
Precedence-Based Memory ModelsVictor Luchangco?M.I.T.Abstract. This paper presents a general framework for understandingprecedence-based memory models, which are generalizations of standardmultiprocessor models. Precedence-based models need not mention pro-cesses explicitly, and can express any conditions that rely only on someoperations being required to precede other operations. We de�ne a gen-eralized notion of sequential consistency and per-location sequential con-sistency in this framework, and we analyze the Backer algorithm used inthe Cilk system [3], showing that it implements per-location sequentialconsistency. We also give conditions under which client processes cannotdistinguish a per-location sequentially consistent memory from a sequen-tially consistent one.1 IntroductionAs distributed systems become ubiquitous, it becomes increasingly important todevelop convenient ways to program these systems. Ideally, programs should ex-press naturally the programmer's intention, and be easy to understand and reasonabout carefully. They should also be able to be implemented e�ciently on multi-processor systems, exploiting locality, re-ordering, and other techniques that maskdisk and communication latency, to deliver high performance.One common approach is to provide the processes with shared memory, whichappears as though it is maintained by a single process. This provides programmerswith relatively simple and intuitive semantics, called sequential consistency [11].Unfortunately, maintaining such guarantees is expensive, even impossible on somesystems. Thus, some systems are willing to tolerate some inconsistency in orderto improve performance.In order to reason about these systems, many weaker memory models havebeen proposed, such as processor consistency [9], release consistency [7], locationconsistency [6], scope consistency [10], eventual-serializability [5], dag-consistency[3], and others (see [1]). Unfortunately, these models are de�ned using di�erentformalisms, and some of them do not even have formal de�nitions, making it hardto compare them rigorously.Another drawback of sequential consistency and most of the models mentionedabove is that the programmer must explicitly indicate which process issues eachoperation. Thus they cannot model systems such as Cilk [4, 13], which do notmake processes directly accessible to the programmer.? Supported by AFOSR-ONR contract F49640-94-1-0199, by ARPA contracts N00014-92-J-4033 and F19628-95-C-0118, and by NSF grant 9225124-CCR.



This paper presents a general framework for understanding precedence-basedmemory models, which are generalizations of standard multiprocessor models.Precedence-based models allow clients to issue operations concurrently, specifyingdependencies on other operations, but not exclusivity requirements. They neednot mention processes explicitly, and can express any conditions that rely onlyon some operations being required to precede other operations. We believe thiscaptures an interesting set of memory models that can be understood in a uni�edframework. This work is intended to provide structure to the �eld of modellingdistributed memories, allowing us to categorize and compare models more easily,and also prove some general properties about them.The memorymay represent any deterministic serial data type with a generic setof operators, O. However, to model distributed memories, operations are allowedto be concurrent, and may even be re-ordered by the system. The degree to whichthis is allowed de�nes the memory model. In the pure precedence-based memoriesdescribed here, each operation can specify a set of operations that must precedeit, thus de�ning a partial order of the requested operations.In this framework, we de�ne a generalized version of sequential consistency,and also per-location sequential consistency, which is similar to cache coherencein systems with caching. We demonstrate conditions under which the two areequivalent.An important part of this work involves carefully specifying the serial seman-tics of the data, identifying characteristics that are important when concurrentoperations are introduced. We consider how restrictions on the clients, or on thetypes of operations that can be applied to the data, can be used to guaranteegreater consistency.To demonstrate the utility of this framework, we formally specify and analyzethe Backer algorithm used in the Cilk system [3], and we show that it implementsper-location sequential consistency for read/write memories.The rest of the paper is organized as follows: Section 2 de�nes some con-ventions used throughout the paper and Section 3 describes the formal model.Section 4 characterizes the serial semantics of the data. The general frameworkfor precedence-based memories is presented in Section 5, and sequential consis-tency and per-location sequential consistency are de�ned in Section 6. Section 7describes the Backer algorithm, and sketches the idea of its proof. Finally, Section8 discusses related work and future directions for research.2 Mathematical ConventionsWe denote a sequence by ha; b; c; : : :i, and the empty sequence by �. S� denotesthe set of �nite sequences of a set S, and S+ = S� � f�g. The concatentation ofsequences � and � is denoted by � � �. This notation is overloaded for adding asingle element to a sequence, i.e., e � � = hei � � and � � e = � � hei. We denotethe ith element of � by �i. The restriction �jS of a sequence � to a set S is thesubsequence of � consisting of all the elements of S in �. A sequence � is aninterleaving of two sequences � and �0 if � and �0 are disjoint subsequences of �that together contain all the elements of �.



