Eventually-Serializable Data Services*

Alan Fekete! David Gupta! Victor Luchangco!  Nancy Lynch?  Alex Shvartsman®

December 1, 1998

Abstract

Data replication is used in distributed systems to improve availability, increase throughput
and eliminate single points of failures. The cost of replication is that significant care and
communication is required to maintain consistency among replicas. In some settings, such as
distributed directory services, it is acceptable to have transient inconsistencies, in exchange for
better performance, as long as a consistent view of the data is eventually established. For such
services to be usable, it is important that the consistency guarantees are specified clearly.

We present a new specification for distributed data services that trades off immediate con-
sistency guarantees for improved system availability and efficiency, while ensuring the long-term
consistency of the data. An eventually-serializable data service maintains the requested oper-
ations in a partial order that gravitates over time towards a total order. It provides clear and
unambiguous guarantees about the immediate and long-term behavior of the system.

We also present an algorithm, based on the lazy replication strategy of Ladin, Liskov, Shrira
and Ghemawat [15], that implements this specification. Our algorithm provides the external
interface of the eventually-serializable data service specification, and generalizes their algorithm
by allowing arbitrary operations and greater flexibility in specifying consistency requirements.
In addition to correctness, we prove performance and fault-tolerance properties of this algorithm.

Keywords: replication, weak coherence, consistency, distributed storage

*This work was supported by ARPA contract F19628-95-C-0118, AFOSR-ONR, contract F49620-94-1-0199,
AFOSR contract F49620-97-1-0337, and NSF contract 9225124-CCR. A preliminary version appeared in Proceed-
ings of the 15th ACM Symposium on Principles of Distributed Computing, pages 300-309, May 1996.

tBasser Department of Computer Science, Madsen Building F09, University of Sydney, NSW 2006, Australia.

{Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.

$Computer Science and Engineering Dept., 191 Auditorium Rd. U-155, University of Connecticut, Storrs, CT
06269.



1 Introduction

Providing distributed and concurrent access to data objects is a fundamental concern of distributed
systems. In this paper, we present a formal specification for a data service that permits transient in-
consistencies while providing unambiguous guarantees about system responses to clients’ requests,
and ensuring the eventual serialization of all operations requested. We also present a distributed al-
gorithm that implements the abstract specification. We prove the correctness of the implementation
using invariants and simulations. By making simple assumptions about the timing of message-based
communication, we also provide time bounds for the data service.

1.1 Replication: Trade-offs of Performance and Consistency

The simplest implementations of distributed data services maintain a single centralized object that
is accessed remotely by multiple clients. While conceptually simple, this approach does not scale
well as the number of clients increases. Systems address this problem by replicating the data object,
and allowing each replica to be accessed independently. This enables improved performance and
reliability through increased locality, load balancing, and the elimination of single points of failure.

Replication of the data object raises the issue of consistency among the replicas, especially
in determining the order in which the operations are applied at each replica. The strongest and
simplest notion of consistency is atomicity, which requires the replicas to collectively emulate a
single centralized object. Methods to achieve atomicity include write-all/read-one [4], primary copy
[1, 26, 23], majority consensus [27], and quorum consensus [11, 12]. Because achieving atomicity
often has a high performance cost, some applications, such as directory services, are willing to
tolerate some transient inconsistencies. This gives rise to weaker notions of consistency. Sequential
consistency [16], guaranteed by systems such as Orca [3], allows operations to be reordered as long
as they remain consistent with the view of isolated clients. An inherent disparity in the performance
of atomic and sequentially consistent objects has been established [2]. Other systems provide even
weaker guarantees to the clients [9, 5, 10] in order to get better performance.

Providing weaker consistency guarantees results in more complicated semantics. Even when
the behavior of the replicated objects is specified unambiguously, it is more difficult to understand
and to reason about the correctness of implementations. In practice, replicated systems are often
incompletely or ambiguously specified.

1.2 Background for our Work: Lazy Replication

As it is important that our specification be applicable for real systems, we build heavily on the
work of Ladin, Liskov, Shrira, and Ghemawat [15] on highly available replicated data services. They
specify general conditions for such a service, and present an algorithm based on lazy replication, in
which operations received by each replica are gossiped in the background. Responses to operations
may be out-of-date, not reflecting the effects of operations that have not yet been received by a
given replica. However, the user can indicate, for a newly requested operation, a set of previously
completed operations on which the new one depends; the new operation may be applied at a replica
only after the operations it depends on have been applied. If an operation is submitted without such
dependencies, the system may respond with any value that is consistent with an arbitrary subset



of previously requested operations. This allows any causality constraints to be expressed. Two
additional types of operations are defined to provide stronger ordering constraints, when causality
constraints are insufficient to implement a data object: forced operations must be totally ordered
with respect to all other forced operations, and immediate operations must be totally ordered with
respect to all operations. Operations that are neither forced nor immediate are called causal. As
long as most of the operations are causal, the algorithm of [15] is efficient.

The specification in [15] is tuned for their algorithm, and exposes some of the implementation
details to the clients. This makes it difficult to ascertain which details are essential to the correctness
of their algorithm, and which be may changed without significant effect. It is also difficult to
compare their algorithm with similar algorithms that have slightly different interfaces. For example,
their specification exposes the client to multipart timestamps, which are used internally to order
operations. However, it is not clear which properties of their algorithm depend on their use of
multipart timestamps, and which depend only on the lazy replication strategy. Also, their algorithm
requires all operations to be either read-only queries or write-only updates. Whether an update is
causal, forced or immediate is determined by the effect of that update, and so must be specified
by the application programmer when the system is implemented, rather than by the user when the
system is executing. Their algorithm requires that for any pair of non-commutative operations with
effects on the state of the data, one must be specified as depending on the other. Without this, the
algorithm can leave replicas inconsistent forever. That is, the apparent order on operations may
not converge to a limiting total order.

1.3 Overview of this Paper

The eventually-serializable data service specification uses a partial order on operations that gravi-
tates to a total order over time. We provide two types of operations at the client interface: (a) strict
operations, which are required to be stable at the time of the response, i.e., all operations that pre-
cede it must be totally ordered, and (b) operations that may be reordered after the response is
issued. As in [15], clients may also specify constraints on the order in which operations are applied
to the data object. Our specification omits implementation details, allowing users to ignore the
issues of replication and distribution, while giving implementors the freedom to design the system
to best satisfy the performance requirements. We make no assumptions about the semantics of the
data object, and thus, our specification can be used as the basis for a wide variety of applications.
Of course, particular system implementations may exploit the semantics of the specific data objects
to improve performance.

Our algorithm is based on the lazy replication strategy of [15]. We present a high-level formal
description of the algorithm, which takes into account the replication of the data, and maintains
consistency by propagating operations and bookkeeping information among replicas via gossip
messages. It provides a smooth combination of fast service with weak causality requirements
and slower service with stronger requirements. It does not use the multipart timestamps of [15],
which we view as an optimization of the basic algorithm. By viewing the abstract algorithm as a
specification for more detailed implementations, we indicate how this, and other optimizations, may
be incorporated into the framework of this paper. We also establish performance and fault-tolerance
guarantees of the algorithm.

The eventually-serializable data service exemplifies the synergy of applied systems work and
distributed computing theory, defining a clear and unambiguous specification for a useful module



for building distributed applications. By making all the assumptions and guarantees explicit,
the formal framework allows us to reason carefully about the system. Together with the abstract
algorithm, the specification can guide the design and implementation of distributed system building
blocks layered on general-purpose distributed platforms (middleware) such as DCE [24]. Cheiner
implemented one such building block [6, 7], and used it to develop prototypes for diverse clients
including a Web client, a text-oriented Unix client, and a Microsoft Excel client for Windows95.

The rest of the paper is organized as follows: Section 2 gives formal definitions and conventions
used throughout the paper, including the definition of the data type. Section 3 defines the I/O
automaton model used to formally specify the data service and algorithm. Section 4 characterizes
the clients of the data service, and Section 5 gives the formal specification of the eventually-
serializable data service, including some guarantees about its behavior. The algorithm is presented
in Section 6, and Section 7 demonstrates several properties that are used in the simulation proof of
Section 8, which shows that the algorithm implements the specification. The last three sections give
initial steps to extend this work. Performance guarantees, under certain timing assumptions, are
given in Section 9, together with some fault-tolerance considerations. Section 10 suggests several
ways in which the algorithm can be modified to give better performance, or take into account some
pragmatic implementation issues. Finally, Section 11 presents an overview of Cheiner’s work, and
discusses some applications which may use eventually-serializable data services.

2 Preliminary Definitions and Conventions

In this section, we introduce mathematical notation and conventions used in this paper. These
are merely formal definitions; the motivation and intuition behind these definitions appear in the
appropriate section later in the paper. We also state without proof several lemmas that follow
easily from these definitions. Throughout the paper, whenever variables appear unquantified, there
is an implicit universal quantification.

2.1 Functions, Relations and Orders

A binary relation R on a set S is any subset of S x S; we sometimes write xRy for (z,y) € R. The
span of a binary relation R is span(R) = {z : xRy V yRz for some y}. A relation R is transitive
if xRy N yRz — zRz. It is antisymmetric if tRy N yRx — = = y. It is reflexive if xRx
for all z € S, and it is irreflexive if (z,z) ¢ R for all z € S. The transitive closure of a relation
R, denoted TC(R), is the smallest transitive relation containing R, and the reflexive closure is
the smallest reflexive relation containing R. The relation induced by R on a set S’ is RN (S" x §').

A binary relation is a partial order if it is transitive and antisymmetric. It is strict if it is
also irreflexive. We say that z precedes y in a partial order R if xRy. For a set S, we denote the
subset of elements that precede z € S in R by S|g, = {y € S: yRx}. Two relations R and R’ are
consistent if TC(R U R') is a partial order. A relation R is a total order on S if it is a partial
order on S with xRy V yRx V z = y for all z,y € §. A partial order R totally orders S if it
induces a total order on S. If < is a total order on S and X is a finite nonempty subset of S then
we define ming X to be the element z € X such that z < y for all y € X and max_ X to be the
element z € X such that y < z for all y € X, where < is the reflexive closure of <. We may omit
the subscript when there is a single total order defined on S.



Lemma 2.1 Any irreflexive and transitive relation is a strict partial order.
Lemma 2.2 The relation induced by a partial order on any set is also a partial order.

Lemma 2.3 If R is a total order on S and R’ is a partial order, then R and R’ are consistent if
and only if zR'y A yRx =— xz =y.

A function f : A — B has domain A and range B. A function is null if its domain is the
empty set. For a set B, we extend functions and relations on B x B to functions whose range is
B. That is, if f1,fo: A— B, g: Bx B — C, and R is a binary relation on B then we let g(f1, f2)
be the function h: A — C with h(a) = g(f1(a), f2(a)), and (f1, f2) € R if (f1(a), f2(a)) € R for all
a € A

2.2 Data Types

The data service manages objects whose serial behavior is specified by some data type. This data
type defines possible states of instantiated objects and operators on the objects. We use a definition
similar to the variable types of [18]. Formally, a serial data type consists of:

e a set X of object states

e a distinguished initial state og € &

a set V of reportable values

a set O of operators

a transition function 7: X x O — X x V

We use .s and .v selectors to extract the state and value components respectively, i.e., 7(o, 0p) =
(1(o,0p).5,7(0, 0p).v). For the set O of nonempty finite sequences of operators, we also define 77 :
YxO1 — B xV by repeated application of 7, i.e., 77 (a, (op)) = 7(0, op) and 7 (o, (0p;, 0ps, . ..)) =
7t (7(0, 0py).5, (0psy,...)), where (...) denotes a sequence. In this paper, we assume that the serial
data type is fixed, and often leave it implicit.

2.3 Operations

To access the data, a client of the data service issues a request, which includes the operator to
be applied, a unique operation identifier, and additional information that constrains the valid
responses to the request. Formally, a client issues an operation descriptor consisting of:

e a data type operator op
e an operation identifier id
e a set prev of operation identifiers

e a boolean flag strict



We often refer to an operation descriptor z simply as operation x, and denote its various com-
ponents by x.op, x.id, x.prev and x.strict. We denote by O the set of all operations, and by
Z the set of all operation identifiers. For a set X C O, we denote by X.id = {z.id : x € X}
the set of identifiers of operations in X. Thus 7 = O.id. If R is a partial order on Z, then
<r={(z,y) € O x O : (z.id,y.id) € R} is a partial order on O such that z <g y if (z.id, y.id) € R.
We denote the reflexive closure of < by <g.

An operation is strict if its strict flag has value true. For a set X C O, we denote by CSC(X) =
{(y.id,z.id) : x € X A y.id € z.prev} a relation on Z expressing the client-specified constraints
described by the prev sets of the operations. The interpretation of these is given in Section 4.

Lemma 2.4 If X CY C O then CSC(X) C CSC(Y).

