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1 Introdu
tionProviding distributed and 
on
urrent a

ess to data obje
ts is a fundamental 
on
ern of distributedsystems. In this paper, we present a formal spe
i�
ation for a data servi
e that permits transient in-
onsisten
ies while providing unambiguous guarantees about system responses to 
lients' requests,and ensuring the eventual serialization of all operations requested. We also present a distributed al-gorithm that implements the abstra
t spe
i�
ation. We prove the 
orre
tness of the implementationusing invariants and simulations. By making simple assumptions about the timing of message-based
ommuni
ation, we also provide time bounds for the data servi
e.1.1 Repli
ation: Trade-o�s of Performan
e and Consisten
yThe simplest implementations of distributed data servi
es maintain a single 
entralized obje
t thatis a

essed remotely by multiple 
lients. While 
on
eptually simple, this approa
h does not s
alewell as the number of 
lients in
reases. Systems address this problem by repli
ating the data obje
t,and allowing ea
h repli
a to be a

essed independently. This enables improved performan
e andreliability through in
reased lo
ality, load balan
ing, and the elimination of single points of failure.Repli
ation of the data obje
t raises the issue of 
onsisten
y among the repli
as, espe
iallyin determining the order in whi
h the operations are applied at ea
h repli
a. The strongest andsimplest notion of 
onsisten
y is atomi
ity, whi
h requires the repli
as to 
olle
tively emulate asingle 
entralized obje
t. Methods to a
hieve atomi
ity in
lude write-all/read-one [4℄, primary 
opy[1, 26, 23℄, majority 
onsensus [27℄, and quorum 
onsensus [11, 12℄. Be
ause a
hieving atomi
ityoften has a high performan
e 
ost, some appli
ations, su
h as dire
tory servi
es, are willing totolerate some transient in
onsisten
ies. This gives rise to weaker notions of 
onsisten
y. Sequential
onsisten
y [16℄, guaranteed by systems su
h as Or
a [3℄, allows operations to be reordered as longas they remain 
onsistent with the view of isolated 
lients. An inherent disparity in the performan
eof atomi
 and sequentially 
onsistent obje
ts has been established [2℄. Other systems provide evenweaker guarantees to the 
lients [9, 5, 10℄ in order to get better performan
e.Providing weaker 
onsisten
y guarantees results in more 
ompli
ated semanti
s. Even whenthe behavior of the repli
ated obje
ts is spe
i�ed unambiguously, it is more diÆ
ult to understandand to reason about the 
orre
tness of implementations. In pra
ti
e, repli
ated systems are oftenin
ompletely or ambiguously spe
i�ed.1.2 Ba
kground for our Work: Lazy Repli
ationAs it is important that our spe
i�
ation be appli
able for real systems, we build heavily on thework of Ladin, Liskov, Shrira, and Ghemawat [15℄ on highly available repli
ated data servi
es. Theyspe
ify general 
onditions for su
h a servi
e, and present an algorithm based on lazy repli
ation, inwhi
h operations re
eived by ea
h repli
a are gossiped in the ba
kground. Responses to operationsmay be out-of-date, not re
e
ting the e�e
ts of operations that have not yet been re
eived by agiven repli
a. However, the user 
an indi
ate, for a newly requested operation, a set of previously
ompleted operations on whi
h the new one depends; the new operation may be applied at a repli
aonly after the operations it depends on have been applied. If an operation is submitted without su
hdependen
ies, the system may respond with any value that is 
onsistent with an arbitrary subset2



of previously requested operations. This allows any 
ausality 
onstraints to be expressed. Twoadditional types of operations are de�ned to provide stronger ordering 
onstraints, when 
ausality
onstraints are insuÆ
ient to implement a data obje
t: for
ed operations must be totally orderedwith respe
t to all other for
ed operations, and immediate operations must be totally ordered withrespe
t to all operations. Operations that are neither for
ed nor immediate are 
alled 
ausal. Aslong as most of the operations are 
ausal, the algorithm of [15℄ is eÆ
ient.The spe
i�
ation in [15℄ is tuned for their algorithm, and exposes some of the implementationdetails to the 
lients. This makes it diÆ
ult to as
ertain whi
h details are essential to the 
orre
tnessof their algorithm, and whi
h be may 
hanged without signi�
ant e�e
t. It is also diÆ
ult to
ompare their algorithm with similar algorithms that have slightly di�erent interfa
es. For example,their spe
i�
ation exposes the 
lient to multipart timestamps, whi
h are used internally to orderoperations. However, it is not 
lear whi
h properties of their algorithm depend on their use ofmultipart timestamps, and whi
h depend only on the lazy repli
ation strategy. Also, their algorithmrequires all operations to be either read-only queries or write-only updates. Whether an update is
ausal, for
ed or immediate is determined by the e�e
t of that update, and so must be spe
i�edby the appli
ation programmer when the system is implemented, rather than by the user when thesystem is exe
uting. Their algorithm requires that for any pair of non-
ommutative operations withe�e
ts on the state of the data, one must be spe
i�ed as depending on the other. Without this, thealgorithm 
an leave repli
as in
onsistent forever. That is, the apparent order on operations maynot 
onverge to a limiting total order.1.3 Overview of this PaperThe eventually-serializable data servi
e spe
i�
ation uses a partial order on operations that gravi-tates to a total order over time. We provide two types of operations at the 
lient interfa
e: (a) stri
toperations, whi
h are required to be stable at the time of the response, i.e., all operations that pre-
ede it must be totally ordered, and (b) operations that may be reordered after the response isissued. As in [15℄, 
lients may also spe
ify 
onstraints on the order in whi
h operations are appliedto the data obje
t. Our spe
i�
ation omits implementation details, allowing users to ignore theissues of repli
ation and distribution, while giving implementors the freedom to design the systemto best satisfy the performan
e requirements. We make no assumptions about the semanti
s of thedata obje
t, and thus, our spe
i�
ation 
an be used as the basis for a wide variety of appli
ations.Of 
ourse, parti
ular system implementations may exploit the semanti
s of the spe
i�
 data obje
tsto improve performan
e.Our algorithm is based on the lazy repli
ation strategy of [15℄. We present a high-level formaldes
ription of the algorithm, whi
h takes into a

ount the repli
ation of the data, and maintains
onsisten
y by propagating operations and bookkeeping information among repli
as via gossipmessages. It provides a smooth 
ombination of fast servi
e with weak 
ausality requirementsand slower servi
e with stronger requirements. It does not use the multipart timestamps of [15℄,whi
h we view as an optimization of the basi
 algorithm. By viewing the abstra
t algorithm as aspe
i�
ation for more detailed implementations, we indi
ate how this, and other optimizations, maybe in
orporated into the framework of this paper. We also establish performan
e and fault-toleran
eguarantees of the algorithm.The eventually-serializable data servi
e exempli�es the synergy of applied systems work anddistributed 
omputing theory, de�ning a 
lear and unambiguous spe
i�
ation for a useful module3



for building distributed appli
ations. By making all the assumptions and guarantees expli
it,the formal framework allows us to reason 
arefully about the system. Together with the abstra
talgorithm, the spe
i�
ation 
an guide the design and implementation of distributed system buildingblo
ks layered on general-purpose distributed platforms (middleware) su
h as DCE [24℄. Cheinerimplemented one su
h building blo
k [6, 7℄, and used it to develop prototypes for diverse 
lientsin
luding a Web 
lient, a text-oriented Unix 
lient, and a Mi
rosoft Ex
el 
lient for Windows95.The rest of the paper is organized as follows: Se
tion 2 gives formal de�nitions and 
onventionsused throughout the paper, in
luding the de�nition of the data type. Se
tion 3 de�nes the I/Oautomaton model used to formally spe
ify the data servi
e and algorithm. Se
tion 4 
hara
terizesthe 
lients of the data servi
e, and Se
tion 5 gives the formal spe
i�
ation of the eventually-serializable data servi
e, in
luding some guarantees about its behavior. The algorithm is presentedin Se
tion 6, and Se
tion 7 demonstrates several properties that are used in the simulation proof ofSe
tion 8, whi
h shows that the algorithm implements the spe
i�
ation. The last three se
tions giveinitial steps to extend this work. Performan
e guarantees, under 
ertain timing assumptions, aregiven in Se
tion 9, together with some fault-toleran
e 
onsiderations. Se
tion 10 suggests severalways in whi
h the algorithm 
an be modi�ed to give better performan
e, or take into a

ount somepragmati
 implementation issues. Finally, Se
tion 11 presents an overview of Cheiner's work, anddis
usses some appli
ations whi
h may use eventually-serializable data servi
es.2 Preliminary De�nitions and ConventionsIn this se
tion, we introdu
e mathemati
al notation and 
onventions used in this paper. Theseare merely formal de�nitions; the motivation and intuition behind these de�nitions appear in theappropriate se
tion later in the paper. We also state without proof several lemmas that followeasily from these de�nitions. Throughout the paper, whenever variables appear unquanti�ed, thereis an impli
it universal quanti�
ation.2.1 Fun
tions, Relations and OrdersA binary relation R on a set S is any subset of S�S; we sometimes write xRy for (x; y) 2 R. Thespan of a binary relation R is span(R) = fx : xRy _ yRx for some yg. A relation R is transitiveif xRy ^ yRz =) xRz. It is antisymmetri
 if xRy ^ yRx =) x = y. It is re
exive if xRxfor all x 2 S, and it is irre
exive if (x; x) =2 R for all x 2 S. The transitive 
losure of a relationR, denoted TC(R), is the smallest transitive relation 
ontaining R, and the re
exive 
losure isthe smallest re
exive relation 
ontaining R. The relation indu
ed by R on a set S0 is R\ (S0�S0).A binary relation is a partial order if it is transitive and antisymmetri
. It is stri
t if it isalso irre
exive. We say that x pre
edes y in a partial order R if xRy. For a set S, we denote thesubset of elements that pre
ede x 2 S in R by SjRx = fy 2 S : yRxg. Two relations R and R0 are
onsistent if TC(R [ R0) is a partial order. A relation R is a total order on S if it is a partialorder on S with xRy _ yRx _ x = y for all x; y 2 S. A partial order R totally orders S if itindu
es a total order on S. If � is a total order on S and X is a �nite nonempty subset of S thenwe de�ne min�X to be the element x 2 X su
h that x � y for all y 2 X and max�X to be theelement x 2 X su
h that y � x for all y 2 X, where � is the re
exive 
losure of �. We may omitthe subs
ript when there is a single total order de�ned on S.4



Lemma 2.1 Any irre
exive and transitive relation is a stri
t partial order.Lemma 2.2 The relation indu
ed by a partial order on any set is also a partial order.Lemma 2.3 If R is a total order on S and R0 is a partial order, then R and R0 are 
onsistent ifand only if xR0y ^ yRx =) x = y.A fun
tion f : A ! B has domain A and range B. A fun
tion is null if its domain is theempty set. For a set B, we extend fun
tions and relations on B � B to fun
tions whose range isB. That is, if f1; f2 : A! B, g : B�B ! C, and R is a binary relation on B then we let g(f1; f2)be the fun
tion h : A! C with h(a) = g(f1(a); f2(a)), and (f1; f2) 2 R if (f1(a); f2(a)) 2 R for alla 2 A.2.2 Data TypesThe data servi
e manages obje
ts whose serial behavior is spe
i�ed by some data type. This datatype de�nes possible states of instantiated obje
ts and operators on the obje
ts. We use a de�nitionsimilar to the variable types of [18℄. Formally, a serial data type 
onsists of:� a set � of obje
t states� a distinguished initial state �0 2 �� a set V of reportable values� a set O of operators� a transition fun
tion � : ��O ! �� VWe use :s and :v sele
tors to extra
t the state and value 
omponents respe
tively, i.e., �(�; op) =(�(�; op):s; �(�; op):v). For the set O+ of nonempty �nite sequen
es of operators, we also de�ne �+ :��O+ ! ��V by repeated appli
ation of � , i.e., �+(�; hopi) = �(�; op) and �+(�; hop1; op2; : : :i) =�+(�(�; op1):s; hop2; : : :i), where h: : :i denotes a sequen
e. In this paper, we assume that the serialdata type is �xed, and often leave it impli
it.2.3 OperationsTo a

ess the data, a 
lient of the data servi
e issues a request, whi
h in
ludes the operator tobe applied, a unique operation identi�er , and additional information that 
onstrains the validresponses to the request. Formally, a 
lient issues an operation des
riptor 
onsisting of:� a data type operator op� an operation identi�er id� a set prev of operation identi�ers� a boolean 
ag stri
t 5



We often refer to an operation des
riptor x simply as operation x, and denote its various 
om-ponents by x:op, x:id , x:prev and x:stri
t . We denote by O the set of all operations, and byI the set of all operation identi�ers. For a set X � O, we denote by X:id = fx:id : x 2 Xgthe set of identi�ers of operations in X. Thus I = O:id . If R is a partial order on I, then�R = f(x; y) 2 O �O : (x:id ; y:id) 2 Rg is a partial order onO su
h that x �R y if (x:id ; y:id ) 2 R.We denote the re
exive 
losure of �R by �R.An operation is stri
t if its stri
t 
ag has value true. For a set X � O, we denote by CSC (X) =f(y:id ; x:id) : x 2 X ^ y:id 2 x:prevg a relation on I expressing the 
lient-spe
i�ed 
onstraintsdes
ribed by the prev sets of the operations. The interpretation of these is given in Se
tion 4.Lemma 2.4 If X � Y � O then CSC (X) � CSC (Y ).Given a �nite setX = fx1; : : : ; xng of operations and the stri
t total order� = f(xi; xj) : i < jg,we de�ne the out
ome of X from state � 2 � with respe
t to � to be out
ome�(X;�) =�+(�; hx1:op; : : : ; xn:opi):s, and the value of an operation x 2 X from � with respe
t to �to be val�(x;X;�) = �(out
ome�(Xj�x;�); x:op):v . If � is a partial order on X, we de�nevalset�(x;X;�) = fval�(x;X;�0) : �0 is a stri
t total order on X 
onsistent with �g. When � re-lates elements not inX, and�0 is the partial order indu
ed by� onX, we sometimes abuse notationby writing valset�(x;X;�) for valset�(x;X;�0), and, if �0 is a total order on X, val�(x;X;�) forthe only element in valset�(x;X;�), and out
ome�(X;�) for out
ome�(X;�0). If � is not expli
itlyspe
i�ed, it is assumed to be the initial state �0.Lemma 2.5 If � is a partial order on X then valset�(x;X;�) 6= ; for all x 2 X.Lemma 2.6 If � and �0 are partial orders on X su
h that � � �0 then valset�(x;X;�0) �valset�(x;X;�) for all x 2 X.Lemma 2.7 Suppose X � Y � O, � is a partial order on Y that indu
es a total order on X, andx � y for all x 2 X and y 2 Y � X. Then valset�(x; Y;�) = fval�(x;X;�)g for all x 2 X, andvalset�(y; Y;�) = valset�0(y; Y �X;�) for all y 2 Y �X, where �0 = out
ome�(X;�).3 Formal modelThe spe
i�
ations in this paper are done using a slight simpli�
ation of I/O automata [19℄, ignoringaspe
ts related to liveness. We do not deal with liveness dire
tly in this paper. Instead, we assumebounds on the time to perform a
tions, and prove performan
e guarantees that imply liveness underthose timing assumptions.A non-live I/O automaton A 
onsists of:� three disjoint sets of a
tions: in(A), out(A), and int(A);� a set states(A) of states;� a nonempty subset start(A) of start states;� a set steps(A) � states(A) � a
ts(A) � states(A) of steps su
h that there exists (s; �; s0) 2steps(A) for all s 2 states(A) and � 2 in(A).6