We denote the image of a set S � A under f : A! B by f(S) = ff(a) : a 2 Sg,and the image of a sequence � 2 A� under f by f(�), i.e., f(�)i = f(�i) for all i.We use 2S to denote the power set of S. A partial function from A to B is denotedf : A! B?, where B? is the lifted set B [ f?g. ? is not contained in non-liftedsets and indicates that the function is not de�ned at a value.A partial order is any binary relation that is transitive and anti-symmetric; itneed not be re
exive nor irre
exive. Two partial orders �1 and �2 are consistentif they do not order any two elements di�erently, i.e., for all distinct e; e0, eithere 6�1 e0 or e0 6�2 e. A partial order �1 includes �2 if �2��1. We use �1 _ �2 todenote the transitive closure of the union of �1 and �2.Theorem1. �1 _ �2 is a partial order if and only if �1 and �2 are consistent.A serialization of a set S is a sequence that contains each element uniquely. Aserialization � of S de�nes a total order �� of S where �i �� �j if i � j. It alsopartially orders any superset of S, where elements of S are ordered by �� andall other elements are not ordered with respect to any elements. A serialization �is consistent with a partial order if �� is, and it includes the partial order if ��does.3 Formal ModelWe use a slight simpli�cation of the I/O automaton of Lynch and Tuttle [12],ignoring the aspects related to liveness. An non-live I/O automaton A consists of:{ three disjoint sets of actions: in(A), out(A), and int(A);{ a set states(A) of states;{ a nonempty subset start(A) of start states;{ a set steps(A) � states(A)�acts(A)�states(A) of steps such that there exists(s; �; s0) 2 steps(A) for all s 2 states(A), � 2 in(A).We call the actions in in(A), out (A), and int(A) the input, output, and internalactions respectively. The input and output actions are also called external actions,and the set of external actions is denoted by ext (A). We denote the set of all actionsof A by acts(A) = in(A) [ out(A) [ int(A). We write s���!A s0 or just s���! s0 asshorthand for (s; �; s0) 2 steps(A).An execution fragment s0; �1; s1; �2; s2; : : : is a �nite or in�nite sequence ofalternating states and actions such that si�1��i�! si for all i. An execution is anexecution fragment with s0 2 start(A). We denote the set of executions of A byexecs(A). A state is reachable in A if it appears in any execution ofA. An invariantof A is a predicate that is true of every reachable state of A.The external image of an execution fragment � is the subsequence �jext(A) ofits external actions. A trace of A is the external image of an execution, and theset of traces is denoted by traces(�).We often want to specify a distributed system by specifying the componentsthat constitute the system. The entire system is then described by an automatonwhich is the composition of the automata describing the components. Informally,



composition identi�es actions with the same name at di�erent component au-tomata. Thus, when an action is executed, it is executed by all components withthat action. The new automaton has the actions of all its components. There aresome restrictions on the automata to be composed so that the composition makessense. In particular, internal actions cannot be shared, and an action can be theoutput action of at most one component, and for technical reasons, actions cannotbe shared by in�nitely many components.Formally, for any index set I, a set fAigi2I of automata is compatible ifint(Ai) \ acts(Aj) = ; and out(Ai) \ out(Aj) = ; for all i; j 2 I such that i 6= j,and no action is in acts(Ai) for in�nitely many i 2 I. The composition A = �i2IAiof a compatible set fAigi2I of automata has the following components:{ in(A) = Si2I in(Ai)�Si2I out(Ai)out(A) = Si2I out(Ai)int(A) = Si2I int(Ai){ states(A) = �i2Istates(Ai){ start(A) = �i2Istart(Ai){ steps(A) = f(s; �; s0) : si���!Ai s0i or � =2 acts(Ai) ^ si = s0i for all i 2 IgWe denote the composition of two compatible automata A and B by A �B.For any � 2 execs(�i2IAi), the projection �jAi onto Ai is the sequence �0consisting of alternating states and actions of Ai such that �0jacts(Ai) = �jacts(Ai)and the states of �0 are the