Given a finite set X = {z1,...,z,} of operations and the strict total order < = {(z;,z;) : i < j},
we define the outcome of X from state 0 € ¥ with respect to < to be outcome,(X,<) =
7t (o, (z1.0p,...,Tp.0p)).5, and the value of an operation z € X from o with respect to <

to be valy(z, X, <) = T(outcome,(X|<z,<),z.0p).v. If < is a partial order on X, we define
valset, (z, X, <) = {val,(z, X, <') : <" is a strict total order on X consistent with <}. When < re-
lates elements not in X, and <’ is the partial order induced by < on X, we sometimes abuse notation
by writing valset, (z, X, <) for valset,(z, X, <'), and, if <’ is a total order on X, val,(z, X, <) for
the only element in valset, (z, X, <), and outcome, (X, <) for outcome,(X, <'). If o is not explicitly
specified, it is assumed to be the initial state og.

Lemma 2.5 If < is a partial order on X then wvalset,(z, X, <) # () for all z € X.

Lemma 2.6 If < and <’ are partial orders on X such that < C <’ then walset,(z, X, <') C
valset, (z, X, <) for all z € X.

Lemma 2.7 Suppose X CY C O, < is a partial order on Y that induces a total order on X, and
x <yforallz € X and y € Y — X. Then valsety(z,Y, <) = {val,(z, X, <)} for all z € X, and
valsety(y,Y, <) = valset, (y, Y — X, <) for all y € Y — X, where o’ = outcome, (X, <).

3 Formal model

The specifications in this paper are done using a slight simplification of I/O automata [19], ignoring
aspects related to liveness. We do not deal with liveness directly in this paper. Instead, we assume
bounds on the time to perform actions, and prove performance guarantees that imply liveness under
those timing assumptions.

A non-live I/0 automaton A consists of:

e three disjoint sets of actions: in(A), out(A), and int(A);
e a set states(A) of states;

e a nonempty subset start(A) of start states;

e a set steps(A) C states(A) x acts(A) x states(A) of steps such that there exists (s, m,s') €
steps(A) for all s € states(A) and © € in(A).



We call the actions in in(A), out(A), and int(A) the input, output, and internal actions re-
spectively. The input and output actions are also called external actions, and the set of
external actions is denoted by ezt(A). We denote the set of all actions of A by acts(A) =
in(A) U out(A) U int(A). We write s 534 8" or just ss’' as shorthand for (s,m,s’) € steps(A).
We say an action 7 is enabled in s if there exists s’ such that s 5ss’. Notice that every input action
is enabled in every state.

An execution fragment sgmisimass--- is a finite or infinite sequence of alternating states
and actions such that s;_;Zis; for all i. The external image of an execution fragment o is
the subsequence a4 of its external actions. An execution is an execution fragment with
sg € start(A). We denote the set of executions of A by ezecs(A). A trace of A is the external
image of an execution, and the set of traces is denoted by traces(A). An event is an occurence of
an action in a sequence. If an event 7 (strictly) precedes 7’ in «, then we write 7 <, 7'. A state is
reachable in A if it appears in any execution of A. An inwvariant of A is a predicate that is true
of every reachable state of A.

We often want to specify a distributed system by specifying the components that constitute
the system. The entire system is then described by an automaton which is the composition of
the automata describing the components. Informally, composition identifies actions with the same
name at different component automata. Thus, when an action is executed, it is executed by all
components with that action. The new automaton has the actions of all its components. Some
restrictions on the automata to be composed are necessary so that the composition makes sense.
In particular, internal actions cannot be shared, an action can be the output action of at most one
component, and actions cannot be shared by infinitely many components.

Formally, for any index set I, a set {A; },c; of automata is compatible if int(A;) Nacts(A;) =0
and out(A;) Nout(A;) =0 for all i, j € T such that i # j, and no action is in acts(A;) for infinitely
many i € I. The composition A = Il;c;A; of a compatible set {A;};c; of automata has the
following components:

o in(A) =U,e; in(4Ai) — U,eq out(4)
out(A) = ;s out(A;)
nt(A) = U;eq int(4)

o states(A) = ;¢ states(A;)
o start(A) = [ start(A;)

o steps(A) = {(s,m, ") : s; 54, s, or m & acts(A;) N s; = s, for alli € I}

We denote the composition of two compatible automata A and B by A x B.

Communication between automata is done through shared external actions, which remain ex-
ternal actions of the composition. Sometimes it is useful to hide these actions, reclassifying them
as internal, so they cannot be used for further communication and no longer appear in traces. For-
mally, if A is an I/O automaton and ® C out(A), then the hiding operation on A and ® produces
an automaton A’ identical to A except that out(A') = out(A) — ® and int(A’) = int(A) U D.

I/O automata can be used as specifications as well as implementations. We say that an automa-
ton A implements another automaton B, and write A C B, if in(A) = in(B), out(A) = out(B),



and traces(A) C traces(B). We say that A and B are equivalent, and write A = B, if they
implement each other.

Theorem 3.1 If A; C B; for all ¢ € I then I1;c;A; C ;1 B;.

A standard way to show that one automaton implements another is to use simulations, which
establish a correspondence between the states of the two automata. Formally, if A and B are
automata with in(A) = in(B) and out(A) = out(B) then a forward simulation from A to B is
a relation f between states(A) and states(B) such that:

e If s € start(A) then there exists some u € start(B) such that f(s,u).

e For reachable states s and u of A and B, if f(s,u) and s 54 s', then there exists some u’ such
that f(s’,u') and there is some execution fragment of B from u to «’' with the same external
image as 7.

We denote {u: f(s,u)} by f[s], and typically write u € f[s] instead of f(s,u).

Theorem 3.2 If there is a forward simulation from A to B then A C B.

4 Client Specification

We model a system as a service accessed by clients expected to obey certain conventions, called the
well-formedness assumptions. In this section, we formally define these assumptions on the clients
of the data service. The automaton Users in Figure 1 represents all clients, and uses shared state
to encode the restrictions on the clients in a general and abstract way; in a real implementation,
there need not be any shared state.

Signature

Input:

response(z, v), where z € O and v € V
Output:

request(x), where z € O

State
requested, a subset of O, initially empty

Actions
Output request(x) Input response(z,v)
Pre: z.id ¢ requested.id Eff: None

x.prev C requested.id
Eff: requested < requested U {z}

Figure 1: Users: The well-formed clients

Clients access the data by issuing requests and receiving responses from the data service. The
data type only specifies serial behavior, that is, the behavior when the operations are requested in



sequence. However, we allow clients to issue requests concurrently. To request an operation, a client
specifies an operation descriptor z, which includes a unique identifier, and a prev set and strict
flag which are intended to constrain the responses the client may receive from the data service
for the requested operation. Informally, the prev set represents operations that must be done
before the requested operation, and can only include operations requested earlier. The relation
CSC (requested) defines the client-specified constraints.

The condition z.id ¢ requested.id ensures that the operation identifiers are unique, and the
condition z.prev C requested.id ensures that TC(CSC(requested)) is a strict partial order.

Invariant 4.1 For z,y € requested, x =y <= x.id = y.id.

Invariant 4.2 TC(CSC(requested)) is a strict partial order.

In any reachable state of Users, we define the partial order <. on requested so that z <. y if and

only if (z.id,y.id) € TC(CSC (requested)).

This automaton only specifies the well-formedness assumptions on the clients; it does not place
any restrictions on the responses it may receive. Given a set X of operations, we say that a
response(x,v) event is consistent with a partial order < on X if v € valset(xz, X, <), and that a
total order <’ explains the event if v = val(z, X, <'). We expect that every response corresponds
to some request, and is consistent with the client-specified constraints. This is guaranteed by the
data service specification in the next section.

5 ESDS Specification

In this section, we give the formal specification of an eventually-serializable data service. We first
specify this as the automaton ESDS-I, and we then prove several properties of this automaton.
We then give an alternative specification ESDS-1I, which is equivalent to ESDS-I. We give two
specifications because ESDS-I is simpler to understand, while ESDS-II is more convenient for
showing that the specification is implemented by the abstract algorithm we define in Section 6.

5.1 Specification ESDS-I

We now define an eventually-serializable data service. The clients of the service may issue requests
concurrently, and thus the responses are not uniquely defined by the data type specification. A
sequentially consistent data service would require that there exist a total order on the operations
consistent with all the responses of the service. This total order is called a serialization. However, for
some systems, sequential consistency is too expensive to guarantee. The eventually-serializable data
service specification permits more efficient and resilient distributed implementations by allowing
some operations to be reordered even after a response has already been returned. However, it must
always respect the client-specified constraints. In addition, an operation may stabilize, after which
it may no longer be reordered.

Formally, an eventually-serializable data service is any automaton that implements ESDS-1
in Figure 2. The input actions are the requests from the clients, and the output actions are the



Signature

Input:
request(z), where z € O
Output:
response(z,v), where z € O and v € V
Internal:
enter(z, new-po), where z € O and new-po is a strict partial order on Z
stabilize(x), where z € O
calculate(z,v), where z € O and v € V
add_constraints(new-po), where new-po is a partial order on Z

State

wait, a subset of O, initially empty; the operations requested but not yet responded to

rept, a subset of O x V, initially empty; operations and responses that may be returned to clients
ops, a subset of O, initially empty; the set of all operations that have ever been entered

po, a partial order on Z, initially empty; constraints on the order operations in ops are applied

stabilized, a subset of O, initially empty; the set of stable operations

Actions
Input request(x) Internal stabilize(z)
Eff: wait < wait U {x} Pre: z € ops
x ¢ stabilized
Internal enter(z, new-po) Yy € ops, Yy Zpo 2V T Zpo y
Pre: xz € wait 0ps|<,,2 C stabilized
x ¢ ops Eff: stabilized « stabilized U {z}
x.prev C ops.id
span(new-po) C ops.id U {z.id} Internal calculate(z, v)
po C new-po Pre: = € ops
CSC({z}) C new-po z.strict = x € stabilized
{(y.1d, z.id) : y € stabilized} C new-po v € valset(x, 0ps, <po)
Eff: ops < ops U {z} Eff: if © € wait then rept < rept U {(z,v)}

PO — new-po
Output response(x,v)

Internal add_constraints(new-po) Pre: (z,v) € rept
Pre: span(new-po) C ops.id T € wait
po C new-po Eff: wait < wait — {z}
Eff: po < new-po rept < rept — {(z,v') : (z,v") € rept}

Figure 2: Specification ESDS-1

10



responses to these requests. Because of the well-formedness assumptions, we expect that the client-
specified constraints define a strict partial order on the requested operations. Although the au-
tomata is formally defined for any input, the following discussion assumes well-formed clients. The
informal claims in this subsection are stated and proved formally in the next subsection.

The main idea is to maintain a strict partial order of the operations consistent with the client-
specified constraints. In addition, the automaton maintains a set of stable operations, whose prefix
in the partial order is total and fixed. If every operation is stable, the partial order is total, and
we call this the eventual total order. Responses to strict operations must be consistent with the
eventual total order.

The wait and rept variables are used to keep track of pending requests. The set ops contains
the operations that have been entered (by the enter action); only these operations are used (by
the calculate action) to compute the return values of operations. The variable po defines a strict
partial order <,, on the operations in ops, which restricts the order in which these operations may
applied. This order must be consistent with the client-specified constraints given by the prev sets.
The set stabilized contains the stable operations.

The request and response actions are the interface actions with the clients. They update wait
and rept appropriately. For each operation x, the specification defines internal actions of the
form enter(z, new-po), stabilize(z) and calculate(z,v). The enter(x, new-po) action adds sufficient
constraints to po to ensure that the new operation follows every operation specified by the client
in the prev set, and preserves the prefix of stable operations. That is, a new operation must be
preceded in new-po by every operation specified by the client and by every stable operation. The
stabilize(x) action can occur only if z is totally ordered with respect to other operations in ops, and
all preceding operations are already stable. The calculate(z,v) action chooses some return value
for x consistent with the constraints specified by po. Strict operations must be stable when a value
is calculated for them, but nonstrict operations need not be. Thus, the responses to the clients
for nonstrict operations need not be consistent with the eventual total order. Repeated calculate
actions for a specific operation may produce different return values and the response action selects
one of the values for the operation nondeterministically.!

In addition, there is an internal action add_constraints(new-po) which extends the partial order
of constraints. Notice that the partial order can only be constrained further; once a constraint is
imposed, it is never revoked.

Although informally we expect every request to get a response and every operation to stabilize,
there are no formal liveness guarantees in this specification. Instead, in Section 9, we assume time
bounds on the actions, and prove performance guarantees that imply liveness under these timing
assumptions.

5.2 Properties of Eventually-Serializable Data Services

We now prove several properties of the composition ESDS-1 x Users that are useful for writing
applications that use the eventually-serializable data service.

The first lemma says that stabilized, ops and po only increase, and that only entered operations

!This is equivalent to an automaton that only allows a single calculate action for each operation, but this requires
additional formal machinery (e.g., backward simulations [20]) to prove.

11



are stabilized.

Lemma 5.1 If s 5ss’ then s.stabilized C s'.stabilized C s.ops C s'.ops, and s.po C s'.po.

Proof: Immediate from definition of ESDS-I. [ ]

The next invariant says that po orders only operations in ops and contains the client-specified
constraints.

Invariant 5.2 span(po) C ops.id and CSC(ops) C po.