We 
all the a
tions in in(A), out(A), and int(A) the input , output , and internal a
tions re-spe
tively. The input and output a
tions are also 
alled external a
tions, and the set ofexternal a
tions is denoted by ext(A). We denote the set of all a
tions of A by a
ts(A) =in(A) [ out(A) [ int(A). We write s ��!A s0 or just s ��!s0 as shorthand for (s; �; s0) 2 steps(A).We say an a
tion � is enabled in s if there exists s0 su
h that s ��!s0. Noti
e that every input a
tionis enabled in every state.An exe
ution fragment s0�1s1�2s2 � � � is a �nite or in�nite sequen
e of alternating statesand a
tions su
h that si�1 �i�!si for all i. The external image of an exe
ution fragment � isthe subsequen
e �jext(A) of its external a
tions. An exe
ution is an exe
ution fragment withs0 2 start(A). We denote the set of exe
utions of A by exe
s(A). A tra
e of A is the externalimage of an exe
ution, and the set of tra
es is denoted by tra
es(A). An event is an o

uren
e ofan a
tion in a sequen
e. If an event � (stri
tly) pre
edes �0 in �, then we write � �� �0. A state isrea
hable in A if it appears in any exe
ution of A. An invariant of A is a predi
ate that is trueof every rea
hable state of A.We often want to spe
ify a distributed system by spe
ifying the 
omponents that 
onstitutethe system. The entire system is then des
ribed by an automaton whi
h is the 
omposition ofthe automata des
ribing the 
omponents. Informally, 
omposition identi�es a
tions with the samename at di�erent 
omponent automata. Thus, when an a
tion is exe
uted, it is exe
uted by all
omponents with that a
tion. The new automaton has the a
tions of all its 
omponents. Somerestri
tions on the automata to be 
omposed are ne
essary so that the 
omposition makes sense.In parti
ular, internal a
tions 
annot be shared, an a
tion 
an be the output a
tion of at most one
omponent, and a
tions 
annot be shared by in�nitely many 
omponents.Formally, for any index set I, a set fAigi2I of automata is 
ompatible if int(Ai)\a
ts(Aj) = ;and out(Ai)\ out(Aj) = ; for all i; j 2 I su
h that i 6= j, and no a
tion is in a
ts(Ai) for in�nitelymany i 2 I. The 
omposition A = �i2IAi of a 
ompatible set fAigi2I of automata has thefollowing 
omponents:� in(A) = Si2I in(Ai)�Si2I out(Ai)out(A) = Si2I out(Ai)int(A) = Si2I int(Ai)� states(A) = �i2Istates(Ai)� start(A) = �i2Istart(Ai)� steps(A) = f(s; �; s0) : si ��!Ai s0i or � =2 a
ts(Ai) ^ si = s0i for all i 2 IgWe denote the 
omposition of two 
ompatible automata A and B by A�B.Communi
ation between automata is done through shared external a
tions, whi
h remain ex-ternal a
tions of the 
omposition. Sometimes it is useful to hide these a
tions, re
lassifying themas internal, so they 
annot be used for further 
ommuni
ation and no longer appear in tra
es. For-mally, if A is an I/O automaton and � � out(A), then the hiding operation on A and � produ
esan automaton A0 identi
al to A ex
ept that out(A0) = out(A)� � and int(A0) = int(A) [ �.I/O automata 
an be used as spe
i�
ations as well as implementations. We say that an automa-ton A implements another automaton B, and write A � B, if in(A) = in(B), out(A) = out(B),7



and tra
es(A) � tra
es(B). We say that A and B are equivalent , and write A � B, if theyimplement ea
h other.Theorem 3.1 If Ai � Bi for all i 2 I then �i2IAi � �i2IBi.A standard way to show that one automaton implements another is to use simulations, whi
hestablish a 
orresponden
e between the states of the two automata. Formally, if A and B areautomata with in(A) = in(B) and out(A) = out(B) then a forward simulation from A to B isa relation f between states(A) and states(B) su
h that:� If s 2 start(A) then there exists some u 2 start(B) su
h that f(s; u).� For rea
hable states s and u of A and B, if f(s; u) and s ��!A s0, then there exists some u0 su
hthat f(s0; u0) and there is some exe
ution fragment of B from u to u0 with the same externalimage as �.We denote fu : f(s; u)g by f [s℄, and typi
ally write u 2 f [s℄ instead of f(s; u).Theorem 3.2 If there is a forward simulation from A to B then A � B.4 Client Spe
i�
ationWe model a system as a servi
e a

essed by 
lients expe
ted to obey 
ertain 
onventions, 
alled thewell-formedness assumptions. In this se
tion, we formally de�ne these assumptions on the 
lientsof the data servi
e. The automaton Users in Figure 1 represents all 
lients, and uses shared stateto en
ode the restri
tions on the 
lients in a general and abstra
t way; in a real implementation,there need not be any shared state.SignatureInput:response(x; v), where x 2 O and v 2 VOutput:request(x), where x 2 OStaterequested , a subset of O, initially emptyA
tionsOutput request(x)Pre: x:id =2 requested :idx:prev � requested :idE�: requested  requested [ fxg Input response(x; v)E�: NoneFigure 1: Users: The well-formed 
lientsClients a

ess the data by issuing requests and re
eiving responses from the data servi
e. Thedata type only spe
i�es serial behavior, that is, the behavior when the operations are requested in8



sequen
e. However, we allow 
lients to issue requests 
on
urrently. To request an operation, a 
lientspe
i�es an operation des
riptor x, whi
h in
ludes a unique identi�er, and a prev set and stri
t
ag whi
h are intended to 
onstrain the responses the 
lient may re
eive from the data servi
efor the requested operation. Informally, the prev set represents operations that must be donebefore the requested operation, and 
an only in
lude operations requested earlier. The relationCSC (requested ) de�nes the 
lient-spe
i�ed 
onstraints.The 
ondition x:id =2 requested :id ensures that the operation identi�ers are unique, and the
ondition x:prev � requested :id ensures that TC(CSC (requested )) is a stri
t partial order.Invariant 4.1 For x; y 2 requested , x = y () x:id = y:id .Invariant 4.2 TC(CSC (requested )) is a stri
t partial order.In any rea
hable state of Users , we de�ne the partial order �
 on requested so that x �
 y if andonly if (x:id ; y:id) 2 TC(CSC (requested )).This automaton only spe
i�es the well-formedness assumptions on the 
lients; it does not pla
eany restri
tions on the responses it may re
eive. Given a set X of operations, we say that aresponse(x; v) event is 
onsistent with a partial order � on X if v 2 valset(x;X;�), and that atotal order �0 explains the event if v = val(x;X;�0). We expe
t that every response 
orrespondsto some request, and is 
onsistent with the 
lient-spe
i�ed 
onstraints. This is guaranteed by thedata servi
e spe
i�
ation in the next se
tion.5 ESDS Spe
i�
ationIn this se
tion, we give the formal spe
i�
ation of an eventually-serializable data servi
e. We �rstspe
ify this as the automaton ESDS-I , and we then prove several properties of this automaton.We then give an alternative spe
i�
ation ESDS-II , whi
h is equivalent to ESDS-I . We give twospe
i�
ations be
ause ESDS-I is simpler to understand, while ESDS-II is more 
onvenient forshowing that the spe
i�
ation is implemented by the abstra
t algorithm we de�ne in Se
tion 6.5.1 Spe
i�
ation ESDS-IWe now de�ne an eventually-serializable data servi
e. The 
lients of the servi
e may issue requests
on
urrently, and thus the responses are not uniquely de�ned by the data type spe
i�
ation. Asequentially 
onsistent data servi
e would require that there exist a total order on the operations
onsistent with all the responses of the servi
e. This total order is 
alled a serialization. However, forsome systems, sequential 
onsisten
y is too expensive to guarantee. The eventually-serializable dataservi
e spe
i�
ation permits more eÆ
ient and resilient distributed implementations by allowingsome operations to be reordered even after a response has already been returned. However, it mustalways respe
t the 
lient-spe
i�ed 
onstraints. In addition, an operation may stabilize, after whi
hit may no longer be reordered.Formally, an eventually-serializable data servi
e is any automaton that implementsESDS-Iin Figure 2. The input a
tions are the requests from the 
lients, and the output a
tions are the9



SignatureInput:request(x), where x 2 OOutput:response(x; v), where x 2 O and v 2 VInternal:enter(x; new-po), where x 2 O and new-po is a stri
t partial order on Istabilize(x), where x 2 O
al
ulate(x; v), where x 2 O and v 2 Vadd 
onstraints(new-po), where new-po is a partial order on IStatewait , a subset of O, initially empty; the operations requested but not yet responded torept , a subset of O � V , initially empty; operations and responses that may be returned to 
lientsops , a subset of O, initially empty; the set of all operations that have ever been enteredpo, a partial order on I, initially empty; 
onstraints on the order operations in ops are appliedstabilized , a subset of O, initially empty; the set of stable operationsA
tionsInput request(x)E�: wait  wait [ fxgInternal enter(x; new-po)Pre: x 2 waitx =2 opsx:prev � ops :idspan(new-po) � ops :id [ fx:idgpo � new-poCSC (fxg) � new-pof(y:id ; x:id) : y 2 stabilizedg � new-poE�: ops  ops [ fxgpo  new-poInternal add 
onstraints(new-po)Pre: span(new-po) � ops :idpo � new-poE�: po  new-po

Internal stabilize(x)Pre: x 2 opsx =2 stabilized8y 2 ops , y �po x _ x �po yops j�pox � stabilizedE�: stabilized  stabilized [ fxgInternal 
al
ulate(x; v)Pre: x 2 opsx:stri
t =) x 2 stabilizedv 2 valset(x; ops ;�po)E�: if x 2 wait then rept  rept [ f(x; v)gOutput response(x; v)Pre: (x; v) 2 reptx 2 waitE�: wait  wait � fxgrept  rept � f(x; v0) : (x; v0) 2 reptgFigure 2: Spe
i�
ation ESDS-I
10



responses to these requests. Be
ause of the well-formedness assumptions, we expe
t that the 
lient-spe
i�ed 
onstraints de�ne a stri
t partial order on the requested operations. Although the au-tomata is formally de�ned for any input, the following dis
ussion assumes well-formed 
lients. Theinformal 
laims in this subse
tion are stated and proved formally in the next subse
tion.The main idea is to maintain a stri
t partial order of the operations 
onsistent with the 
lient-spe
i�ed 
onstraints. In addition, the automaton maintains a set of stable operations, whose pre�xin the partial order is total and �xed. If every operation is stable, the partial order is total, andwe 
all this the eventual total order. Responses to stri
t operations must be 
onsistent with theeventual total order.The wait and rept variables are used to keep tra
k of pending requests. The set ops 
ontainsthe operations that have been entered (by the enter a
tion); only these operations are used (bythe 
al
ulate a
tion) to 
ompute the return values of operations. The variable po de�nes a stri
tpartial order �po on the operations in ops , whi
h restri
ts the order in whi
h these operations mayapplied. This order must be 
onsistent with the 
lient-spe
i�ed 
onstraints given by the prev sets.The set stabilized 
ontains the stable operations.The request and response a
tions are the interfa
e a
tions with the 
lients. They update waitand rept appropriately. For ea
h operation x, the spe
i�
ation de�nes internal a
tions of theform enter(x;new-po), stabilize(x) and 
al
ulate(x; v). The enter(x;new-po) a
tion adds suÆ
ient
onstraints to po to ensure that the new operation follows every operation spe
i�ed by the 
lientin the prev set, and preserves the pre�x of stable operations. That is, a new operation must bepre
eded in new-po by every operation spe
i�ed by the 
lient and by every stable operation. Thestabilize(x) a
tion 
an o

ur only if x is totally ordered with respe
t to other operations in ops , andall pre
eding operations are already stable. The 
al
ulate(x; v) a
tion 
hooses some return valuefor x 
onsistent with the 
onstraints spe
i�ed by po. Stri
t operations must be stable when a valueis 
al
ulated for them, but nonstri
t operations need not be. Thus, the responses to the 
lientsfor nonstri
t operations need not be 
onsistent with the eventual total order. Repeated 
al
ulatea
tions for a spe
i�
 operation may produ
e di�erent return values and the response a
tion sele
tsone of the values for the operation nondeterministi
ally.1In addition, there is an internal a
tion add 
onstraints(new-po) whi
h extends the partial orderof 
onstraints. Noti
e that the partial order 
an only be 
onstrained further; on
e a 
onstraint isimposed, it is never revoked.Although informally we expe
t every request to get a response and every operation to stabilize,there are no formal liveness guarantees in this spe
i�
ation. Instead, in Se
tion 9, we assume timebounds on the a
tions, and prove performan
e guarantees that imply liveness under these timingassumptions.5.2 Properties of Eventually-Serializable Data Servi
esWe now prove several properties of the 
omposition ESDS-I � Users that are useful for writingappli
ations that use the eventually-serializable data servi
e.The �rst lemma says that stabilized , ops and po only in
rease, and that only entered operations1This is equivalent to an automaton that only allows a single 
al
ulate a
tion for ea
h operation, but this requiresadditional formal ma
hinery (e.g., ba
kward simulations [20℄) to prove.11



