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Abstract. This paper presents a general framework for understanding
precedence-based memory models, which are generalizations of standard
multiprocessor models. Precedence-based models need not mention pro-
cesses explicitly, and can express any conditions that rely only on some
operations being required to precede other operations. We define a gen-
eralized notion of sequential consistency and per-location sequential con-
sistency in this framework, and we analyze the Backer algorithm used in
the Cilk system [3], showing that it implements per-location sequential
consistency. We also give conditions under which client processes cannot
distinguish a per-location sequentially consistent memory from a sequen-
tially consistent one.

1 Introduction

As distributed systems become ubiquitous, it becomes increasingly important to
develop convenient ways to program these systems. Ideally, programs should ex-
press naturally the programmer’s intention, and be easy to understand and reason
about carefully. They should also be able to be implemented efficiently on multi-
processor systems, exploiting locality, re-ordering, and other techniques that mask
disk and communication latency, to deliver high performance.

One common approach is to provide the processes with shared memory, which
appears as though it is maintained by a single process. This provides programmers
with relatively simple and intuitive semantics, called sequential consistency [11].
Unfortunately, maintaining such guarantees is expensive, even impossible on some
systems. Thus, some systems are willing to tolerate some inconsistency in order
to improve performance.

In order to reason about these systems, many weaker memory models have
been proposed, such as processor consistency [9], release consistency [7], location
consistency [6], scope consistency [10], eventual-serializability [5], dag-consistency
[3], and others (see [1]). Unfortunately, these models are defined using different
formalisms, and some of them do not even have formal definitions, making it hard
to compare them rigorously.

Another drawback of sequential consistency and most of the models mentioned
above is that the programmer must explicitly indicate which process issues each
operation. Thus they cannot model systems such as Cilk [4, 13], which do not
make processes directly accessible to the programmer.
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This paper presents a general framework for understanding precedence-based
memory models, which are generalizations of standard multiprocessor models.
Precedence-based models allow clients to issue operations concurrently, specifying
dependencies on other operations, but not exclusivity requirements. They need
not mention processes explicitly, and can express any conditions that rely only
on some operations being required to precede other operations. We believe this
captures an interesting set of memory models that can be understood in a unified
framework. This work is intended to provide structure to the field of modelling
distributed memories, allowing us to categorize and compare models more easily,
and also prove some general properties about them.

The memory may represent any deterministic serial data type with a generic set
of operators, 0. However, to model distributed memories, operations are allowed
to be concurrent, and may even be re-ordered by the system. The degree to which
this is allowed defines the memory model. In the pure precedence-based memories
described here, each operation can specify a set of operations that must precede
it, thus defining a partial order of the requested operations.

In this framework, we define a generalized version of sequential consistency,
and also per-location sequential consistency, which is similar to cache coherence
in systems with caching. We demonstrate conditions under which the two are
equivalent.

An important part of this work involves carefully specifying the serial seman-
tics of the data, identifying characteristics that are important when concurrent
operations are introduced. We consider how restrictions on the clients, or on the
types of operations that can be applied to the data, can be used to guarantee
greater consistency.

To demonstrate the utility of this framework, we formally specify and analyze
the Backer algorithm used in the Cilk system [3], and we show that it implements
per-location sequential consistency for read/write memories.

The rest of the paper is organized as follows: Section 2 defines some con-
ventions used throughout the paper and Section 3 describes the formal model.
Section 4 characterizes the serial semantics of the data. The general framework
for precedence-based memories is presented in Section 5, and sequential consis-
tency and per-location sequential consistency are defined in Section 6. Section 7
describes the Backer algorithm, and sketches the idea of its proof. Finally, Section
8 discusses related work and future directions for research.