Proof: We prove this by induction on the length of an execution. This is trivial in the initial state
since po is empty. If the invariant holds in s and s Zss’ then only enter and add_constraints actions
change po or ops:

1. If # = enter(z, s'.po) then span(s'.po) C s.ops.id U {z.id} = s".ops.id, and CSC(s.ops) C

s.po C s'.po and CSC({z}) C s'.po, so CSC(s".ops) = CSC(s.ops) U CSC({z}) C s".po.

2. If 1 = add_constraints(s’.po) then span(s’.po) C s.ops.id = s'.ops.id and CSC(s'.ops) =
CSC(s.ops) C s.po C s'.po.

The following two invariants say that stable operations can be compared with any entered
operation, and thus, that stabilized is totally ordered by <,,.

Invariant 5.3 For all z € stabilized and y € ops, we have y <,, © V = <, y.

Proof: We prove this by induction on the length of an execution. This is trivial in the initial
state since stabilized = (). If the invariant holds in s and s 55’ then y <y 0, ¢ V & <y 4, y for all
z € s.stabilized and y € s.ops, since s.po C s'.po by Lemma 5.1. If z € s'.stabilized — s.stabilized
then m = stabilize(z) so y <y po & V & =g 4 y for all y € s.ops = s'.ops by the precondition for
stabilize(z). If y € s'.ops — s.ops then m = enter(y, s'.po) and z <y p, y for all z € s.stabilized =
s'.stabilized. [ ]

Invariant 5.4 stabilized is totally ordered by <p,.

Proof: Immediate from Invariant 5.3 since stabilized C ops (by Lemma 5.1). |

The next invariant says that operations preceding stable operations are also stable.

Invariant 5.5 If 2 € stabilized then ops|< . C stabilized.

Proof: We prove this by induction on the length of an execution. This is trivial in the ini-
tial state since stabilized is empty. Suppose the invariant holds in s and sZ=s’. Then for z €
s.stabilized, if y € OPS|<S,_pr then z As.po y, since s.po is a strict partial order and s.po C s'.po
by Lemma 5.1. By Invariant 5.3, y <,p, ©. Thus, by the inductive assumption and Lemma 5.1,
y € s.stabilized C s'.stabilized. If x € s .stabilized — s.stabilized then ™ = stabilize(z) and thus,
ops|<, o= 0pS|<, .u C ' stabilized. |

The next invariant says that there is a unique value for stable operations.

12



Invariant 5.6 If = € stabilized then valset(z, ops, <po) = {val(z, ops|<,,z, <po)}

Proof: By Invariant 5.5, ops|<,,, C stabilized, so by Invariant 5.4, <,, totally orders ops|<, .
and by Invariant 5.3, y € ops — ops|<,,. => T <y, y. Thus, by Lemma 2.7, valset(x, ops, <p,) =
{wal(z, 0ps|jpnx,-<p0)}. ]

We now give several guarantees on the behavior of the system that may be useful for applications.
The first theorem says that for each operation z, there is a total order of the requested operations
consistent with the client-specified constraints that explains the response for z and the response of
every strict operation that receives a response before z is requested.

Theorem 5.7 Suppose ( is a trace of ESDS-I x Users, and reqs is the set of operations requested
in 8. For each response(z,v) event in (3, there exists a total order to(z) on reqs.id consistent
with CSC(regs) such that v = wval(z, regs, <4,(,)) and for every response(y,v') <5 request(z) with
y.strict, v' = val(y, reqs, <io(z))-

Proof: (Sketch) Let « be an execution of ESDS-I x Users with external image . There must be
a calculate(z,v) event in « preceding the response(x,v) event. Let s be the state of @ immediately
preceding this event. By the precondition, there is a total order < on s.ops consistent with < ,,
such that v = val(z, s.ops, <). If response(y,v') < request(z) and y.strict then let s’ be the state
immediately preceding the calculate(y,v’) event. By Invariant 5.6, v’ is the unique value for y
consistent with <y ,,, and by Lemma 5.1, s".po C s.po, so v' = val(y, s'.ops, <) = val(y, s.ops, <).
Let to(x) be such that < is a prefix of <to(z), that 1s, all operations in regs — s.ops are ordered
after the operations in ops. Then val(y, reqs, <,(»)) = val(y,s.ops, <) for y € s.ops, establishing
the theorem. [ |

The next theorem says that there is an eventual total order that explains all responses to strict
operations.

Theorem 5.8 Suppose ( is a finite trace of ESDS-I x Users, and regs is the set of operations
requested in S. There exists a total order eto on regs.id consistent with CSC(regs) such that for
every response(x,v) event in § with z.strict, v = val(x, reqs, <eo)-

Proof: (Sketch) Let a be a finite execution of ESDS-I x Users with external image (3, and s
be the final state of . Let < be a total order on s.ops consistent with <, ,,. If response(z,v)
is an event of « with z.strict then let s’ be the state immediately preceding the calculate(z, v)
event. By Invariant 5.6, v is the unique value for = consistent with <y ,,, and by Lemma 5.1,
s'.po C s.po, so v = val(x, s'.ops, <) = val(x, s.ops, <). Let eto be such that < is a prefix of <.
Then val(x, reqs, <eto) = val(z, s.ops, <) for z € s.ops, establishing the theorem. [ |

The following corollary says that when all requests are strict, ESDS-I appears similar to an
atomic object. The eventual total order from the previous theorem defines the serialization.

Corollary 5.9 Suppose (3 is a finite trace of ESDS-1I x Users, regs is the set of operations requested
in B, and z.strict for all z € reqs. Then there exists a total order eto on reqs.id consistent with
CSC(regs) such that for every response(z,v) event in 3, v = val(z, reqs, <eto)-

13



5.3 Specification ESDS-11

We now give an alternative specification of eventually-serializable data services, using a more nonde-
terministic automaton ESDS-II, and we show that ESDS-I and ESDS-II are equivalent. Although
this automaton is more complicated than ESDS-I, it is easier to use as the specification in a
simulation proof because it allows more nondeterminism. We use it in the simulation proof in
Section 8.

There are three differences between the two automata, all in the preconditions of two actions,
enter and stabilize. The new actions appear in Figure 3.

Internal enter(z, new-po) Internal stabilize(z)
Pre: x € wait Pre: = € ops
x.prev C ops.id Vy € ops, y Xpoz V T Xpoy
span(new-po) C ops.id U {z.id} <o totally orders ops|<,,=
po C new-po Eff: stabilized < stabilized U {x}

CSC({z}) C new-po

{(y.id,x.id) : y € stabilized} C new-po
Eff: ops < ops U {z}

PO  new-po

Figure 3: The enter and stabilize actions of ESDS-11

Two of the differences are minor: the clauses © ¢ ops and x ¢ stabilized are removed from
the preconditions of the enter and stabilize actions respectively. This allows them to be done
repeatedly for each operation. This is minor because a repeated enter(z, new-po) is equivalent to
an add_constraints(new-po) action, and a repeated stabilize(x) does not change the state at all.

The third difference is more significant. When an operation is stabilized, instead of requiring
that preceding operations already be stable, the stabilize action of ESDS-II only requires that they
be totally ordered by <,,. This allows “gaps” between stable operations, which are impossible in
ESDS-I by Invariant 5.5. All the other invariants, lemmas and theorems remain true for ESDS-11,
with their proofs largely unchanged.

It is easy to see that ESDS-I implements ESDS-II since every execution of ESDS-I is an
execution of ESDS-II. We can show that ESDS-II implements ESDS-1 with a simple simulation
proof. The simulation, given in Figure 4, relates states of ESDS-II to states of ESDS-1 when the
operations stable in the implementation are also stable in the specification, and all other state
components are equal. Informally, this allows ESDS-I to “fill in the gaps” allowed between stable
operations in ESDS-II.

The proof that this is a simulation is straightforward. Every action simulates itself except
that the stabilize(z) action in ESDS-II simulates a (possibly empty) sequence of stabilize action in
ESDS-I, one for each operation in ops|<,,, — stabilized. The key observation is that if an execution
of ESDS-II stabilizes an operation that has preceding operations that have not yet stabilized, then
the simulated execution of ESDS-I can stabilize all such operations first.

14



G is a relation between states in ESDS-II and states in ESDS-I such that u € G[s] if and only if:
* u.wait = s.wait
o u.rept = s.rept
® u.0ps = 5.0ps

® U.po = 5.po

u.stabilized DO s.stabilized

Figure 4: Forward simulation from ESDS-II to ESDS-1

6 Algorithm

We now present an algorithm that implements the eventually-serializable data service specification
ESDS-II in the previous section. In later sections, we prove formally that the algorithm implements
the data service.

The algorithm replicates the data, maintaining a complete copy at each replica. We assume
that there are at least two replicas. Each client uses a front end to the service that keeps track of
pending requests and handles communication with the replicas. We model inter-process commu-
nication by point-to-point channels, and we assume that the processes and channels are reliable,
but we make no assumptions about the order of message delivery. The algorithm can be modified
to tolerate processor crashes and message losses and we discuss these considerations in a later sec-
tion. We also assume that local computation time is insignificant compared with communication
delays, so that a process is always able to handle any input it receives. This is reasonable if the
computation required by each operation is not excessive.

This algorithm is based on the lazy-replication scheme of Ladin, Liskov, Shrira and Ghe-
mawat [15], which uses gossip messages to maintain consistency among the replicas. Each replica
maintains a label for each operation it knows about. These labels may be received by gossip, or
generated by the replica if no label has been gossiped to it. The labels are totally ordered and
are generated uniquely, and an operation’s place in the eventual total order is determined by the
system-wide minimum label for that operation.

6.1 The Channels

Point-to-point channels are used for request and response messages between front ends and repli-
cas and for gossip messages between replicas. We assume that channels are reliable, but we do
not assume that they are FIFO. A channel from process ¢ to process j with message set M is
modelled by the simple automaton in Figure 5. It has send;; and receive;; actions and a single
state variable channel;; representing the messages in transit. For channels from a front end to
a replica, the message set is M,,, = {(“request”,z) : z € O}; from a replica to a front end, it
is Myesp = {(“response”, z,v) : x € O,v € V'}. For channels between replicas, the message set is
M gossip = {(“gossip”, R, D, L,S) : R,D.S C O,L:7T — LU{oo}}, where L is a set of labels, for-
mally defined in Section 6.3, used by the replicas to maintain consistency. For a gossip message
m = (“gossip”, R, D, L, S), we use R,,, D, L, and S,, to denote R, D, L and S respectively.

15



Signature

Input:

send;;(m), where m € M
Output:

receive;; (m), where m € M

State

channel;;, a multiset of messages (from M), initially empty

Actions
Input send;;(m) Output receive;;(m)
Eff: channel;; < channel;; U {m} Pre: m € channel;;

Eff: channel;; < channel;; — {m}

Figure 5: Automaton for channel from process ¢ to process j with message set M.

6.2 The Front Ends

When a client submits a request, its front end to the service relays the request to one or more
replicas, which maintain a copy of the data object; when the front end receives a response, it relays
that to the client. Although we have been modelling the clients as a single automaton, the replicas
must distinguish between clients, so they can send responses to the appropriate front ends. For
simplicity, we assume that the clients encode their identity into the operation identifier. Formally,
if C is the set of clients, we assume there is a static function client : 7 — C. We use this to
partition O into sets O, = {z : client(z.id) = c}.

The front end automaton is shown in Figure 6. The variables wait, and rept, keep track of
pending requests from client ¢. The request and response actions are the interface actions with
the client ¢, and they update wait. and rept, appropriately. The front end may send a mes-
sage requesting a response for any pending operation, i.e., any operation in wait.. Note that the
send,, ({“request”, z)) action may be performed repeatedly, requesting a response from different

2

replicas, or even repeatedly from the same replica.© When a response for a pending request is

received from a replica, the front end records it in rept,.

6.3 The Replicas

The replicas do not keep an explicit state of the data which is updated by each operation. Instead,
they assign labels to the operations from a well-ordered set. These labels are used to compute the
return values for the operations. To maintain consistency, the replicas “gossip” the labels, keeping
the minimum label for each operaton. An operation is done at a replica if that replica has a label
for that operation. An operation is stable at a replica r if » knows that it is done at every replica.
The informal claims made in this section are stated and proved formally in the next section.

The automaton specification for a replica r is given in Figure 7. The set pending, keeps track

2Some implementations may do this for efficiency, or to compensate for faulty channels or servers, and we allow it
as it does not affect correctness. However, we assume for now that no faults occur, and we are only concerned with
safety. See Section 9 for a discussion of performance and fault-tolerance.

16



Signature

Input:

request(z), where z € O,

receive,.(m), where r is a replica and m € M.,
Output:

response(z,v), where ¢ € O, and v € V

send.r (m), where r is a replica and m € Mg

State
waite, a subset of O, initially empty
rept,, a subset of O x V, initially empty

c)

Actions

Input request(x)
Eff: wait. < waitc U {z}

Output send., ({“request”, x))

Input receive,.({“response”, x,v))
Eff: if © € wait. then rept, < rept, U {(z,v)}

Output response(z, v)

Pre: = € wait, Pre: (z,v) € rept,
Eff: None T € wait,
Eff: wait. «+ waitc — {z}
rept,, < rept, — {(z,v') : (z,v") € rept,}

Figure 6: Automaton for the front end of client ¢

of pending requests. The set rcvd, contains every operation that this replica has received, either
directly from a front end, or through gossip from another replica. The variable done, is an array
of sets of operations, one for each replica, where done,[i] is the set of operations that r knows are
done at replica 7. Similarly, stable, is an array of sets of operations, where stable,[i] is the set of
operations that r knows are stable at i. Note that done,[r] and stable,[r] are special in that r does
not need to gossip with itself, so done,[r] is the set of operations that are done at r, and stable,[r]
is the set of operations that are stable at r. The label, function keeps the minimum label r has
seen for each operation identifier, where oo indicates that no label has been seen yet. Labels are
taken from a well-ordered set £, and this order is extended to oo, so [ < oo for all [ € L. We use
the label, function to derive lc,, the local constraints at r, which is a strict partial order on 7.

