
A Formal Venture into Reliable Multicast
Territory

Carolos Livadas and Nancy A. Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology

{clivadas,lynch}@theory.lcs.mit.edu

Abstract. In this paper, we present a formal model of the reliable mul-
ticast service that ensures eventual packet delivery with, possibly, some
timeliness guarantees. This model dictates precisely what it means to be
a member of the reliable multicast group and which packets are guaran-
teed delivery to which members of the group. Moreover, it is reasonable,
implementable, and broad; that is, it captures the intended behavior of
numerous reliable multicast protocols. We also present a formal model
of the Scalable Reliable Multicast (SRM) protocol [1]. We show that our
model of SRM is safe, in the sense that it is a faithful implementation
of our model of the reliable multicast service; that is, it may only de-
liver appropriate packets to each member of the reliable multicast group.
We also show that, under certain constraints, the implementation is live,
in the sense that it guarantees the timely delivery of the appropriate
packets to the appropriate members of the reliable multicast group.

1 Introduction

With the increasing use of the Internet, multi-party communication and collab-
oration applications are becoming mainstream. Reliable multicast is a communi-
cation service that facilitates such applications. In the recent past, a slew of pro-
tocols have been proposed to reliably multicast packets efficiently [2,3,4,1,5,6].
However, reliability in the multicast setting has assumed many meanings, rang-
ing from in-order eventual delivery to timely delivery where a small percentage
of packet losses is tolerable. The many notions of reliability stem from the vary-
ing assumptions regarding the communication environment and the goals and
requirements of the applications to which particular reliable multicast protocols
cater.

Most often, the behavior of reliable multicast protocols is described infor-
mally. To our surprise, a protocol’s description is seldom accompanied by a
precise definition of its reliability guarantees. In its simplest form, reliability is
informally defined as the eventual delivery of all multicast packets to all group
members; other notions of reliability include ordering, no-duplication, and time-
liness guarantees. Although intuitive, this simplistic reliability definition does
not precisely specify which packets are guaranteed delivery to which members

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 146–161, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Formal Venture into Reliable Multicast Territory 147

of the group, especially when the group membership is dynamic. Moreover, pro-
tocol descriptions put little emphasis on the behavior, or the analysis of the
behavior, of the protocol when the group membership is dynamic, either due
to failures or frequent joins and leaves. As hosts become more mobile, a better
understanding of the behavior of such services and protocols in the context of a
dynamic group membership is increasingly important.

In this paper, we present a formal model of the reliable multicast service,
which we henceforth refer to as the reliable multicast specification (RMS). Speci-
fying the reliable multicast service is not straightforward. The plethora of reliable
multicast protocols cater to diverse applications that impose diverse correctness
and performance requirements. Clearly, capturing the functionality of all reli-
able multicast protocols using a single specification would be quite complex and
unwieldy. Our reliable multicast service specification formalizes the behavior of
a number of protocols, such as SRM [1] and LMS [5], that strive to provide
eventual delivery with, possibly, some timeliness guarantees. We stipulate that,
in the context of dynamic group membership, membership is intrinsically inter-
twined with reliability; that is, membership and reliability must be addressed
together. Thus, our specification dictates precisely what it means to be a mem-
ber of a reliable multicast group and which packets are guaranteed delivery to
which members of the reliable multicast group. We parameterize our specifi-
cation with a delivery latency bound, which specifies an upper bound on the
latency incurred to reliably deliver multicast packets. This parameterization re-
sults in a reliable multicast service specification that encompasses the behavior
of a collection of reliable multicast protocols, some with loose and others with
potentially stringent timeliness guarantees.

We also present a formal model of the Scalable Reliable Multicast (SRM)
protocol [1]. Our model of SRM, which we henceforth refer to as the reliable
multicast implementation (RMI), involves several components with distinct func-
tionalities, such as the maintenance of the reliable multicast group membership
and the packet loss recovery. This decomposition simplifies the reasoning and
facilitates future modifications to the implementation. We show that RMI is
safe, in the sense that it is a faithful implementation of RMS; that is, it may
only deliver appropriate packets to each member of the reliable multicast group.
We also show that, under certain constraints, RMI is live, in the sense that
it guarantees the timely delivery of the appropriate packets to the appropriate
members of the group.