2 Mathematical Conventions

We denote a sequence by (a,b,c,...), and the empty sequence by €. S* denotes
the set of finite sequences of a set S, and ST = S* — {e}. The concatentation of
sequences « and f is denoted by « - 5. This notation is overloaded for adding a
single element to a sequence, i.e., e -a = {¢) -« and o - e = « - {e). We denote
the ith element of « by «;. The restriction «|s of a sequence « to a set S is the
subsequence of « consisting of all the elements of S in «. A sequence « is an
interleaving of two sequences 3 and @ if 3 and 3 are disjoint subsequences of «
that together contain all the elements of «a.



We denote the imageof aset S C Aunder f: A — Bby f(S) = {f(a) :a € S},
and the image of a sequence oo € A* under f by f(«), i.e., f(a); = f(a;) for all ¢.
We use 2° to denote the power set of S. A partial function from A to B is denoted
J A — By, where B is the lifted set BU{L}. L is not contained in non-lifted
sets and indicates that the function is not defined at a value.

A partial order 1s any binary relation that is transitive and anti-symmetric; it
need not be reflexive nor irreflexive. Two partial orders <; and <9 are consistent
if they do not order any two elements differently, i.e., for all distinct ¢, ¢’, either
e £y ¢ or e £y e. A partial order <y includes <o if <2C<1. We use <1 V <3 to
denote the transitive closure of the union of <; and <s.

Theorem 1. <1 V <3 s a partial order if and only if <1 and <5 are consistent.

A serialization of a set S is a sequence that contains each element uniquely. A
serialization « of S defines a total order <, of S where a; <, «; if ¢ < j. It also
partially orders any superset of S, where elements of S are ordered by <, and
all other elements are not ordered with respect to any elements. A serialization «
s consistent with a partial order if <, is, and it includes the partial order if <,
does.

3 Formal Model

We use a slight simplification of the I/O automaton of Lynch and Tuttle [12],
ignoring the aspects related to liveness. An non-live I/O automaton A consists of:

three disjoint sets of actions: in(A), out(A), and int(A);

— a set states(A) of states;

— a nonempty subset start(A) of start states;

— aset steps(A) C states(A) x acts(A) x states(A) of steps such that there exists
(s,m,s") € steps(A) for all s € states(A), m € in(A).

We call the actions in in(A), out(A), and int(A) the input, output, and internal
actions respectively. The input and output actions are also called external actions,
and the set of external actions is denoted by ext(A). We denote the set of all actions
of A by acts(A) = in(A) U out(A) U int(A). We write s—— 4 s’ or just s—— s’ as
shorthand for (s, s’) € steps(A).

An ezxecution fragment sg,m1, 81,79, 89,... 18 a finite or infinite sequence of
alternating states and actions such that $;_1—=s; for all i. An execution is an
execution fragment with sy € start(A). We denote the set of executions of A by
execs(A). A state is reachable in A if it appears in any execution of A. An invariant
of A 1s a predicate that is true of every reachable state of A.

The ezternal image of an execution fragment « is the subsequence oz|€m(A) of
its external actions. A trace of A is the external image of an execution, and the
set of traces is denoted by traces(«).

We often want to specify a distributed system by specifying the components
that constitute the system. The entire system is then described by an automaton
which is the composition of the automata describing the components. Informally,



composition identifies actions with the same name at different component au-
tomata. Thus, when an action is executed, it is executed by all components with
that action. The new automaton has the actions of all its components. There are
some restrictions on the automata to be composed so that the composition makes
sense. In particular, internal actions cannot be shared, and an action can be the
output action of at most one component, and for technical reasons, actions cannot
be shared by infinitely many components.

Formally, for any index set I, a set {A;};e;r of automata is compatible if
int(A;) Nacts(A;) = 0 and out(A;) Nout(A;) =0 for all ¢, j € I such that i # j,
and no action is in acts(A;) for infinitely many ¢ € I. The composition A = H;erA;
of a compatible set {A;};er of automata has the following components:

—n(4) = UiEI in(A;) — UiEI out(4;)
out(A) = Uie[ out(A;)
int(A) = Uie[ int(A;)
— states(A) = Il;erstates(A;)
— start(A) = I;erstart(A;)
— steps(A) = {(s,m,8") : si— A, s or & acts(A;) As; = s, for all i € T}

We denote the composition of two compatible automata A and B by A o B.