are stabilized.Lemma 5.1 If s ��!s0 then s:stabilized � s0:stabilized � s:ops � s0:ops , and s:po � s0:po.Proof: Immediate from de�nition of ESDS-I .The next invariant says that po orders only operations in ops and 
ontains the 
lient-spe
i�ed
onstraints.Invariant 5.2 span(po) � ops :id and CSC (ops) � po.Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the initial statesin
e po is empty. If the invariant holds in s and s ��!s0 then only enter and add 
onstraints a
tions
hange po or ops :1. If � = enter(x; s0:po) then span(s0:po) � s:ops :id [ fx:idg = s0:ops :id , and CSC (s:ops) �s:po � s0:po and CSC (fxg) � s0:po, so CSC (s0:ops) = CSC (s:ops) [ CSC (fxg) � s0:po.2. If � = add 
onstraints(s0:po) then span(s0:po) � s:ops :id = s0:ops :id and CSC (s0:ops) =CSC (s:ops) � s:po � s0:po.The following two invariants say that stable operations 
an be 
ompared with any enteredoperation, and thus, that stabilized is totally ordered by �po .Invariant 5.3 For all x 2 stabilized and y 2 ops , we have y �po x _ x �po y.Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the initialstate sin
e stabilized = ;. If the invariant holds in s and s ��!s0 then y �s0:po x _ x �s0:po y for allx 2 s:stabilized and y 2 s:ops , sin
e s:po � s0:po by Lemma 5.1. If x 2 s0:stabilized � s:stabilizedthen � = stabilize(x) so y �s0:po x _ x �s0:po y for all y 2 s:ops = s0:ops by the pre
ondition forstabilize(x). If y 2 s0:ops � s:ops then � = enter(y; s0:po) and x �s0:po y for all x 2 s:stabilized =s0:stabilized .Invariant 5.4 stabilized is totally ordered by �po .Proof: Immediate from Invariant 5.3 sin
e stabilized � ops (by Lemma 5.1).The next invariant says that operations pre
eding stable operations are also stable.Invariant 5.5 If x 2 stabilized then ops j�pox � stabilized .Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the ini-tial state sin
e stabilized is empty. Suppose the invariant holds in s and s ��!s0. Then for x 2s:stabilized , if y 2 ops j�s0:pox then x 6�s:po y, sin
e s:po is a stri
t partial order and s:po � s0:poby Lemma 5.1. By Invariant 5.3, y �s:po x. Thus, by the indu
tive assumption and Lemma 5.1,y 2 s:stabilized � s0:stabilized . If x 2 s0:stabilized � s:stabilized then � = stabilize(x) and thus,ops j�s0:pox = ops j�s:pox � s0:stabilized .The next invariant says that there is a unique value for stable operations.12



Invariant 5.6 If x 2 stabilized then valset(x; ops ;�po) = fval(x; ops j�pox;�po)gProof: By Invariant 5.5, ops j�pox � stabilized , so by Invariant 5.4, �po totally orders ops j�pox,and by Invariant 5.3, y 2 ops � ops j�pox =) x �po y. Thus, by Lemma 2.7, valset(x; ops ;�po) =fval(x; ops j�pox;�po)g.We now give several guarantees on the behavior of the system that may be useful for appli
ations.The �rst theorem says that for ea
h operation x, there is a total order of the requested operations
onsistent with the 
lient-spe
i�ed 
onstraints that explains the response for x and the response ofevery stri
t operation that re
eives a response before x is requested.Theorem 5.7 Suppose � is a tra
e of ESDS-I �Users , and reqs is the set of operations requestedin �. For ea
h response(x; v) event in �, there exists a total order to(x) on reqs :id 
onsistentwith CSC (reqs) su
h that v = val(x; reqs ;�to(x)) and for every response(y; v0) �� request(x) withy:stri
t , v0 = val(y; reqs ;�to(x)).Proof: (Sket
h) Let � be an exe
ution of ESDS-I �Users with external image �. There must bea 
al
ulate(x; v) event in � pre
eding the response(x; v) event. Let s be the state of � immediatelypre
eding this event. By the pre
ondition, there is a total order � on s:ops 
onsistent with �s:posu
h that v = val(x; s:ops ;�). If response(y; v0) �� request(x) and y:stri
t then let s0 be the stateimmediately pre
eding the 
al
ulate(y; v0) event. By Invariant 5.6, v0 is the unique value for y
onsistent with �s0:po , and by Lemma 5.1, s0:po � s:po, so v0 = val(y; s0:ops ;�) = val(y; s:ops ;�).Let to(x) be su
h that � is a pre�x of �to(x), that is, all operations in reqs � s:ops are orderedafter the operations in ops . Then val(y; reqs ;�to(x)) = val(y; s:ops ;�) for y 2 s:ops , establishingthe theorem.The next theorem says that there is an eventual total order that explains all responses to stri
toperations.Theorem 5.8 Suppose � is a �nite tra
e of ESDS-I � Users, and reqs is the set of operationsrequested in �. There exists a total order eto on reqs :id 
onsistent with CSC (reqs) su
h that forevery response(x; v) event in � with x:stri
t , v = val(x; reqs ;�eto).Proof: (Sket
h) Let � be a �nite exe
ution of ESDS-I � Users with external image �, and sbe the �nal state of �. Let � be a total order on s:ops 
onsistent with �s:po . If response(x; v)is an event of � with x:stri
t then let s0 be the state immediately pre
eding the 
al
ulate(x; v)event. By Invariant 5.6, v is the unique value for x 
onsistent with �s0:po , and by Lemma 5.1,s0:po � s:po, so v = val(x; s0:ops ;�) = val(x; s:ops ;�). Let eto be su
h that � is a pre�x of �eto .Then val(x; reqs ;�eto) = val(x; s:ops ;�) for x 2 s:ops , establishing the theorem.The following 
orollary says that when all requests are stri
t, ESDS-I appears similar to anatomi
 obje
t. The eventual total order from the previous theorem de�nes the serialization.Corollary 5.9 Suppose � is a �nite tra
e of ESDS-I�Users, reqs is the set of operations requestedin �, and x:stri
t for all x 2 reqs . Then there exists a total order eto on reqs :id 
onsistent withCSC (reqs) su
h that for every response(x; v) event in �, v = val(x; reqs ;�eto).13



5.3 Spe
i�
ation ESDS-IIWe now give an alternative spe
i�
ation of eventually-serializable data servi
es, using a more nonde-terministi
 automaton ESDS-II , and we show that ESDS-I and ESDS-II are equivalent. Althoughthis automaton is more 
ompli
ated than ESDS-I , it is easier to use as the spe
i�
ation in asimulation proof be
ause it allows more nondeterminism. We use it in the simulation proof inSe
tion 8.There are three di�eren
es between the two automata, all in the pre
onditions of two a
tions,enter and stabilize. The new a
tions appear in Figure 3.Internal enter(x; new-po)Pre: x 2 waitx:prev � ops :idspan(new-po) � ops :id [ fx:idgpo � new-poCSC (fxg) � new-pof(y:id ; x:id) : y 2 stabilizedg � new-poE�: ops  ops [ fxgpo  new-po
Internal stabilize(x)Pre: x 2 ops8y 2 ops , y �po x _ x �po y�po totally orders ops j�poxE�: stabilized  stabilized [ fxg

Figure 3: The enter and stabilize a
tions of ESDS-IITwo of the di�eren
es are minor: the 
lauses x =2 ops and x =2 stabilized are removed fromthe pre
onditions of the enter and stabilize a
tions respe
tively. This allows them to be donerepeatedly for ea
h operation. This is minor be
ause a repeated enter(x;new-po) is equivalent toan add 
onstraints(new-po) a
tion, and a repeated stabilize(x) does not 
hange the state at all.The third di�eren
e is more signi�
ant. When an operation is stabilized, instead of requiringthat pre
eding operations already be stable, the stabilize a
tion of ESDS-II only requires that theybe totally ordered by �po . This allows \gaps" between stable operations, whi
h are impossible inESDS-I by Invariant 5.5. All the other invariants, lemmas and theorems remain true for ESDS-II ,with their proofs largely un
hanged.It is easy to see that ESDS-I implements ESDS-II sin
e every exe
ution of ESDS-I is anexe
ution of ESDS-II . We 
an show that ESDS-II implements ESDS-I with a simple simulationproof. The simulation, given in Figure 4, relates states of ESDS-II to states of ESDS-I when theoperations stable in the implementation are also stable in the spe
i�
ation, and all other state
omponents are equal. Informally, this allows ESDS-I to \�ll in the gaps" allowed between stableoperations in ESDS-II .The proof that this is a simulation is straightforward. Every a
tion simulates itself ex
eptthat the stabilize(x) a
tion in ESDS-II simulates a (possibly empty) sequen
e of stabilize a
tion inESDS-I , one for ea
h operation in ops j�pox� stabilized . The key observation is that if an exe
utionof ESDS-II stabilizes an operation that has pre
eding operations that have not yet stabilized, thenthe simulated exe
ution of ESDS-I 
an stabilize all su
h operations �rst.14



G is a relation between states in ESDS-II and states in ESDS-I su
h that u 2 G[s℄ if and only if:� u:wait = s:wait� u:rept = s:rept� u:ops = s:ops� u:po = s:po� u:stabilized � s:stabilizedFigure 4: Forward simulation from ESDS-II to ESDS-I6 AlgorithmWe now present an algorithm that implements the eventually-serializable data servi
e spe
i�
ationESDS-II in the previous se
tion. In later se
tions, we prove formally that the algorithm implementsthe data servi
e.The algorithm repli
ates the data, maintaining a 
omplete 
opy at ea
h repli
a . We assumethat there are at least two repli
as. Ea
h 
lient uses a front end to the servi
e that keeps tra
k ofpending requests and handles 
ommuni
ation with the repli
as. We model inter-pro
ess 
ommu-ni
ation by point-to-point 
hannels, and we assume that the pro
esses and 
hannels are reliable,but we make no assumptions about the order of message delivery. The algorithm 
an be modi�edto tolerate pro
essor 
rashes and message losses and we dis
uss these 
onsiderations in a later se
-tion. We also assume that lo
al 
omputation time is insigni�
ant 
ompared with 
ommuni
ationdelays, so that a pro
ess is always able to handle any input it re
eives. This is reasonable if the
omputation required by ea
h operation is not ex
essive.This algorithm is based on the lazy-repli
ation s
heme of Ladin, Liskov, Shrira and Ghe-mawat [15℄, whi
h uses gossip messages to maintain 
onsisten
y among the repli
as. Ea
h repli
amaintains a label for ea
h operation it knows about. These labels may be re
eived by gossip, orgenerated by the repli
a if no label has been gossiped to it. The labels are totally ordered andare generated uniquely, and an operation's pla
e in the eventual total order is determined by thesystem-wide minimum label for that operation.6.1 The ChannelsPoint-to-point 
hannels are used for request and response messages between front ends and repli-
as and for gossip messages between repli
as. We assume that 
hannels are reliable, but we donot assume that they are FIFO. A 
hannel from pro
ess i to pro
ess j with message set M ismodelled by the simple automaton in Figure 5. It has sendij and re
eiveij a
tions and a singlestate variable 
hannel ij representing the messages in transit. For 
hannels from a front end toa repli
a, the message set is Mreq = fh\request"; xi : x 2 Og; from a repli
a to a front end, itis Mresp = fh\response"; x; vi : x 2 O; v 2 V g. For 
hannels between repli
as, the message set isMgossip = fh\gossip"; R;D;L; Si : R;D; S � O; L : I ! L [ f1gg, where L is a set of labels, for-mally de�ned in Se
tion 6.3, used by the repli
as to maintain 
onsisten
y. For a gossip messagem = h\gossip"; R;D;L; Si, we use Rm, Dm, Lm and Sm to denote R, D, L and S respe
tively.15



SignatureInput:sendij(m), where m 2 MOutput:re
eiveij(m), where m 2MState
hannel ij , a multiset of messages (fromM), initially emptyA
tionsInput sendij(m)E�: 
hannel ij  
hannel ij [ fmg Output re
eiveij(m)Pre: m 2 
hannel ijE�: 
hannel ij  
hannel ij � fmgFigure 5: Automaton for 
hannel from pro
ess i to pro
ess j with message set M.6.2 The Front EndsWhen a 
lient submits a request, its front end to the servi
e relays the request to one or morerepli
as, whi
h maintain a 
opy of the data obje
t; when the front end re
eives a response, it relaysthat to the 
lient. Although we have been modelling the 
lients as a single automaton, the repli
asmust distinguish between 
lients, so they 
an send responses to the appropriate front ends. Forsimpli
ity, we assume that the 
lients en
ode their identity into the operation identi�er. Formally,if C is the set of 
lients, we assume there is a stati
 fun
tion 
lient : I ! C. We use this topartition O into sets O
 = fx : 
lient(x:id) = 
g.The front end automaton is shown in Figure 6. The variables wait 
 and rept 
 keep tra
k ofpending requests from 
lient 
. The request and response a
tions are the interfa
e a
tions withthe 
lient 
, and they update wait
 and rept 
 appropriately. The front end may send a mes-sage requesting a response for any pending operation, i.e., any operation in wait 
. Note that thesend
r(h\request"; xi) a
tion may be performed repeatedly, requesting a response from di�erentrepli
as, or even repeatedly from the same repli
a.2 When a response for a pending request isre
eived from a repli
a, the front end re
ords it in rept
.6.3 The Repli
asThe repli
as do not keep an expli
it state of the data whi
h is updated by ea
h operation. Instead,they assign labels to the operations from a well-ordered set. These labels are used to 
ompute thereturn values for the operations. To maintain 
onsisten
y, the repli
as \gossip" the labels, keepingthe minimum label for ea
h operaton. An operation is done at a repli
a if that repli
a has a labelfor that operation. An operation is stable at a repli
a r if r knows that it is done at every repli
a.The informal 
laims made in this se
tion are stated and proved formally in the next se
tion.The automaton spe
i�
ation for a repli
a r is given in Figure 7. The set pending r keeps tra
k2Some implementations may do this for eÆ
ien
y, or to 
ompensate for faulty 
hannels or servers, and we allow itas it does not a�e
t 
orre
tness. However, we assume for now that no faults o

ur, and we are only 
on
erned withsafety. See Se
tion 9 for a dis
ussion of performan
e and fault-toleran
e.16