The rest of the paper is organized as follows. Section 2 presents our modeling
framework. Section 3 presents the abstract view of the physical system that we
adopt in our work. Section 4 presents RMS and its eventual and timely reliability
properties. Section 5 presents RMI, derives constraints on RMI’s packet loss re-
covery parameters, and analyzes RMI’s safety and liveness with respect to RMS.
Finally, Section 6 presents the paper’s contributions and future work directions.
Due to space constraints, the presentation of the material in this paper is quite
terse. A complete presentation of this material appears in Ref. 7.

148 C. Livadas and N.A. Lynch

2 Modeling Framework and Notation

In this paper, we use the timed input/output (I/O) automaton (TIOA) modeling
framework (introduced as the general timed automaton model in Ref. 8); a frame-
work for modeling timed systems. A timed I/O automaton A is a state-machine
in which transitions are labeled by actions. A’s actions (acts(A)) are partitioned
into input (in(A)), output (out(A)), internal (int(A)), and time-passage sets.
Time-passage actions model the passage of time. The input and output actions
of A are collectively referred to as external ; denoted ext(A). Input, output, and
time-passage actions are collectively referred to as visible; denoted vis(A). A
timed I/O automaton A is defined by its signature (input, output, internal, and
time-passage actions), states, start states, and state-transition relation (a cross
product of states, actions, and states that dictates A’s allowable transitions).

A timed execution fragment α of A is a finite or infinite alternating sequence,
α = s0π1s1π2s2 . . . , of states and actions consistent with A’s state-transition
relation. For any two timed execution fragments α and α′ of A, we use the
notation α ≤ α′ to denote that α is a prefix of α′. A timed execution fragment
of A is admissible if an infinite amount of time elapses within the particular
fragment. An admissible timed execution fragment α of A is fair when no action
is enabled in every state of a suffix of α without appearing in the given suffix.
The time of occurrence of an action πk, for k ∈ N

+, within a timed execution
fragment α of A is the time elapsing within α prior to the occurrence of πk. The
timed trace β of a timed execution fragment α of A is the sequence of visible
actions in α, each paired with its time of occurrence. For any two timed traces
β and β′ of A, we use the notation β ≤ β′ to denote that β is a prefix of β′.

A timed execution of A is a timed execution fragment of A that begins in one
of A’s start states. We let aexecs(A) denote the set of all admissible timed exe-
cutions of A, attraces(A) denote the timed traces of all executions in aexecs(A),
fair-aexecs(A) denote the set of all fair admissible timed executions of A, and
fair-attraces(A) denote the timed traces of all executions in fair-aexecs(A).

Two timed I/O automata A1 and A2 are compatible if int(Ai)∩acts(Aj) = ∅
and out(Ai) ∩ out(Aj) = ∅, for i, j ∈ {1, 2}, i �= j. The composition of com-
patible timed I/O automata yields a timed I/O automaton. The hiding opera-
tion reclassifies output actions of a timed I/O automaton as internal. Letting
A, B be timed I/O automata with the same external interface, B implements
A, denoted B ≤ A, when its external behavior is allowed by A; that is, when
attraces(B) ⊆ attraces(A). The implementation relation among two timed I/O
automata is often shown by defining a timed simulation relation; that is, relat-
ing states of B to states of A and showing that for any step of B there is a
timed execution fragment of A with the same timed trace as the step of B that
preserves the state relation.

We use a precondition-effect style notation to define the state-transition
relations of timed I/O automata. Moreover, we use the notation S1 ∪= S2,
S1 \= S2, and s :∈ S as shorthand for S1 := S1 ∪ S2, S1 := S1\ S2, and the
assignment of an arbitrary element of S to the variable s.

A Formal Venture into Reliable Multicast Territory 149

3 The Physical System

We assume that the physical system is comprised of an infinite set of hosts that
interact through an underlying network. This network involves a set of intercon-
nected routers. Each host is connected to a particular router of the underlying
network; for each host, we refer to this particular router as the gateway router of
the particular host. Hosts and routers are connected among themselves through
bi-directional communication links.