For any o € execs(Il;crA;), the projection «f4, onto A; is the sequence o
consisting of alternating states and actions of A; such that o'|,ces(a,) = @laces(a,)
and the states of o’ are the ith component of the states in « preceding the actions
in . Intuitively, the projection of o onto A; is how « appears to A;. For any
B € traces(Il;er Ai), its projection 3|4, onto A; is the restriction §]4cs5(4;) to the
actions of A;. We also write ezecs(IT;erAi)|a, and traces(Il;erA;)|a, for the sets
of projections onto A; of executions and traces of I1;c1 A;.

I/O automata can be used as specifications as well as implementations. We
say that an automaton A tmplements another automaton B, and write A C B, if
in(A) = in(B), out(A) = out(B), and traces(A) C traces(B). We say that A and

B are equivalent, and write A = B, if they implement each other.
Theorem 2. If A; C B; forallt € I then I;crA; C IicrB;.

A standard way to show that one automaton implements another is to use stm-
ulations, which establish a correspondence between the states of the two automata.
Formally, if A and B are automata with in(A) = in(B) and out(A) = out(B) then
a simulation from A to B is a relation f between states(A4) and states(B) such
that:

— If s € start(A) then there exists some u € start(B) such that f(s,u).

— TFor reachable states s and u of A and B, if f(s,u) and s—— 4 s, then there
exists some «’ such that f(s',u’) and there is some execution fragment of B
from u to u’ with the same external image as =.

Theorem 3. If there is a simulation from A to B then A C B.



4 Serial Data Type

This section introduces the formal framework to specify the serial semantics of
shared objects. This is similar to the definitions of Lynch [12].

A serial data type D consists of a set X of states, an initial state 6 € X' a set O
of operators, a set R of possible return values, and two functions, 75 : ¥ x 0 — ¥
and 7 : X' x O — R, which define the state transitions and return values of each
operator. As a shorthand, we write 7(0,0) = (7x(0, 0), Tr(0, 0)). We define the
functions 735, : ¥ x 0" — X and TE : X x OF — R to yield the final state and
return value of a sequence of operators applied in order. Formally, 75(0, €) = o,
(0, 0) = (15 (0, @), 0), and TH (0, a - 0) = TR(T5(0, @), 0).

Fzample 1. A read/write register with values V' and initial value vy has ¥ = V|
G = vy, O = {read} U {write(v) :v €V}, R = V U {ack}, and 7 such that

(v, read) = (v,v) and 7(v, write(v')) = (v', ack).

We now make several definitions that are useful in the analysis later with
concurrent accesses to the data. We say that an operator o is oblivious to an
operator o' that does not affect its return value, i.e., 77} (c, (o', 0)) = = (0, 0) for
all o € X. Two operators o and o' commute if the final state does not depend
on the order in which they are applied, i.e., 75(0, {0, 0")) = 75(0, {0, 0)) for all
o € Y. Two sequences of operators commute if every operator of one commutes
with every operator of the other. Two operators are independent if they commute

and are oblivious to each other.

Fzample 2. For a read/write register, the write operators are oblivious to all op-
erators, and the read operator commutes with all operators and is independent of
itself.

The following lemma establishes some simple but useful results:
Lemmad4. For all o € O and o, 0’ € O*:
— if 0 is oblivious to every operator in o then 7 (0, - 0) = R (0, 0).
— if 0 commutes with every operator in o then 75(0, - 0) = 75(0, 0 - ).
— if @ and o' commute then 15(0,8) = 15(0,a - &) for all o € X and all
interleavings B of o and o'.