SignatureInput:request(x), where x 2 O
re
eiver
(m), where r is a repli
a and m 2 MrespOutput:response(x; v), where x 2 O
 and v 2 Vsend
r(m), where r is a repli
a and m 2MreqStatewait
, a subset of O, initially emptyrept 
, a subset of O � V , initially emptyA
tionsInput request(x)E�: wait
  wait
 [ fxgOutput send
r(h\request"; xi)Pre: x 2 wait
E�: None Input re
eiver
(h\response"; x; vi)E�: if x 2 wait
 then rept
  rept
 [ f(x; v)gOutput response(x; v)Pre: (x; v) 2 rept 
x 2 wait
E�: wait
  wait
 � fxgrept
  rept
 � f(x; v0) : (x; v0) 2 rept
gFigure 6: Automaton for the front end of 
lient 
of pending requests. The set r
vd r 
ontains every operation that this repli
a has re
eived, eitherdire
tly from a front end, or through gossip from another repli
a. The variable doner is an arrayof sets of operations, one for ea
h repli
a, where doner[i℄ is the set of operations that r knows aredone at repli
a i. Similarly, stabler is an array of sets of operations, where stabler[i℄ is the set ofoperations that r knows are stable at i. Note that doner[r℄ and stabler[r℄ are spe
ial in that r doesnot need to gossip with itself, so doner[r℄ is the set of operations that are done at r, and stabler[r℄is the set of operations that are stable at r. The label r fun
tion keeps the minimum label r hasseen for ea
h operation identi�er, where 1 indi
ates that no label has been seen yet. Labels aretaken from a well-ordered set L, and this order is extended to 1, so l < 1 for all l 2 L. We usethe label r fun
tion to derive l
r, the lo
al 
onstraints at r, whi
h is a stri
t partial order on I.The labels are partitioned into sets Lr for ea
h repli
a r, and repli
a r only assigns labels fromLr; this ensures that labels are assigned uniquely. For any �nite set of labels and any repli
a r,there exists a label l 2 Lr that is greater than any label in the �nite set. This prevents a repli
afrom \getting stu
k" without a label to assign to an operation. Be
ause labels are assigned uniquelyto the operations done at r, l
r totally orders doner[r℄.The re
eive
r(h\request"; xi) a
tion simply re
ords that a new request from 
lient 
 for anoperation has been re
eived. That request is pending, i.e., it is added to pendingr, even if theoperation had been re
eived previously.3 The do itr(x; l) a
tion assigns a new label l 2 Lr to x,and adds x to the set of done operations. This is allowed only if x is not yet done at repli
a rand all the operations spe
i�ed by x:prev set are. The new label is 
hosen to be greater than3This is unne
essary if 
ommuni
ation is reliable, as we assume, but it does not a�e
t 
orre
tness, and is naturalif the front ends issue multiple requests, as we allow. Some implementations may do this for performan
e or fault-toleran
e. See Se
tion 9 for a dis
ussion of these issues. 17



SignatureInput:re
eive
r(m), where 
 is a 
lient and m 2Mreqre
eiver0r(m), where r0 6= r is a repli
a and m 2MgossipOutput:sendr
(m), where 
 is a 
lient and m 2 Mrespsendrr0(m), where r0 6= r is a repli
a and m 2 MgossipInternal:do itr(x; l), where x 2 O and l 2 LrStatependingr, a subset of O, initially empty; the messages that require a responser
vd r, a subset of O, initially empty; the operations that have been re
eiveddoner[i℄ for ea
h repli
a i, a subset of O, initially empty; the operations r knows are done at istabler[i℄ for ea
h repli
a i, a subset of O, initially empty; the operations r knows are stable at ilabelr : I ! L [ f1g, initially all 1; the minimum label r has seen for id 2 IDerived variable: l
r = f(id ; id 0) : labelr(id) < labelr(id 0)g, a stri
t partial order on I; the lo
al 
onstraints at rA
tionsInput re
eive
r(h\request"; xi)E�: pendingr  pendingr [ fxgr
vd r  r
vd r [ fxgInternal do itr(x; l)Pre: x 2 r
vd r � doner[r℄x:prev � doner[r℄:idl > labelr(y:id) for all y 2 doner[r℄E�: doner[r℄ doner[r℄ [ fxglabelr(x:id) lOutput sendr
(h\response"; x; vi)Pre: x 2 pendingr \ doner[r℄x:stri
t =) x 2 Ti stabler[i℄v 2 valset(x; doner[r℄;�l
r )
 = 
lient(x:id)E�: pendingr  pendingr � fxg

Output sendrr0(h\gossip"; R;D; L; Si)Pre: R = r
vd r; D = doner[r℄;L = labelr; S = stabler[r℄Input re
eiver0r(h\gossip"; R;D; L; Si)E�: r
vd r  r
vd r [Rdoner[r0℄ doner[r0℄ [D [ Sdoner[r℄ doner[r℄ [D [ Sdoner[i℄ doner[i℄ [ S for all i 6= r; r0labelr  min(labelr; L)stabler[r0℄ stabler[r0℄ [ Sstabler[r℄ stabler[r℄ [ S [ (Ti doner[i℄)
Figure 7: Automaton for repli
a r
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the label for any operation already done at r, so that these operations pre
ede x in the lo
al
onstraints. If there is a pending request for an operation done at r, the sendr
(h\response"; x; vi)a
tion 
omputes a return value for x a

ording to the lo
al 
onstraints, and relays a message tothe 
lient that requested it. If x is stri
t, this a
tion is enabled only if r knows x is stable at allrepli
as.Repli
a use gossip messages to inform the other repli
as about operations they have re
eivedand pro
essed. When repli
a r sends a gossip message, it in
ludes the set R of operations it hasre
eived, the set D of operations done at r, the set S of operations stable at r, and a fun
tion Lgiving the minimum label seen by r for ea
h operation. When repli
a r re
eives a gossip messagefrom r0, it \merges" the information with its knowledge. Spe
i�
ally, it adds R to its re
eivedoperations, and adds D to doner[r0℄. Sin
e any operation that r knows is done at r0 is done at r,D is also added to doner[r℄. Similarly, S is added to stabler[r0℄ and stabler[r℄. Sin
e S 
onsists ofoperations stable at r0 when the message was sent, every operation in S is done at every repli
a,so S is also added to doner[i℄ for all i. The label r fun
tion is updated to return for ea
h operation,the smaller of the label already known to r and the label in the gossip message. Re
all that 1indi
ates that an operation has no label. Finally, operations that r knows are done at every repli
a,i.e., the operations in Ti doner[i℄, are added to stabler[r℄.6.4 The SystemLet ESDS-Alg be the 
omposition of all the front end, 
hannel, and repli
a automata, with the sendand re
eive a
tions hidden. It is 
onvenient for the analysis of this algorithm to de�ne several derivedstate variables for this automaton. These are summarized, together with the lo
al 
onstraintsde�ned in the previous subse
tion, in Figure 8.� ops = Sr doner[r℄, the set of operations done at any repli
a� ops jl = fx 2 ops : labelr(x:id) = l for some r or Lm(x:id) = l for some m 2 Sr;r0 
hannel rr0g, the set of oper-ations with label l� minlabel(id) = min(Srflabel r(id)g), the system-wide minimum label for ea
h operation� potential rept
 = f(x; v) : h\response"; x; vi 2 Sr 
hannelr
 ^ x 2 wait
g, responses en route to 
� l
r = f(id ; id 0) : labelr(id) < labelr(id 0)g, the lo
al 
onstraints at repli
a r� m
r(m) = f(id ; id 0) : min(labelr(id); Lm(id)) < min(labelr(id 0); Lm(id 0))g, for any m 2 Mgossip , the message
onstraints of m at repli
a r� s
 = �Tr l
r� \ �Tr;r0 Tm2
hannelr0r m
r(m)�, the system 
onstraints� po, the relation indu
ed by TC(CSC (ops) [ s
) on opsFigure 8: Derived variables for ESDS-AlgThe set ops is the set of operations done at any repli
a, and the set ops jl is the subset of theseoperations with label l. The fun
tion minlabel returns the system-wide minimum label for ea
hoperation.It is also useful to 
onsider the e�e
ts of messages in transit. We denote by potential rept 
 the
hange to the rept 
 set if all the response messages to 
 are re
eived immediately. When a gossip19



message is re
eived by a repli
a, the lo
al 
onstraints at that repli
a may 
hange. We de�ne themessage 
onstraints m
r(m) of a gossip message m at a repli
a r to be the lo
al 
onstraintsthat r would have if it re
eived m immediately.Sin
e ea
h repli
a assigns labels to operations independently, the lo
al 
onstraints at di�erentrepli
as need not be 
onsistent. However, be
ause the repli
as use the minimum label for ea
hoperation, these 
onstraints 
onverge as the repli
as gossip. To 
apture this, we de�ne the system
onstraints s
 to be those 
onstraints agreed upon by all repli
as, taking into a

ount the message
onstraints. Together with the 
lient-spe
i�ed 
onstraints, the system 
onstraints de�ne a partialorder po that restri
ts the eventual total order.7 InvariantsWe now prove several invariants about the system A = ESDS-Alg � Users . These are used inthe next se
tion to show that the algorithm implements the spe
i�
ation when the 
lients arewell-formed.7.1 Basi
 InvariantsWe �rst prove several invariants that 
apture some of the basi
 intuition about the state variablesand the messages sent.The �rst invariant says that every operation r knows to be done at any repli
a is also done atr, and every operation r knows to be stable at any repli
a is also stable at r.Invariant 7.1 doner[r℄ = Si doner[i℄ and stabler[r℄ = Si stabler[i℄Proof: Sin
e doner[r℄ � Si doner[i℄, and stabler[r℄ � Si stabler[i℄, we only need to show thatdoner[i℄ � doner[r℄ and stabler[i℄ � stabler[r℄ for all i. We prove this by indu
tion on the length ofan exe
ution. The base 
ase is trivial be
ause all the sets are empty. But noti
e that the doner[r℄and stabler[r℄ never de
rease, and any elements added to doner[i℄ or stabler[i℄ (when pro
essing agossip message) are also added to doner[r℄ or stabler[r℄ respe
tively.The next invariant says stabler[r℄ 
ontains exa
tly the operations r knows are done at everyrepli
a.Invariant 7.2 stabler[r℄ = Ti doner[i℄Proof: We prove this by indu
tion on the length of an exe
ution. The base 
ase is trivial be
auseall the sets are empty in the initial state. If the invariant holds for s and s ��!s0 then1. If � = do itr(x; l) then note that x =2 s:doner[r℄, and sin
e there is at least one other repli
a r0,x =2 s:doner[r0℄ = s0:doner[r0℄ by Invariant 7.1. So s0:stabler[r℄ = s:stabler[r℄ = Ti s:doner[i℄ =Ti s0:doner[i℄. 20



2. If � = re
eiver0r(m) then s0:stabler[r℄ = s:stabler[r℄ [ Sm [ Ti s0:doner[i℄ � Ti s0:doner[i℄.Also, s:stabler[r℄ [ Sm = Ti s:doner[i℄ [ Sm � Ti s0:doner[i℄, so s0:stabler[r℄ � Ti s0:doner[i℄.Thus, s0:stabler[r℄ = Ti s0:doner[i℄.3. Other a
tions do not 
hange doner[i℄ or stabler[r℄, so the invariant 
ontinues to hold.The next invariant says that the information in a gossip message is not more \up-to-date" thanthe state of the repli
a that sent it, and that the set of stable operations in a message is a subsetof the set of done operations in that message.Invariant 7.3 For any gossip message m 2 
hannel rr0 , Rm � r
vd r, Dm � doner[r℄, Lm � label r,Sm � stabler[r℄, and Sm � Dm.Proof: We prove this by indu
tion on the length of an exe
ution. The base 
ase is trivial be
ausethere are no messages. If the invariant holds in s and s ��!s0 then for any m 2 s:
hannel rr0 , wehave Rm � s:r
vd r � s0:r
vd r, Dm � s:doner[r℄ � s0:doner[r℄, Lm � s:label r � s0:label r, Sm �s:stabler[r℄ � s0:stabler[r℄, and Sm � Dm. And s0:
hannel rr0 � s:
hannel rr0 unless � = sendrr0(m).But in this 
ase, the new message has Rm = s0:r
vd r, Dm = s0:doner[r℄, Lm = s0:label r andSm = s0:stabler[r℄, and by Invariant 7.2, Sm � Dm.The next invariant says that the information at r about the state of i is not more \up-to-date"than the state of i.Invariant 7.4 doner[i℄ � done i[i℄ and stabler[i℄ � stablei[i℄Proof: We prove this by indu
tion on the length of an exe
ution. The base 
ase is trivial be
auseall the sets are empty. If the invariant holds in s and s ��!s0 then done i[i℄ and stable i[i℄ neverde
rease, and doner[i℄ and stabler[i℄ are un
hanged unless � = re
eiver0r(m) for some r0 6= r. Thereare two 
ases:1. If r0 6= i then s0:stabler[i℄ = s:stabler[i℄. By Invariants 7.3 and 7.2, and the indu
tive as-sumption (applied for r = r0), Sm � s:stabler0 [r0℄ � s:doner0 [i℄ � s:donei[i℄, so s0:doner[i℄ =s:doner[i℄ [ Sm � s:done i[i℄ = s0:done i[i℄.2. If r0 = i then by Invariant 7.3, s0:stabler[i℄ = s:stabler[i℄ [ Sm � s:stabler[i℄ [ s:stable i[i℄ =s:stable i[i℄ = s0:stable i[i℄. By Invariant 7.3, Dm � s:donei[i℄, and following the reasoningabove, S � s:done i[i℄, so s0:doner[i℄ = s:doner[i℄ [Dm [ Sm � s:donei[i℄ = s0:done i[i℄.The next invariant says that operations have labels at repli
a r exa
tly when they are in doner[r℄,and they have labels in a gossip message m exa
tly when they are in Dm. Re
all that 1 indi
atesthat an operation has no label.Invariant 7.5 doner[r℄:id = fid : label r(id) <1g and for any m 2 Sr;r0 
hannel rr0 , Dm:id =fid : Lm(id) <1g.Proof: We prove this by indu
tion on the length of an exe
ution. The base 
ase is trivial sin
ethere are no messages, and for all r, doner[r℄ = ; and label r(id) = 1 for all id . If this invariantholds in s and s ��!s0 then: 21