We assume that all hosts are of comparable processing power and storage re-
sources. Resident on each host are a set of processes. We assume that hosts are
symmetric in the sense that the same set of processes reside on each host. The set
of processes on each host consists of a single application process and several ad-
ditional communication service processes. Henceforth, we refer to the application
process at each host as the client at the given host. The communication service
processes, either individually or collectively, provide the communication services
required by the client. For instance, the IP unicast service may be modeled as a
set of processes, one such process for each host. Clients may thus exchange IP
unicast packets through their respective IP unicast processes; these may in turn
interact with the hosts’ gateway routers.

In terms of system faults, we consider only host crashes and packet drops on
the communication links. Once a host crashes it remains crashed thereafter. A
host is said to be operational prior to crashing and to have crashed thereafter.
All the processes on each host are fate-sharing ; that is, if a host crashes, then
all of its processes crash. Router failures and network partitions are assumed to
be ephemeral. Such failures are modeled as numerous consecutive packet drops.

Since crashes are assumed to be permanent, we model host restarts implic-
itly. We think of the restarting of a host as its reincarnation as a completely new
host; that is, after crashing, a host may assume the identity of another host that
has up to that point in time been idle. This modeling simplification is equiva-
lent to explicitly modeling host restarts and having hosts choose a unique host
identifier each time they restart. Such an identifier could involve, for instance,
the processor identifier and an infinite reincarnation counter that is stable across
crashes.

4 Reliable Multicast Specification (RMS)

We abstractly model the reliable multicast service as a single component that in-
teracts with all client processes. Thus, the reliable multicast service encapsulates
the behavior of all communication service processes at all hosts and the under-
lying network. For simplicity, we assume that there is a single reliable multicast
group. Since we assume a single client per host and a single reliable multicast
group, we do not distinguish among the client process and the host when con-
sidering reliable multicast group membership. In fact, we often use the terms
client and host interchangeably.

Throughout our treatment of reliable multicast, we adopt the packet nam-
ing scheme used by Floyd et al. [1]. In this scheme, clients (applications) assign

150 C. Livadas and N.A. Lynch

H Set of all hosts.

Status = {idle, joining, leaving, member, crashed}

PRM-Client = Set of packets such that ∀ p ∈ PRM-Client
source(p) ∈ H
seqno(p) ∈ N

data(p) ∈ {0, 1}∗

id(p) ∈ H × N : id(p) = 〈source(p), seqno(p)〉
suffix(p) = {〈s, i〉 ∈ H × N | source(p) = s ∧ seqno(p) ≤ i}

Fig. 1. Reliable Multicast Specification Definitions

r
m
-
j
o
i
n
1

r
m
-
j
o
i
n
-
a
c
k
1

r
m
-
s
e
n
d
1
(p
)

r
m
-
r
e
c
v
1
(p
)

r
m
-
l
e
a
v
e
1

r
m
-
l
e
a
v
e
-
a
c
k
1

r
m
-
j
o
i
n
k

r
m
-
j
o
i
n
-
a
c
k
k

r
m
-
s
e
n
d
k
(p
)

r
m
-
r
e
c
v
k
(p
)

r
m
-
l
e
a
v
e
k

r
m
-
l
e
a
v
e
-
a
c
k
k

RM-Client1

crash1

RM-Clientk

crashk

RM(�)

Fig. 2. Reliable Multicast Specification Component Interaction

unique sequence numbers to each packet they multicast. These sequence num-
bers are assigned in a continuous fashion as hosts join, leave, and rejoin the reli-
able multicast group; that is, consecutive packets sent by each host are assigned
consecutive sequence numbers. Thus, packets are uniquely and persistently iden-
tified by a pair involving their source host and their sequence number. Since the
clients (applications) are responsible for naming packets, packets are referred to
as application data units (ADUs).