The labels are partitioned into sets L, for each replica r, and replica r only assigns labels from
L,; this ensures that labels are assigned uniquely. For any finite set of labels and any replica r,
there exists a label [ € L, that is greater than any label in the finite set. This prevents a replica
from “getting stuck” without a label to assign to an operation. Because labels are assigned uniquely
to the operations done at r, lc, totally orders done,[r|.

The receive., ((“request”, z)) action simply records that a new request from client ¢ for an
operation has been received. That request is pending, i.e., it is added to pending,, even if the
operation had been received previously.®> The do_it,(z,[) action assigns a new label [ € L, to =,
and adds z to the set of done operations. This is allowed only if z is not yet done at replica r
and all the operations specified by z.prev set are. The new label is chosen to be greater than

3This is unnecessary if communication is reliable, as we assume, but it does not affect correctness, and is natural
if the front ends issue multiple requests, as we allow. Some implementations may do this for performance or fault-
tolerance. See Section 9 for a discussion of these issues.

17



Signature

Input:

receiveq, (m), where c is a client and m € M.,

receive,.,.(m), where r' # r is a replica and m € M gossip
Output:

send,.(m), where c is a client and m € M.,

send,., (m), where 7' # r is a replica and m € M gossip
Internal:

do_it, (z,1), where x € O and [ € L,

State

pending,., a subset of O, initially empty; the messages that require a response

rcvd,, a subset of O, initially empty; the operations that have been received

done, [i] for each replica i, a subset of O, initially empty; the operations r knows are done at 4

stable,[i] for each replica i, a subset of O, initially empty; the operations r knows are stable at ¢

label, : T — L U {co}, initially all co; the minimum label r has seen for id € 7

Derived variable: lc, = {(id,id") : label,(id) < label,(id")}, a strict partial order on Z; the local constraints at r

Actions
Input receive., ({“request”, z)) Output send,, ((“gossip”, R, D, L, S))
Eff: pending, < pending, U {z} Pre: R = rcvd,; D = done,[r];
revd, < revd, U {z} L = label,; S = stable,[r]
Internal do_it, (z,1) Input receive,,. ((“gossip”, R, D, L, S))
Pre: z € rcvd, — done,[r] Eff: rcvd, < rcvd, UR
z.prev C doner[r].id done,[r'] < done,[r']UDUS
I > label,(y.id) for all y € done,[r] done,[r] < done,[r]UDUS
Eff: done,[r] < done,[r]U {z} done,[i] « done,[i]JU S for all i # r, 7’
label, (z.id) <1 label, < min(label,, L)
stable, [r'] < stable,.[r'|US
Output send,.((“response”, z, v)) stable, [r] < stable,[r] U S U ([, done,[i])

Pre: z € pending, N done,[r]
z.strict => x € [, stable,[i]
v € valset(z, done.,[r], <., )
¢ = client(z.id)

Eff: pending, < pending, — {z}

Figure 7: Automaton for replica r

18



the label for any operation already done at 7, so that these operations precede z in the local
constraints. If there is a pending request for an operation done at r, the send,.({“response”, z,v))
action computes a return value for z according to the local constraints, and relays a message to
the client that requested it. If x is strict, this action is enabled only if r knows x is stable at all
replicas.

Replica use gossip messages to inform the other replicas about operations they have received
and processed. When replica r sends a gossip message, it includes the set R of operations it has
received, the set D of operations done at r, the set S of operations stable at r, and a function L
giving the minimum label seen by r for each operation. When replica r receives a gossip message
from 7', it “merges” the information with its knowledge. Specifically, it adds R to its received
operations, and adds D to done,[r']. Since any operation that r knows is done at ' is done at r,
D is also added to done,[r]. Similarly, S is added to stable,[r'] and stable,[r|. Since S consists of
operations stable at v’ when the message was sent, every operation in S is done at every replica,
so S is also added to done,[i] for all i. The label, function is updated to return for each operation,
the smaller of the label already known to r and the label in the gossip message. Recall that oo
indicates that an operation has no label. Finally, operations that r knows are done at every replica,
i.e., the operations in [, done,[i], are added to stable,[r].

6.4 The System

Let ESDS-Alg be the composition of all the front end, channel, and replica automata, with the send
and receive actions hidden. It is convenient for the analysis of this algorithm to define several derived
state variables for this automaton. These are summarized, together with the local constraints
defined in the previous subsection, in Figure 8.

e ops = |J, done.[r], the set of operations done at any replica

e opsli = {r € ops : label, (z.id) = I for some r or Ly, (z.id) = I for some m € |J, ,, channel,, }, the set of oper-
ations with label [

e minlabel(id) = min(|J, {label, (id)}), the system-wide minimum label for each operation

e potential_rept, = {(z,v) : (“response” , x,v) € |J, channel,.. A x € wait.}, responses en route to c

e lc, = {(id,id") : label, (id) < label.(id")}, the local constraints at replica r

o mc,(m) = {(id,id") : min(label, (id), Ln (id)) < min(label, (id"), Lm (id"))}, for any m € M gossip, the message
constraints of m at replica r

e sc=(N,le,) N (ﬂm, ﬂmechanmlﬂr mcr(m)), the system constraints

e po, the relation induced by TC(CSC(ops) U sc¢) on ops

Figure 8: Derived variables for ESDS-Alg

The set ops is the set of operations done at any replica, and the set ops|; is the subset of these
operations with label [. The function minlabel returns the system-wide minimum label for each
operation.

It is also useful to consider the effects of messages in transit. We denote by potential _rept, the
change to the rept, set if all the response messages to ¢ are received immediately. When a gossip

19



message is received by a replica, the local constraints at that replica may change. We define the
message constraints mc,(m) of a gossip message m at a replica r to be the local constraints
that r would have if it received m immediately.

Since each replica assigns labels to operations independently, the local constraints at different
replicas need not be consistent. However, because the replicas use the minimum label for each
operation, these constraints converge as the replicas gossip. To capture this, we define the system
constraints sc to be those constraints agreed upon by all replicas, taking into account the message
constraints. Together with the client-specified constraints, the system constraints define a partial
order po that restricts the eventual total order.

7 Invariants

We now prove several invariants about the system A = ESDS-Alg x Users. These are used in
the next section to show that the algorithm implements the specification when the clients are
well-formed.

7.1 Basic Invariants

We first prove several invariants that capture some of the basic intuition about the state variables
and the messages sent.

The first invariant says that every operation r knows to be done at any replica is also done at
r, and every operation r knows to be stable at any replica is also stable at r.

Invariant 7.1 done,[r] = |J; done,[i] and stable,[r] = |, stable,[i]

Proof: Since done,[r] C |J; done,[i], and stable,[r] C |, stable,[i], we only need to show that
done,[i] C done,[r] and stable,[i] C stable,[r] for all i. We prove this by induction on the length of
an execution. The base case is trivial because all the sets are empty. But notice that the done,[r]
and stable,[r] never decrease, and any elements added to done,[i] or stable,[i] (when processing a
gossip message) are also added to done,[r] or stable,[r] respectively. ]

The next invariant says stable,[r] contains exactly the operations r knows are done at every
replica.

Invariant 7.2 stable,[r] =, done,[i]

Proof: We prove this by induction on the length of an execution. The base case is trivial because
all the sets are empty in the initial state. If the invariant holds for s and sZss’ then

1. If 1 = do_it,(z,!) then note that = ¢ s.done,[r], and since there is at least one other replica r’,
z ¢ s.done,[r'] = s'.done,[r'] by Invariant 7.1. So s'.stable,[r] = s.stable,[r] =, s.done,[i] =

N, s'.done,[d].

20



2. If m = receive,,.(m) then s'.stable,[r] = s.stable,[r] U Sy, U, s'.done,[i] D ), s'.done,[i].

Also, s.stable,[r)U Sy, = (), s.done,[i]] U S, C ), s'.done,[i], so s'.stable,[r] C [, s'.done,[i].
Thus, s'.stable,[r] =, s'.done,[i].

3. Other actions do not change done,[i] or stable,[r], so the invariant continues to hold.
|

The next invariant says that the information in a gossip message is not more “up-to-date” than
the state of the replica that sent it, and that the set of stable operations in a message is a subset
of the set of done operations in that message.

Invariant 7.3 For any gossip message m € channel,,, R, C rcvd,, Dy, C done,[r]|, Ly, > label,,
Sm C stable,[r], and Sy, C D,,.

Proof: We prove this by induction on the length of an execution. The base case is trivial because
there are no messages. If the invariant holds in s and sZss’ then for any m € s.channel,,, we
have R, C s.rcvd, C s'.rcvd,, Dy, C s.done,[r] C s'.done,[r], Ly, > s.label, > s'.label,, S, C
s.stable,[r] C s'.stable,[r], and S, C D,,. And s'.channel,,s C s.channel,, unless 7 = send,,(m).
But in this case, the new message has R,, = s'.rcvd,, D,, = s'.done,[r], L, = s'.label, and
S = s'.stable,[r], and by Invariant 7.2, S,,, C D,,. [

The next invariant says that the information at r about the state of ¢ is not more “up-to-date”
than the state of 3.

Invariant 7.4 done,[i] C done;[i] and stable,[i] C stable;[i]

Proof: We prove this by induction on the length of an execution. The base case is trivial because
all the sets are empty. If the invariant holds in s and s5s' then done;[i] and stable;[i] never
decrease, and done,[i] and stable,[i] are unchanged unless m = receive,.,.(m) for some r’ # r. There
are two cases:

1. If ' # i then s'.stable,[i] = s.stable,[i]. By Invariants 7.3 and 7.2, and the inductive as-
sumption (applied for r = r'), S, C s.stable,[r'] C s.done,[i] C s.done;[i], so s'.done,[i] =
s.done,[i] U Sy C s.done;[i] = s'.done;[i].

2. If ' = i then by Invariant 7.3, s'.stable,[i] = s.stable,[i] U Sy C s.stable,[i] U s.stable;[i] =
s.stable;[i] = s'.stable;[i]. By Invariant 7.3, D,, C s.done;[i], and following the reasoning

above, S C s.done[i], so s'.done,[i] = s.done,[i] U Dp, U Sy, C s.done;[i] = s'.done;]i].
|

The next invariant says that operations have labels at replica r exactly when they are in done,[r],
and they have labels in a gossip message m exactly when they are in D,,. Recall that oo indicates
that an operation has no label.

Invariant 7.5 done,[r].id = {id : label,(id) < oo} and for any m € J, ., channel,,r, Dp,.id =
{id : L, (id) < oo}.

Proof: We prove this by induction on the length of an execution. The base case is trivial since

there are no messages, and for all 7, done,[r] = () and label,(id) = oo for all id. If this invariant
holds in s and s7ss’ then:

21



1. If 7 = do_it,(x,1) then s'.label,(z.id) =1 < oo and z € s'.done,[r], and all other conditions
hold from s.

2. If # = send,,s(m) then we have D,,.id = s.done,[r].id = {id : s.label, (id) < oo} = {id : L, (id) < oo}.
All other conditions hold from s.

3. If m = receive,r,.(m) then since S, C D,, by Invariant 7.3,

s'.done,[r].id = s.done,[r].id U D,.id
= {id : s.label, (id) < oo} U {id : Ly, (id) < oo}
= {id : min(s.label, (id), Ly, (id)) < oo}
= {id : s'.label,(id) < oo}.

All other conditions hold from s.

4. Other actions do not change label,, done,[r] or channel,,, so the invariant continues to hold.
| |

The next invariant says that operations in the system have been requested.

Invariant 7.6 |J, wait, U {z : (“request”, z) € |, . channel., } U, rcvd, U ops C requested.

Proof: We prove this by induction on the length of an execution. It is trivial in the initial
state because all the sets are empty. Suppose the invariant holds in s and s 5s'. If z is added
to wait. then m = request(x), and z is also added to requested. If (“request”,x) is added to
channel., then m = send. ((“request”,z)), so z € s.wait.. If z is added to rcvd, then either
m = receive. ({“request”, z)), in which case (“request”,z) € s.channel.., or m = receive,,(m)
with z € R,,, in which case z € s.rcvd,s by Invariant 7.3. If z is added to done,[r] then either
7w = do_it,(z,[) for some [, in which case z € s.rcvd,, or m = receive,.(m) with z € D,, U S, in
which case z € s.done,/[r'] by Invariant 7.3. Since requested is never decreased, the invariant holds
in s'. [

The next invariant says that operations for which a response has been generated are done at
some replica.

Invariant 7.7 {z: 3v, (z,v) € rept, U potential _rept.} C ops.

