implementation. Such methods are attractive be-cause they provide insights into a system's behavior, appear to be scalable to systems ofsubstantial size, and provide assistance in modifying system descriptions and proofs.It is usually possible to describe the transitions of the speci�cation, the transitions ofthe implementation, and the simulation relation, all as equations involving states. Thenthe proof that the simulation mapping is preserved is an exercise in equational deduction.Such deductions are natural candidates for partial automation. Proofs of this sort foruntimed systems have already been automated, for example, using HOL [8], Isabelle [16],and the Larch Prover [21].Recently, the simulation method has been extended to proofs of correctness and timingproperties for timing-based systems [11, 13, 10]. The extended method is based on thetimed automaton model of Merritt, Modugno and Tuttle [15]. Both the speci�cation andimplementation are described as timed automata, which include timing conditions in theirstates. The implementation's conditions represent timing assumptions, and the speci�-cation's conditions represent timing upper and lower bounds to be proved. As in theuntimed case, a simulation mapping is de�ned between the states of the implementationand those of the speci�cation; but now the mapping typically includes inequalities in-volving the timing conditions. The proof that the mapping is preserved by all transitionshas a similar deductive
avor to the proofs in the untimed case, but now the deductionsinvolve inequalities as well as equations.�Research supported in part by the Advanced Research Projects Agency of the Department of Defense,monitored by the O�ce of Naval Research under contracts N00014-92-J-1795 and N00014-92-J-4033, bythe National Science Foundation under grants 9115797-CCR and 9225124-CCR, and by the Air ForceO�ce of Scienti�c Research and the O�ce of Naval Research under contract F49620-94-1-0199.

2 The simulation method for timed systems has the same attractions as for untimed sys-tems. Furthermore, it is capable of proving performance as well as correctness properties.Examples of proofs done by hand using this method appear in [11, 10, 20, 6, 9].Just as in the untimed case, the timed proofs are amenable to automation. Speci�cally,the notions of timed automata, invariant assertions, and simulation mappings are formal-ized using the Larch Shared Language [5], and this formal infrastructure is used to specify,verify, and analyze two sample algorithms|a simple counter [11] and Fischer's mutualexclusion protocol. Fischer's algorithm has been veri�ed many times by many people[1, 18, 19], including some with machine assistance [19]. But in addition to the usualcorrectness property of mutual exclusion, we prove a more di�cult timing property|anupper bound on the time from when some process requires the resource until some processacquires it.The rest of the paper proceeds as follows. We introduce our techniques by way of asimple example in Section 2. Then we use these techniques to verify Fischer's mutualexclusion protocol in Section 3.2. A Simple ExampleIn this section, we verify the correctness and timing properties of a simple timed au-tomaton. We present both manual and machine-checked proofs. Our model of timedautomata is based on work by Merritt, Modugno, and Tuttle [15] and by Lynch andAttiya [11]. We describe this model by means of an example in this section and moreformally in Appendix A.Consider a counting automaton Ck, which decrements a counter with initial value kand issues a single report when the counter reaches 0. We will verify that Ck implementsthe speci�cation given by another automaton R, which just issues a single report. Wewill also establish bounds a1 and a2 on how long it takes the speci�cation automatonR to issue its report based on k and the time bounds c1 and c2 for the actions of theimplementation automaton Ck. Figure 1 de�nes the two automata.The untimed part of each automaton is a simple state-transition system. Actions aresaid to be enabled in the states satisfying their preconditions. Actions are classi�ed asexternal or internal so that we may compare an implementation with its speci�cation.To describe timing properties, the actions are partitioned into tasks. A task is enabledwhen any of its actions are enabled. Lower and upper bounds, lower (C) and upper(C),on each task C specify how much time can pass after C becomes enabled before eitherone of its actions occurs or the task is disabled. The upper bound can be in�nite.The timed part of each automaton contains three additional state components: a real-valued variable now representing the current time, and two functions �rst and last rep-resenting the earliest and latest times that some action from each task can occur. Alltimes are absolute, not incremental. All tasks that are not enabled have trivial �rst andlast components (i.e., 0 and 1). In a start state, now = 0, and �rst(C) = lower (C) andlast(C) = upper(C) for each enabled task C.A timed action is a pair associating either an untimed action or a special time-passageaction with the time it occurs. The time-passage action (�; t) modi�es only the nowcomponent of the state, setting it equal to t; it cannot let time pass beyond any task's

3Speci�cation automaton: R(a1; a2) Implementation automaton: Ck(c1; c2)State Statereported, initially false reported , initially falsecount , initially k � 0Actions ActionsExternal report External reportPre: :reported Pre: count = 0 ^ :reportedE�: reported true E�: reported trueInternal decrementPre: count > 0E�: count count � 1Tasks Tasksfreportg: [a1; a2] freportg: [c1; c2]fdecrementg: [c1; c2]Figure 1. A counting process and its speci�cationupper bound, i.e., t � last(C) for all tasks C. Other actions (�; t) are viewed as happeninginstantaneously at time t. They must not occur before the lower bound for their tasks(i.e., �rst(task(�)) � now), and they do not modify now . They reset the values of �rstand last for their task and for any other tasks that are newly enabled or disabled asa result of their e�ect on the untimed part of the state. We write s (�;t)�! s0 to denote atransition of the timed automaton.An execution of a timed automaton is admissible if time increases without bound. Astate is reachable if it appears in some execution. Properties that are true of every reach-able state are invariants. The visible behavior of a timed automaton is characterized byits admissible timed traces, which are the sequences of external timed actions in admissi-ble executions. We say that one timed automaton implements another if any admissibletimed trace of the �rst is also an admissible timed trace of the second.2.1. Manual ProofsWe seek to show that Ck(c1; c2) implements R(a1; a2) when a1 = (k + 1)c1 and a2 =(k+1)c2. Note that our notion of correctness for timed automata incorporates both safetyproperties (e.g., that Ck issues no more than one report) and liveness properties (e.g., thatit issues its report in time at most (k + 1)c2).The key steps in the proof are (1) proving that the states of Ck satisfy an invariant and(2) de�ning a simulation mapping between the states of Ck and those of R. Given sucha mapping f , a straightforward proof by induction shows that f maps any admissibleexecution of Ck to some admissible execution of R. We say that a binary relation fbetween states of Ck and states of R is a simulation mapping from Ck to R if it satis�esthe following conditions:1. If f(s; u), then u:now = s:now .2. If s is a start state of Ck, then there is a start state u of R such that f(s; u).3. If s and u are reachable states such that f(s; u) and s (�;t)�! s0, then there is a state