We formally specify the reliable multicast service and each of the client pro-
cesses using timed I/O automata. The automaton RM(∆), for ∆ ∈ R

≥0 ∪ ∞,
models the reliable multicast service. RM(∆) defines what it means to be a
member of the reliable multicast group and specifies precisely which packets
are guaranteed delivery to each member of the reliable multicast group. The
parameter ∆ specifies an upper bound on the amount of time required by
the reliable multicast service to reliably deliver each packet. The automaton
RM-Clienth models the client at the host h. We let RM-Clients denote the
composition of all client automata and RMS(∆), for any ∆ ∈ R

≥0 ∪ ∞, denote
the composition of the reliable multicast service and all client automata; that
is, RMS(∆) = RM(∆)×RM-Clients. Figure 1 includes several set definitions
pertaining to our reliable multicast service specification. Figure 2 depicts the
interaction of the RM(∆) and RM-Clienth, for h ∈ H, automata.

We proceed by describing the functionality of the RM(∆) and RM-Clienth

automata. We then present some preliminary properties and definitions pertain-
ing to RM(∆), RM-Clienth, and RMS(∆), for ∆ ∈ R

≥0 ∪ ∞ and h ∈ H. We
conclude this section by presenting the reliability properties of RMS(∆).

A Formal Venture into Reliable Multicast Territory 151

4.1 The RM(∆) Automaton

Figure 3 presents the signature, the variables, and the discrete transitions of
RM(∆).

Membership and Crashing. The RM(∆) automaton maintains the set of
members of the reliable multicast group. Hosts initiate the process of joining
and leaving the reliable multicast group by issuing join and leave requests to
the reliable multicast service. A request to join the reliable multicast group is
effective only when the host is idle with respect to the reliable multicast group;
that is, it is operational and neither a member of nor in the process of joining
or leaving the reliable multicast group. A host becomes a member of the reliable
multicast group upon the acknowledgment of an earlier join request. Hosts may
only send and receive packets through the reliable multicast service while they
are both operational and members of the reliable multicast group. Once a host
issues a request to leave the reliable multicast group, it ceases to be a member of
the reliable multicast group and, thus, relinquishes its right to receive any more
reliable multicast packets. Leave requests overrule join requests in the sense
that if the client is already in the process of joining the group while it issues a
leave request, then the process of joining is aborted and the process of leaving
is initiated. Once a host leaves the reliable multicast group, it may later rejoin
the reliable multicast group by re-issuing a join request. Hosts may crash at any
point in time. Once a host has crashed, the reliable multicast service ignores
all events pertaining to the crashed host. Recall that host restarts are treated
implicitly by thinking of host restarts as host reincarnations.

Multicast Reliability. We say that a member h of the reliable multicast group
has delivered the packet p if it has either sent or received the packet p. We say
that a member h of the reliable multicast group is aware of a packet p, or is
expecting p, if it has delivered either p or an earlier packet p′ from the source
of p. Moreover, we say that a packet p is active if at least one member of the
reliable multicast group that has become aware of p since last joining the reliable
multicast group, has also delivered it since last joining the reliable multicast
group.

Once a host joins the reliable multicast group, the issue of catching up on
any of the packets multicast earlier is orthogonal to the transmission of future
packets using the reliable multicast service. Thus, once a host joins the reliable
multicast group, the first packet it receives from a particular source dictates
the set of packets that are guaranteed delivery to the given host. In particular,
none of the earlier packets and any of the later packets that remain active after
being sent are guaranteed delivery, provided the host remains a member of the
reliable multicast group. The host may catch up on earlier packets from the
given source through a separate service. For example, earlier packets may be
requested directly from the source through a unicast communication channel.
The rationale behind this modeling choice is that the recovery of a large number

152 C. Livadas and N.A. Lynch

Parameters:

∆ ∈ R
≥0 ∪ {∞}

Actions:

Input:
crashh, for h ∈ H
rm-joinh, for h ∈ H
rm-leaveh, for h ∈ H
rm-sendh(p), for h ∈ H, p ∈ PRM-Client

Output:
rm-join-ackh, for h ∈ H
rm-leave-ackh, for h ∈ H
rm-recvh(p), for h ∈ H, p ∈ PRM-Client

Time Passage:
ν(t), for t ∈ R

≥0

Variables:

now ∈ R
≥0, initially now = 0

status(h) ∈ Status, for all h ∈ H, initially status(h) = idle, for all h ∈ H

trans-time(p) ∈ R
≥0 ∪ ⊥, for all p ∈ PRM-Client, initially trans-time(p) =⊥, for all p ∈ PRM-Client

expected(h, h′) ⊆ H × N, for all h, h′ ∈ H, initially expected(h, h′) = ∅, for all h, h′ ∈ H
delivered(h, h′) ⊆ H × N, for all h, h′ ∈ H, initially delivered(h, h′) = ∅, for all h, h′ ∈ H