Proof: We prove this by induction on the length of an execution. This is true in the initial state
because all the sets are empty. If it is true in s and s s’ then it must be true in s’ since ops
never decreases, and rept, and potential _rept, are only increased by the send and receive of response
messages. But if 7 = send,.((“response”, z,v)) then z € s.done,[r] C s'.done,[r] C s'.ops, and if
m = receive,.((“response”, z,v)) then (z,v) € s.potential_rept,, so s'.rept, U s'.potential_rept, C
s.rept, U s.potential _rept,.. [ |

The next invariant says that requested operations that are no longer in wait. for any client ¢
are done at some replica.

Invariant 7.8 requested — |, wait. C ops.

22



Proof: We prove this by induction on the length of an execution. The base case is trivial because
requested = (). If this invariant holds in s and s %5’ then:

1. If m = request(z) then the invariant continues to hold since although z is added to requested,
it is also added to wait., where ¢ = client(x.id).

2. If 7 = response(x,v) then (z,v) € s.rept, for ¢ = client(x.id), so by Invariant 7.7, z € s.ops,
and the invariant continues to hold.

3. Other actions decrease neither ops nor |J,. wait., and do not increase requested.

7.2 System Constraint Lemma and Invariants

We now prove a lemma and several invariants about the system constraints. We begin with the
following lemma, which states that the system constraints only increase.

Lemma 7.9 For any reachable state s, if s Zss’ then s.s¢ C s'.sc.

Proof: For (id,id') € s.sc, we must show that for each replica r, (id, id") € s'.lc, and (id,id") €
s'.me,(m) for all m € J,, s'.channel,,. We do this by cases on =:

1. If 7 = do_it,(z,[) then z.id ¢ s.done,[r].id by Invariant 4.1, since z ¢ s.done,[r]. But id €
s.done,[r].id by Invariant 7.5, since s.label,(id) < s.label,(id") < oo. Thus, s'.label,(id) =
s.label,(id). If id" = z.id then s'.label,(id") = 1 > s.label,(id); otherwise, s'.label,(id") =
s.label,(id") > s.label,(id). Thus, we have (id, id") € s'.lc, since (id,id") € s.lc,.

For m € {,, s'.channel,, =J,, s.channel,,, we have (id,id") € s.me,(m), and thus
min(s.label, (id), Ly, (id)) < min(s.label,.(id"), Ly, (id")) < Ly, (id").

Since min(s.label, (id), Ly, (id)) < s'.label,(id) < s'.label,(id"), as shown above, we have
(id,id") € s".mc,(m).

2. If m = send,s,(m) then s'.s¢c = s.s¢ N s’.mc,(m). Since

s.s¢ C s.le, N s.deg
C {(id, id") : min(s.label, (id), s.label,.. (id)) < min(s.label,(id"), s.label,(id"))}

!
= s .mecy(m)
we have s'.sc = s.sc.

3. If = receive,r,(m) then s'.lc, = s.mc,(m) D s.sc. Form' € |J; s'.channel;, =], s.channel;, —
{m}, we have (id,id") € s.mc,(m) N s.mec,(m'). Thus,

min(s.label, (id), Ly, (id), L,y (id)) < min(s.label,(id"), Ly, (id"), Ly, (id"))

and (id,id") € s".mec,(m').

23



4. All other actions leave label,(id), label,(id") and U, channel,,, unchanged, so (id,id") €
s.dey = §'le, and (id, id") € s.mep(m) = s'.me,(m) for allm € J,, s'.channel,., =, s.channel,,.
|

The next invariant says that labels for operations in the prev set of an operation x are no greater
than the label for z. The equality is allowed because there may not be a label for either x or the
operation in its prev set, in which case both will have “labels” of oco.

Invariant 7.10 If (id,id") € CSC(ops) then label,(id) < label,(id"), and L,,(id) < L,,(id") for all
m € channel,.

Proof: We prove this by induction on the length of an execution. The base case is trivial since
ops is empty. If the invariant holds in s and s s’ then we show that it holds in s’. The invariant
is maintained trivially except by the following actions:

1. If 7 = do_it,(z,1) then for id € z.prev C s.done,[r].id, we have s'.label, (id) = s.label,(id) <
I = s'.label,(x.id). If (z.id,id) € CSC(s'.ops) for some id € s'.ops.id then s'.ops = s.ops.
By the inductive assumption and Invariant 7.5, s'.label, (id) = s.label, (id) > s.label, (z.id) =
oo > 1 = s'.label,(x.id).

2. If 7 = send,,s(m) then L,,(id) = s.label,(id) < s.label,(id") = L, (id") by the inductive
assumption.

3. If m = receive,.,.(m) then by the inductive assumption, s'.label,(id) = min(s.label,(id), Ly, (id)) <
min(s.label,.(id"), L, (id")) = s'.label,.(id").
|

The next invariant says that the local constraints at any replica are consistent with the client-
specified constraints.

Invariant 7.11 TC(CSC(ops) U le,) is a strict partial order.

Proof: TC(CSC(ops) U le,) is transitive by definition, so we only need to show it is irreflexive.
Suppose, for contradiction, that (id, id) € TC(CSC(ops) U lec,), and let | = label,(id). Then there
exist idg, ido, ..., idy such that id = idy = idy and (id; _1,1id;) € CSC(ops) Ule, fori =1,... k.
By Invariant 7.10 and the definition of le,, | = label, (idy) < label,(idy) < --- < label,(idy) = I,
so label,(id;) =1 for i = 0,...,k. Thus, (id;,_1,1d;) ¢ lec, for i = 1,...,k, and so (id;_1,id;) €
CSC(ops) C CSC(requested) for all i. However, this implies (id, id) € TC(CSC (requested)), which
contradicts Invariant 4.2. [ |

The next invariant is a corollary of the previous one. It says that the system constraints are
consistent with the client-specified constraints.

Invariant 7.12 TC(CSC(ops) U sc) is a strict partial order.

Proof: This is immediate from Invariant 7.11 since TC(CSC (ops) U s¢) C TC(CSC(ops) U le,)
for any r, and it is transitive by definition. [ |

24



7.3 Invariants for Local Constraints

In this subsection, we show that at each replica, different operations have different labels. However,
operations at different replicas may have the same label. Recall that the set of operations in ops
with label [ is ops|;. We first show that operations with labels from £, are done at 7.

Invariant 7.13 If | € £, then ops|; C done,[r].

Proof: We prove this by induction on the length of an execution. This is trivial in the initial state
because ops is empty. If it is true in s and s 5’ then s'.ops|; C s.ops|; C s.done,[r] C s'.done,[r],
unless m = do_it,(z,1), in which case, s'.ops|; = s.ops|; U{z} C s.done,[r] U{z} = ¢ .done,[r]. m

The next invariant says that all operations with label [ can be ordered so that if an operation
has label [ at a replica or in a message, then all earlier operations, according to the ordering, have
smaller labels at that replica or in that message. This order corresponds to the order in which the
operations are first assigned the label [.

Invariant 7.14 There is a total order <; on ops|; such that if y <; = then

label . (x.id) =1 = label,(y.id) <[ for all r
Ly (z.id) =1 = Ly (y.id) <1 for m € U,,, channel,.,.

Proof: We prove this by induction on the length of an execution. This is trivial in the initial
state since ops|; is empty. If it is holds in s and s 555" then s'.ops|; = s.ops|; unless © = do_it, (z,1)
where | € L,. Let <; be a total order satisfying the invariant in s.

1. If 7 = do_it, (z,l) then = ¢ s.done,[r] O s.ops|; by Invariant 7.13. Since s.label,(y.id) < [ for
y € s.done,[r], we have <; U{(y,z) : y € s.ops|;} is a total order on s'.done,[r] satisfying the
invariant in s'.

2. If 7 = send,(m) then for y <, x, L, (z.id) = s.label,(x.id) = | = Ly(y.id) =
s.label, (y.id) < I by the inductive assumption. So <; satisfies the invariant in s'.

3. If m = receive,r,(m) then for y <; x, if s'.label, (z.id) = I then s.label, (z.id) = | or Ly, (x.id) =
[, so by the inductive assumption, s'.label,(y.id) = min(s.label,(y.id), Ly, (y.id)) < L.

4. For all other actions, <; continues to satisfy the invariant in s’.
|

The next invariant says that the local constraints totally order the operations done at a replica.

Invariant 7.15 <., totally orders done,[r].

Proof: For z,y € done,[r], if x 4., ¥ N y A,  then label,(x.id) = label,(y.id) =1 < oo, by the
definition of <. and Invariant 7.5. Let <; be a total order satisfying Invariant 7.14. Then z #4; y
and y £; z, so x = y. [

The next invariant says values computed by a replica are consistent with both the client-specified
constraints and the local constraints.

25



Invariant 7.16 For x € done,[r], valset(z, done,[r], <., ) = valset(z, ops, <r), where R = TC(CSC (ops)U
ley).

Proof: Since Ic, C R, by Lemmas 2.5 and 2.6, () # wvalset(z, ops, <r) C wvalset(z, ops,lc,). By

Lemma 2.7, valset(z, ops,lc,) = {val(x,done,[r],lc,)}, since lc, is a total order on done,[r] by
Invariant 7.15, and = € done,[r] A y € ops — done,[r] = 1z <y, y by Invariant 7.5. Thus,
valset(x, done,[r], <., ) = valset(z, ops, <r). |

7.4 Invariants for Strict Operations

Finally, we prove several invariants that guarantee that strict operations receive the “correct”
values, that is, values consistent with the eventual total order.

The next invariant says that if an operation has label [ € £, then the label for that operation
at replica r is no larger than [.

Invariant 7.17 For | € L,, if label,s(id) = | or Ly(id) = I for some m € J, ; channel;;, then
label,.(id) <.

Proof: We prove this by induction on the length of an execution. This is trivial in the initial
state because label, (id) = oo for all id € Z. Suppose it holds in s and s 5s’. Since s'.label, (id) <
s.label, (id), it is sufficient to show that [ > s.label, (id).

1. If §'.label, (id) = I for ' # r then either s.label, (id) = | > s.label,(id) by the inductive
assumption, or m = receive;s(m) for some i and m € s.channel;s with L,,(id) = [. In this
case, L, (id) =1 > s.label, (id), again by the inductive assumption.

2. If L, (id) =l form € Ui,i’ s'.channel;y then either m € Ui,i’ s.channel;;y, or m = send;; (m) for
some 4 and i’ and s.label;(id) = I. In either case, [ > s.label,(id) by the inductive assumption.
|

Suppose r has its own label [ € L, for an operation and some larger label for another operation.
The next invariant says that anyone that knows that r has done the second operation has a label
no larger than [ for the first operation.

Invariant 7.18 If label,(id') =1 € L, and | < label, (id) then

id € done[r).id = label,.(id") <1
id € Dy,.id = Ly, (id") <1 for m € channel,..
id € Sp.id = Ly, (id") <1 for m € J; channel;,

Proof: We prove this by induction on the length of an execution. This is trivial in the initial state
because label,(id') = oo for all id" € Z. Suppose it holds in s and sZs’ and that s'.label,(id") =
l €L, and | < s'.label, (id).

26



1. If 7 = do_it, (z,!") with z.id = id then = ¢ s.done,[r], so by Invariant 4.1, id ¢ s.done,[r].id.
Thus, id ¢ s.done,[r].id by Invariant 7.4, and id ¢ D,,.id for m € s.channel,,» by In-
variant 7.3. Also, S, C s.stable;[i] C s.done;[r] C s.done,[r] for m € |J, s.channel;, by
Invariants 7.3, 7.2 and 7.4. So this invariant holds trivially in s'.

2. If m = do_it, (x,1) with z.id = id" then s.label,(id) > | = id ¢ s.done,[r].id, so following
the reasoning above, this invariant holds trivially in s’.

3. If 1 = receive;,(m) then s'.label,(id") € L, = &'.label,(id") = s.label,(id"), since by
Invariant 7.17, if L,,(id") € L, then s.label,(id") < L,,(id"). So this invariant continues to
hold.

4. If # = send,.,,(m) then D,, = done,[r], and L,, = label,, and S,, C D,,, so the invariant
continues to hold.

5. If m = receive,,.(m) then id € s'.donen[r].id = s.done,[r].id U Dy,.id = s'.label,.(id") =
min(s.label, (id"), Ly, (id")) <1, so the invariant continues to hold.

6. If 7 = send;»(m) for i # r then S,, = s.stable;[i] C s.done;[r] by Invariant 7.2, so by the
inductive assumption (with 7’ = 1), id € S,,,.id = Ly, (id") = s.label;(id") < 1.

7. If @ = receive;r(m) for i # r then id € s'.doneq[r].id = s.doney[r].id U Sp.id —
s'.label, (id") = min(s.label, (id"), L,,(id")) < I, so the invariant continues to hold.
|

The final three invariants are about the labels for stable operations, including those that are
ordered before operations in stable,[r|, but not yet in stable,[r]. The first says that r has the
system-wide minimum label for any operation with a smaller label than any operation stable at r.

Invariant 7.19 If id € stable,[r].id and minlabel (id") < minlabel(id) then label, (id") = minlabel (id").