4 u0 of R such that f(s0; u0), and a sequence of timed actions that takes R from u tou0 and has the same visible behavior as (�; t).For the �rst step, we prove that Ck preserves the invariant count > 0) :reported.This invariant is trivially true in Ck's initial state. Only the report action can makereported true, and that can happen only if count = 0. Thus, every action preserves theinvariant.For the second step, we de�ne f(s; u), where s is a state of Ck and u is a state of R, tohold if and only if the untimed components of the two states are the same and the timingcomponents are properly related, i.e., if and only if� u:now = s:now� u:reported = s:reported� u:�rst(report) � � s:�rst(decrement) + s:count � c1 if s:count > 0s:�rst(report) otherwise� u:last(report) � � s:last(decrement) + s:count � c2 if s:count > 0s:last(report) otherwiseWe prove that f is a simulation mapping from Ck(c1; c2) to R(a1; a2) when a1 = (k+1)c1and a2 = (k + 1)c2. If f(s; u), then u:now = s:now by de�nition. It is also easy to seethat f(s0; u0), where s0 and u0 are the start states of Ck and R. Finally, suppose s and uare reachable states of Ck and R such that f(s; u) and that s (�;t)�! s0. We show that thereis a sequence of timed actions with the same visible behavior as (�; t) that takes R fromu to some state u0 such that f(s0; u0). There are three possibilities for �.1. If � = report, we show that R can take a report step, resulting in a state u0 suchthat f(s0; u0). Because f(s; u) and (report; t) is enabled in s, we have u:reported =s:reported = false, s:count = 0, and u:�rst(report) � s:�rst(report) � t. Hence(report; t) is enabled in u and f(s0; u0), because u0:now = u:now = s:now = s0:now .2. If � = decrement , we show that R need not take any step. Since decrement is in-ternal, it su�ces to show that f(s0; u). Because f(s; u) and decrement occurred, wehave u:now = s:now = s0:now , u:reported = s:reported = s0:reported, s:count > 0,and u:�rst(report) � s:�rst(decrement) + s:count � c1 � s:now + s:count � c1.We consider two cases. If s:count > 1, then u:�rst(report) � s:now + c1 +(s:count � 1) � c1 = s0:�rst(decrement) + s0:count � c1, because the time boundfor decrement is reset. If s:count = 1, then :s:reported by the invariant for Ckand u:�rst(report) � s:now + c1 = s0:�rst(report), because report is newly en-abled. Similary, u:last(report) � s0:last(decrement)+ s0:count � c2 if s:count > 1 andu:last(report) � s0:last(report) if s:count = 1.3. If � = �, we show that R can take a corresponding (�; t) step, resulting in a stateu0 such that f(s0; u0). Since t � s:now = u:now , to show that (�; t) is enabledin u0, we only need to check that t � u:last(report). If s:count > 0, then t �s:last(decrement) < u:last(report). Otherwise, t � s:last(report) � u:last(report).Since time-passage actions modify only the now components of the states, andu0:now = t = s0:now , we have f(s0; u0).

5AutomatonCount (C, k): traitincludes Automaton(C), CommonActionsRC, NaturalStates[C] tuple of count: N, reported: Boolintroducesk : ! Ndecrement, report : ! Actions[C]assertssort Actions[C] generated by report, decrementsort Tasks[C] generated by task8 s, s': States[C], a, a': Actions[C]isExternal(report); isInternal(decrement); common(report) = report;task(a) = task(a') , a = a';start(s) , : s.reported ^ s.count = k;enabled(s, report) , s.count = 0 ^ : s.reported;effect(s, report, s') , s'.count = s.count ^ s'.reported;enabled(s, decrement) , s.count > 0;effect(s, decrement, s') , s'.count + 1 = s.count ^ s'.reported = s.reported;inv(s) , s.count > 0) : s.reportedimpliesInvariants(C, inv)8 s: States[C], a: Actions[C]enabled(s, task(decrement)) , enabled(s, decrement);enabled(s, task(report)) , enabled(s, report);a = report _ a = decrementFigure 2. LSL trait de�ning untimed part of automaton Ck2.2. Machine-Checked ProofsIn order to check this simulation proof mechanically, we must �rst create machine-readable versions of the de�nitions and abstractions used in the manual proof, �llingin details normally suppressed in careful, but not completely formal proofs. To thisend, we use the Larch Shared Language (LSL), which provides suitable notational andparametrization facilities. Later, we use the Larch Prover (LP), which provides assistancefor reasoning in �rst-order logic. The versions of these tools used for this paper areenhancements of the versions described in [5, 4]; the primary di�erences are that bothtools now support full �rst-order logic, and that LP now has features for reasoning aboutlinear inequalities [17] similar to those in the Boyer-Moore prover [2, 3] and in PVS [19].2.3. Machine-Readable De�nitionsFigure 2 contains an LSL de�nition of the untimed part of automaton Ck. This formalde�nition mimics the de�nition given in Figure 1. It builds upon a library of LSL spec-i�cations, shown in Appendix B, that de�nes general notions related to timed automataand that can be reused in simulation proofs like the ones in this paper.The basic unit of speci�cation in LSL is a trait, which introduces symbols for sorts (suchas Actions[C] and States[C]) and operators (such as decrement and enabled), andwhich constrains their properties by axioms expressed in �rst-order logic. Sort symbolsdenote disjoint nonempty sets of values; operator symbols denote total mappings from