Derived Variables:

idle = {h ∈ H | status(h) = idle}
joining = {h ∈ H | status(h) = joining}
leaving = {h ∈ H | status(h) = leaving}
members = {h ∈ H | status(h) = member}
intended(p) = {h ∈ H | id(p) ∈ expected(h, source(p))}, for all p ∈ PRM-Client
completed(p) = {h ∈ H | id(p) ∈ delivered(h, source(p))}, for all p ∈ PRM-Client
sent-pkts = {p ∈ PRM-Client | trans-time(p) �=⊥}
active-pkts = {p ∈ PRM-Client | p ∈ sent-pkts ∧ intended(p) ∩ completed(p) �= ∅}

Discrete Transitions:

input crashh

eff status(h) := crashed
foreach h′ ∈ H do:

expected(h, h′) := ∅
delivered(h, h′) := ∅

input rm-joinh

eff if h ∈ idle then
status(h) := joining

input rm-leaveh

eff if h ∈ joining ∪ members then
status(h) := leaving
foreach h′ ∈ H do:

expected(h, h′) := ∅
delivered(h, h′) := ∅

input rm-sendh(p)

eff if h ∈ members ∩ {source(p)} then
if expected(h, h) = ∅ then

expected(h, h) := suffix(p)
if id(p) ∈ expected(h, h) then

trans-time(p) := now
delivered(h, h)∪= {id(p)}

output rm-join-ackh

pre h ∈ joining
eff status(h) := member

output rm-leave-ackh

pre h ∈ leaving
eff status(h) := idle

output rm-recvh(p)

pre h ∈ members\{source(p)}
∧p ∈ sent-pkts
∧(expected(h, source(p)) = ∅

⇒ now ≤ trans-time(p) + ∆)
∧(expected(h, source(p)) �= ∅

⇒ id(p) ∈ expected(h, source(p)))
eff if expected(h, source(p)) = ∅ then

expected(h, source(p)) := suffix(p)
delivered(h, source(p))∪= {id(p)}

time-passage ν(t)

pre ∀ p ∈ active-pkts,
now + t ≤ trans-time(p) + ∆
∨intended(p) ⊆ completed(p)

eff now := now + t

Fig. 3. The RM(∆) Automaton

of earlier packets may strain the reliable multicast service and wastefully expose
the recovery of earlier packets to all or a subset of the reliable multicast group.

If ∆ is equal to infinity, then RM(∆) guarantees that if a packet p remains
active forever after its transmission then any member that becomes aware of
p and remains a member of the reliable multicast group thereafter, delivers
p. Equivalently, if two members become aware of a packet p, remain members

A Formal Venture into Reliable Multicast Territory 153

forever thereafter, and one member delivers p, then the other member delivers p
also. It is important to note that a host is not required to remain a member of the
reliable multicast group indefinitely in order for the packets it multicasts to be
received by hosts that become aware of them; the eventual reception of packets is
guaranteed to all hosts that become aware of them provided the packets remain
active forever after they are sent.

If ∆ if finite, then RM(∆) guarantees that if a packet remains active for ∆
time units past its transmission, then it is delivered to all hosts that become
aware of it within these ∆ time units and, subsequently, remain members of the
reliable multicast group for the remaining duration of these ∆ time units elapse.

4.2 The RM-Clienth Automata

Figure 4 presents the signature, the variables, and the discrete transitions of
RM-Clienth. The RM-Clienth automaton models a well-behaved client; that
is, a client that: i) transmits packets only when it is a member of the reliable
multicast group, ii) transmits packets in ascending and contiguous sequence
number order, iii) issues join requests only when it is idle with respect to the
reliable multicast group, and iv) issues leave requests only when it is a member
of the reliable multicast group.

4.3 Preliminary Properties and Definitions

The automaton RM-Clienth, for any h ∈ H, satisfies transmission correct-
ness and transmission uniqueness. Transmission correctness is the property that
clients only transmit packets for which they are actually the source. Transmis-
sion uniqueness is the property that no two packets transmitted by a client share
the same identifier.