Some data objects may be viewed as a collection of “independent” objects,
treated as a whole for convenience. Each component object may be considered to
be at a different location. We formalize this intuition as follows:

Given a set £ of locations, f : O — L is a location partition if operators mapped
to different elements are independent, i.e., for all 0,0’ € O, if f(o) # f(o') then
o and o' are independent. Often, we use loc for location partitions, and write
o.loc instead of loc(o). We say that (D, loc) is location-based if loc is a location
partition. We say that o is performed at location o.loc. For « € O* and [ € L,
we denote by «l; the subsequence of « consisting of all operators performed at [.
Similarly, if S C @, we denote by S|; the subset of operators in S performed at [.



Lemma 5. If (D, loc) is location-based then 73 (0, a0 0) = 7 (0, al; - 0), where
l = o.loc.

Alternatively, the data type of such an object may be viewed as a composition
of simpler data types. The full version of this paper includes a formal definition
of composition for data types, but this is omitted here due to space limitations.

Fzample 3. A read/write memory with addresses A and values V is the com-
position of read/write registers with values V' indexed by A. Specifically, ¥ =
oAV, ¢ = (v0)aca, O = {read(a) : a € A} U{write(a,v) : a € A0 € V},
R = V U {ack}, and 7 such that 7((ve)area, read(a)) = ((va)area, va), and
T((var)area, write(a,v)) = (v )aea, ack), where v/, = v and v, = vy for o’ # a.
An operator is said to be performed at its address.

Every write operator is oblivious to all operators, every read operator com-
mutes with all operators and is independent of all read operators. Operators per-
formed at different addresses are independent, so the function that maps each
operator to its address is a location partition.

5 Precedence-Based Memories

This section lays out the basic framework for precedence-based memories, defining
the interface between the memory which maintains the data object and the clients
that wish to access it. We define the interface in a centralized fashion, with one
automaton for the clients, and one for the memory. This allows us to formulate
restrictions on the clients and memory as abstractly as possible, and to model
systems which have nonlocal dependencies, or even systems with no explicit notion
of processes. Although actual system implementations will typically have clients
running on several processors, and a distributed implementation of the memory,
these are merely particular implementations of these abstract automata. Processes
and processors are not explicit in our abstract formulation.

5.1 Some Notation and Conventions

We assume that the memory is maintaining data of type D. Memory operations
consist of a request by the client to apply a data operator and a response by the
memory system with the return value. To distinguish different requests of the same
data operator, operations are tagged with identifiers from a set Z. No identifier
may be used in more than one request. A request also specifies a set of identifiers
of operations on which the requested operation depends, i.e., the operations that
must precede it. To simplify notation, we denote an operation by its identifier, and
assume there is a function op : 7 — O that maps each 1dentifier to its associated
operator, and that this function is statically determined.

If o is a sequence of unique identifiers containing id then retval(id, o) =
75 (6,0p(a’)), where o' is the prefix of o ending with id. This function gives
the return value of an operation given the sequence of operations performed.

If (D, loc) is location-based then for | € £, a € Z*, and S C Z, we use
Sl = {id € S : op(id).loc = l} and «of; = «a|z|,. The following lemmas express
some simple results for operations on location-based data:



Lemma6. Forle L, o € T*, op(a)|i = op(a|r)

Lemma7. For o € Z* and id in «, retval(id, o) = retval(id, o op(iq).10c)-

5.2 Clients

We introduce a generic automaton which expresses the well-formedness require-
ments on the clients accessing the memory. Informally, these requirements are that
identifiers are unique and that operations depend only on operations that have
already been requested. This prevents cyclic dependencies. We also maintain some
useful bookkeeping variables.

Note that this one automaton models all the clients together. This allows us
to specify more general and abstract programming systems which may not have
any explicit notion of processes, such as the Cilk system [4, 13]. This is important
because the specification of practical programming systems is an active area of
research. Systems in which the process that issues each request is explicit can
easily be modelled in this framework by incorporating the process identifier into
the operation identifier, or even the operator.