1. If � = do itr(x; l) then s0:label r(x:id) = l < 1 and x 2 s0:doner[r℄, and all other 
onditionshold from s.2. If � = sendrr0(m) then we haveDm:id = s:doner[r℄:id = fid : s:label r(id) <1g = fid : Lm(id) <1g.All other 
onditions hold from s.3. If � = re
eiver0r(m) then sin
e Sm � Dm by Invariant 7.3,s0:doner[r℄:id = s:doner[r℄:id [Dm:id= fid : s:label r(id ) <1g [ fid : Lm(id) <1g= fid : min(s:label r(id); Lm(id)) <1g= fid : s0:label r(id) <1g:All other 
onditions hold from s.4. Other a
tions do not 
hange label r, doner[r℄ or 
hannel rr0 , so the invariant 
ontinues to hold.The next invariant says that operations in the system have been requested.Invariant 7.6 S
 wait 
 [ fx : h\request"; xi 2 Sr;
 
hannel 
rg [Sr r
vd r [ ops � requested .Proof: We prove this by indu
tion on the length of an exe
ution. It is trivial in the initialstate be
ause all the sets are empty. Suppose the invariant holds in s and s ��!s0. If x is addedto wait 
 then � = request(x), and x is also added to requested . If h\request"; xi is added to
hannel 
r then � = send
r(h\request"; xi), so x 2 s:wait 
. If x is added to r
vd r then either� = re
eive
r(h\request"; xi), in whi
h 
ase h\request"; xi 2 s:
hannel 
r, or � = re
eiver0r(m)with x 2 Rm, in whi
h 
ase x 2 s:r
vd r0 by Invariant 7.3. If x is added to doner[r℄ then either� = do itr(x; l) for some l, in whi
h 
ase x 2 s:r
vd r, or � = re
eiver0r(m) with x 2 Dm [ Sm, inwhi
h 
ase x 2 s:doner0 [r0℄ by Invariant 7.3. Sin
e requested is never de
reased, the invariant holdsin s0.The next invariant says that operations for whi
h a response has been generated are done atsome repli
a.Invariant 7.7 fx : 9v; (x; v) 2 rept
 [ potential rept 
g � ops .Proof: We prove this by indu
tion on the length of an exe
ution. This is true in the initial statebe
ause all the sets are empty. If it is true in s and s ��!s0 then it must be true in s0 sin
e opsnever de
reases, and rept 
 and potential rept 
 are only in
reased by the send and re
eive of responsemessages. But if � = sendr
(h\response"; x; vi) then x 2 s:doner[r℄ � s0:doner[r℄ � s0:ops , and if� = re
eiver
(h\response"; x; vi) then (x; v) 2 s:potential rept 
, so s0:rept 
 [ s0:potential rept 
 �s:rept 
 [ s:potential rept
.The next invariant says that requested operations that are no longer in wait
 for any 
lient 
are done at some repli
a.Invariant 7.8 requested �S
 wait 
 � ops . 22



Proof: We prove this by indu
tion on the length of an exe
ution. The base 
ase is trivial be
auserequested = ;. If this invariant holds in s and s ��!s0 then:1. If � = request(x) then the invariant 
ontinues to hold sin
e although x is added to requested ,it is also added to wait
, where 
 = 
lient(x:id).2. If � = response(x; v) then (x; v) 2 s:rept 
 for 
 = 
lient(x:id), so by Invariant 7.7, x 2 s:ops ,and the invariant 
ontinues to hold.3. Other a
tions de
rease neither ops nor S
 wait
, and do not in
rease requested .7.2 System Constraint Lemma and InvariantsWe now prove a lemma and several invariants about the system 
onstraints. We begin with thefollowing lemma, whi
h states that the system 
onstraints only in
rease.Lemma 7.9 For any rea
hable state s, if s ��!s0 then s:s
 � s0:s
.Proof: For (id ; id 0) 2 s:s
, we must show that for ea
h repli
a r, (id ; id 0) 2 s0:l
r and (id ; id 0) 2s0:m
r(m) for all m 2 Sr0 s0:
hannel r0r. We do this by 
ases on �:1. If � = do itr(x; l) then x:id =2 s:doner[r℄:id by Invariant 4.1, sin
e x =2 s:doner[r℄. But id 2s:doner[r℄:id by Invariant 7.5, sin
e s:label r(id) < s:label r(id 0) � 1. Thus, s0:label r(id) =s:label r(id). If id 0 = x:id then s0:label r(id 0) = l > s:label r(id ); otherwise, s0:label r(id 0) =s:label r(id 0) > s:label r(id ). Thus, we have (id ; id 0) 2 s0:l
r sin
e (id ; id 0) 2 s:l
r.For m 2 Sr0 s0:
hannel r0r = Sr0 s:
hannel r0r, we have (id ; id 0) 2 s:m
r(m), and thusmin(s:label r(id); Lm(id)) < min(s:label r(id 0); Lm(id 0)) � Lm(id 0):Sin
e min(s0:label r(id ); Lm(id)) � s0:label r(id) < s0:label r(id 0), as shown above, we have(id ; id 0) 2 s0:m
r(m).2. If � = sendr0r(m) then s0:s
 = s:s
 \ s0:m
r(m). Sin
es:s
 � s:l
r \ s:l
r0� f(id ; id 0) : min(s:label r(id); s:label r0(id)) < min(s:label r(id 0); s:label r0(id 0))g= s0:m
r(m)we have s0:s
 = s:s
.3. If � = re
eiver0r(m) then s0:l
r = s:m
r(m) � s:s
. Form0 2 Si s0:
hannel ir = Si s:
hannel ir�fmg, we have (id ; id 0) 2 s:m
r(m) \ s:m
r(m0). Thus,min(s:label r(id); Lm(id); Lm0(id)) < min(s:label r(id 0); Lm(id 0); Lm0(id 0))and (id ; id 0) 2 s0:m
r(m0). 23



4. All other a
tions leave label r(id), label r(id 0) and Sr0 
hannel r0r un
hanged, so (id ; id 0) 2s:l
r = s0:l
r and (id ; id 0) 2 s:m
r(m) = s0:m
r(m) for allm 2 Sr0 s0:
hannel r0r = Sr0 s:
hannel r0r.The next invariant says that labels for operations in the prev set of an operation x are no greaterthan the label for x. The equality is allowed be
ause there may not be a label for either x or theoperation in its prev set, in whi
h 
ase both will have \labels" of 1.Invariant 7.10 If (id ; id 0) 2 CSC (ops) then label r(id) � label r(id 0), and Lm(id) � Lm(id 0) for allm 2 
hannel rr0 .Proof: We prove this by indu
tion on the length of an exe
ution. The base 
ase is trivial sin
eops is empty. If the invariant holds in s and s ��!s0 then we show that it holds in s0. The invariantis maintained trivially ex
ept by the following a
tions:1. If � = do itr(x; l) then for id 2 x:prev � s:doner[r℄:id , we have s0:label r(id ) = s:label r(id ) <l = s0:label r(x:id). If (x:id ; id) 2 CSC (s0:ops) for some id 2 s0:ops :id then s0:ops = s:ops .By the indu
tive assumption and Invariant 7.5, s0:label r(id) = s:label r(id) � s:label r(x:id ) =1 > l = s0:label r(x:id).2. If � = sendrr0(m) then Lm(id) = s:label r(id) � s:label r(id 0) = Lm(id 0) by the indu
tiveassumption.3. If � = re
eiver0r(m) then by the indu
tive assumption, s0:label r(id) = min(s:label r(id); Lm(id)) �min(s:label r(id 0); Lm(id 0)) = s0:label r(id 0).The next invariant says that the lo
al 
onstraints at any repli
a are 
onsistent with the 
lient-spe
i�ed 
onstraints.Invariant 7.11 TC(CSC (ops) [ l
r) is a stri
t partial order.Proof: TC(CSC (ops) [ l
r) is transitive by de�nition, so we only need to show it is irre
exive.Suppose, for 
ontradi
tion, that (id ; id) 2 TC(CSC (ops) [ l
r), and let l = label r(id). Then thereexist id0; id2; : : : ; idk su
h that id = id0 = idk and (id i�1; id i) 2 CSC (ops) [ l
r for i = 1; : : : ; k.By Invariant 7.10 and the de�nition of l
r, l = label r(id0) � label r(id1) � � � � � label r(idk) = l,so label r(id i) = l for i = 0; : : : ; k. Thus, (id i�1; id i) =2 l
r for i = 1; : : : ; k, and so (id i�1; id i) 2CSC (ops) � CSC (requested ) for all i. However, this implies (id ; id) 2 TC(CSC (requested )), whi
h
ontradi
ts Invariant 4.2.The next invariant is a 
orollary of the previous one. It says that the system 
onstraints are
onsistent with the 
lient-spe
i�ed 
onstraints.Invariant 7.12 TC(CSC (ops) [ s
) is a stri
t partial order.Proof: This is immediate from Invariant 7.11 sin
e TC(CSC (ops) [ s
) � TC(CSC (ops) [ l
r)for any r, and it is transitive by de�nition. 24



7.3 Invariants for Lo
al ConstraintsIn this subse
tion, we show that at ea
h repli
a, di�erent operations have di�erent labels. However,operations at di�erent repli
as may have the same label. Re
all that the set of operations in opswith label l is ops jl. We �rst show that operations with labels from Lr are done at r.Invariant 7.13 If l 2 Lr then ops jl � doner[r℄.Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the initial statebe
ause ops is empty. If it is true in s and s ��!s0 then s0:ops jl � s:ops jl � s:doner[r℄ � s0:doner[r℄,unless � = do itr(x; l), in whi
h 
ase, s0:ops jl = s:ops jl [ fxg � s:doner[r℄ [ fxg = s0:doner[r℄.The next invariant says that all operations with label l 
an be ordered so that if an operationhas label l at a repli
a or in a message, then all earlier operations, a

ording to the ordering, havesmaller labels at that repli
a or in that message. This order 
orresponds to the order in whi
h theoperations are �rst assigned the label l.Invariant 7.14 There is a total order �l on ops jl su
h that if y �l x thenlabel r(x:id) = l =) label r(y:id) < l for all rLm(x:id) = l =) Lm(y:id) < l for m 2 Srr0 
hannel rr0Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the initialstate sin
e ops jl is empty. If it is holds in s and s ��!s0 then s0:ops jl = s:ops jl unless � = do itr(x; l)where l 2 Lr. Let �l be a total order satisfying the invariant in s.1. If � = do itr(x; l) then x =2 s:doner[r℄ � s:ops jl by Invariant 7.13. Sin
e s:label r(y:id) < l fory 2 s:doner[r℄, we have �l [f(y; x) : y 2 s:ops jlg is a total order on s0:doner[r℄ satisfying theinvariant in s0.2. If � = sendrr0(m) then for y �l x, Lm(x:id) = s:label r(x:id) = l =) Lm(y:id) =s:label r(y:id ) < l by the indu
tive assumption. So �l satis�es the invariant in s0.3. If � = re
eiver0r(m) then for y �l x, if s0:label r(x:id ) = l then s:label r(x:id) = l or Lm(x:id ) =l, so by the indu
tive assumption, s0:label r(y:id) = min(s:label r(y:id ); Lm(y:id)) < l.4. For all other a
tions, �l 
ontinues to satisfy the invariant in s0.The next invariant says that the lo
al 
onstraints totally order the operations done at a repli
a.Invariant 7.15 �l
r totally orders doner[r℄.Proof: For x; y 2 doner[r℄, if x 6�l
r y ^ y 6�l
r x then label r(x:id) = label r(y:id) = l <1, by thede�nition of �l
r and Invariant 7.5. Let �l be a total order satisfying Invariant 7.14. Then x 6�l yand y 6�l x, so x = y.The next invariant says values 
omputed by a repli
a are 
onsistent with both the 
lient-spe
i�ed
onstraints and the lo
al 
onstraints. 25



Invariant 7.16 For x 2 doner[r℄, valset(x; doner[r℄;�l
r) = valset(x; ops ;�R), whereR = TC(CSC (ops)[l
r).Proof: Sin
e l
r � R, by Lemmas 2.5 and 2.6, ; 6= valset(x; ops ;�R) � valset(x; ops ; l
r). ByLemma 2.7, valset(x; ops ; l
r) = fval(x; doner[r℄; l
r)g, sin
e l
r is a total order on doner[r℄ byInvariant 7.15, and x 2 doner[r℄ ^ y 2 ops � doner[r℄ =) x �l
r y by Invariant 7.5. Thus,valset(x; doner[r℄;�l
r) = valset(x; ops ;�R).7.4 Invariants for Stri
t OperationsFinally, we prove several invariants that guarantee that stri
t operations re
eive the \
orre
t"values, that is, values 
onsistent with the eventual total order.The next invariant says that if an operation has label l 2 Lr then the label for that operationat repli
a r is no larger than l.Invariant 7.17 For l 2 Lr, if label r0(id) = l or Lm(id) = l for some m 2 Si;i0 
hannel ii0 , thenlabel r(id) � l.Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the initialstate be
ause label r(id ) =1 for all id 2 I. Suppose it holds in s and s ��!s0. Sin
e s0:label r(id) �s:label r(id), it is suÆ
ient to show that l � s:label r(id).1. If s0:label r0(id) = l for r0 6= r then either s:label r0(id) = l � s:label r(id) by the indu
tiveassumption, or � = re
eiveir0(m) for some i and m 2 s:
hannel ir0 with Lm(id) = l. In this
ase, Lm(id) = l � s:label r(id), again by the indu
tive assumption.2. If Lm(id) = l form 2 Si;i0 s0:
hannel ii0 then eitherm 2 Si;i0 s:
hannel ii0 , or � = sendii0(m) forsome i and i0 and s:label i(id) = l. In either 
ase, l � s:label r(id) by the indu
tive assumption.Suppose r has its own label l 2 Lr for an operation and some larger label for another operation.The next invariant says that anyone that knows that r has done the se
ond operation has a labelno larger than l for the �rst operation.Invariant 7.18 If label r(id 0) = l 2 Lr and l � label r(id) thenid 2 doner0 [r℄:id =) label r0(id 0) � lid 2 Dm:id =) Lm(id 0) � l for m 2 
hannel rr0id 2 Sm:id =) Lm(id 0) � l for m 2 Si 
hannel ir0Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the initial statebe
ause label r(id 0) = 1 for all id 0 2 I. Suppose it holds in s and s ��!s0 and that s0:label r(id 0) =l 2 Lr and l � s0:label r(id). 26