Proof: Since id € ops, we have minlabel (id") < minlabel(id) < oo, so minlabel(id') =1 € L, for
some 7’ by Invariant 7.5. By Invariant 7.17, label, (id") = I. Since | < minlabel(id) < label, (id)
and, by Invariant 7.2, id € stable,[r].id C done,[r'].id, we have label,(id") < | = minlabel(id") by
Invariant 7.18. Thus, label,(id") = minlabel (id’). ]

The next invariant says if every replica has the minimum label for an operation, and it is less
than the minimum label for another operation, then the first operation precedes the second in the
system constraints.

Invariant 7.20 If label, (id) = minlabel(id) < minlabel (id") for all r then (id, id") € TC(CSC (ops)U
sc).

Proof: For all r, we have (id,id") € lc, since minlabel(id') < label,(id") for all r. And for
all m € {J, s channel,,., wea also have (id,id") € mc,(m), since minlabel(id") < Ly,(id"). Thus,

(id,id") € sc C TC(CSC(ops) U sc). ]

The next invariant says if an operation is stable at all replicas then operations are ordered to
it by the system and client-specified constraints according to their minimum labels.

27



Invariant 7.21 If id € ), stable,[r].id then (id,id") € TC(CSC(ops) U sc) <= minlabel(id) <
minlabel (id").

Proof: By Invariant 7.19, label,(id) = minlabel (id) for all r. If minlabel(id) < minlabel(id") then
(id,id") € TC(CSC(ops) U sc) by Invariant 7.20. If minlabel (id) = minlabel(id") then label, (id) =
label,(id") for some 7, so by Invariants 7.15 and 4.1, id = id’, and (id, id") ¢ TC(CSC (ops) U sc)
by Invariant 7.12. Otherwise, minlabel(id') < minlabel(id), so by Invariant 7.19, label,(id") =
minlabel (id") for all r. Thus, by Invariant 7.20, (id', id) € TC(CSC (ops)Usc), and by Invariant 7.12,
(id,id") ¢ TC(CSC(ops) U sc). [ ]

8 Simulation

To show that ESDS-Alg meets the specification ESDS-II when the clients are well-formed, we
establish a simulation [20] from A = ESDS-Alg x Users to S = ESDS-1I x Users.

We begin by extending some earlier results about system constraints to the system-wide partial
order po. Recall that po is the relation on ops induced by TC(CSC(ops) U sc). We first note that
po is a partial order on ops.

Invariant 8.1 For A: po is a strict partial order with span(po) C ops.

Proof: Immediate from the definition of po and Invariant 7.12. [ |
The following lemma extends Lemma 7.9 to po.

Lemma 8.2 For any reachable state s of A, if s s’ then s.po C s'.po.

Proof: Immediate from Lemmas 2.4 and 7.9 and the fact that s.ops C s'.ops. [ |

The next invariant says that if an operation is stable at all replicas, its relation to other opera-
tions in po is determined by their minimum labels.

Invariant 8.3 For A: If « € (), stable,[r] and y € ops then z <,, y <= minlabel(z.id) <
minlabel (y.id).

Proof: Immediate from the definition of po and Invariant 7.21. [ |

We now prove the main result, that A implements S.

Theorem 8.4 The relation F' in Figure 9 is a simulation from A to S.

Proof: To show that F' is a simulation from A to S, we show that for each start state of A, there
exists a corresponding start state of S, and that this correspondence is preserved by each step of

A.

If s is a start state of A, then requested and responded are empty, as are wait, and rept, are
empty for all ¢, and rcvd,, done,[i], label,, and stable,[i] for all replicas r and i. The start state

28



F is a relation between states in A and states in S such that u € F[s] if and only if:

u.requested = s.requested

u.responded = s.responded

w.wait =, s.wait,

u.rept = UC s.rept. U s.potential _rept,

u.ops = s.ops =, s.done,[r]

u.po C s.po, the partial order induced by TC(CSC(s.ops) U s.sc) on s.ops
u.stabilized = [, s.stable,[r]

Figure 9: Forward simulation from the algorithm to the specification

of § corresponds to this state since it has requested and responded, and ops, po, and stabilized all

empty, has wait and rept empty.

To establish that the simulation is preserved by every step of the implementation, suppose that
s and u are reachable states of A and S respectively such that u € F[s] and that s 5s'. We show
that there exists a state u’ € F[s'] such that there is an execution fragment of S from u to «’ that
has the same external image as .

1.

4.

If 7 = request(z), this simulates the same action in the specification, which has the same
external image. The request(z) action is enabled in the specification because u.requested =
s.requested. The change in state of each automaton is exactly to add z to wait. in A, to wait
in 8, and to requested in both, preserving the simulation as required.

If 7 = send,, ((“request”, z)) then we show u € F[s'], which appears the same externally since
the send action is internal. This is true since the send action only adds (“request”,z) to
channel.., which does not appear in the simulation.

If 1 = receive., ({“request”, z)) then we show u € F[s'], which appears the same exter-
nally since the receive action is internal. This is true since the receive action only deletes
(“request”, z) from channel,,, and adds x to rcvd,, which do not appear in the simulation.

If 7 = do_it,(x,1) then we have two cases:

(a) If 2 € s.wait, for some ¢ then we show that enter(z, s'.po) is enabled in u and v’ € F[¢']
for ' such that u "™ P First we verify that enter(z, s’.po) is enabled in u:

e x € s.wait, C u.wait

o z.prev C s.done,[r].id C |J; s.done;[i].id = u.ops.id

e span(s'.po) C s'.ops.id = s.ops.id U {x.id} by Invariant 8.1.

e u.po C s.po C s'.po by Lemma, 8.2.

e CSC({z}) C s'.po since z € s'.ops and CSC(s'.ops) C s'.po.

e For y € u.stabilized = (), s.stable;[1], if s'.minlabel(x.id) < s'.minlabel(y.id) then by
Invariant 7.19, s’.minlabel (x.id) = s'.label,(z.id) =1 > s.label,(y.id) = s.minlabel (y.id),
which is a contradiction. So s'.minlabel(y.id) < s'.minlabel(x.id), and by Invari-
ant 8.3, (y.id,z.id) € s'.po, as required.

29



The actions have the same external image since both are internal. The do_it and enter
actions do not change wait, rept, potential_rept, stable and stabilized, and u'.ops =
u.ops U {z} = {J; s.done;[i] U {z} = |, s'.done;[i], and v’ .po = s'.po, so v’ € F[s'] as
required.

(b) Otherwise, we check that u € F[s']. The wait, rept, potential_rept, and stable variables
are unchanged by do_it. Since z € s.rcvd, — |, s.wait., we have = € s.ops by Invari-
ants 7.6 and 7.8, so s’.ops = s.ops = u.ops. Finally, u.po C s.po C s'.po by Lemma 8.2.

calculate(z,v)
TS

5. If m = send,.((“response”, z:,v)) then let u' be such that u u'. These have the same

external image because they are both internal.

First we verify that calculate(x,v) is enabled in wu:

e z € s.done,[r] C u.ops

o z.strict = x € (); s.stable,[i] C [, s.stable;[i] = u.stabilized by Invariant 7.4 and the
simulation relation.

o v € valset(x, s.done,[r], <51, ) = valset(x,u.ops, <y.po) by Invariant 7.16 and Lemma 2.6,
since u.po C s.po C TC(CSC(s.ops) U le,) and u.ops = s.ops.

To see that u' € F[s'], note that s'.channel,. = s.channel,. U {(“response”,z,v)}. If x €
s.wait. C u.wait then u'.rept = u.rept U {(z,v)}, and otherwise, u' = u, each as required by
the corresponding state change from s to s'.

6. If 1 = receive,.((“response”, z,v)) then we show that u € F[s']. This follows because
s'.rept, = s.rept, U{(z,v)} if z € s.wait. and otherwise, s'.rept, = s.rept,.

7. If 1 = response(z,v) then this simulates the same action in the specification, which has
the same external image. The response(z,v) action is enabled in the specification because
z € s.wait, C uv.wait and (z,v) € s.rept, C wu.rept, where ¢ = client(x.id). (Note that
z ¢ Oy D s.waity and (z,v) ¢ Oy X V D s.rept, for ¢ # ¢, since a front end only keeps
operations for its client.) The change in state of each automaton is to remove z from wait,
in A and from wait in S, and to remove all pairs (z,v') from rept, in A and from rept in S,
preserving the simulation as required.

8. If m = send,,s(m) then we show that u € F[s']. Since s’ = s except that s'.channel,,, =
s.channel,,» U {m}, we need only check that w.po C s.po C s'.po, which follows from
Lemma 8.2.

. add_constraints(s’. stabilize stabilize
9. If m = receive,,(m) then let v’ and 4" be such that u (57-p0), oy ze(@), ... ey,

where {z1,...,z,} =, s .stable;[i].

By Lemma 8.2, we know that add_constraints(s’.po) is enabled in u, and u'.po = s'.po. Since
the stabilize action only changes the stabilized component, which is not used in the precon-
dition, it suffices to check that stabilize(z) is enabled in ' for each z € N, s'.stable;[i]. For
any y # x, if s'.minlabel(y.id) < s'.minlabel(x.id) then by Invariant 8.3, y <y 5, = and if
s'.minlabel(x.id) < s'.minlabel(y.id) then z <y ,, y. So we have y <y po  V & <y po y- By
Invariant 8.3, if y <¢ p, = then s'.minlabel(y.id) < s'.minlabel(z.id), and by Invariant 7.19,
s'.label, (y.id) = s'.minlabel(y.id) for all r. Thus, for y,z € s.ops|<, o, if minlabel(y.id) <
minlabel (z.id) then by Invariant 7.20, y <y 5 2.

|

30



9 Performance and Fault-Tolerance

We now derive time bounds on the response and stabilization time for requests, assuming time
bounds on the time to do the underlying actions. Initially, we assume that local computation
time is negligible, that the channels are reliable, and that there is a bound on the time to deliver
messages and the time between sending gossip messages. Later, we consider some cases where these
assumptions are relaxed, and also some methods to tolerate faulty processes and channels, and how
these methods affect performance.

9.1 Basic Timing Definitions and Assumptions

To prove performance guarantees, we need to extend the model to include time. For a completely
formal treatment, we could use a model such as the general timed automaton model [18, 21]. For
this paper, however, a restricted treatment suffices, and allows us to avoid several technical details.
For example, we only consider admissible executions, in which time advances to infinity.* Rather
than augment the automata with time directly, we annotate executions with the times of each
event.

Specifically, we define a timed execution of an automaton A by associating a non-negative real-
valued time with each event in an admissible execution of A. Formally, o = sg(71,t1)$1 (72, t2) - - -
is a timed execution of A if sqmis;me -+ is an execution of A, ¢; < ¢;11 for all 7, and ¢; — oo as
1 — 0o. We say that the event m; occurs at time ¢; in «.

A predicate holds in « at time ¢; if it holds on s;. Because several events may occur at the
same time, it is possible for contradictory predicates to hold at the same time. We also say that
a predicate holds by time ¢ if it holds at some time ' < t. We typically reserve this usage for
predicates that once true, remain true.

We now formalize the timing assumptions for A. Let d;; be an upper bound on the time to
deliver messages from 7 to j. That is, if a send;; event occurs at time ¢, the corresponding receive;;
event must occur by time ¢ + d;;. Let df be the maximum of all d., and d,. bounds, and d, be the
maximum of all d,.,» bounds. Thus, d; is an upper bound on the delivery time for messages between
front ends and replicas, and d, is an upper bound on the delivery time for gossip messages. We
also define a quantity called the gossiping delay. The gossiping delay g, for any two replicas r
and 7' is an upper bound on the time between successive sendings of gossip messages from r to r’,
and ¢ is the maximum of all g,,» bounds.

We assume that local computation time is negligible, so that each front end immediately relays
each request to some replica, and computing the results of each operation, and processing gossip
messages is instantaneous. We also assume that replicas immediately send out response messages
when possible, and that front ends immediately respond to clients when possible.

Formally, a timed execution « satisfies the timing assumptions in an interval [ if for all
tel:

1. If a request(z) event occurs by ¢ then a send.,((“request”, z)) event occurs by ¢ for some r

In the literature, admissible executions may be finite if only input actions are enabled in the final state. However,
sending gossip messages is always enabled in ESDS-Alg, so we need not consider this possibility.

31



and ¢ = client(z.id).
2. If do_it,(z,-) is enabled at ¢ then z is done at r by ¢.
3. If send,.({“response”, x,-)) is enabled at ¢ then a send,.((“response”,z,-)) event occurs by .
4. If response(z, -) is enabled at ¢ then a response(z,-) event occurs by t.
5. For all replicas r and 7/, if ¢ > g,,» then at least one send,,/(m) event occurs in (¢ — g, t].

6. If a send;;(m) event occurs by ¢ — d;; then the corresponding receive;;(m) event occurs by ¢.

The interval [0, 00) is assumed if no interval is explicitly specified.

Note that this definition also constrains events enabled before the interval. For example, if «
satisfies the timing assumptions in [t1, 9] and a message is sent from i to j at time ¢ < 1, then the
message must be delivered by max(t1,t + d;;) if t + d;; < to.