ith component of the states in � preceding the actionsin �0. Intuitively, the projection of � onto Ai is how � appears to Ai. For any� 2 traces(�i2IAi), its projection �jAi onto Ai is the restriction �jacts(Ai) to theactions of Ai. We also write execs(�i2IAi)jAi and traces(�i2IAi)jAi for the setsof projections onto Ai of executions and traces of �i2IAi.I/O automata can be used as speci�cations as well as implementations. Wesay that an automaton A implements another automaton B, and write A � B, ifin(A) = in(B), out(A) = out(B), and traces(A) � traces(B). We say that A andB are equivalent, and write A � B, if they implement each other.Theorem2. If Ai � Bi for all i 2 I then �i2IAi � �i2IBi.A standard way to show that one automaton implements another is to use sim-ulations, which establish a correspondence between the states of the two automata.Formally, if A and B are automata with in(A) = in(B) and out(A) = out(B) thena simulation from A to B is a relation f between states(A) and states(B) suchthat:{ If s 2 start(A) then there exists some u 2 start(B) such that f(s; u).{ For reachable states s and u of A and B, if f(s; u) and s���!A s0, then thereexists some u0 such that f(s0; u0) and there is some execution fragment of Bfrom u to u0 with the same external image as �.Theorem3. If there is a simulation from A to B then A � B.



4 Serial Data TypeThis section introduces the formal framework to specify the serial semantics ofshared objects. This is similar to the de�nitions of Lynch [12].A serial data type D consists of a set � of states, an initial state �̂ 2 �, a set Oof operators, a set R of possible return values, and two functions, �� : ��O ! �and �R : � �O ! R, which de�ne the state transitions and return values of eachoperator. As a shorthand, we write � (�; o) = (��(�; o); �R(�; o)). We de�ne thefunctions ��� : � � O� ! � and �+R : � � O+ ! R to yield the �nal state andreturn value of a sequence of operators applied in order. Formally, ���(�; �) = �,���(�; � � o) = ��(���(�; �); o), and �+R(�; � � o) = �R(���(�; �); o).Example 1. A read/write register with values V and initial value v0 has � = V ,�̂ = v0, O = freadg [ fwrite(v) : v 2 V g, R = V [ fackg, and � such that� (v; read) = (v; v) and � (v;write(v0)) = (v0; ack).We now make several de�nitions that are useful in the analysis later withconcurrent accesses to the data. We say that an operator o is oblivious to anoperator o 0 that does not a�ect its return value, i.e., �+R(�; ho 0; oi) = �R(�; o) forall � 2 �. Two operators o and o0 commute if the �nal state does not dependon the order in which they are applied, i.e., ���(�; ho; o 0i) = ���(�; ho 0; oi) for all� 2 �. Two sequences of operators commute if every operator of one commuteswith every operator of the other. Two operators are independent if they commuteand are oblivious to each other.Example 2. For a read/write register, the write operators are oblivious to all op-erators, and the read operator commutes with all operators and is independent ofitself.The following lemma establishes some simple but useful results:Lemma4. For all o 2 O and �; �0 2 O�:{ if o is oblivious to every operator in � then �+R(�; � � o) = �R(�; o).{ if o commutes with every operator in � then ���(�; � � o) = ���(�; o ��).{ if � and �0 commute then ���(�; �) = ���(�; � � �0) for all � 2 � and allinterleavings � of � and �0.Some data objects may be viewed as a collection of \independent" objects,treated as a whole for convenience. Each component object may be considered tobe at a di�erent location. We formalize this intuition as follows:Given a set L of locations, f : O ! L is a location partition if operators mappedto di�erent elements are independent, i.e., for all o; o0 2 O, if f(o) 6= f(o0) theno and o 0 are independent. Often, we use loc for location partitions, and writeo:loc instead of loc(o). We say that (D; loc) is location-based if loc is a locationpartition. We say that o is performed at location o:loc. For � 2 O� and l 2 L,we denote by �jl the subsequence of � consisting of all operators performed at l.Similarly, if S � O, we denote by Sjl the subset of operators in S performed at l.