6SimulationRC: traitincludesTimedAutomaton(R, br, TR), AutomatonReport(R),TimedAutomaton(C, bc, TC), AutomatonCount(C, k)introducesa, c : ! Boundsf : States[TC], States[TR] ! Boolasserts 8 u: States[TR], s: States[TC], cr: Tasks[R], cc: Tasks[C]br(cr) = a; % bounds [a1, a2] for tasks of Rbc(cc) = c; % bounds [c1, c2] for tasks of Cc.bounded;a = (k+1)*c;f(s, u) ,u.now = s.now^ u.basic.reported = s.basic.reported^ (if s.basic.count > 0then s.bounds[task(decrement)] + (s.basic.count * c)else s.bounds[task(report)]) � u.bounds[task(report)]implies SimulationMap(TC, TR, f)Figure 3. LSL trait de�ning the timed simulation of R by Cktuples of values to values. When a trait includes another, it inherits the other trait'ssymbols and axioms. Thus AutomatonCount inherits general properties of automata fromthe library trait Automaton and properties of the natural numbers from the trait Naturalin the Larch handbook [5]. Because LSL requires sorts to represent disjoint nonemptysets, AutomatonCount also includes the following trait CommonActionsRC, and it de�nesa map common from the actions of C to a new sort CommonActions so that the traces ofC (whose actions have sort Actions[C]) can be compared with those of R (whose actionshave sort Actions[R]).CommonActionsRC: traitintroduces report: ! CommonActionsasserts CommonActions generated by reportWhen a trait implies another, its theory is claimed to include that of the other. Theimplies clause in AutomatonCount claims that the predicate inv satis�es the axioms ofthe library trait Invariants; Figure 4 contains an LP proof of this claim. The impliesclause also lists several lemmas that are easy to verify with LP, but are not noticedautomatically by the prover.The speci�cation of R's untimed part is similar to, but shorter than Ck's. The traitSimulationRC in Figure 3 uses the library trait TimedAutomaton to extend these twospeci�cations to the timed parts of Ck and R. It also claims that a particular relation f is asimulation mapping, i.e., that f satis�es the properties of the library trait SimulationMap.Later we use LP to verify this claim.

7execute AutomatonCountset proof-methods), normalizationprove start(s)) inv(s)qedprove inv(s) ^ isStep(s, a, s')) inv(s') by cases on aqedFigure 4. LP proof of invariance for automaton CkThe most notable feature of the formalization process is that it is quite mechanical tomove from de�nitions such as those in Figure 1 to LSL de�nitions. In fact, one couldwrite a compiler to perform the translation.2.4. Machine-Checkable ProofsThis section contains two entire LP proof scripts, one showing that automaton Ck pre-serves its invariant, and the other that f is indeed a timed forward simulation. LP's proofmechanisms include proofs by cases and induction, equational term rewriting (for simpli-fying hypotheses and conjectures), and decision procedures for proving linear inequalities.The LP proof of invariance in Figure 4 is virtually identical to the manual proof. Itbegins with commands that load the axioms of the trait AutomatonCount and that setLP's proof methods. That the invariant holds in the initial state is proved without humanguidance. That the invariant is preserved by all actions requires exactly the same guidanceas in the manual proof: separate consideration of each action.The proof that f is a simulation mapping in Figure 5 is considerably longer thanthe proof of invariance, but similar in length and structure to the manual proof.1 Theuser guides the proof that each start state s of Ck corresponds to a start state u of Rby producing an explicit description of u and showing LP why \it is easy to see thatf(s, u)."2 In the induction step of the proof, s'c and sc are fresh constants that LPgenerates and substitutes for the variables s and s' when it assumes the hypotheses ofthe implication it is trying to prove. In addition to suggesting separate considerationof each action, and to providing the simulating execution fragment for each action, theuser provides guidance for the induction step of the proof using the set immunity andinstantiate commands, which call LP's attention to instances of the hypotheses (andother facts) used by the decision procedure for linear arithmetic.3. Fischer's Mutual Exclusion AlgorithmIn this section, we use timed automata to model Fischer's well-known timing-basedmutual exclusion algorithm, which uses a single shared read-write register [7]. We use1Two periods .. in this proof script mark the end of a multiline LP command; they do not indicate anyelision of the script.2While the length of this proof suggests room for improvement in LP, the need to consider the case k = 0separately suggests room for clari�cation in the manual proof.

8execute SimulationRCset proof-methods), normalizationprove f(s, u)) u.now = s:States[TC].nowqedprove start(s:States[TC])) 9 u (start(u) ^ f(s, u))resume by specializing u to [[false], 0, update({}, task(report), a)]instantiate c:Tasks[C] by task(report) in *Hypinstantiate c:Tasks[C] by task(decrement) in *Hypresume by specializing a:Actions[R] to reportresume by case k = 0resume by cases on c:Tasks[R]resume by cases on c:Tasks[R]qeddeclare variables u: States[TR], alpha: StepSeq[TR]set immunity ancestorprovef(s, u) ^ isStep(s:States[TC], a, s') ^ inv(s:States[TC]) ^ inv(u:States[TR])) 9 alpha (execFrag(alpha) ^ first(alpha) = u ^ f(s', last(alpha))^ trace(alpha) = trace(a:Actions[TC]))by cases on a:Actions[TC].. resume by cases a1c = report, a1c = decrement% Case 1: simulate decrement actionresume by specializing alpha to {uc}instantiate c:Tasks[C] by task(report) in *impliesHypinstantiate c:Tasks[C] by task(decrement) in *impliesHypresume by case s'c.basic.count = 0instantiate t:Time by c.first, n by s'c.basic.count in Realinstantiate t:Time by c.last, n by s'c.basic.count in Real% Case 2: simulate report actionresume by specializing alpha to({uc}) {addTime(report, uc.now),[[true], uc.now, update(uc.bounds, task(report), [false,0,0])]}..resume by cases on c:Tasks[R]% Case 3: simulate passage of timeresume by specializing alpha to ({uc}) {nu(lc), [uc.basic, lc, uc.bounds]}resume by cases on c:Tasks[R]instantiate c:Tasks[C] by task(report) in *Hypresume by case sc.basic.count = 0instantiate c:Tasks[R] by reportTask in *Hypinstantiate n by sc.basic.count in TimedAutomatoninstantiate c:Tasks[C] by task(decrement) in *HypqedFigure 5. LP proof that f is a simulation mapping