Generic Clients Automaton: GC(O,7)
State

Used: a set of identifiers, initially empty.
prev : T — 27 | ; identifiers of client-specified preceding operations, initially all L.

Actions

Output request(id, prev)
Pre: id ¢ Used
prev C Used
Eff: Used — Used U {id}
prev(id) — prev

Input response(id, v)
Eff: None

Since O and 7 are fixed, we usually drop them from the notation. A clients
automaton 1s any automaton that implements GC. We assume that every clients
automaton has these state variables, and updates them in exactly this fashion.!
It is easy to see that Used is redundant since Used = {id : prev(id) # L}. We
derive from prev a partial order <. that is the reflexive and transitive closure of
{(id,id") : id € prev(id")}. We say that id and id’ are concurrent in a state if
they are not ordered by <..

! In fact, because they are only updated deterministically by external actions, the value
of these variables in any reachable state can be determined from the trace leading to
that state. These variables are useful for analysis, but a real implementation need not
maintain them.



This generic automaton specifies a very large class of automata which can
meaningfully interact with precedence-based memories. It is helpful to distinguish
families of automata within this class about which we may be able to say more. In
particular, 1t is useful to note clients that, when composed with a weak memory
consistency model, behave as though they were composed with a sequentially
consistent memory.

If £ is a set of locations, then we say that a clients automaton C' respects
f I — L if in every reachable state of C, for all concurrent operations id and
id', we have f(id) # f(id"), i.e., C' does not issue concurrent operations to the
same location. If f : O — L, we say that a client respects f if it respects op o f.

We are interested in the clients that respect location partitions. In particular,
if (D, loc) is location-based then clients that respect loc will exhibit the same
behaviors when composed with per-location sequentially consistent memory as
when composed with globally sequentially consistent memory, as defined later in
this paper.

5.3 Generic Precedence-Based Memory Automaton

We now present automaton for a generic precedence-based memory, without any
restrictions on the return values of operations. This automaton maintains some
data structures that are useful for understanding precedence-based memory, and
provide notation and a framework with which to understand the various memory
models. The only restrictions this automaton places on the behaviors arise from
the order specified by the client.

Generic Precedence-Based Memory Automaton: GPBM(D,T)
State

prev : T — 27 | ; client-specified preceding operations, initially all L.
pending C T; operations that still need a response, initially empty.

done C I; operations that have been “done”, initially empty.

return-value : T — R 1 ; the return value for each operation, initially all L.

Actions

Input request(id, prev)
Eff: pending — pending U {id}
prev(id) — prev

Internal do-operation(id, v)

Pre: id € pending — done
prev(id) C done

Eff: done «— done U {id}

return-value(id) — v

Output response(id, v)
Pre: id € pending
v = return-value(id)
Eff: pending — pending — {id}



Since D and 7 are fixed, we usually drop them from the notation. A memory
automaton is any automaton that implements GPBM. We assume that every
memory automaton has the prev and pending state variables, and updates them
exactly as above.? We define <. and concurrent as we did for clients automata.3

Invariant 8. For GPBM:

— id € pending — prev(id) # L

— id € done = prev(id) # L A prev(id) C done
— return-value(id) # L —> id € done

— id € done N id' <, id = id' € done

5.4 The Generic Precedence-Based System

Lemma9. GPBM and GC are compatible.
Invariant 10. For GPBM o GC: GPBM .prev = GC.prev.

Because of this invariant, we do not need to distinguish the prev variables,
nor <. and concurrent which are derived from prev, of the memory and clients
automata. This is true for any memory automaton M and clients automaton C'.

6 Sequential Consistency

6.1 Global Sequential Consistency

In this section, we introduce a notion of sequential consistency generalized for ar-
bitrary precedence-based memories. We specify this by an automaton, which rules
out behaviors where operations predict what operations will be requested in the
future. We present this automaton as an enhancement of the generic memory au-
tomaton. We include below only the do-operation action; the request and response
actions are unchanged.