If several operations are received but not done at a replica, doing some of them may allow others
to be done. It is convenient to characterize these operations. We say that an operation is ready
at replica r if x € rcvd, and y <.+ = y € rcvd, for all y € requested. Thus, if z is ready at r
then it has been received by r and all operations specified by its prev set are also ready at r. The
following lemma says that an operation is done as soon as it is ready.

Lemma 9.1 In any timed execution of A that satisfies the timing assumptions in an interval I, if
x is ready at replica r at time ¢ € I then it is done at r by ¢.

Proof: Immediate from the second condition of the timing assumptions, since <. induces a strict
partial order on rcvd,. ]

9.2 Performance Without Failures

Assuming the local computation time is negligible and that there are no failures, the response time
for a nonstrict request with an empty prev set is simply the roundtrip time between the front end
and a replica. For strict requests, or requests with nonempty prev sets, the analysis is not so easy.
The basic intuition is that an operation may need to wait for one round of gossiping to receive all
the operations specified in its prev set. A strict operation must be in (), stable, [i] for some replica r
before it may generate a response. This may take two extra rounds of gossiping, one for all replicas
to know that it is done at some replica, and thus to be stable at all replicas, and one more for r to
learn this.

We first prove the following lemma, which bounds the time after an operation is requested until
it is done at every replica, if the timing assumptions are satisfied.

Lemma 9.2 If « is a timed execution of A that satisfies the timing assumptions and z is requested
by time ¢, then x is done at every replica by time ¢ + df + g + d.

Proof: (Sketch) Suppose an operation z is requested by client ¢ at time ¢. A request message is
sent immediately to some replica r, so by time t 4 d.,, we have = € rcvd,. For every other replica

32



', there is at least one send,,(m) event in (t+dp, t+ cer + grr] with x € R,,,. Therefore, 1’ receives
x by t +der + gy + dyyr, and every replica receives x by t + dy + g + d.

Because the users are well-formed, any operation required to precede x must have been requested
at time ¢’ < ¢, and by the reasoning above, received by every replica by t' 4+ df + g + dy. So, by
t + di + g + dg, x is ready at every replica, and by Lemma 9.1, x is done at every replica by
t+di+ g+ dg. ]

For any operation z, we define the upper bound on the response time for x to be:

2dy if —z.strict A\ z.prev =0
0(z) = { 2d¢+ g + dg if ~z.strict A z.prev # ()
2d; + 3(g + dg) if z.strict

Then we summarize the results in the following theorem:

Theorem 9.3 If « is a timed execution of A that satisfies the timing assumptions, and z is
requested by time ¢, then a response(z,v) event occurs within [¢,% + d(z)] in a.

Proof: (Sketch) Suppose an operation x is requested at time ¢. A request message is sent
immediately to some replica r, so by time ¢ + df, we have = € rcvd,. If z.prev is empty then a
response message is sent immediately, and a response(z,v) event occurs by ¢ + 2dg. Otherwise, by
Lemma 9.2, x is done at every replica by ¢ + df + g + d,. If  is not strict, r sends a response
message immediately, and a response(x,v) event occurs by t + 2d¢ + g + d.

For any two replicas 7 and ', there is at least one send;;(m) event with z € D, in (t+d+9g+
dg,t+ de+ 29 + dg]. So by t+di +2(g + dg), we have z € (), done;[i'] = stable,[i] for every replica
i. And again, we have = € [, stable,[i| by t + d¢ + 3(g + dg). Thus, a response(z, -) event occurs by
t+2ds + 3(g + dy). ]

If a client only specifies dependencies on operations it requested, and its front end always
communicates with the same replica, then every operation requested by that client is ready as soon
as it is received by that replica, and so the delay for nonstrict operations is reduced to at most 2dy.

9.3 Fault-Tolerance

The algorithm does not depend on any timing assumptions for correctness, nor does it restrict the
order of delivery of messages. Thus, slow processes and delayed message delivery do not affect
correctness. They do, of course, affect performance. However, the analysis in the failure-free case
holds starting from any reachable state of the system. Thus, even if some part of the system fails
for a period of time, as long as it does not make any false computations, then the performance
analysis above holds. This is captured by the following theorem:

Theorem 9.4 Suppose « is a timed execution of A that satisfies the timing assumptions in the
interval [t, 00). If z is requested by ¢ then a response(x,v) event occurs within [¢, ¢ + §(z)] in «.

Proof: (Sketch) Note that Lemma 9.2 is true even if the timing assumptions are only satisfied in

the interval [t, 1 + df + g + dg], and that a request message is sent to some replica by time ¢. The
rest of the proof follows exactly the proof of Theorem 9.3. [ |

33



It is easy to see that even message loss does not affect any safety properties, because the
algorithm cannot distinguish lost messages from merely delayed ones. Alternatively, we could show
that all the invariants, and the simulation relation, are preserved with the addition of an action that
simply removes a message from a channel. (This would be an internal action, otherwise identical
to the receive action.) Similarly, it is easy to show that duplicate messages do not compromise any
safety properties.

If replicas may crash and restart, but there is no volatile memory, then a crash is indistinguish-
able from message loss to any other process, and so safety is still preserved. If memory is volatile,
most of the state can be reconstructed from the gossip messages. A replica recovers by requesting
new gossip messages and waiting for a response from each replica before resuming the algorithm.
The key to establishing correctness is that after recovery, the replica should have a label for each
operation that is less than or equal to the label it had for that operation before the crash. This is
only a problem if the smallest label it had prior to the crash was generated locally, so only those
labels need to be kept in stable storage. Other methods can also be used to ensure this property,
but these are beyond the scope of this paper.

10 Optimizations of the Abstract Algorithm

The algorithm we presented so far deals with the fundamental problems of maintaining consistency
in a distributed, replicated data service, and is stated at a high level, ignoring important issues of
local computation, local memory requirements, message size, and congestion. In this section, we
explore some ways to improve the algorithm to address these issues better.

10.1 Memoizing Stable State

In defining the ESDS-Alg automaton, we were not concerned with modelling local computation,
and the value returned by a replica is derived by computing all the preceding operations in the
label, order each time a response is issued by that replica. Of course, this is computationally
prohibitive, and a real implementation would do some sort of memoization of the state of the data
to avoid redundant computation. In particular, once an operation has stabilized, as long as its
value is remembered, it never needs to be recomputed since its place in the eventual total order is
fixed. However, because a replica may temporarily misorder some operations, some recomputation
of unstable operations may still be necessary.

Operations should be memoized in the order they appear in the eventual total order. Thus,
an operation may be memoized by a replica only if its place in the eventual total order is already
known at that replica. This is true not only of the stable operations, but also of those operations
in the “gaps” between the stable operations. We say that an operation is solid at replica r if it
is stable at r or if it is locally constrained to precede some operation stable at r. We introduce a
derived state variable solid, = ¢ gapie, [r
Notice that solid, does not have the “gaps” that stable,[r] might have.

| doner[r]|<,, y to express the set of operations solid at r-.

Invariant 10.1 If stable,[r] # () then solid, = done,[r]|<, ,, where y = max_,__stable,[r].
Proof: By Invariant 7.15, <., is a total order on done,[r], soy = max ., stable,[r] is well-defined.

34



If z € solid, then x <. y' for some y' € stable,[r]. Thus, <., ¥ =<, y, s0 © € done,[r]|<, ,. W

The eventual total order is determined by the labels that the replicas ultimately agree upon for
each operation. The following lemma says that once an operation is solid at a replica, its label at
that replica does not change.

Lemma 10.2 For any reachable state s of A, if id € s.solid,.id and s s’ then s'.label,(id) =
s.label, (id).

Proof: This is immediate from the definition of the automaton unless m = do_it,(z,l) with
x.id = id or m = receive,,(m). The first case is impossible by Invariant 4.1, since id € done,[r].id
by Invariant 7.2. By the definition of solid,, there exists id' € stable,[r].id such that s.label,(id) <
s.label,(id"). By Invariant 7.19, s.label,(id") = s.minlabel (id"), and since s.minlabel (id) < s.label, (id) <

s.minlabel (id"), we also have s.label,(id) = s.minlabel(id). If m = receive,,.(m) then by Invari-
ant 7.3, L, (id) > s.label,: (id) > s.minlabel(id) = s.label, (id), and thus s'.label, (id) = s.label, (id).
|

We modify the automaton for replica r as shown in Figure 10 to model such memoization
explicitly. We augment the state of each replica with three variables, memoized,, mv, and ms,.

Changes to State

Derived variable: solid, = |J j done,[r]|<,, y; the operations solid at r

yEstable,.[r
memoized,, a subset of O; initially empty; the operations that have been memoized by r

ms, € X, initially og; the state resulting from doing all the operations in memoized,

muv, : memoized, — V, initially null; the values of the memoized operations in the eventual total order

Changes to Actions

Output send,.({“response”, x, v)) Internal memoize, (z)
Pre: = € pending, N done,[r] Pre: = € solid, — memoized,
z.strict = x € (), stable,[i] doner[r]|<,,, » C memoized.,
if x € memoized, Eff: ms,, mv,(z) < 7(msy, z.0p)
then v = mu, (x) memoized, < memoized, U {z}

else v € walset s, (x, done, [r] — memoized,, <., )
¢ = client(x.id)
Eff: pending, < pending, — {z}

Figure 10: Memoizing operations: Changes to replica r

The set memoized, contains the operations that have been memoized by r. The muv, function stores
the values for all the operations in memoized,, and ms, reflects the state of the data after applying
those operations. We modify the action that computes return values to use muv, for the memoized
operations, and to start from ms,, rather than the initial state, for later operations.

We also add a memoize, action which nondeterministically memoizes operations. An operation
can be memoized by r if it is solid at r and all operations with smaller labels at r have already
been memoized. This action computes the value for the operation being memoized, and updates
ms, appropriately.

Let ESDS-Alg' be the composition of the refined replica automata and the original front end
and channel automata. It is not difficult to prove that ESDS-Alg and ESDS-Alg" are equivalent.

35



The key lemmas are the following invariants of ESDS-Alg'.

Invariant 10.3 memoized, C solid,.

Proof: This follows immediately from the automaton definition, by induction on the length of an
execution. [ |

Invariant 10.4 ms, = outcome(memoized,, <., ), and mv,(z) = val(z, done,[r], <, ) for all z €
memoized, .

Proof: We prove this by induction on the length of an execution. This is trivial in the initial state
since memoized, is empty and ms, = og. If the invariant holds in s and s %35’ then by Invariants 10.3
and 7.19, s.label,(id) = s.minlabel(id) for all id € s.memoized,.id, so the partial order induced
by lc, on s.memoized, is unchanged. So unless 1 = memoize,(z) the invariant continues to hold.

If 7 = memoize,(z) then s'.le, = s.le, and y <44, © for all y € s.memoized,, so s'.ms, =
7(s.msy,x.op).s = T(outcome(s.memoized,, <s ., ), x.0p).s = outcome(s'.memoized,, <s c,) and
s'muy(z) = 7(s.msy, z.op).v = val(x, s'.done,[r], <s ic,). |
Invariant 10.5 valset s, (z, done,[r] — memoized,,<.,) = wvalset(x, done,[r], <., ) for all z €

done,[r] — memoized,.

Proof: Immediate from Invariant 10.4 and Lemma 2.7. [

10.2 Reducing Memory Requirements

It is also possible to significantly reduce some local memory requirements implicit in the abstract
algorithm. In particular, ESDS-Alg specifies that for every operation, all the information specified
by the client, plus the minimum label, is maintained at each replica. However, the prev sets are
only used by the do_it action, and once a replica has an operation in its done,[r] set, it may free
that memory.

Memoizing stable state can also have a positive impact on the memory requirements. This
follows from the same observation that led us to memoize the stable state to reduce local com-
putation: stable operations do not have to be recomputed, as long as we remember their return
values. This means that once an operation is memoized, all the information about it can be purged
from the memory, except its identifier and return value. Furthermore, if a replica knows that it
will never need to respond with the value of an operation again, it can purge even that from its
memory. For example, if communication is perfectly reliable, then once a response is sent to a front
end, it will never need to be sent again, even if another request for the same operation is received.
When communication is not reliable, acknowledgements can be used to achieve the same effect.
Thus, while ESDS-Alg’ has more state variables than ESDS-Alg, a reasonable implementation of
ESDS-Alg' will in practice be more memory efficient as well.

Unfortunately, the identifiers cannot be so readily dispensed with, since they are required in case
they are included in the prev sets of future operations. However, by imposing some structure on
these identifiers, it is possible to summarize them so they do not take linear space with the number

36



of operations issued. A simple time-based strategy can be used to achieve this. For example, if
the identifiers included the date of request, and all operations are guaranteed to be stable within
a certain time period, then all identifiers older than this time may be expunged from the memory.
A more sophisticated approach can involve logical timestamps, such as the multipart timestamps
of [15].

10.3 Exploiting Commutativity Assumptions

The algorithm of [15] is intended to be used when most of the operations require only causal
ordering, but it allows two other types of operations which provide stronger ordering constraints.
The ordering constraints on an operation must be determined by the application developer, not the
client, based on “permissible concurrency”. Otherwise, clients may cause, perhaps inadvertantly, an
irreconcilable divergence of the data at different replicas. For example, suppose an “increment” and
a “double” operation are requested concurrently, and are done in different orders at two replicas.
If the value at both replicas was initially 1, then the replica that does the increment first will have
a final value of 4, while the replica that does the double first will have a final value of 3, even after
the operations stabilize.