1. If � = do itr(x; l0) with x:id = id then x =2 s:doner[r℄, so by Invariant 4.1, id =2 s:doner[r℄:id .Thus, id =2 s:doner0 [r℄:id by Invariant 7.4, and id =2 Dm:id for m 2 s:
hannel rr0 by In-variant 7.3. Also, Sm � s:stable i[i℄ � s:done i[r℄ � s:doner[r℄ for m 2 Si s:
hannel ir0 byInvariants 7.3, 7.2 and 7.4. So this invariant holds trivially in s0.2. If � = do itr(x; l) with x:id = id 0 then s:label r(id) � l =) id =2 s:doner[r℄:id , so followingthe reasoning above, this invariant holds trivially in s0.3. If � = re
eiveir(m) then s0:label r(id 0) 2 Lr =) s0:label r(id 0) = s:label r(id 0), sin
e byInvariant 7.17, if Lm(id 0) 2 Lr then s:label r(id 0) � Lm(id 0). So this invariant 
ontinues tohold.4. If � = sendrr0(m) then Dm = doner[r℄, and Lm = label r, and Sm � Dm, so the invariant
ontinues to hold.5. If � = re
eiverr0(m) then id 2 s0:doner0 [r℄:id = s:doner0 [r℄:id [Dm:id =) s0:label r0(id 0) =min(s:label r0(id 0); Lm(id 0)) � l, so the invariant 
ontinues to hold.6. If � = sendir0(m) for i 6= r then Sm = s:stablei[i℄ � s:donei[r℄ by Invariant 7.2, so by theindu
tive assumption (with r0 = i), id 2 Sm:id =) Lm(id 0) = s:label i(id 0) � l.7. If � = re
eiveir0(m) for i 6= r then id 2 s0:doner0 [r℄:id = s:doner0 [r℄:id [ Sm:id =)s0:label r0(id 0) = min(s:label r0(id 0); Lm(id 0)) � l, so the invariant 
ontinues to hold.The �nal three invariants are about the labels for stable operations, in
luding those that areordered before operations in stabler[r℄, but not yet in stabler[r℄. The �rst says that r has thesystem-wide minimum label for any operation with a smaller label than any operation stable at r.Invariant 7.19 If id 2 stabler[r℄:id andminlabel (id 0) � minlabel(id) then label r(id 0) = minlabel (id 0).Proof: Sin
e id 2 ops , we have minlabel (id 0) � minlabel (id) < 1, so minlabel (id 0) = l 2 Lr0 forsome r0 by Invariant 7.5. By Invariant 7.17, label r0(id 0) = l. Sin
e l � minlabel (id) � label r0(id)and, by Invariant 7.2, id 2 stabler[r℄:id � doner[r0℄:id , we have label r(id 0) � l = minlabel (id 0) byInvariant 7.18. Thus, label r(id 0) = minlabel (id 0).The next invariant says if every repli
a has the minimum label for an operation, and it is lessthan the minimum label for another operation, then the �rst operation pre
edes the se
ond in thesystem 
onstraints.Invariant 7.20 If label r(id) = minlabel(id) < minlabel (id 0) for all r then (id ; id 0) 2 TC(CSC (ops)[s
).Proof: For all r, we have (id ; id 0) 2 l
r sin
e minlabel (id 0) � label r(id 0) for all r. And forall m 2 Sr;r0 
hannel r0r, wea also have (id ; id 0) 2 m
r(m), sin
e minlabel(id 0) � Lm(id 0). Thus,(id ; id 0) 2 s
 � TC(CSC (ops) [ s
).The next invariant says if an operation is stable at all repli
as then operations are ordered toit by the system and 
lient-spe
i�ed 
onstraints a

ording to their minimum labels.27



Invariant 7.21 If id 2 Tr stabler[r℄:id then (id ; id 0) 2 TC(CSC (ops) [ s
) () minlabel (id) <minlabel (id 0).Proof: By Invariant 7.19, label r(id ) = minlabel (id) for all r. If minlabel(id) < minlabel(id 0) then(id ; id 0) 2 TC(CSC (ops) [ s
) by Invariant 7.20. If minlabel (id) = minlabel (id 0) then label r(id) =label r(id 0) for some r, so by Invariants 7.15 and 4.1, id = id 0, and (id ; id 0) =2 TC(CSC (ops) [ s
)by Invariant 7.12. Otherwise, minlabel(id 0) < minlabel (id), so by Invariant 7.19, label r(id 0) =minlabel (id 0) for all r. Thus, by Invariant 7.20, (id 0; id) 2 TC(CSC (ops)[s
), and by Invariant 7.12,(id ; id 0) =2 TC(CSC (ops) [ s
).8 SimulationTo show that ESDS-Alg meets the spe
i�
ation ESDS-II when the 
lients are well-formed, weestablish a simulation [20℄ from A = ESDS-Alg �Users to S = ESDS-II �Users.We begin by extending some earlier results about system 
onstraints to the system-wide partialorder po. Re
all that po is the relation on ops indu
ed by TC(CSC (ops) [ s
). We �rst note thatpo is a partial order on ops .Invariant 8.1 For A: po is a stri
t partial order with span(po) � ops .Proof: Immediate from the de�nition of po and Invariant 7.12.The following lemma extends Lemma 7.9 to po.Lemma 8.2 For any rea
hable state s of A, if s ��!s0 then s:po � s0:po.Proof: Immediate from Lemmas 2.4 and 7.9 and the fa
t that s:ops � s0:ops .The next invariant says that if an operation is stable at all repli
as, its relation to other opera-tions in po is determined by their minimum labels.Invariant 8.3 For A: If x 2 Tr stabler[r℄ and y 2 ops then x �po y () minlabel (x:id) <minlabel (y:id).Proof: Immediate from the de�nition of po and Invariant 7.21.We now prove the main result, that A implements S.Theorem 8.4 The relation F in Figure 9 is a simulation from A to S.Proof: To show that F is a simulation from A to S, we show that for ea
h start state of A, thereexists a 
orresponding start state of S, and that this 
orresponden
e is preserved by ea
h step ofA. If s is a start state of A, then requested and responded are empty, as are wait
 and rept 
 areempty for all 
, and r
vd r, doner[i℄, label r, and stabler[i℄ for all repli
as r and i. The start state28



F is a relation between states in A and states in S su
h that u 2 F [s℄ if and only if:� u:requested = s:requested� u:responded = s:responded� u:wait = S
 s:wait
� u:rept = S
 s:rept
 [ s:potential rept
� u:ops = s:ops = Sr s:doner[r℄� u:po � s:po, the partial order indu
ed by TC(CSC (s:ops) [ s:s
) on s:ops� u:stabilized = Tr s:stabler[r℄Figure 9: Forward simulation from the algorithm to the spe
i�
ationof S 
orresponds to this state sin
e it has requested and responded , and ops , po, and stabilized allempty, has wait and rept empty.To establish that the simulation is preserved by every step of the implementation, suppose thats and u are rea
hable states of A and S respe
tively su
h that u 2 F [s℄ and that s ��!s0. We showthat there exists a state u0 2 F [s0℄ su
h that there is an exe
ution fragment of S from u to u0 thathas the same external image as �.1. If � = request(x), this simulates the same a
tion in the spe
i�
ation, whi
h has the sameexternal image. The request(x) a
tion is enabled in the spe
i�
ation be
ause u:requested =s:requested . The 
hange in state of ea
h automaton is exa
tly to add x to wait 
 in A, to waitin S, and to requested in both, preserving the simulation as required.2. If � = send
r(h\request"; xi) then we show u 2 F [s0℄, whi
h appears the same externally sin
ethe send a
tion is internal. This is true sin
e the send a
tion only adds h\request"; xi to
hannel 
r, whi
h does not appear in the simulation.3. If � = re
eive
r(h\request"; xi) then we show u 2 F [s0℄, whi
h appears the same exter-nally sin
e the re
eive a
tion is internal. This is true sin
e the re
eive a
tion only deletesh\request"; xi from 
hannel 
r, and adds x to r
vd r, whi
h do not appear in the simulation.4. If � = do itr(x; l) then we have two 
ases:(a) If x 2 s:wait
 for some 
 then we show that enter(x; s0:po) is enabled in u and u0 2 F [s0℄for u0 su
h that u enter(x;s0:po)��������!u0. First we verify that enter(x; s0:po) is enabled in u:� x 2 s:wait 
 � u:wait� x:prev � s:doner[r℄:id � Si s:done i[i℄:id = u:ops :id� span(s0:po) � s0:ops :id = s:ops :id [ fx:idg by Invariant 8.1.� u:po � s:po � s0:po by Lemma 8.2.� CSC (fxg) � s0:po sin
e x 2 s0:ops and CSC (s0:ops) � s0:po.� For y 2 u:stabilized = Ti s:stable i[i℄, if s0:minlabel (x:id ) � s0:minlabel (y:id) then byInvariant 7.19, s0:minlabel (x:id ) = s0:label r(x:id ) = l > s:label r(y:id) = s:minlabel (y:id),whi
h is a 
ontradi
tion. So s0:minlabel (y:id) < s0:minlabel (x:id), and by Invari-ant 8.3, (y:id ; x:id ) 2 s0:po, as required.29



The a
tions have the same external image sin
e both are internal. The do it and entera
tions do not 
hange wait , rept , potential rept , stable and stabilized , and u0:ops =u:ops [ fxg = Si s:done i[i℄ [ fxg = Si s0:done i[i℄, and u0:po = s0:po , so u0 2 F [s0℄ asrequired.(b) Otherwise, we 
he
k that u 2 F [s0℄. The wait , rept , potential rept , and stable variablesare un
hanged by do it. Sin
e x 2 s:r
vd r � S
 s:wait 
, we have x 2 s:ops by Invari-ants 7.6 and 7.8, so s0:ops = s:ops = u:ops . Finally, u:po � s:po � s0:po by Lemma 8.2.5. If � = sendr
(h\response"; x; vi) then let u0 be su
h that u 
al
ulate(x;v)��������!u0. These have the sameexternal image be
ause they are both internal.First we verify that 
al
ulate(x; v) is enabled in u:� x 2 s:doner[r℄ � u:ops� x:stri
t =) x 2 Ti s:stabler[i℄ � Ti s:stablei[i℄ = u:stabilized by Invariant 7.4 and thesimulation relation.� v 2 valset(x; s:doner[r℄;�s:l
r) = valset(x; u:ops ;�u:po) by Invariant 7.16 and Lemma 2.6,sin
e u:po � s:po � TC(CSC (s:ops) [ l
r) and u:ops = s:ops .To see that u0 2 F [s0℄, note that s0:
hannel r
 = s:
hannel r
 [ fh\response"; x; vig. If x 2s:wait 
 � u:wait then u0:rept = u:rept [ f(x; v)g, and otherwise, u0 = u, ea
h as required bythe 
orresponding state 
hange from s to s0.6. If � = re
eiver
(h\response"; x; vi) then we show that u 2 F [s0℄. This follows be
auses0:rept 
 = s:rept 
 [ f(x; v)g if x 2 s:wait
 and otherwise, s0:rept 
 = s:rept
.7. If � = response(x; v) then this simulates the same a
tion in the spe
i�
ation, whi
h hasthe same external image. The response(x; v) a
tion is enabled in the spe
i�
ation be
ausex 2 s:wait
 � u:wait and (x; v) 2 s:rept
 � u:rept , where 
 = 
lient(x:id). (Note thatx =2 O
0 � s:wait 
0 and (x; v) =2 O
0 � V � s:rept 
0 for 
0 6= 
, sin
e a front end only keepsoperations for its 
lient.) The 
hange in state of ea
h automaton is to remove x from wait
in A and from wait in S, and to remove all pairs (x; v0) from rept 
 in A and from rept in S,preserving the simulation as required.8. If � = sendrr0(m) then we show that u 2 F [s0℄. Sin
e s0 = s ex
ept that s0:
hannel rr0 =s:
hannel rr0 [ fmg, we need only 
he
k that u:po � s:po � s0:po, whi
h follows fromLemma 8.2.9. If � = re
eiver0r(m) then let u0 and u00 be su
h that u add 
onstraints(s0:po)�������������!u0 stabilize(x1)�������!� � � stabilize(xk)�������!u00,where fx1; : : : ; xkg = Ti s0:stable i[i℄.By Lemma 8.2, we know that add 
onstraints(s0:po) is enabled in u, and u0:po = s0:po. Sin
ethe stabilize a
tion only 
hanges the stabilized 
omponent, whi
h is not used in the pre
on-dition, it suÆ
es to 
he
k that stabilize(x) is enabled in u0 for ea
h x 2 Ti s0:stablei[i℄. Forany y 6= x, if s0:minlabel (y:id) < s0:minlabel(x:id ) then by Invariant 8.3, y �s0:po x and ifs0:minlabel (x:id) < s0:minlabel (y:id) then x �s0:po y. So we have y �u0:po x _ x �u0:po y. ByInvariant 8.3, if y �s0:po x then s0:minlabel (y:id) < s0:minlabel (x:id ), and by Invariant 7.19,s0:label r(y:id) = s0:minlabel (y:id) for all r. Thus, for y; z 2 s:ops j�s0:pox, if minlabel (y:id) <minlabel (z:id ) then by Invariant 7.20, y �s0:po z.30