Lemmall. ¢SC(D,7) CGPBM(D,T)

Proof. The trivial relation which relates states with exactly the same state com-
ponents is a simulation because request and response are identical in the two au-
tomata, and do-operation(id, v, «)in gSC simulates do-operation(id, v) in GPBM.

Invariant 12. For ¢SC: There is a serialization « of done consistent with <.
such that retval(id, o) = return-value(id) for all id € done.

Proof. The serialization of the last do-operation action satisfies these conditions.

2 As with clients automata, since these are updated deterministically by external actions,
they are determined by the trace.

? Although Used is not a state variable of GPBM, it can be derived from prev or (as
noted) from the trace.



Global Sequential Consistency Automaton: ¢SC(D,T)
Actions (changes from GPBM)

Internal do-operation(id, v, a)
Pre: id € pending — done
prev(id) C done
« is a serialization of done U {id} consistent with <.
Vid' € done, retval(id’, o) = return-value(id')
retval(id, ) = v
Eff:  As before

6.2 Per-Location Sequential Consistency

For this section, we assume that (D, loc) is location-based. Intuitively, a per-
location sequentially consistent memory maintains global sequential consistency
among operations at the same location, but makes no guarantees for operations at
different locations. This is similar to the coherence condition for cached systems.
As before, we present this automaton as an enhancement of GPBM, but notice
the similarity to ¢SC.

Per-Location Sequential Consistency Automaton: plSC(D,loc,T)
Actions (changes from GPBM)

Internal do-operation(id, v, a)
Pre: id € pending — done
prev(id) C done
o is a serialization of done|,p(iq).10c U {id} consistent with <.
Vid' € done|,p(ia).1oc, retval(id’, o) = return-value(id")
retval(id, a) = v

Eff: As before

Per-location sequential consistency can also be viewed, perhaps more naturally,
as a composition of sequentially consistent memory locations. Intuitively, each
operation gets “sent” to its location. To maintain the client-specified precedence,
however, locations need to be informed of the existence and relative order in
this precedence relation of operations at other locations. Thus, we can imagine
that each operation gets “done” at its location, but a dummy operation with its
identifier gets “sent” to all the other locations, so they can maintain the precedence
relation.

6.3 Comparing gSC and plSC

Intuitively, we can see that ¢SC is stronger than plSC. It is also intuitive, but
less obvious, that if the clients always explicitly order operations done at different
locations, then they will not be able to distinguish the two types of memory. The
following theorems formalize this intuition.



Theorem 13. ¢SC(D,T) C plSC(D, loc,T)

Proof. The trival relation which relates states with the same state components is a
simulation because the request and response actions are identical, and do-operation(id, v, o)
in gSC simulates do-operation(id, v, a|,p(iq).10c) in plSC. This last condition follows

since any partial order consistent with « is consistent with «|;, and retval(id’, ;) =
retval(id’, o) for all id’, where | = op(id").loc.

Theorem 14. If C' respects loc then plSC(D, loc,T)o C' C ¢SC(D,T)oC.

Proof. (Sketch) Notice that because C' respects loc, all operations on the same
location are totally ordered by <.. This means that for each location ! € £, there
is a unique serialization of the operations at [ that is consistent with prev. Thus,
this must be a subsequence of any serialization of done in ¢SC. Since operators are
oblivious to operators at different locations, the return values are determined by
this subsequence, and these are the values that must be recorded in return-value.

7 Generic Backer Automaton

We now specify and analyze the Backer algorithm of [3]. The algorithm implements
a per-location sequentially consistent read/write memory on a multiprocessor sys-
tem with a cache for each process and a shared “backing store”. Operations may
depend explicitly on operations done at other processors. The coherence strategy
is simple: An operation cannot be done unless all the operations it depends on are
done at the same processor, or they have been committed to the backing store.
In addition, a read or a noop must make sure the value is not in the cache if any
operation 1t depends on is done by a different processor. That way, it will not be
keeping a stale value. A processor may also flush the value back at any time, and
may load the value whenever its own cache copy is not dirty. There are separate
internal actions for the various types of operations, instead of a single do-operation
action.