9Stateregioni 2 fremainder ; trying; critical; exitg for i 2 I, initially remainderActionsExternal try iPre: regioni = remainderE�: regioni tryingExternal critiPre: regioni = tryingfor all j, regionj 6= criticalE�: regioni critical External exit iPre: regioni = criticalE�: regioni exitExternal remiPre: regioni = exitE�: regioni remainderTasksftryig: [0;1]fcriti : i 2 Ig: [0; 5a+ 2c] fexit ig: [0;1]fremig: [0; 2a]Figure 6. Automaton M : a simple speci�cation for mutual exclusionsimulations to prove not only mutual exclusion, but also an upper bound on the time toreach the critical region, which is much harder to prove than mutual exclusion. We believethat the use of simulations both gives insight into the algorithm and yields a convincingproof that can be checked using automated provers like LP.3.1. A Speci�cation for Mutual ExclusionWe begin with the speci�cation in Figure 6 of a mutex object M described as a timedautomaton that keeps track of the regions of all processes (with indices in I) and ensuresthat at most one process is in its critical region at any time.Notice that all crit actions belong to the same task. Intuitively, this means that if oneor more processes are trying to acquire the resource when it is free, then one will succeedwithin time 5a + 2c. (The parameters a and c here are derived from the bounds we willimpose on the tasks of Fischer's algorithm.)3.2. Fischer's Timed Mutual Exclusion AlgorithmIn this algorithm, shown in Figure 7, there is a single shared register. Intuitively, ifsome process has the resource, the register contains the index of that process; and if noprocess has, wants, or is releasing the resource, the register contains 0.3 Each processtrying to obtain the resource tests the register until its value is 0, and then sets it to itsown index. Since several processes may be competing for the resource, the process waitsfor the register value to stabilize, and then checks the register again. The process whoseindex remains in the register (the last one to set it) gets the resource, and the othersreturn to testing until the register is 0 again. When a process exits, it resets the registerto 0.One problem with this algorithm as described so far is that a fast process might not wait3We assume 0 62 I.

10Statepci 2 fremainder; test ; set; check ; leave-trying; critical; reset; leave-exitg for i 2 I, initially remainderx 2 I [f0g, initially 0ActionsExternal tryiPre: pci = remainderE�: pci testInternal testiPre: pci = testE�: if x = 0 then pci setInternal set iPre: pci = setE�: x ipci checkInternal check iPre: pci = checkE�: if x = ithen pci leave-tryingelse pci test
External critiPre: pci = leave-tryingE�: pci criticalExternal exit iPre: pci = criticalE�: pci resetInternal reset iPre: pci = resetE�: x 0pci leave-exitExternal remiPre: pci = leave-exitE�: pci remainderTasksAssume a < b � cftryig: [0;1]ftestig: [0; a]fset ig: [0; a]fcheck ig: [b; c] fcritig: [0; a]fexit ig: [0;1]fresetig: [0; a]fremig: [0; a]Figure 7. Automaton F : Fischer's algorithmlong enough, check the register before a slow process has managed to set it, and so proceedto its critical region. The slow process might then overwrite the register with its ownindex, which would remain there until the slow process checked it and entered its criticalregion as well, violating mutual exclusion. This situation can be avoided by a simple timerestriction that requires every process to wait long enough for any other process to see thenew value in the register, or else to overwrite it. Formally, upper(set i) < lower (check j)for all i; j 2 I.Notice that every action is a task by itself, corresponding to our intuition that eachprocess acts independently of the other processes. We de�ne timing conditions for all thetasks other than try i and exit i in order to prove the timing conditions for the speci�cation.4Finally, we use the following invariants in our proofs of the simulations. The last, whichwe call strong mutual exclusion, clearly implies mutual exclusion.4We can show tight, slightly better bounds at the cost of additional complexity. See [9].

11Stateregioni 2 fremainder ; trying; critical; exitg for i 2 I, initially remainderstatus, an element of fstart; seized; stabilizedg, initially startActionsExternal try iPre: regioni = remainderE�: regioni tryingInternal seizePre: for some i, regioni = tryingstatus = startfor all i, regioni 6= criticalE�: status seizedInternal stabilizePre: status = seizedE�: status stabilized
External crit iPre: regioni = tryingstatus = stabilizedE�: regioni criticalstatus startExternal exit iPre: regioni = criticalE�: regioni exitExternal remiPre: regioni = exitE�: regioni remainderTasksftryig: [0;1]fseizeg: [0; 3a+ c]fstabilizeg: [0; a] fcriti : i 2 Ig: [0; a+ c]fexit ig: [0;1]fremig: [0; 2a]Figure 8. Automaton I: an intermediate milestone automaton1. If x = i, then pci 2 fcheck ; leave-trying ; critical ; resetg.2. If x = i 6= 0, pci = check , and pcj = set then �rst(check i) > last(set j).3. If pci 2 fleave-trying ; critical ; resetg, then x = i and pcj 6= set for all j.3.3. Milestones: An Intermediate AbstractionWhile we could give a simulation mapping directly from F to M , it seems useful tointroduce an intermediate level of abstraction that we believe captures the intuition behindFischer's algorithm. We then de�ne two intuitive simulation mappings, one from thealgorithm to the intermediate automaton, and one from the intermediate automaton tothe speci�cation, thereby proving that the algorithm implements the speci�cation.The intermediate automaton, shown in Figure 8, expresses two milestones toward thegoal of some process reaching its critical region. The �rst occurs when a process sets theregister from 0 to its index; we say that the register is seized at this point. After this, theregister will have some non-zero value until some process reaches its critical region andresets the register as it exits. Thus only processes that have already tested the registerwill set it. The second milestone, a stabilize event, occurs when the last process sets theregister, i.e., when no other process has pc = set .We need one easy invariant for this automaton:If status 6= start , then regioni = trying for some i and regionj 6= critical for all j.