Lemma5. If (D; loc) is location-based then �+R(�; � � o) = �+R(�; �jl � o), wherel = o:loc.Alternatively, the data type of such an object may be viewed as a compositionof simpler data types. The full version of this paper includes a formal de�nitionof composition for data types, but this is omitted here due to space limitations.Example 3. A read/write memory with addresses A and values V is the com-position of read/write registers with values V indexed by A. Speci�cally, � =�a2AV , �̂ = (v0)a2A, O = fread(a) : a 2 Ag [ fwrite(a; v) : a 2 A; v 2 V g,R = V [ fackg, and � such that � ((va0)a02A; read(a)) = ((va0)a02A; va), and� ((va0 )a02A;write(a; v)) = ((v0a0 )a02A; ack ), where v0a = v and v0a0 = va0 for a0 6= a.An operator is said to be performed at its address.Every write operator is oblivious to all operators, every read operator com-mutes with all operators and is independent of all read operators. Operators per-formed at di�erent addresses are independent, so the function that maps eachoperator to its address is a location partition.5 Precedence-Based MemoriesThis section lays out the basic framework for precedence-based memories, de�ningthe interface between the memory which maintains the data object and the clientsthat wish to access it. We de�ne the interface in a centralized fashion, with oneautomaton for the clients, and one for the memory. This allows us to formulaterestrictions on the clients and memory as abstractly as possible, and to modelsystems which have nonlocal dependencies, or even systems with no explicit notionof processes. Although actual system implementations will typically have clientsrunning on several processors, and a distributed implementation of the memory,these are merely particular implementations of these abstract automata. Processesand processors are not explicit in our abstract formulation.5.1 Some Notation and ConventionsWe assume that the memory is maintaining data of type D. Memory operationsconsist of a request by the client to apply a data operator and a response by thememory system with the return value. To distinguish di�erent requests of the samedata operator, operations are tagged with identi�ers from a set I. No identi�ermay be used in more than one request. A request also speci�es a set of identi�ersof operations on which the requested operation depends, i.e., the operations thatmust precede it. To simplify notation, we denote an operation by its identi�er, andassume there is a function op : I ! O that maps each identi�er to its associatedoperator, and that this function is statically determined.If � is a sequence of unique identi�ers containing id then retval(id ; �) =�+R(�̂; op(�0)), where �0 is the pre�x of � ending with id . This function givesthe return value of an operation given the sequence of operations performed.If (D; loc) is location-based then for l 2 L, � 2 I�, and S � I, we useSjl = fid 2 S : op(id ):loc = lg and �jl = �jIjl. The following lemmas expresssome simple results for operations on location-based data:



Lemma6. For l 2 L, � 2 I�, op(�)jl = op(�jl)Lemma7. For � 2 I� and id in �, retval(id ; �) = retval(id ; �jop(id):loc).5.2 ClientsWe introduce a generic automaton which expresses the well-formedness require-ments on the clients accessing the memory. Informally, these requirements are thatidenti�ers are unique and that operations depend only on operations that havealready been requested. This prevents cyclic dependencies. We also maintain someuseful bookkeeping variables.Note that this one automaton models all the clients together. This allows usto specify more general and abstract programming systems which may not haveany explicit notion of processes, such as the Cilk system [4, 13]. This is importantbecause the speci�cation of practical programming systems is an active area ofresearch. Systems in which the process that issues each request is explicit caneasily be modelled in this framework by incorporating the process identi�er intothe operation identi�er, or even the operator.Generic Clients Automaton: GC(O;I)StateUsed: a set of identi�ers, initially empty.prev : I ! 2I?; identi�ers of client-speci�ed preceding operations, initially all ?.ActionsOutput request(id; prev)Pre: id =2 Usedprev � UsedE�: Used  Used [ fidgprev(id) prevInput response(id; v)E�: NoneSince O and I are �xed, we usually drop them from the notation. A clientsautomaton is any automaton that implements GC. We assume that every clientsautomaton has these state variables, and updates them in exactly this fashion.1It is easy to see that Used is redundant since Used = fid : prev (id) 6= ?g. Wederive from prev a partial order �c that is the re
exive and transitive closure off(id ; id 0) : id 2 prev(id 0)g. We say that id and id 0 are concurrent in a state ifthey are not ordered by �c.1 In fact, because they are only updated deterministically by external actions, the valueof these variables in any reachable state can be determined from the trace leading tothat state. These variables are useful for analysis, but a real implementation need notmaintain them.