Because a read/write memory is a collection of read/write registers, it is suf-
ficient to demonstrate that Backer implements ¢SC for a single register. This
automaton models a set P of processors, each of which maintains a cache copy
of a read/write register with values V| and, like ¢SC and plSC, is written as an
enhancement of GPBM. To analyze this automaton and show it is correct, we
need to augment it with some auxiliary variables. We also combine the read, write
and noop actions into a single do-operation action.

In order to prove that Backer implements gSC, we need several invariants. We
consider the major invariants and steps in the proof.

First, we notice that the opsegs are just serializations of the operations at each
processor, or that have been committed.

Invariant 15. For Backer:

— opseq(p) is a serialization of uncommitted(p)
— opseq(B) is a serialization of done — UpeP uncommitied (p)



Backer
Additional State Variables

val : P — V; initially all L proc : T — P;initially all L

val(B) :— V; initially vg lastop : P — T ; initially all L

dirty : P — Bool; initially all true opseq : P — T*; initially all €

uncommitted : P — 27 initially all empty. opseq(B) :— I*; initially €
Actions

Internal do-operation(id, p)
Pre: id € pending — done
prev(id) C done
val(p) = L AVid' € prev(id), id' ¢ uncommitted(proc(id'))
or Vid' € prev(id), proc(id') = p
Eff: proc(id) — p
if op(id) = read then
if val(p) = L then val(p) — val(B)
return-value(id) — val(p)
if opseq(p) # € then append id to opseq(p)
if lastop(p) = L then append id to opseq(B)
if opseq(p) = € A lastop(p) # L then
insert id after lastop(p) in opseq(B)
lastop(p) — id
if op(id) = write(v) then
val(p) — v
dirty(p) — true
return-value(id) — ack
append id to opseq(p)
lastop(p) — id
if op(id) = noop then
return-value(id) — ack
if opseq(p) # € then append id to opseq(p)
if lastop(p) = L then append id to opseq(B)
if opseq(p) = € A lastop(p) # L then
insert id after lastop(p) in opseq(B)
if lastop(p) # L then lastop(p) — id
if dirty(p) then uncommitted(p) — uncommitted(p) U {id}
done — done U {id}

Internal flush(p)
Pre: None
Eff: if dirty(p) then
val(B) — val(p)
dirty(p) — false
uncommitted(p) — 0
append opseq(p) to opseq(B)
opseq(p) — €
val(p) — L
lastop(p) — L

Internal load(p)
Pre: —dirty(p)
Eff: wval(p) — val(B)
lastop(p) — the last element of opseq(B)



Proof. (Sketch) By induction on the length of an execution. Notice that uncommitted(p)
and opseq(p) are modified together since dirty(p) <= opseq(p) # .

We now define Opseq to be the set of sequences that are opseq(B) followed by
the concatenation of opseq(p) for all p € P in any order. (This is a derived state
variable.) We will show that every serialization in Opseq is a possible serialization
for all the operations in done that is consistent with the specified dependencies
and the returned values.

Invariant 16. For Backer: For all « € Opseq, « is a serialization of done.

Define a partial order <5 such that id <z id" if id <, id" for all & € Opseq.
We show that < includes <. for the operations in done.

Lemma 17. For any reachable state s of Backer, if s— s' then <z in s' includes
~<B in s.

Invariant 18. For Backer: If proc(id) = p and lastop(p) # L then id <z lastop(p).
Invariant 19. For Backer: For allid,id’ € done, if id' € prev(id) then id' <5 id.
Invariant 20. For Backer: For all &« € Opseq, « ts consistent with <.