9 Performan
e and Fault-Toleran
eWe now derive time bounds on the response and stabilization time for requests, assuming timebounds on the time to do the underlying a
tions. Initially, we assume that lo
al 
omputationtime is negligible, that the 
hannels are reliable, and that there is a bound on the time to delivermessages and the time between sending gossip messages. Later, we 
onsider some 
ases where theseassumptions are relaxed, and also some methods to tolerate faulty pro
esses and 
hannels, and howthese methods a�e
t performan
e.9.1 Basi
 Timing De�nitions and AssumptionsTo prove performan
e guarantees, we need to extend the model to in
lude time. For a 
ompletelyformal treatment, we 
ould use a model su
h as the general timed automaton model [18, 21℄. Forthis paper, however, a restri
ted treatment suÆ
es, and allows us to avoid several te
hni
al details.For example, we only 
onsider admissible exe
utions, in whi
h time advan
es to in�nity.4 Ratherthan augment the automata with time dire
tly, we annotate exe
utions with the times of ea
hevent.Spe
i�
ally, we de�ne a timed exe
ution of an automaton A by asso
iating a non-negative real-valued time with ea
h event in an admissible exe
ution of A. Formally, � = s0(�1; t1)s1(�2; t2) � � �is a timed exe
ution of A if s0�1s1�2 � � � is an exe
ution of A, ti � ti+1 for all i, and ti ! 1 asi!1. We say that the event �i o

urs at time ti in �.A predi
ate holds in � at time ti if it holds on si. Be
ause several events may o

ur at thesame time, it is possible for 
ontradi
tory predi
ates to hold at the same time. We also say thata predi
ate holds by time t if it holds at some time t0 � t. We typi
ally reserve this usage forpredi
ates that on
e true, remain true.We now formalize the timing assumptions for A. Let dij be an upper bound on the time todeliver messages from i to j. That is, if a sendij event o

urs at time t, the 
orresponding re
eiveijevent must o

ur by time t+ dij . Let df be the maximum of all d
r and dr
 bounds, and dg be themaximum of all drr0 bounds. Thus, df is an upper bound on the delivery time for messages betweenfront ends and repli
as, and dg is an upper bound on the delivery time for gossip messages. Wealso de�ne a quantity 
alled the gossiping delay . The gossiping delay grr0 for any two repli
as rand r0 is an upper bound on the time between su

essive sendings of gossip messages from r to r0,and g is the maximum of all grr0 bounds.We assume that lo
al 
omputation time is negligible, so that ea
h front end immediately relaysea
h request to some repli
a, and 
omputing the results of ea
h operation, and pro
essing gossipmessages is instantaneous. We also assume that repli
as immediately send out response messageswhen possible, and that front ends immediately respond to 
lients when possible.Formally, a timed exe
ution � satis�es the timing assumptions in an interval I if for allt 2 I:1. If a request(x) event o

urs by t then a send
r(h\request"; xi) event o

urs by t for some r4In the literature, admissible exe
utions may be �nite if only input a
tions are enabled in the �nal state. However,sending gossip messages is always enabled in ESDS-Alg , so we need not 
onsider this possibility.31



and 
 = 
lient(x:id ).2. If do itr(x; �) is enabled at t then x is done at r by t.3. If sendr
(h\response"; x; �i) is enabled at t then a sendr
(h\response"; x; �i) event o

urs by t.4. If response(x; �) is enabled at t then a response(x; �) event o

urs by t.5. For all repli
as r and r0, if t � grr0 then at least one sendrr0(m) event o

urs in (t� grr0 ; t℄.6. If a sendij(m) event o

urs by t� dij then the 
orresponding re
eiveij(m) event o

urs by t.The interval [0;1) is assumed if no interval is expli
itly spe
i�ed.Note that this de�nition also 
onstrains events enabled before the interval. For example, if �satis�es the timing assumptions in [t1; t2℄ and a message is sent from i to j at time t < t1, then themessage must be delivered by max(t1; t+ dij) if t+ dij � t2.If several operations are re
eived but not done at a repli
a, doing some of them may allow othersto be done. It is 
onvenient to 
hara
terize these operations. We say that an operation is readyat repli
a r if x 2 r
vd r and y �
 x =) y 2 r
vd r for all y 2 requested . Thus, if x is ready at rthen it has been re
eived by r and all operations spe
i�ed by its prev set are also ready at r. Thefollowing lemma says that an operation is done as soon as it is ready.Lemma 9.1 In any timed exe
ution of A that satis�es the timing assumptions in an interval I, ifx is ready at repli
a r at time t 2 I then it is done at r by t.Proof: Immediate from the se
ond 
ondition of the timing assumptions, sin
e �
 indu
es a stri
tpartial order on r
vd r.9.2 Performan
e Without FailuresAssuming the lo
al 
omputation time is negligible and that there are no failures, the response timefor a nonstri
t request with an empty prev set is simply the roundtrip time between the front endand a repli
a. For stri
t requests, or requests with nonempty prev sets, the analysis is not so easy.The basi
 intuition is that an operation may need to wait for one round of gossiping to re
eive allthe operations spe
i�ed in its prev set. A stri
t operation must be in Ti stabler[i℄ for some repli
a rbefore it may generate a response. This may take two extra rounds of gossiping, one for all repli
asto know that it is done at some repli
a, and thus to be stable at all repli
as, and one more for r tolearn this.We �rst prove the following lemma, whi
h bounds the time after an operation is requested untilit is done at every repli
a, if the timing assumptions are satis�ed.Lemma 9.2 If � is a timed exe
ution of A that satis�es the timing assumptions and x is requestedby time t, then x is done at every repli
a by time t+ df + g + dg.Proof: (Sket
h) Suppose an operation x is requested by 
lient 
 at time t. A request message issent immediately to some repli
a r, so by time t+ d
r, we have x 2 r
vd r. For every other repli
a32



r0, there is at least one sendrr0(m) event in (t+d
r; t+

r+grr0 ℄ with x 2 Rm. Therefore, r0 re
eivesx by t+ d
r + grr0 + drr0 , and every repli
a re
eives x by t+ df + g + dg.Be
ause the users are well-formed, any operation required to pre
ede xmust have been requestedat time t0 � t, and by the reasoning above, re
eived by every repli
a by t0 + df + g + dg. So, byt + df + g + dg, x is ready at every repli
a, and by Lemma 9.1, x is done at every repli
a byt+ df + g + dg.For any operation x, we de�ne the upper bound on the response time for x to be:Æ(x) = 8><>:2df if :x:stri
t ^ x:prev = ;2df + g + dg if :x:stri
t ^ x:prev 6= ;2df + 3(g + dg) if x:stri
tThen we summarize the results in the following theorem:Theorem 9.3 If � is a timed exe
ution of A that satis�es the timing assumptions, and x isrequested by time t, then a response(x; v) event o

urs within [t; t+ Æ(x)℄ in �.Proof: (Sket
h) Suppose an operation x is requested at time t. A request message is sentimmediately to some repli
a r, so by time t + df, we have x 2 r
vd r. If x:prev is empty then aresponse message is sent immediately, and a response(x; v) event o

urs by t+ 2df. Otherwise, byLemma 9.2, x is done at every repli
a by t + df + g + dg. If x is not stri
t, r sends a responsemessage immediately, and a response(x; v) event o

urs by t+ 2df + g + dg.For any two repli
as i and i0, there is at least one sendi0i(m) event with x 2 Dm in (t+ df + g+dg; t+ df + 2g + dg℄. So by t+ df +2(g + dg), we have x 2 Ti0 done i[i0℄ = stablei[i℄ for every repli
ai. And again, we have x 2 Ti stabler[i℄ by t+ df +3(g + dg). Thus, a response(x; �) event o

urs byt+ 2df + 3(g + dg).If a 
lient only spe
i�es dependen
ies on operations it requested, and its front end always
ommuni
ates with the same repli
a, then every operation requested by that 
lient is ready as soonas it is re
eived by that repli
a, and so the delay for nonstri
t operations is redu
ed to at most 2df.9.3 Fault-Toleran
eThe algorithm does not depend on any timing assumptions for 
orre
tness, nor does it restri
t theorder of delivery of messages. Thus, slow pro
esses and delayed message delivery do not a�e
t
orre
tness. They do, of 
ourse, a�e
t performan
e. However, the analysis in the failure-free 
aseholds starting from any rea
hable state of the system. Thus, even if some part of the system failsfor a period of time, as long as it does not make any false 
omputations, then the performan
eanalysis above holds. This is 
aptured by the following theorem:Theorem 9.4 Suppose � is a timed exe
ution of A that satis�es the timing assumptions in theinterval [t;1). If x is requested by t then a response(x; v) event o

urs within [t; t+ Æ(x)℄ in �.Proof: (Sket
h) Note that Lemma 9.2 is true even if the timing assumptions are only satis�ed inthe interval [t; t + df + g + dg℄, and that a request message is sent to some repli
a by time t. Therest of the proof follows exa
tly the proof of Theorem 9.3.33



It is easy to see that even message loss does not a�e
t any safety properties, be
ause thealgorithm 
annot distinguish lost messages from merely delayed ones. Alternatively, we 
ould showthat all the invariants, and the simulation relation, are preserved with the addition of an a
tion thatsimply removes a message from a 
hannel. (This would be an internal a
tion, otherwise identi
alto the re
eive a
tion.) Similarly, it is easy to show that dupli
ate messages do not 
ompromise anysafety properties.If repli
as may 
rash and restart, but there is no volatile memory, then a 
rash is indistinguish-able from message loss to any other pro
ess, and so safety is still preserved. If memory is volatile,most of the state 
an be re
onstru
ted from the gossip messages. A repli
a re
overs by requestingnew gossip messages and waiting for a response from ea
h repli
a before resuming the algorithm.The key to establishing 
orre
tness is that after re
overy, the repli
a should have a label for ea
hoperation that is less than or equal to the label it had for that operation before the 
rash. This isonly a problem if the smallest label it had prior to the 
rash was generated lo
ally, so only thoselabels need to be kept in stable storage. Other methods 
an also be used to ensure this property,but these are beyond the s
ope of this paper.10 Optimizations of the Abstra
t AlgorithmThe algorithm we presented so far deals with the fundamental problems of maintaining 
onsisten
yin a distributed, repli
ated data servi
e, and is stated at a high level, ignoring important issues oflo
al 
omputation, lo
al memory requirements, message size, and 
ongestion. In this se
tion, weexplore some ways to improve the algorithm to address these issues better.10.1 Memoizing Stable StateIn de�ning the ESDS-Alg automaton, we were not 
on
erned with modelling lo
al 
omputation,and the value returned by a repli
a is derived by 
omputing all the pre
eding operations in thelabel r order ea
h time a response is issued by that repli
a. Of 
ourse, this is 
omputationallyprohibitive, and a real implementation would do some sort of memoization of the state of the datato avoid redundant 
omputation. In parti
ular, on
e an operation has stabilized, as long as itsvalue is remembered, it never needs to be re
omputed sin
e its pla
e in the eventual total order is�xed. However, be
ause a repli
a may temporarily misorder some operations, some re
omputationof unstable operations may still be ne
essary.Operations should be memoized in the order they appear in the eventual total order. Thus,an operation may be memoized by a repli
a only if its pla
e in the eventual total order is alreadyknown at that repli
a. This is true not only of the stable operations, but also of those operationsin the \gaps" between the stable operations. We say that an operation is solid at repli
a r if itis stable at r or if it is lo
ally 
onstrained to pre
ede some operation stable at r. We introdu
e aderived state variable solid r = Sy2stabler[r℄ doner[r℄j�l
ry to express the set of operations solid at r.Noti
e that solid r does not have the \gaps" that stabler[r℄ might have.Invariant 10.1 If stabler[r℄ 6= ; then solid r = doner[r℄j�l
ry, where y = max�l
r stabler[r℄.Proof: By Invariant 7.15, �l
r is a total order on doner[r℄, so y = max�l
r stabler[r℄ is well-de�ned.34



If x 2 solid r then x �l
r y0 for some y0 2 stabler[r℄. Thus, x �l
r y0 �l
r y, so x 2 doner[r℄j�l
ry.The eventual total order is determined by the labels that the repli
as ultimately agree upon forea
h operation. The following lemma says that on
e an operation is solid at a repli
a, its label atthat repli
a does not 
hange.Lemma 10.2 For any rea
hable state s of A, if id 2 s:solid r:id and s ��!s0 then s0:label r(id) =s:label r(id).Proof: This is immediate from the de�nition of the automaton unless � = do itr(x; l) withx:id = id or � = re
eiver0r(m). The �rst 
ase is impossible by Invariant 4.1, sin
e id 2 doner[r℄:idby Invariant 7.2. By the de�nition of solid r, there exists id 0 2 stabler[r℄:id su
h that s:label r(id) �s:label r(id 0). By Invariant 7.19, s:label r(id 0) = s:minlabel(id 0), and sin
e s:minlabel(id ) � s:label r(id) �s:minlabel (id 0), we also have s:label r(id) = s:minlabel (id). If � = re
eiver0r(m) then by Invari-ant 7.3, Lm(id ) � s:label r0(id) � s:minlabel (id) = s:label r(id), and thus s0:label r(id) = s:label r(id).We modify the automaton for repli
a r as shown in Figure 10 to model su
h memoizationexpli
itly. We augment the state of ea
h repli
a with three variables, memoized r, mv r and msr.Changes to StateDerived variable: solidr = Sy2stabler [r℄ doner[r℄j�l
ry; the operations solid at rmemoized r, a subset of O; initially empty; the operations that have been memoized by rmsr 2 �, initially �0; the state resulting from doing all the operations in memoizedrmv r : memoizedr ! V , initially null; the values of the memoized operations in the eventual total orderChanges to A
tionsOutput sendr
(h\response"; x; vi)Pre: x 2 pendingr \ doner[r℄x:stri
t =) x 2 Ti stabler[i℄if x 2 memoizedrthen v = mvr(x)else v 2 valsetmsr (x; doner[r℄�memoizedr;�l
r )
 = 
lient(x:id)E�: pendingr  pendingr � fxg
Internal memoizer(x)Pre: x 2 solidr �memoized rdoner[r℄j�l
rx � memoizedrE�: msr;mvr(x) �(msr; x:op)memoizedr  memoizedr [ fxg

Figure 10: Memoizing operations: Changes to repli
a rThe set memoized r 
ontains the operations that have been memoized by r. The mv r fun
tion storesthe values for all the operations in memoized r, and msr re
e
ts the state of the data after applyingthose operations. We modify the a
tion that 
omputes return values to use mv r for the memoizedoperations, and to start from msr, rather than the initial state, for later operations.We also add a memoizer a
tion whi
h nondeterministi
ally memoizes operations. An operation
an be memoized by r if it is solid at r and all operations with smaller labels at r have alreadybeen memoized. This a
tion 
omputes the value for the operation being memoized, and updatesmsr appropriately.Let ESDS-Alg 0 be the 
omposition of the re�ned repli
a automata and the original front endand 
hannel automata. It is not diÆ
ult to prove that ESDS-Alg and ESDS-Alg 0 are equivalent.35