This generic automaton speci�es a very large class of automata which canmeaningfully interact with precedence-based memories. It is helpful to distinguishfamilies of automata within this class about which we may be able to say more. Inparticular, it is useful to note clients that, when composed with a weak memoryconsistency model, behave as though they were composed with a sequentiallyconsistent memory.If L is a set of locations, then we say that a clients automaton C respectsf : I ! L if in every reachable state of C, for all concurrent operations id andid 0, we have f(id ) 6= f(id 0), i.e., C does not issue concurrent operations to thesame location. If f : O ! L, we say that a client respects f if it respects op � f .We are interested in the clients that respect location partitions. In particular,if (D; loc) is location-based then clients that respect loc will exhibit the samebehaviors when composed with per-location sequentially consistent memory aswhen composed with globally sequentially consistent memory, as de�ned later inthis paper.5.3 Generic Precedence-Based Memory AutomatonWe now present automaton for a generic precedence-based memory, without anyrestrictions on the return values of operations. This automaton maintains somedata structures that are useful for understanding precedence-based memory, andprovide notation and a framework with which to understand the various memorymodels. The only restrictions this automaton places on the behaviors arise fromthe order speci�ed by the client.Generic Precedence-Based Memory Automaton: GPBM(D;I)Stateprev : I ! 2I?; client-speci�ed preceding operations, initially all ?.pending � I; operations that still need a response, initially empty.done � I; operations that have been \done", initially empty.return-value : I ! R?; the return value for each operation, initially all ?.ActionsInput request(id; prev)E�: pending pending [ fidgprev(id) prevInternal do-operation(id; v)Pre: id 2 pending� doneprev(id) � doneE�: done  done [ fidgreturn-value(id) vOutput response(id; v)Pre: id 2 pendingv = return-value(id)E�: pending pending � fidg



Since D and I are �xed, we usually drop them from the notation. A memoryautomaton is any automaton that implements GPBM. We assume that everymemory automaton has the prev and pending state variables, and updates themexactly as above.2 We de�ne �c and concurrent as we did for clients automata.3Invariant8. For GPBM:{ id 2 pending =) prev(id) 6= ?{ id 2 done =) prev(id ) 6= ?^ prev(id) � done{ return-value(id) 6= ? =) id 2 done{ id 2 done ^ id 0 �c id =) id 0 2 done5.4 The Generic Precedence-Based SystemLemma9. GPBM and GC are compatible.Invariant10. For GPBM � GC: GPBM:prev = GC:prev.Because of this invariant, we do not need to distinguish the prev variables,nor �c and concurrent which are derived from prev , of the memory and clientsautomata. This is true for any memory automatonM and clients automaton C.6 Sequential Consistency6.1 Global Sequential ConsistencyIn this section, we introduce a notion of sequential consistency generalized for ar-bitrary precedence-based memories. We specify this by an automaton, which rulesout behaviors where operations predict what operations will be requested in thefuture. We present this automaton as an enhancement of the generic memory au-tomaton. We include below only the do-operation action; the request and responseactions are unchanged.Lemma11. gSC(D; I) � GPBM(D; I)Proof. The trivial relation which relates states with exactly the same state com-ponents is a simulation because request and response are identical in the two au-tomata, and do-operation(id ; v; �) in gSC simulates do-operation(id ; v) in GPBM.Invariant12. For gSC: There is a serialization � of done consistent with �csuch that retval(id ; �) = return-value(id) for all id 2 done.Proof. The serialization of the last do-operation action satis�es these conditions.2 As with clients automata, since these are updated deterministically by external actions,they are determined by the trace.3 Although Used is not a state variable of GPBM, it can be derived from prev or (asnoted) from the trace.