In this section, we describe how to further reduce the need to recompute operations, when all
operations have sufficient “permissible concurrency”. We begin with a careful characterization of
the relationship between data operators.

Suppose that op;, opy € O are two operators of the data type. We say that they commute
if 77(0,(op,, 0py)).s = 77 (0, (0py, 0py)).s for all o € 3. We say that op, is oblivious to op, if
(0, (0py, 0p1)).v = T(0,0p;).v for all 0 € 3. We say that two operations are independent if
they commute and are oblivious to each other.

We first state without proof some lemmas about how commutativity and independence restricts
the possible results of operations consistent with a partial order on the set of operations. The first
lemma says that if the partial order orders all operations that do not commute then the final
outcome of applying these operations is determined. The second lemma says that if it orders all
operations that are not independent, then the return values are also determined.

Lemma 10.6 If < is a partial order on a finite set X of operations such that z < y or y < « for
all z,y € X that do not commute, then for all o € X, outcome, (X, <) is the same for all total
orders <’ on X consistent with <.

Lemma 10.7 If < is a partial order on a finite set X of operations such that z < y or y < « for
all z,y € X that are not independent, then for all o € X, |valset, (z, X, <)| =1 for all z € X.

If we require that clients explicitly order every pair of operations that are not independent, then
by Lemma 10.7, the return value is uniquely determined by the client-specified constraints. Thus,
any values consistent with the client-specified constraints are also consistent with the eventual total
order, and are the same values that would be returned by an atomic memory. So an implementation
need not keep track of stable sets, or even done sets at other replicas.

Suppose we only require that clients explicitly order operations that do not commute.’ Formally,
we model this by adding a clause to the precondition of the request(z) action of Users. Call this new

This condition is still very strong. A weaker variation may be sufficient for the algorithm of [15] since updates

37



automaton SafeUsers. We show how to modify the algorithm to take advantage of this restricted
client using Lemma 10.6.

We again modify the automaton of each replica r. We augment the state with two additional
state variables, ¢s, and wval,. We do not need the muv, function anymore, because we simply re-
assign the wval, function when an operation is memoized. The cs, reflects all the operations in

Signature
Same as in Figure 7.

State

Same as in Figure 7.

Derived variable: solid, = |J j done,[r]|<,, y; the operations solid at r

yEstable,.[r
memoized,, a subset of O; initially empty; the operations that have been memoized by r
ms, € X, initially og; the state resulting from doing all the operations in memoized,

¢s, € 3, initially oo; the state resulting from doing all the operations in done,[r]

val, : done,[r] — V, initially null; the value for = € done.,[r]

Actions

Input receive., ({“request”, x))
Eff: pending, < pending, U {z}
revd, < revd, U {z}

Internal do_it, (x,1)
Pre: z € rcvd, — doner[r]
z.prev C done,[r].id
1 > label,(y.id) for all y € done,[r]
Eff: done,[r] < done,[r] U {z}
csr, val, (z) < 7(csr, x.0p)
label, (x.id) <1

Output send,.({“response”, ,v))
Pre: z € pending, N done,[r]
z.strict = x € (), stable,[i] N memoized,
v = val, (x)
¢ = client(z.id)
Eff: pending, < pending, — {z}

Output send,, ((“gossip”, R, D, L, S))
Pre: R = rcvd,; D = done,[r];
L = label,; S = stable,[r]

Input receive,.,. ((“gossip”, R, D, L, S))
Eff: revd, < revd, UR

done,[r'] «+ done,[r']UDUS

done,[i] « done,[i]JU S for all i # r,r’

for y € D — done,[r]
(in any order consistent with CSC(D))
done,[r] < done,[r] U{y}
csr,valy (y) < 7(csr,y.0p)

label, < min(label,, L)

stable, [r'] < stable,.[r'|US

stable,[r] <= stable.[r] U.S U ([, done,[i])

Internal memoize, ()
Pre: x € solid, — memoized,
done,[r]|<,,, = C memoized,
Eff: ms,,val,(z) < T(ms,,z.0p)
memoized, < memoized, U {z}

Figure 11: Automaton for replica r with current state

done,[r], and wval, is computed as each operation is added to done,[r], whether by a do_it, action,
or by processing gossip received from another replica. The code for this new replica is given in
Figure 11.

Let Commute be the composition of these new replica automata and the original channel and
front end automata, with the send and receive actions hidden, and C = Commute X SafeUsers. We
want to show that C implements S. The proof for this follows the proof that A implements S. It

and queries are handled differently, and operations may not atomically read and write the data.

38



is easy to check that every action has an equivalent or stronger precondition, and identical effects
on the original state variables, so that all the invariants in Section 7 are invariants of C.

There are two main changes to the simulation proof. First, we need to check that the memoize
action preserves the simulation, which is handled in much the same way as in Section 10.1. Second,
the calculate(z,v) action is now simulated by the action which assigns v to wal,(z), instead of
the send((“response”, z,v)) action. This is either a do_it,(z) or receive,,.(m) action for nonstrict
operations, and a memoize,(z) for strict operations. Lemma 10.6 is used to show that cs may be
used to compute the return values for nonstrict operations.

10.4 Reducing Communication

There are also many possibilities for reducing communication overhead, or weakening the assump-
tions about the communication mechanism. These are largely orthogonal to the work in this paper,
but we mention a few possibilities to give a sense of how this may be done.

In the abstract algorithm, replicas send gossip messages that include information previously
gossiped. If the channels are reliable and FIFO, it is possible to reduce the gossip message sizes by
sending only incremental information. The use of timestamps, including logical timestamps such
as the multipart timestamps of [15], to summarize sets of operations, as noted above, also reduces
the size of messages.

Also, the algorithm specifies that each replica sends a separate gossip message to every other
replica, resulting in a quadratic number of messages for each “round” of gossip. However, the
algorithm allows a replica to send the same gossip message to all other replicas, so an efficient
broadcast protocol could greatly reduce the number of messages sent.

11 Implementation and Uses of the Eventually-Serializable Data
Services

An important consideration in our work is that our specification be reasonable for real systems. We
close this paper with an overview of an implementation of the eventually-serializable data service,
and a discussion of some sample applications of this service.

11.1 An Experimental Implementation

The abstract algorithm presented in this paper was used by Cheiner [6, 7] as the basis for developing
an exploratory implementation of the eventually-serializable data service. The main objectives of
this implementation were to show that a modular implementation of the eventually-serializable
data service can be used by dissimilar clients, and to obtain empirical data on the scalability of
the implementation, and the trade-off between consistency and performance. We present only an
overview of this work; the reader should refer to the papers cited above for details.

The implementation of the service runs on a network of Unix workstations and uses MPI [8] as
its message passing mechanism. The implementation is coded in C++, and incorporates some of
the optimizations described above. Because of its object-oriented design, it is easy to parameterize

39



the implementation for different serial data types and to integrate it with a variety of clients. The
clients for which prototypes were developed include a Web client, a text-oriented Unix client and
Microsoft Excel client for Windows95. This demonstrates the suitability of the service as a generic
distributed system building block.

To evaluate its scalability, the implementation was tested using one to ten replicas. These tests
used only nonstrict operations. As the number of replicas increased and the frequency of requests
per replica held constant, the throughput of the system increased almost linearly.

To evaluate the effect of strict operations on performance, the average percentage of strict
requests (determined randomly) was increased from 0% to 100%. It was observed that latency
increased linearly as the proportion of strict requests increased. This provides evidence that the
service indeed reflects a designed trade-off between consistency and performance.

11.2 Directory Services and Distributed Repositories

The eventually-serializable data service is well-suited for implementing distributed directory ser-
vices. In any computing enterprise, naming and directory service are important basic services used
to make distributed resources accessible transparently of the resource locations or their physical
addresses. Such services include Grapevine [5], DECdns [17], DCE GDS (Global Directory Service)
and CDS (Cell Directory Service) [24], ISO/OSI X.500 [14], and the Internet’s DNS (Domain Name
System) [13].

A directory service must be robust and it must have good response time for name lookup
and translation requests in a geographically distributed setting. Access to a directory service is
dominated by queries and it is unnecessary for the updates to be atomic in all cases. Consequently,
the implementations use redundancy to ensure fault-tolerance, replication to provide fast response
to queries, and lazy propagation of information for updates. A service can also provide a special
update feature that ensures that the update is applied to all replicas expediently.

Directory services often use an object-based definition of names, in which a name has a set
of attributes determined by its type. When a new name object is created, it must be possible
to initialize, and subsequently query, the attributes of the created object. With an eventually-
serializable data service, this can be accomplished by including the identifier of the name creation
operation in the prev sets of the attribute creation and initialization operations.

Another application of the eventually-serializable data service is in implementing distributed
information repositories for coarse-grained distributed object frameworks such as CORBA [22].
Important components of such a framework include the distributed type system used to define
object types, and the module implementation repository used for dynamic object dispatching [25].
In this setting, the access patterns are again dominated by queries, and infrequent update requests
can be propagated lazily with the guarantee of eventual consistency.

Acknowledgments: The authors thank Oleg Cheiner for his technical insight, and for pointing
out errors in a preliminary version of this paper, and Paul Attie for his careful reading of a much
later version. We are also grateful to Roberto Segala, whose detailed comments greatly improved
the presentation of this paper, and led us to significantly extend the discussion on performance and
fault-tolerance.

40



References

[1]

P. Alsberg and J. Day. A principle for resilient sharing of distributed resources. In Proceedings of the
2nd International Conference on Software Engineering, pages 627 644, Oct. 1976.

H. Attiya and J. Welch. Sequential consistency versus linearizability. ACM Transactions on Computer
Systems, 12(2), 1994.

H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A language for parallel programming of distributed
systems. IEEE Transactions on Software Engineering, 18(3):190 205, Mar. 1992.

P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

A. Birrell, R. Levin, R. Needham, and M. Schroeder. Grapevine: An exercise in distributed computing.
Communications of the ACM, 25(4):260-274, 1982.

O. Cheiner. Implementation and evaluation of an eventually-serializable data service. Master of Engi-
neering thesis, Massachusetts Institute of Technology, Aug. 1997.

O. Cheiner and A. Shvartsman. Implementing and evaluating an eventually-serializable data ser-
vice. In Proceedings of the 17th ACM Symposium on Principles of Distributed Computing, page 317,
June/July 1997. Full paper will appear in a DIMACS volume, Networks and Distributed Computing,
eds. M. Mavronicolas, M. Merritt and N. Shavit, 1998.

J. Dongarra, S. Otto, M. Snir, and D. Walker. A message passing standard for MPP and workstations.
Communications of the ACM, 39(7):84-90, July 1996.

M. Fischer and A. Michael. Sacrificing serializability to attain high availability of data in an unreliable
network. In Proceedings of the ACM Symposium on Database Systems, pages 70 75, Mar. 1982.

H. Garcia-Molina, N. Lynch, B. Blaustein, C. Kaufman, and O. Schmueli. Notes on a reliable broadcast
protocol. Technical memorandum, Computer Corporation America, Oct. 1985.

D. Gifford. Weighted voting for replicated data. In Proceedings of the 7th ACM Symposium on Principles
of Operating Systems Principles, pages 150-162, Dec. 1979.

M. Herlihy. A quorum-consensus replication method for abstract data types. ACM Transactions on
Computer Systems, 4(1):32 53, Feb. 1986.

IETF. RFC 1034 and RFC 1035 Domain Name System, 1990.

International Standard 9594-1, Information Processing Systems—Open Systems Interconnection—The
Directory, ISO and TEC, 1988.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Lazy replication: Exploiting the semantics of
distributed services. ACM Transactions on Computer Systems, 10(4):360 391, Nov. 1992.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers, 28(9):690-691, Sept. 1979.

B. Lampson. Desiging a global name service. In Proceedings of the 5th ACM Symposium on Principles
of Distributed Computing, pages 1 10, Aug. 1986.

N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3):219-246,
Sept. 1989.

N. Lynch and F. Vaandrager. Forward and backward simulations Part I: Untimed systems. Information
and Computation, 121(2):214 233, Sept. 1995.

N. Lynch and F. Vaandrager. Forward and backward simulations Part II: Timing-based systems.
Information and Computation, 128(1):1-25, July 1996.

41



[22] Object Management Group, Framingham, MA. Common Object Request Broker Architecture, 1992.

[23] B. Oki and B. Liskov. Viewstamp replication: A new primary copy method to support highly-available
distributed systems. In Proceedings of the 7th ACM Symposium on Principles of Distributed Computing,
Aug. 1988.

[24] Open Software Foundation, Cambridge, MA. Introduction to OSF DCE, 1992.

[25] A. Shvartsman and C. Strutt. Distributed object management and generic applications. Computer
Science TR 94-176, Brandeis University, 1994.

[26] M. Stonebraker. Concurrency control and consistency of multiple copies of data in distributed INGRES.
IEEE Transaction on Software Engineering, 5(3):188-194, May 1979.

[27] R. Thomas. A majority consensus approach to concurrency control for multiple copy databases. ACM
Transactions on Database Systems, 4(2):180 209, June 1979.

42