The key lemmas are the following invariants of ESDS-Alg 0.Invariant 10.3 memoized r � solid r.Proof: This follows immediately from the automaton de�nition, by indu
tion on the length of anexe
ution.Invariant 10.4 msr = out
ome(memoized r;�l
r), and mv r(x) = val(x; doner[r℄;�l
r) for all x 2memoized r.Proof: We prove this by indu
tion on the length of an exe
ution. This is trivial in the initial statesin
ememoized r is empty andmsr = �0. If the invariant holds in s and s ��!s0 then by Invariants 10.3and 7.19, s:label r(id) = s:minlabel(id) for all id 2 s:memoized r:id , so the partial order indu
edby l
r on s:memoized r is un
hanged. So unless � = memoizer(x) the invariant 
ontinues to hold.If � = memoizer(x) then s0:l
r = s:l
r and y �s:l
r x for all y 2 s:memoized r, so s0:msr =�(s:msr; x:op):s = �(out
ome(s:memoized r;�s:l
r); x:op):s = out
ome(s0:memoized r;�s0:l
r) ands0:mv r(x) = �(s:msr; x:op):v = val(x; s0:doner[r℄;�s0:l
r).Invariant 10.5 valsetmsr(x; doner[r℄ � memoized r;�l
r) = valset(x; doner[r℄;�l
r) for all x 2doner[r℄�memoized r.Proof: Immediate from Invariant 10.4 and Lemma 2.7.10.2 Redu
ing Memory RequirementsIt is also possible to signi�
antly redu
e some lo
al memory requirements impli
it in the abstra
talgorithm. In parti
ular, ESDS-Alg spe
i�es that for every operation, all the information spe
i�edby the 
lient, plus the minimum label, is maintained at ea
h repli
a. However, the prev sets areonly used by the do it a
tion, and on
e a repli
a has an operation in its doner[r℄ set, it may freethat memory.Memoizing stable state 
an also have a positive impa
t on the memory requirements. Thisfollows from the same observation that led us to memoize the stable state to redu
e lo
al 
om-putation: stable operations do not have to be re
omputed, as long as we remember their returnvalues. This means that on
e an operation is memoized, all the information about it 
an be purgedfrom the memory, ex
ept its identi�er and return value. Furthermore, if a repli
a knows that itwill never need to respond with the value of an operation again, it 
an purge even that from itsmemory. For example, if 
ommuni
ation is perfe
tly reliable, then on
e a response is sent to a frontend, it will never need to be sent again, even if another request for the same operation is re
eived.When 
ommuni
ation is not reliable, a
knowledgements 
an be used to a
hieve the same e�e
t.Thus, while ESDS-Alg 0 has more state variables than ESDS-Alg, a reasonable implementation ofESDS-Alg 0 will in pra
ti
e be more memory eÆ
ient as well.Unfortunately, the identi�ers 
annot be so readily dispensed with, sin
e they are required in 
asethey are in
luded in the prev sets of future operations. However, by imposing some stru
ture onthese identi�ers, it is possible to summarize them so they do not take linear spa
e with the number36



of operations issued. A simple time-based strategy 
an be used to a
hieve this. For example, ifthe identi�ers in
luded the date of request, and all operations are guaranteed to be stable withina 
ertain time period, then all identi�ers older than this time may be expunged from the memory.A more sophisti
ated approa
h 
an involve logi
al timestamps, su
h as the multipart timestampsof [15℄.10.3 Exploiting Commutativity AssumptionsThe algorithm of [15℄ is intended to be used when most of the operations require only 
ausalordering, but it allows two other types of operations whi
h provide stronger ordering 
onstraints.The ordering 
onstraints on an operation must be determined by the appli
ation developer, not the
lient, based on \permissible 
on
urren
y". Otherwise, 
lients may 
ause, perhaps inadvertantly, anirre
on
ilable divergen
e of the data at di�erent repli
as. For example, suppose an \in
rement" anda \double" operation are requested 
on
urrently, and are done in di�erent orders at two repli
as.If the value at both repli
as was initially 1, then the repli
a that does the in
rement �rst will havea �nal value of 4, while the repli
a that does the double �rst will have a �nal value of 3, even afterthe operations stabilize.In this se
tion, we des
ribe how to further redu
e the need to re
ompute operations, when alloperations have suÆ
ient \permissible 
on
urren
y". We begin with a 
areful 
hara
terization ofthe relationship between data operators.Suppose that op1; op2 2 O are two operators of the data type. We say that they 
ommuteif �+(�; hop1; op2i):s = �+(�; hop2; op1i):s for all � 2 �. We say that op1 is oblivious to op2 if�+(�; hop2; op1i):v = �(�; op1):v for all � 2 �. We say that two operations are independent ifthey 
ommute and are oblivious to ea
h other.We �rst state without proof some lemmas about how 
ommutativity and independen
e restri
tsthe possible results of operations 
onsistent with a partial order on the set of operations. The �rstlemma says that if the partial order orders all operations that do not 
ommute then the �nalout
ome of applying these operations is determined. The se
ond lemma says that if it orders alloperations that are not independent, then the return values are also determined.Lemma 10.6 If � is a partial order on a �nite set X of operations su
h that x � y or y � x forall x; y 2 X that do not 
ommute, then for all � 2 �, out
ome�(X;�0) is the same for all totalorders �0 on X 
onsistent with �.Lemma 10.7 If � is a partial order on a �nite set X of operations su
h that x � y or y � x forall x; y 2 X that are not independent, then for all � 2 �, jvalset�(x;X;�)j = 1 for all x 2 X.If we require that 
lients expli
itly order every pair of operations that are not independent, thenby Lemma 10.7, the return value is uniquely determined by the 
lient-spe
i�ed 
onstraints. Thus,any values 
onsistent with the 
lient-spe
i�ed 
onstraints are also 
onsistent with the eventual totalorder, and are the same values that would be returned by an atomi
 memory. So an implementationneed not keep tra
k of stable sets, or even done sets at other repli
as.Suppose we only require that 
lients expli
itly order operations that do not 
ommute.5 Formally,we model this by adding a 
lause to the pre
ondition of the request(x) a
tion of Users . Call this new5This 
ondition is still very strong. A weaker variation may be suÆ
ient for the algorithm of [15℄ sin
e updates37



automaton SafeUsers . We show how to modify the algorithm to take advantage of this restri
ted
lient using Lemma 10.6.We again modify the automaton of ea
h repli
a r. We augment the state with two additionalstate variables, 
sr and val r. We do not need the mv r fun
tion anymore, be
ause we simply re-assign the val r fun
tion when an operation is memoized. The 
sr re
e
ts all the operations inSignatureSame as in Figure 7.StateSame as in Figure 7.Derived variable: solidr = Sy2stabler [r℄ doner[r℄j�l
ry; the operations solid at rmemoized r, a subset of O; initially empty; the operations that have been memoized by rmsr 2 �, initially �0; the state resulting from doing all the operations in memoizedr
sr 2 �, initially �0; the state resulting from doing all the operations in doner[r℄valr : doner[r℄! V , initially null; the value for x 2 doner[r℄A
tionsInput re
eive
r(h\request"; xi)E�: pendingr  pendingr [ fxgr
vd r  r
vd r [ fxgInternal do itr(x; l)Pre: x 2 r
vd r � doner[r℄x:prev � doner[r℄:idl > labelr(y:id) for all y 2 doner[r℄E�: doner[r℄ doner[r℄ [ fxg
sr; valr(x) �(
sr; x:op)labelr(x:id) lOutput sendr
(h\response"; x; vi)Pre: x 2 pendingr \ doner[r℄x:stri
t =) x 2 Ti stabler[i℄ \memoizedrv = valr(x)
 = 
lient(x:id)E�: pendingr  pendingr � fxg

Output sendrr0(h\gossip"; R;D; L; Si)Pre: R = r
vd r; D = doner[r℄;L = labelr; S = stabler[r℄Input re
eiver0r(h\gossip"; R;D; L; Si)E�: r
vd r  r
vd r [Rdoner[r0℄ doner[r0℄ [D [ Sdoner[i℄ doner[i℄ [ S for all i 6= r; r0for y 2 D � doner[r℄(in any order 
onsistent with CSC (D))doner[r℄ doner[r℄ [ fyg
sr; valr(y) �(
sr; y:op)labelr  min(labelr; L)stabler[r0℄ stabler[r0℄ [ Sstabler[r℄ stabler[r℄ [ S [ (Ti doner[i℄)Internal memoizer(x)Pre: x 2 solidr �memoizedrdoner[r℄j�l
rx � memoizedrE�: msr; valr(x) �(msr; x:op)memoizedr  memoizedr [ fxgFigure 11: Automaton for repli
a r with 
urrent statedoner[r℄, and val r is 
omputed as ea
h operation is added to doner[r℄, whether by a do itr a
tion,or by pro
essing gossip re
eived from another repli
a. The 
ode for this new repli
a is given inFigure 11.Let Commute be the 
omposition of these new repli
a automata and the original 
hannel andfront end automata, with the send and re
eive a
tions hidden, and C = Commute � SafeUsers . Wewant to show that C implements S. The proof for this follows the proof that A implements S. Itand queries are handled di�erently, and operations may not atomi
ally read and write the data.38



is easy to 
he
k that every a
tion has an equivalent or stronger pre
ondition, and identi
al e�e
tson the original state variables, so that all the invariants in Se
tion 7 are invariants of C.There are two main 
hanges to the simulation proof. First, we need to 
he
k that the memoizea
tion preserves the simulation, whi
h is handled in mu
h the same way as in Se
tion 10.1. Se
ond,the 
al
ulate(x; v) a
tion is now simulated by the a
tion whi
h assigns v to val r(x), instead ofthe send(h\response"; x; vi) a
tion. This is either a do itr(x) or re
eiver0r(m) a
tion for nonstri
toperations, and a memoizer(x) for stri
t operations. Lemma 10.6 is used to show that 
s may beused to 
ompute the return values for nonstri
t operations.10.4 Redu
ing Communi
ationThere are also many possibilities for redu
ing 
ommuni
ation overhead, or weakening the assump-tions about the 
ommuni
ation me
hanism. These are largely orthogonal to the work in this paper,but we mention a few possibilities to give a sense of how this may be done.In the abstra
t algorithm, repli
as send gossip messages that in
lude information previouslygossiped. If the 
hannels are reliable and FIFO, it is possible to redu
e the gossip message sizes bysending only in
remental information. The use of timestamps, in
luding logi
al timestamps su
has the multipart timestamps of [15℄, to summarize sets of operations, as noted above, also redu
esthe size of messages.Also, the algorithm spe
i�es that ea
h repli
a sends a separate gossip message to every otherrepli
a, resulting in a quadrati
 number of messages for ea
h \round" of gossip. However, thealgorithm allows a repli
a to send the same gossip message to all other repli
as, so an eÆ
ientbroad
ast proto
ol 
ould greatly redu
e the number of messages sent.11 Implementation and Uses of the Eventually-Serializable DataServi
esAn important 
onsideration in our work is that our spe
i�
ation be reasonable for real systems. We
lose this paper with an overview of an implementation of the eventually-serializable data servi
e,and a dis
ussion of some sample appli
ations of this servi
e.11.1 An Experimental ImplementationThe abstra
t algorithm presented in this paper was used by Cheiner [6, 7℄ as the basis for developingan exploratory implementation of the eventually-serializable data servi
e. The main obje
tives ofthis implementation were to show that a modular implementation of the eventually-serializabledata servi
e 
an be used by dissimilar 
lients, and to obtain empiri
al data on the s
alability ofthe implementation, and the trade-o� between 
onsisten
y and performan
e. We present only anoverview of this work; the reader should refer to the papers 
ited above for details.The implementation of the servi
e runs on a network of Unix workstations and uses MPI [8℄ asits message passing me
hanism. The implementation is 
oded in C++, and in
orporates some ofthe optimizations des
ribed above. Be
ause of its obje
t-oriented design, it is easy to parameterize39



the implementation for di�erent serial data types and to integrate it with a variety of 
lients. The
lients for whi
h prototypes were developed in
lude a Web 
lient, a text-oriented Unix 
lient andMi
rosoft Ex
el 
lient for Windows95. This demonstrates the suitability of the servi
e as a generi
distributed system building blo
k.To evaluate its s
alability, the implementation was tested using one to ten repli
as. These testsused only nonstri
t operations. As the number of repli
as in
reased and the frequen
y of requestsper repli
a held 
onstant, the throughput of the system in
reased almost linearly.To evaluate the e�e
t of stri
t operations on performan
e, the average per
entage of stri
trequests (determined randomly) was in
reased from 0% to 100%. It was observed that laten
yin
reased linearly as the proportion of stri
t requests in
reased. This provides eviden
e that theservi
e indeed re
e
ts a designed trade-o� between 
onsisten
y and performan
e.11.2 Dire
tory Servi
es and Distributed RepositoriesThe eventually-serializable data servi
e is well-suited for implementing distributed dire
tory ser-vi
es. In any 
omputing enterprise, naming and dire
tory servi
e are important basi
 servi
es usedto make distributed resour
es a

essible transparently of the resour
e lo
ations or their physi
aladdresses. Su
h servi
es in
lude Grapevine [5℄, DECdns [17℄, DCE GDS (Global Dire
tory Servi
e)and CDS (Cell Dire
tory Servi
e) [24℄, ISO/OSI X.500 [14℄, and the Internet's DNS (Domain NameSystem) [13℄.A dire
tory servi
e must be robust and it must have good response time for name lookupand translation requests in a geographi
ally distributed setting. A

ess to a dire
tory servi
e isdominated by queries and it is unne
essary for the updates to be atomi
 in all 
ases. Consequently,the implementations use redundan
y to ensure fault-toleran
e, repli
ation to provide fast responseto queries, and lazy propagation of information for updates. A servi
e 
an also provide a spe
ialupdate feature that ensures that the update is applied to all repli
as expediently.Dire
tory servi
es often use an obje
t-based de�nition of names, in whi
h a name has a setof attributes determined by its type. When a new name obje
t is 
reated, it must be possibleto initialize, and subsequently query, the attributes of the 
reated obje
t. With an eventually-serializable data servi
e, this 
an be a

omplished by in
luding the identi�er of the name 
reationoperation in the prev sets of the attribute 
reation and initialization operations.Another appli
ation of the eventually-serializable data servi
e is in implementing distributedinformation repositories for 
oarse-grained distributed obje
t frameworks su
h as CORBA [22℄.Important 
omponents of su
h a framework in
lude the distributed type system used to de�neobje
t types, and the module implementation repository used for dynami
 obje
t dispat
hing [25℄.In this setting, the a

ess patterns are again dominated by queries, and infrequent update requests
an be propagated lazily with the guarantee of eventual 
onsisten
y.A
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