Global Sequential Consistency Automaton: gSC(D;I)Actions (changes from GPBM)Internal do-operation(id; v; �)Pre: id 2 pending� doneprev(id) � done� is a serialization of done [ fidg consistent with �c8id 0 2 done, retval(id 0; �) = return-value(id 0)retval(id; �) = vE�: As before6.2 Per-Location Sequential ConsistencyFor this section, we assume that (D; loc) is location-based. Intuitively, a per-location sequentially consistent memory maintains global sequential consistencyamong operations at the same location, but makes no guarantees for operations atdi�erent locations. This is similar to the coherence condition for cached systems.As before, we present this automaton as an enhancement of GPBM, but noticethe similarity to gSC.Per-Location Sequential Consistency Automaton: plSC(D; loc;I)Actions (changes from GPBM)Internal do-operation(id; v; �)Pre: id 2 pending� doneprev(id) � done� is a serialization of donejop(id):loc [ fidg consistent with �c8id 0 2 donejop(id):loc, retval(id 0; �) = return-value(id 0)retval(id ; �) = vE�: As beforePer-location sequential consistency can also be viewed, perhaps more naturally,as a composition of sequentially consistent memory locations. Intuitively, eachoperation gets \sent" to its location. To maintain the client-speci�ed precedence,however, locations need to be informed of the existence and relative order inthis precedence relation of operations at other locations. Thus, we can imaginethat each operation gets \done" at its location, but a dummy operation with itsidenti�er gets \sent" to all the other locations, so they can maintain the precedencerelation.6.3 Comparing gSC and plSCIntuitively, we can see that gSC is stronger than plSC. It is also intuitive, butless obvious, that if the clients always explicitly order operations done at di�erentlocations, then they will not be able to distinguish the two types of memory. Thefollowing theorems formalize this intuition.



Theorem13. gSC(D; I) � plSC(D; loc; I)Proof. The trival relation which relates states with the same state components is asimulationbecause the request and response actions are identical, and do-operation(id ; v; �)in gSC simulates do-operation(id ; v; �jop(id):loc) in plSC. This last condition followssince any partial order consistent with � is consistent with �jl, and retval(id 0; �jl) =retval(id 0; �) for all id 0, where l = op(id 0):loc.Theorem14. If C respects loc then plSC(D; loc; I) �C � gSC(D; I) �C.Proof. (Sketch) Notice that because C respects loc, all operations on the samelocation are totally ordered by �c. This means that for each location l 2 L, thereis a unique serialization of the operations at l that is consistent with prev . Thus,this must be a subsequence of any serialization of done in gSC. Since operators areoblivious to operators at di�erent locations, the return values are determined bythis subsequence, and these are the values that must be recorded in return-value.7 Generic Backer AutomatonWe now specify and analyze the Backer algorithmof [3]. The algorithm implementsa per-location sequentially consistent read/write memory on a multiprocessor sys-tem with a cache for each process and a shared \backing store". Operations maydepend explicitly on operations done at other processors. The coherence strategyis simple: An operation cannot be done unless all the operations it depends on aredone at the same processor, or they have been committed to the backing store.In addition, a read or a noop must make sure the value is not in the cache if anyoperation it depends on is done by a di�erent processor. That way, it will not bekeeping a stale value. A processor may also 
ush the value back at any time, andmay load the value whenever its own cache copy is not dirty. There are separateinternal actions for the various types of operations, instead of a single do-operationaction.Because a read/write memory is a collection of read/write registers, it is suf-�cient to demonstrate that Backer implements gSC for a single register. Thisautomaton models a set P of processors, each of which maintains a cache copyof a read/write register with values V , and, like gSC and plSC, is written as anenhancement of GPBM. To analyze this automaton and show it is correct, weneed to augment it with some auxiliary variables. We also combine the read , writeand noop actions into a single do-operation action.In order to prove that Backer implements gSC, we need several invariants. Weconsider the major invariants and steps in the proof.First, we notice that the opseqs are just serializations of the operations at eachprocessor, or that have been committed.Invariant15. For Backer:{ opseq(p) is a serialization of uncommitted(p){ opseq(B) is a serialization of done �Sp2P uncommitted (p)