123.4. Simulations3.4.1. Simulation from Intermediate to Speci�cationWe de�ne a relation g between the states of I and M , where g(s; u) if and only if:� u:now = s:now� u:regioni = s:regioni� u:last(crit) � 8<: s:last(seize) + 2a+ c if seize is enabled in ss:last(stabilize) + a + c if stabilize is enabled in ss:last(crit) if critj is enabled in s for some j� u:last(remi) � s:last(remi) if s:regioni = exitIt is straightforward to show that g is a simulation mapping. This simulation correspondsto the notion that seiz ing and stabiliz ing are just steps that need to be done before aprocess can enter its critical region. Note, however, that seize and stabilize are not actionsof individual processes, but of the entire system.3.4.2. Simulation from Algorithm to IntermediateWe de�ne a relation f between the states of F and I, where f(s; u) if and only if:� u:now = s:now� u:regioni = 8><>: trying if s:pci 2 ftest; set ; check ; leave-tryinggcritical if s:pci = criticalexit if s:pci 2 freset; leave-exitgremainder if s:pci = remainder� u:status = 8><>: start if s:x = 0 or s:pci 2 fcritical; resetg for some iseized if s:x 6= 0, s:pci =2 fcritical; resetg for all i, ands:pci = set for some istabilized if s:x 6= 0 and s:pci =2 fset; critical; resetg for all i� u:last(seize) � 8>>><>>>: s:last(reseti) + 2a+ c if s:pci = resetminifw(i)g if s:x = 0 where w(i) =8><>: s:last(testi) + a if s:pci = tests:last(set i) if s:pci = sets:last(check i) + 2a if s:pci = check1 otherwise� u:last(stabilize) � s:last(set i) if s:pci = set� u:last(crit) � � s:last(check i) + a if s:pci = check and s:x = is:last(criti) if s:pci = leave-trying� u:last(remi) � � s:last(reseti) + a if s:pci = resets:last(remi) if s:pci = leave-exitThe now and region correspondences are straightforward; that for status follows natu-rally from the intuition given earlier about the seize and stabilize milestones. The �rstinequality for seize says that if some process is about to reset , then the simulated statemust allow the register to be seized at least up to 2a+c after the reset occurs. The secondinequality for seize says that if x = 0 (so, by strong mutual exclusion, no process is aboutto reset) then the time until the register must be seized is determined by the minimumof a set of possible times, each corresponding to some candidate process that might set x.For instance, if some process i is about to set x, then the corresponding time is only themaximum time until it does so, while if i is about to test x, then the corresponding time

13is an additional a after the test occurs. The interpretations for the remaining inequalitiesare similar.Most of the proof that f is a simulation mapping involves straightforward but tediouschecking that each action of F preserves the mapping, since the corresponding behaviorin I is easy to intuit. (It is the same action if it is external, and no action if not.) Theone exception to this is the set action. Recall the intuition here is that, if it is the �rsttime the register is set (i.e., it was previously 0), then there must be a corresponding seizeaction. If no other process is about to set the register (i.e., no other process has pc = set),then this is the last set before some process enters its critical region, and so there mustbe a corresponding stabilize action. We examine this case and its proof in more detail.If s and u are reachable states of F and I such that f(s; u) and s(seti;t)�! s0, then s:pci =set , s0:pci = check , and s0:x = i 6= 0. By strong mutual exclusion, s0:pcj =2 fcritical ; resetgfor all j. We have the following cases:1. If s:x = 0, let u0 be such that u(seize;t)�! u0. The state exists because u:status = start ,u:regioni = trying , and u:regionj 6= critical for all j.(a) If s:pcj 6= set for all j 6= i, then let u00 be such that u0(stabilize;t)�! u00, which ispossible since u0:status = seized . So u00 = u except that u00:status = stabilized ,u00:last(seize) = 1 and u00:last(crit) = s:now + a + c. Since s:now + a + c isgreater than any of the time bounds that occur in the condition for last(crit),and s0:pcj 6= set for all j, we have f(s0; u00).(b) If s:pcj = set for some j 6= i, then we see that f(s0; u0) since s0:pcj =set and u0 = u except that u0:status = seized , u0:last(seize) = 1, andu0:last(stabilize) = s:now + a � s0:last(set j0) for all j0 such that s0:pcj0 = set .2. If s:x 6= 0 and s:pcj 6= set for all j 6= i, then let u0 be such that u(stabilize;t)�! u0. Thestate exists because u:status = seized , and u0 = u except that u0:status = stabilized ,u0:last(stabilize) = 1, and u0:last(crit) = s:now + a + c. Since s:now + a + c isgreater than any of the time bounds that occur in the condition for last(crit), ands0:pcj 6= set for all j, we have f(s0; u0).3. If s:x 6= 0 and s:pcj = set for some j 6= i, then f(s0; u) since u:status = seized , ands0:pcj = set .Our method of proof uses old, familiar techniques (invariant assertions and simulationmappings) in a novel way (on timed automata) to provide rigorous proofs of timingproperties. The time bounds established by this simulation are new; there was no clear,rigorous proof of them before. Furthermore, the bounds aren't completely obvious: theextra c is necessary; we can demonstrate executions that need this extra time. We usedthe same library of LSL traits that we used for the counting process to formalize theseautomata and simulations, and we used LP to check the entire proof.4. ConclusionsWe have de�ned, within the Larch Shared Language, a set of abstractions to supportproofs of timing properties of timed systems. We have used these abstractions to carry out

14computer-aided proofs of time bounds for two sample algorithms|a simple counter andFischer's mutual exclusion protocol|using invariant assertion and simulation techniques.We see several advantages of this general approach. Because they can be used forproofs of timing properties in addition to ordinary correctness properties, invariants andsimulations are very powerful in the real-time setting. The invariants and simulationmappings also serve as \documentation", expressing key insights about a system's behav-ior (including its timing). Our experience in going from the simple counter to Fischer'salgorithm suggests that these methods are scalable to systems of realistic size. They alsoappear to provide assistance when modifying systems. When we modify a system or itsspeci�cation only slightly, we expect that LP will be able to recheck most of the originalproof automatically, thereby allowing us to concentrate our attention on what has trulychanged without having to worry that we have overlooked some important detail.The �rst proof we attempted, that of the counter, took many weeks. Making it worksuccessfully required understanding the manual proof better (e.g., that it relied on aninvariant of the automaton C), �nding LSL formalizations that were easy to reason aboutusing LP, and �nding appropriate LP proof strategies (e.g., for dealing with transitivitybefore LP was enhanced with decision procedures for linear inequalities). As a resultof our increased understanding, and of enhancements made to LP in response to ourexperience, the proof for Fischer's algorithm took much less time|about four days to �llin all the details of the last simulation, from F to I, which was the most di�cult. Thisamount of time does not seem unreasonable, given that we get the added assurance ofa machine-checked proof. But we would like to reduce further the amount of time anduser guidance required for proofs of this sort. We expect this to happen as we re�ne ourformalizations and our tools, and we believe that practical machine-checked proofs forreal-time processes are not such a distant goal.Finally, we expect to use our methods to prove timing properties for many more ex-amples. We also expect to extend the timed automaton model used in this paper toencompass other timing-based systems that arise in practice. For example, work in [6] onthe Generalized Railroad Crossing example uses a slightly more general timed automatonmodel [10, 13]; nevertheless, the proof uses simulation methods very similar to those inthis paper.REFERENCES1. Martin Abadi and Leslie Lamport. The existence of re�nement mappings. TheoreticalComputer Science, 2(82):253{284, 1992.2. Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press, 1979.3. Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Academic Press,1988.4. Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. TechnicalReport 82, DEC Systems Research Center, December 1991.5. John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal Speci�cation.Springer-Verlag, 1993.6. Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A case study informal veri�cation of real-time systems. In Proceedings of the 15th IEEE Real-Time SystemsSymposium, San Juan, Puerto Rico, December 1994. To appear.

157. Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Sys-tems, 5(1):1{11, February 1987.8. P. Loewenstein and David L. Dill. Veri�cation of a multiprocessor cache protocol usingsimulation relations and higher-order logic. In E. M. Clarke and R. P. Kurshan, editors,Computer-Aided Veri�cation '90, number 531 in LNCS, pages 302{311. Springer-Verlag,1990.9. Victor Luchangco. Using simulation techiniques to prove timing properties. Master's thesis,MIT Electrical Engineering and Computer Science, 1994. In progress.10. Nancy Lynch. Simulation techniques for proving properties of real-time systems. Techni-cal Memo MIT/LCS/TM-494, Laboratory for Computer Science, Massachusetts InstituteTechnology, Cambridge, MA, November 1993.11. Nancy Lynch and Hagit Attiya. Using mappings to prove timing properties. TechnicalMemo MIT/LCS/TM-412.e, Lab for Computer Science, Massachusetts Institute Technology,Cambridge, MA, November 1991.12. Nancy Lynch and Mark Tuttle. An introduction to input/output automata. CWI-Quarterly,2(3):219{246, September 1989.13. Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing-basedsystems. In J. W. de Bakker, C. Huizing, and G. Rozenberg, editors, Proceedings of REXWorkshop \Real-Time: Theory in Practice", number 600 in LNCS, pages 397{446. Springer-Verlag, 1992.14. Nancy Lynch and Frits Vaandrager. Forward and backward simulations { Part II: Timing-based systems. Technical Memo MIT/LCS/TM-487, Laboratory for Computer Science,Massachusetts Institute Technology, Cambridge, MA, April 1993.15. Michael Merritt, F. Modugno, and Mark Tuttle. Time constrained automata. In CON-CUR'91 Proceedings of a Workshop on Theories of Concurrency: Uni�cation and Extension,Amsterdam, August 1991.16. Tobias Nipkow. Formal veri�cation of data type re�nement. In J. W. de Bakker, W.-P.de Roever, and G. Rozenberg, editors, Stepwise Re�nement of Distributed Systems, number430 in LNCS, pages 561{589. Springer-Verlag, 1990.17. Anna Pogosyants. Incorporating specialized theories into a general purpose theorem prover.Master's thesis, MIT Electrical Engineering and Computer Science, 1994. In progress.18. F. B. Schneider, B. Bloom, and K. Marzullo. Putting time into proof outlines. In J. W.de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Real Time: Theory andPractice, Mook, The Netherlands, June 1991. Springer Verlag.19. N. Shankar. Veri�cation of real-time systems using PVS. In Fourth Conference onComputer-Aided Veri�cation, pages 280{921, Elounda, Greece, June 1993. Springer-Verlag.20. J�rgen S�gaard-Andersen. Correctness of Protocols in Distributed Systems. PhD thesis,Technical University of Denmark, Lyngby, Denmark, December 1993.21. J�rgen S�gaard-Andersen, Stephen Garland, John Guttag, Nancy Lynch, and AnyaPogosyants. Computer-assisted simulation proofs. In Fourth Conference on Computer-AidedVeri�cation, pages 305{319, Elounda, Greece, June 1993. Springer-Verlag.

16A. Input/Output Automata and SimulationsA.1. The I/O Automaton ModelWe use a slight variant of the standard I/O automaton model from [12]. An I/Oautomaton A consists of� a set states(A) of states;� a nonempty subset start(A) of start states;� a set acts(A) of actions, partitioned into external and internal actions.5� a set steps(A) of steps, which is a subset of states(A)� acts(A)� states(A);� a partition tasks(A) of the actions into at most countably many equivalence classes.We write s ��!A s0 or just s ��! s0 as shorthand for (s; �; s0) 2 steps(A).An action � is said to be enabled in a state s provided that there exists a state s0 suchthat s ��! s0. A set of actions is said to be enabled in s if some action in the set is enabledin s.An execution fragment is a �nite or in�nite alternating sequence s0�1s1�2s2 : : :, wheresj is a state, �j is an action, sj�1 �j�! sj for each j, and the sequence ends with a state ifit is �nite. An execution is an execution fragment with s0 2 start(A). A state of an I/Oautomaton is reachable if it is the �nal state of some �nite execution of the automaton.The trace of an execution is the sequence of external actions that occur in the execution.Often, we express requirements to be satis�ed by an I/O automaton A by another I/Oautomaton B.A.2. MMT AutomataMMT automata were originally de�ned by Merritt, Modugno and Tuttle [15]; we usea special case of their de�nition appearing in [11, 13]. An MMT automaton is an I/Oautomaton with only �nitely many tasks together with lower and upper time bounds,lower (C) and upper(C), for each task C. We require that 0 � lower (C) < 1, 0 <upper(C) � 1, and lower (C) � upper(C).A timed execution of an MMT automaton is a sequence s0(�1; t1)s1(�2; t2)s2 : : :, wheres0�1s1�2s2 : : : is an execution of the underlying I/O automaton, ti � ti+1, and ti satis�esthe given lower and upper bound requirements. Formally, de�ne j to be an initial indexfor a task C provided that C is enabled in sj, and j = 0, or C is not enabled in sj�1, or�j 2 C; initial indices are the points at which the bounds for C begin to be measured.Then for every initial index j for a task C, the following conditions must hold:1. (Upper bound) If upper(C) 6= 1, then there exists k > j with tk � tj + upper(C)such that either �k 2 C or C is not enabled in sk.2. (Lower bound) There does not exist any k > j with tk < tj + lower (C) and �k 2 C.Finally, if the execution is in�nite, it must be admissible, i.e., the times associated withthe actions must increase without bound. Each timed execution of an MMT automatonA gives rise to a timed trace, which is just the subsequence of external actions and their5The external actions are usually further partitioned into input and output actions, thus the name \I/Oautomaton". This distinction is important for composition and fairness, which we do not consider in thispaper. A more complete discussion is found in [12].