Proof. Since v € Opseq, « 1s a serialization of done that includes <. Using the
previous invariant, we can show that for all id, id’ € done, if id <. id then

id <5 id’, and thus id <, id’, so id' £, id.

We now show that the serializations in Opseq are consistent with the values
returned. To do so, we define a function assocval : T x IT* as follows: If « 1s a
sequence of unique identifiers containing id then assocval(id, o) = v if op(id) =
write(v) or op(id) € {read, noop} and either id is the first element of & and v = vy
or v = assocval(id’, o) where id’ is the immediate predecessor of id in . Another
way of saying this is that assocval(id, «) is the value written immediately before
td in o, or vg if there are no writes precede ¢d in «.

First, we note that for any id € done and o € Opseq, assocval depends only
on the particular opseq that contains id.

Invariant 21. For Backer: For all &« € Opseq, id € done:

— If id € uncommitted(p) then assocval(id, o) = assocval(id, opseq(p))
— Ifid e done—UpEp uncommitied(p) then assocval(id, o) = assocval(id, opseq(B))

Proof. (Sketch) This follows because the first element of opseq(p) is always a
write if opseq(p) # e.

The next two invariants say that assocval gives the value that would be read
by a read operation.

Invariant 22. For Backer: If opseq(p) # € then lastop(p) is the last element of
opseq(p) and val(p) = assocval(lastop(p), opseq(p)).



Invariant 23. For Backer: If opseq(B) # € then val(B) = assocval(id, opseq(B)),
where id is the last element of opseq(B).

Thus, the value returned by any read is the value of assocval for that operation
for any o € Opseq:

Invariant 24. For Backer: For allid € done such that op(id) = read, return-value(id) =
assocval(id, o) for all o € Opseq.

Theorem 25. Backer C ¢SC

Proof. (Sketch) The trivial relation between states with identical prev, pending,
done, and return-value state components is a simulation. To see this, notice that
this 1s okay for the start states. The request and response actions simulate the same
actions in ¢SC, and the do-operation(id, p) action simulates do-operation(id, v, &),
where o € Opseq and v = retval(id, ). The flush and load actions correspond
to no action in ¢SC. We know that the do-operation(id, v, «) action is enabled by
the invariants. It is easy to check that the correspondence is maintained in the
post-states of the two steps.

8 Discussion

We have presented a unified framework for understanding precedence-based mem-
ory models, which we hope can serve as a foundation to understanding more
general memories. Because this framework is completely formal, we can prove the
correctness of algorithms, and make rigorous comparisons between various pro-
posed models. We believe that the careful definition and characterization of the
serial semantics of data will also be helpful in understanding memory, and how
algorithms can exploit specific classes of data, particular read /write memories.

Many people have proposed different memory models (see [1] for an overview),
but only a few have proposed a unified framework that can be used to compare
different models. Gibbons and Merritt [8] present a framework to specify non-
blocking shared memories, and they do so at roughly the same level as we do.
Attiya, et al [2] present a higher level framework which also considers the control
operations in programs. However, both still model processes explicitly, and thus
would not be able to model the Cilk system, for example. Furthermore, while 1t
is important to be able to reason about programs eventually, rather than simply
the sequence of operations actually requested of the memory, this requires some
assumptions about the expressiveness of the programming language, and this is
still an area of active research.

This work continues in the direction of Fekete, et al [5] and Blumofe, et al [3] in
allowing memory models without explicit processes, but can still express models
with explicit processes. It is not intended to express all memory models, however,
since this task has proven to be very difficult. Rather, it is intended as a first step
in trying to understand the essential properties of memory models in a coherent
framework.

One direction that we believe will be very helpful to explore is how exclusivity
requirements, such as mutual exclusion, or read/write locks, can be incorporated



into this framework. A more modest goal would be to characterize different syn-
chronization primitives in this framework, and whether the various primitives be-
ing proposed by be handled within this framework, or if they have some additional
exclusivity requirements.
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