BackerAdditional State Variablesval : P ! V?; initially all ?val(B) :! V ; initially v0dirty : P ! Bool; initially all trueuncommitted : P ! 2I ; initially all empty. proc : I ! P; initially all ?lastop : P ! I?; initially all ?opseq : P ! I�; initially all �opseq(B) :! I�; initially �Actions Internal do-operation(id ; p)Pre: id 2 pending � doneprev(id) � doneval(p) = ?^ 8id 0 2 prev(id), id 0 =2 uncommitted(proc(id 0))or 8id 0 2 prev(id), proc(id 0) = pE�: proc(id) pif op(id) = read thenif val(p) = ? then val(p) val(B)return-value(id) val(p)if opseq(p) 6= � then append id to opseq(p)if lastop(p) = ? then append id to opseq(B)if opseq(p) = � ^ lastop(p) 6= ? theninsert id after lastop(p) in opseq(B)lastop(p) idif op(id) = write(v) thenval(p) vdirty(p) truereturn-value(id) ackappend id to opseq(p)lastop(p) idif op(id) = noop thenreturn-value(id) ackif opseq(p) 6= � then append id to opseq(p)if lastop(p) = ? then append id to opseq(B)if opseq(p) = � ^ lastop(p) 6= ? theninsert id after lastop(p) in opseq(B)if lastop(p) 6= ? then lastop(p) idif dirty(p) then uncommitted(p) uncommitted(p) [ fidgdone  done [ fidgInternal 
ush(p)Pre: NoneE�: if dirty(p) thenval(B) val(p)dirty(p) falseuncommitted(p) ;append opseq(p) to opseq(B)opseq(p) �val(p) ?lastop(p) ?Internal load(p)Pre: :dirty(p)E�: val(p) val(B)lastop(p) the last element of opseq(B)



Proof. (Sketch) By induction on the length of an execution. Notice that uncommitted (p)and opseq (p) are modi�ed together since dirty(p) () opseq(p) 6= �.We now de�ne Opseq to be the set of sequences that are opseq(B) followed bythe concatenation of opseq(p) for all p 2 P in any order. (This is a derived statevariable.) We will show that every serialization in Opseq is a possible serializationfor all the operations in done that is consistent with the speci�ed dependenciesand the returned values.Invariant16. For Backer: For all � 2 Opseq, � is a serialization of done.De�ne a partial order �B such that id �B id 0 if id �� id 0 for all � 2 Opseq .We show that �B includes �c for the operations in done .Lemma17. For any reachable state s of Backer, if s���! s0 then �B in s0 includes�B in s.Invariant18. For Backer: If proc(id) = p and lastop(p) 6= ? then id �B lastop(p).Invariant19. For Backer: For all id ; id 0 2 done, if id 0 2 prev (id) then id 0 �B id.Invariant20. For Backer: For all � 2 Opseq, � is consistent with �c.Proof. Since � 2 Opseq , � is a serialization of done that includes �B. Using theprevious invariant, we can show that for all id ; id0 2 done , if id �c id 0 thenid �B id 0, and thus id �� id 0, so id 0 6�� id .We now show that the serializations in Opseq are consistent with the valuesreturned. To do so, we de�ne a function assocval : I � I� as follows: If � is asequence of unique identi�ers containing id then assocval(id ; �) = v if op(id ) =write(v) or op(id) 2 fread ; noopg and either id is the �rst element of � and v = v0or v = assocval (id 0; �) where id 0 is the immediate predecessor of id in �. Anotherway of saying this is that assocval (id ; �) is the value written immediately beforeid in �, or v0 if there are no writes precede id in �.First, we note that for any id 2 done and � 2 Opseq , assocval depends onlyon the particular opseq that contains id .Invariant21. For Backer: For all � 2 Opseq, id 2 done:{ If id 2 uncommitted(p) then assocval(id ; �) = assocval (id ; opseq(p)){ If id 2 done�Sp2P uncommitted(p) then assocval (id ; �) = assocval(id ; opseq(B))Proof. (Sketch) This follows because the �rst element of opseq(p) is always awrite if opseq (p) 6= �.The next two invariants say that assocval gives the value that would be readby a read operation.Invariant22. For Backer: If opseq(p) 6= � then lastop(p) is the last element ofopseq(p) and val (p) = assocval (lastop(p); opseq(p)).