17associated times. The admissible timed traces of an MMT automaton A are the timedtraces that arise from the admissible timed executions of A.A.3. Timed AutomataLynch and Attiya [11] describe how to incorporate the timing information of an MMTautomaton A into the state, yielding an I/O automaton A0 of a special form. We callautomata derived in this way timed automata.Each state of A0 is a record consisting of a component basic, which is a state of A,a component now 2 R�0, and, for each task C of A, components �rst(C) in R�0 andlast(C) in R�0 [f1g. For each start state s of A0, s:basic 2 start(A) and s:now = 0.Also, if s is a start state and C is enabled in s:basic, then s:�rst(C) = lower (C) ands:last(C) = upper(C); otherwise s:�rst(C) = 0 and s:last(C) =1. The actions of A0 arepairs of an action of A or the time-passage action �, and non-negative reals. Each non-time-passage action is classi�ed as external or internal; time-passage actions are internal.If � 2 acts(A), then s(�;t)�!A0 s0 exactly if all the following conditions hold:1. s0:now = s:now = t.2. s:basic ��!A s0:basic.3. For each C 2 tasks(A):(a) If � 2 C then s:�rst(C) � t.(b) If C is enabled in both s and s0, and � =2 C, then s0:�rst(C) = s:�rst(C) ands0:last(C) = s:last(C).(c) If C is enabled in s0 and either C is not enabled in s or � 2 C, then s0:�rst(C) =t+ lower (C) and s0:last(C) = t+upper(C). In this case, we say that C is newlyenabled in s0.(d) If C is not enabled in s0 then s0:�rst(C) = 0 and s0:last(C) =1.On the other hand, s(�;t)�!A0 s0 exactly if all the following conditions hold:1. s:now < t = s0:now .2. s0:basic = s:basic.3. For each C 2 tasks(A):(a) t � s:last(C).(b) s0:�rst(C) = s:�rst(C) and s0:last(C) = s:last(C).We de�ne the admissible timed executions of A0 to be those in which the times associatedwith the time-passage actions increase without bound, and the admissible timed traces tobe the traces of admissible timed executions. With this de�nition, the MMT automatonA and its corresponding timed automaton A0 have exactly the same admissible timedtraces.We refer to the MMT automaton and its corresponding timed automaton interchange-ably. Also, we often omit the basic part of the selector, writing s:�eld as a shorthand fors:basic:�eld , where �eld is a component of the MMT automaton's state.Timed automata satisfy the following invariants:Lemma 1 In all reachable states of A0, and for every task C:1. now � last(C)2. �rst(C) � now + lower (C)3. If C is enabled, then last(C) � now + upper(C).

18 4. If C is not enabled, then �rst(C) = 0 and last(C) =1.5. If upper(C) =1, then last(C) =1.A.4. Invariants and SimulationsAn invariant of a automaton is any property that is true in all reachable states. Weusually establish an invariant I by proving that all start states satisfy it, and that allsteps preserve it, i.e., start(s)) I(s) and I(s) ^ (s ��! s0)) I(s0).The de�nition of a simulation mapping is paraphrased from [13, 14, 10]. If A and Bare timed automata with invariants IA and IB, then a simulation mapping from A to Bwith respect to IA and IB is a relation f between states(A) and states(B) such that:1. If f(s; u), then u:now = s:now .2. If s 2 start(A), then there exists some u 2 start(B) such that f(s; u).3. If f(s; u) for states s and u of A and B satisfying IA and IB respectively, ands(�;t)�!A s0, then there exists some u0 such that f(s0; u0) and there is some executionfragment from u to u0 with the same timed external actions as (�; t).The most important fact about simulation mappings is that they imply admissibletimed trace inclusion.Theorem 1 If there is a simulation mapping from A to B, with respect to some invari-ants, then every admissible timed trace of A is an admissible timed trace of B.B. Library of LSL Traits for Timed AutomataThe trait Automaton (Figure 9) provides LSL de�nitions for terminology regardinguntimed automata. For example, it de�nes the execution fragments of an automaton A tobe those elements of sort StepSeq[A] that satisfy the predicate execFrag, which itself isde�ned inductively.The trait Invariants (Figure 10) lists the proof obligations for showing that a propertyis an invariant of an automaton. The Larch tools provide support for checking that theseproperties hold.The trait Bounds (Figure 11) describes intervals, which may be unbounded above, oftime during which an action may occur. Time itself is modeled as a real number using theLarch handbook trait Real, upon which LP's decision procedure for linear inequalities isbased.The trait TimedAutomaton (Figures 12 and 13) associates time bounds b(c) with eachtask c of an untimed automaton A, de�ning a timed automaton TA. This correspondsdirectly to the transformation of an MMT automaton into a timed automaton describedin the Appendix A.Finally, the trait SimulationMap (Figure 14), which generated the proof obligationsin Figure 5, de�nes what it means for one timed automaton to simulate another. Thisalso corresponds directly to the de�nition of simulation mappings in Appendix A. Recallthat timed automata are actually just untimed automata with special requirements; inparticular they must have a now component. Thus we use the NowExists assumption toensure that this de�nition is applied only to automata for which it is meaningful.