Lemma 1 (Transmission Correctness). Let β be any timed trace of the au-
tomaton RM-Clienth, for any h ∈ H. If β contains the action rm-sendh(p), for
some p ∈ PRM-Client, then the host h is the source of p; that is, h = source(p).

Lemma 2 (Transmission Uniqueness). Let β be any timed trace of the au-
tomaton RM-Clienth, for any h ∈ H. For any packet identifier 〈s, i〉 ∈ H ×N,
β contains at most one action rm-sendh(p), for p ∈ PRM-Client, such that
id(p) = 〈s, i〉.

The automaton RMS(∆), for any ∆ ∈ R
≥0 ∪ ∞ satisfies transmission in-

tegrity. Transmission integrity it the property that, within a timed trace of
RMS(∆), the reception of a packet must be preceded by the particular packet’s
transmission.

Lemma 3 (Transmission Integrity). Let β be any timed trace of RMS(∆),
for any ∆ ∈ R

≥0 ∪ ∞. For h, h′ ∈ H and p ∈ PRM-Client, such that h �= h′ and
h = source(p), it is the case that any rm-recvh′(p) action is preceded in β by a
rm-sendh(p) action.

154 C. Livadas and N.A. Lynch

Parameters:

h ∈ H

Actions:

Input:
crashh

rm-join-ackh

rm-leave-ackh

rm-recvh(p), for all p ∈ PRM-Client

Output:
rm-joinh

rm-leaveh

rm-sendh(p), for all p ∈ PRM-Client
Time Passage:

ν(t), for t ∈ R
≥0

Variables:

now ∈ R
≥0, initially now = 0

status ∈ Status, initially status = idle
seqno ∈ N, initially seqno = 0

Discrete Transitions:

input crashh

eff status := crashed

input rm-join-ackh

eff if status = joining then
status := member

input rm-leave-ackh

eff if status = leaving then
status := idle

input rm-recvh(p)

eff None

output rm-joinh

pre status = idle
eff status := joining

output rm-leaveh

pre status = member
eff status := leaving

output rm-sendh(p)

pre status = member
∧source(p) = h ∧ seqno(p) = seqno

eff seqno := seqno + 1

time-passage ν(t)

pre None
eff now := now + t

Fig. 4. The RM-Clienth Automaton

Let β be a timed trace of RMS(∆), for any ∆ ∈ R
≥0∪∞, and p ∈ PRM-Client

be any packet transmitted within β using the reliable multicast service. We
proceed by defining the set of members of β, the intended and completed delivery
sets of p within β, and the set of active packets within β. The members of a timed
trace β are the hosts that have neither crashed nor left the reliable multicast
group since last joining the reliable multicast group within β. The intended
delivery set of p within β is the set of intended recipients of p within β; that
is, the set of members of β that have become aware of p since last joining the
reliable multicast group. The completed delivery set of p within β is the set of
members of β that have delivered p since last joining the reliable multicast group.
The set of active packets within β is comprised of the packets whose intended
and completed delivery sets within β intersect.

Definition 1 (Membership). Let β be any timed trace of RMS(∆), for any
∆ ∈ R

≥0 ∪ ∞. We define the members of β, denoted members(β), to be the set
of hosts h ∈ H such that β contains a rm-join-ackh action that is not succeeded
by either a rm-leaveh or a crashh action.

Definition 2 (Intended Delivery Set). Let β be any timed trace of the au-
tomaton RMS(∆), for any ∆ ∈ R

≥0 ∪ ∞, containing the transmission of a

A Formal Venture into Reliable Multicast Territory 155

packet p ∈ PRM-Client. We define the intended delivery set of p within β, de-
noted intended(p, β), to be the members of β that have delivered either the packet
p or an earlier packet from the source of p since they last joined the reliable mul-
ticast group; that is, h ∈ intended(p, β) if and only if h ∈ members(β) and
the last rm-join-ackh action in β is succeeded by either a rm-sendh(p′) or a
rm-recvh(p′) action, where source(p′) = source(p) and seqno(p′) ≤ seqno(p).