Invariant23. For Backer: If opseq (B) 6= � then val(B) = assocval (id ; opseq(B)),where id is the last element of opseq(B).Thus, the value returned by any read is the value of assocval for that operationfor any � 2 Opseq :Invariant24. For Backer: For all id 2 done such that op(id) = read, return-value(id) =assocval (id ; �) for all � 2 Opseq.Theorem25. Backer � gSCProof. (Sketch) The trivial relation between states with identical prev , pending ,done , and return-value state components is a simulation. To see this, notice thatthis is okay for the start states. The request and response actions simulate the sameactions in gSC, and the do-operation(id ; p) action simulates do-operation(id ; v; �),where � 2 Opseq and v = retval(id ; �). The 
ush and load actions correspondto no action in gSC. We know that the do-operation(id ; v; �) action is enabled bythe invariants. It is easy to check that the correspondence is maintained in thepost-states of the two steps.8 DiscussionWe have presented a uni�ed framework for understanding precedence-based mem-ory models, which we hope can serve as a foundation to understanding moregeneral memories. Because this framework is completely formal, we can prove thecorrectness of algorithms, and make rigorous comparisons between various pro-posed models. We believe that the careful de�nition and characterization of theserial semantics of data will also be helpful in understanding memory, and howalgorithms can exploit speci�c classes of data, particular read/write memories.Many people have proposed di�erent memory models (see [1] for an overview),but only a few have proposed a uni�ed framework that can be used to comparedi�erent models. Gibbons and Merritt [8] present a framework to specify non-blocking shared memories, and they do so at roughly the same level as we do.Attiya, et al [2] present a higher level framework which also considers the controloperations in programs. However, both still model processes explicitly, and thuswould not be able to model the Cilk system, for example. Furthermore, while itis important to be able to reason about programs eventually, rather than simplythe sequence of operations actually requested of the memory, this requires someassumptions about the expressiveness of the programming language, and this isstill an area of active research.This work continues in the direction of Fekete, et al [5] and Blumofe, et al [3] inallowing memory models without explicit processes, but can still express modelswith explicit processes. It is not intended to express all memory models, however,since this task has proven to be very di�cult. Rather, it is intended as a �rst stepin trying to understand the essential properties of memory models in a coherentframework.One direction that we believe will be very helpful to explore is how exclusivityrequirements, such as mutual exclusion, or read/write locks, can be incorporated



into this framework. A more modest goal would be to characterize di�erent syn-chronization primitives in this framework, and whether the various primitives be-ing proposed by be handled within this framework, or if they have some additionalexclusivity requirements.References1. S. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. Tech-nical Report 9512, Rice University, Sept. 1995.2. H. Attiya, S. Chaudhuri, R. Friedman, and J. Welch. Shared memory consistencyconditions for non-sequential execution: De�nitions and programming strategies. InProc. of the Fifth ACM Symp. on Parallel Algorithms and Architectures, June 1993.3. R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. Dag-consistent distributed shared memory. In Proc. of the 10th Int'l Parallel ProcessingSymp., Honolulu, Hawaii, Apr. 1996.4. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, andY. Zhou. Cilk: An e�cient multithreaded runtime system. In Proc. of the Fifth ACMSIGPLAN Symp. on Principles and Practice of Parallel Programming (PPoPP),pages 207{216, Santa Barbara, California, July 1995.5. A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman. Eventually-serializable data services. In Proc. of the 15th ACM Symp. on Principles of Dis-tributed Computing, pages 300{309, May 1996.6. G. R. Gao and V. Sarkar. Location consistency: Stepping beyond the barriersof memory coherence and serializability. Technical Report 78, McGill University,ACAPS Laboratory, Dec. 1993.7. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.Memory consistency and event ordering in scalable shared-memory multiprocessors.In Proc. of the 17th Int'l Symp. on Computer Architecture, pages 15{26, Seattle,Washington, June 1990.8. P. Gibbons and M. Merritt. Specifying nonblocking shared memories. In Proc. ofthe Fourth ACM Symp. on Parallel Algorithms and Architectures, June 1992.9. J. R. Goodman. Cache consistency and sequential consistency. Technical Report 61,IEEE Scalable Coherent Interface (SCI) Working Group, Mar. 1989.10. L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between releaseconsistency and entry consistency. In Proc. of the Eighth ACM Symp. on ParallelAlgorithms and Architectures, June 1996.11. L. Lamport. How to make a multiprocessor computer that correctly executes multi-process programs. IEEE Transactions on Computers, C-28(9):690{691, Sept. 1979.12. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco,Calif., 1996.13. Supercomputing Technologies Group. Cilk 4.0 Reference Manual. MIT Laboratoryfor Computer Science, 545 Technology Square, Cambridge, Massachusetts 02139,June 1996.This article was processed using the LATEX macro package with LLNCS style