19Automaton (A): traitintroducesstart : States[A] ! Boolenabled : States[A], Actions[A] ! Booleffect : States[A], Actions[A], States[A] ! BoolisExternal : Actions[A] ! BoolisInternal : Actions[A] ! BoolisStep : States[A], Actions[A], States[A] ! Bool{__} : States[A] ! StepSeq[A]__{__,__} : StepSeq[A], Actions[A], States[A] ! StepSeq[A]execFrag : StepSeq[A] ! Boolfirst, last : StepSeq[A] ! States[A]common : Actions[A] ! CommonActionsempty : ! Traces__ ^ __ : Traces, CommonActions ! Tracestrace : Actions[A] ! Tracestrace : StepSeq[A] ! Tracestask : Actions[A] ! Tasks[A]enabled : States[A], Tasks[A] ! Boolinv : States[A] ! Boolassertssort StepSeq[A] generated by {__}, __{__,__}sort Traces generated by empty, ^8 s, s': States[A], a, a': Actions[A], ss: StepSeq[A], t: Tasks[A]isInternal(a) , : isExternal(a);isStep(s, a, s') , enabled(s, a) ^ effect(s, a, s');execFrag({s});execFrag(({s}){a,s'}) , isStep(s, a, s');execFrag((ss{a,s}){a',s'}) , execFrag(ss{a,s}) ^ isStep(s, a', s');first({s}) = s;last({s}) = s;first(ss{a,s}) = first(ss);last(ss{a,s}) = s;trace({s}) = empty;trace(ss{a,s}) = (if isExternal(a) then trace(ss) ^ common(a) else trace(ss));trace(a) = (if isExternal(a) then empty ^ common(a) else empty);enabled(s, t) , 9 a (enabled(s, a) ^ task(a) = t)Figure 9. LSL trait de�nining untimed automataInvariants (A, inv): traitassumes Automaton(A)asserts 8 s, s': States[A], a: Actions[A]start(s)) inv(s);inv(s) ^ isStep(s, a, s')) inv(s')Figure 10. LSL trait de�ning proof obligations for proofs of invariance

20Bounds: traitincludes Real(Time)Bounds tuple of bounded: Bool, first, last: Timeintroduces__+__ : Bounds, Time ! Bounds__+__ : Bounds, Bounds ! Bounds__*__ : N, Bounds ! Bounds__ � __ : Bounds, Bounds ! Bool__ 2 __ : Time, Bounds ! Boolasserts 8 b, b1, b2: Bounds, t: Time, n: N0 � b.first;b.first � b.last;b + t = [b.bounded, b.first + t, b.last + t];b1 + b2 = [b1.bounded ^ b2.bounded, b1.first + b2.first, b1.last + b2.last];n * b = [b.bounded, n * b.first, n * b.last];b1 � b2 ,b2.first � b1.first^ ((b1.bounded ^ b2.bounded ^ b1.last � b2.last) _ : b2.bounded);t 2 b , b.first � t ^ (t � b.last _ : b.bounded)Figure 11. LSL de�nition of time bounds for actions in an automatonTimedAutomaton (A, b, TA): traitassumes Automaton(A)includes Automaton(TA), Bounds, FiniteMap(Bounds[A], Tasks[A], Bounds)States[TA] tuple of basic: States[A], now: Time, bounds: Bounds[A]introducesb : Tasks[A] ! Boundsnu : Time ! Actions[TA]addTime : Actions[A], Time ! Actions[TA]assertsActions[TA] generated by addTime, nu8 s, s': States[TA], c: Tasks[A], a: Actions[A], t: Timedefined(s.bounds, c);isInternal(nu(t));isInternal(addTime(a, t)) , isInternal(a);start(s) ,start(s.basic) ^ s.now = 0^ 8 c ((enabled(s.basic, c)) s.bounds[c] = b(c))^ (: enabled(s.basic, c)) : (s.bounds[c]).bounded));enabled(s, nu(t)) , s.now � t ^ 8 c (t 2 s.bounds[c]);effect(s, nu(t), s') ,s'.now = t ^ s'.basic = s.basic ^ s'.bounds = s.bounds;Figure 12. LSL de�nition of timed I/O automata (part 1)

21enabled(s, addTime(a, t)) ,s.now = t ^ enabled(s.basic, a) ^ t 2 s.bounds[task(a)];effect(s, addTime(a, t), s') ,s'.now = t ^ effect(s.basic, a, s'.basic)^ 8 c ((enabled(s'.basic, c) ^ enabled(s.basic, c) ^ task(a) 6= c) s'.bounds[c] = s.bounds[c])^ (enabled(s'.basic, c) ^ task(a) = c) s'.bounds[c] = b(c) + t)^ (enabled(s'.basic, c) ^ : enabled(s.basic, c)) s'.bounds[c] = b(c) + t)^ (: enabled(s'.basic, c)) : (s'.bounds[c]).bounded));trace(addTime(a, t)) = trace(a);common(addTime(a, t)) = common(a);inv(s) ,8 c (s.now 2 s.bounds[c]^ (: enabled(s.basic, c)) : (s.bounds[c]).bounded)^ (enabled(s.basic, c)) (s.bounds[c]).last � (s.now + b(c).last))^ (s.bounds[c]).first � (s.now + b(c).first)^ (: b(c).bounded) : (s.bounds[c]).bounded)^ inv(s.basic))impliesInvariants(TA, inv)8 n: N, c: Tasks[A] (0 � (n * b(c).last))8 s, s': States[TA], a: Actions[TA], c: Tasks[A]isStep(s, a, s') ^ inv(s) ^ enabled(s.basic, c)) (s.bounds[c]).last � (s'.bounds[c]).lastFigure 13. LSL de�nition of timed I/O automata (part 2)SimulationMap (A1, A2, f): traitassumes Automaton(A1), Automaton(A2), NowExists(A1), NowExists(A2)introduces f: States[A1], States[A2] ! Boolasserts8 s, s': States[A1], u: States[A2], a: Actions[A1], alpha: StepSeq[A2]start(s)) 9 u (start(u) ^ f(s, u));f(s, u)) u.now = s.now;f(s, u) ^ inv(s) ^ inv(u) ^ isStep(s, a, s'))9 alpha (execFrag(alpha) ^ first(alpha) = u^ f(s', last(alpha)) ^ trace(alpha) = trace(a))Figure 14. LSL de�nition of simulation mapping