Definition 3 (Completed Delivery Set). Let β be any timed trace of the
automaton RMS(∆), for any ∆ ∈ R

≥0 ∪ ∞, containing the transmission of
a packet p ∈ PRM-Client. We define the completed delivery set of p within β,
denoted completed(p, β), to be the members of β that have delivered the packet p
since they last joined the reliable multicast group; that is, h ∈ completed(p, β) if
and only if h ∈ members(β) and the last rm-join-ackh action in β is succeeded
by either a rm-sendh(p) or a rm-recvh(p) action.

Definition 4 (Active Packets). Let β be any finite timed trace of the automa-
ton RMS(∆), for any ∆ ∈ R

≥0 ∪ ∞. We define the set of active packets within
β, denoted active-pkts(β), to be the set of all packets p ∈ PRM-Client such that
intended(p, β)∩ completed(p, β) �= ∅. If p ∈ active-pkts(β), then we say that p is
active within β.

4.4 Reliability Properties

The RMS(∆) automaton, for any ∆ ∈ R
≥0 ∪ ∞, satisfies the eventual delivery

and, equivalently, pairwise eventual delivery, properties. Eventual delivery is the
property that if a host h is a member of the reliable multicast group, becomes
aware of a packet p, remains a member of the group thereafter, and p remains
active thereafter, then h delivers p since last joining the reliable multicast group.
Its pairwise counterpart is the property that if two hosts are members of the
reliable multicast group, become aware of the packet p, remain members of
the group thereafter, and one of them delivers p since last joining the reliable
multicast group, then so does the other. The eventual and pairwise eventual
delivery properties are equivalent.
Theorem 1 (Eventual Delivery). Let β be any fair admissible timed trace
of RMS(∆), for any ∆ ∈ R

≥0 ∪ ∞, containing the transmission of a packet
p ∈ PRM-Client. If p ∈ active-pkts(β), then it is the case that intended(p, β) ⊆
completed(p, β).

Corollary 1 (Pairwise Eventual Delivery). Let β be any fair admissible
timed trace of the RMS(∆) automaton, for any ∆ ∈ R

≥0 ∪ ∞, containing the
transmission of a packet p ∈ PRM-Client. For any hosts h, h′ ∈ intended(p, β), it
is the case that h ∈ completed(p, β) ⇒ h′ ∈ completed(p, β).

Finally, the RMS(∆) automaton, for any ∆ ∈ R
≥0, satisfies the time-bounded

delivery property. Time-bounded delivery is the property that, at any point in
time ∆ time units past the transmission of a packet, if the given packet is active,
then is has been delivered to all members of the reliable multicast group that
are aware of it.

156 C. Livadas and N.A. Lynch

Theorem 2 (Time-Bounded Delivery). Let β be any timed trace of the au-
tomaton RMS(∆), for any ∆ ∈ R

≥0, that contains the transmission of a packet
p ∈ PRM-Client. Let β′ be the finite prefix of β ending with the transmission
of p; that is, the last action contained in β′ is the action rm-sendh(p), for
h ∈ H, h = source(p). Let t, t′ ∈ R

≥0 be the time of occurrence of the last actions
of β and β′, respectively. For any h′ ∈ H, if t′ + ∆ < t, p ∈ active-pkts(β) and
h′ ∈ intended(p, β), then it is the case that h′ ∈ completed(p, β).

5 Reliable Multicast Implementation (RMI)

In this section, we present RMI — a formal model of the Scalable Reliable
Multicast (SRM) protocol [1]. RMI precisely specifies the behavior of the basic
version of SRM — more sophisticated versions involve adaptive and local recov-
ery schemes [1, 9]. We proceed by describing RMI’s architecture, briefly present
RMI’s packet loss recovery scheme, and derive some constraints on RMI’s pa-
rameters. Finally, we state the safety and liveness properties of RMI with respect
to RMS.

5.1 RMI’s Architecture

Presuming the abstract view of the physical system introduced in Section 3, RMI
involves the interaction of a set of client processes, one process per host, a set
of reliable multicast processes, one process per host, and an IP multicast service
component. The client processes are identical to those presented in Section 4.
The reliable multicast processes execute the SRM protocol. The IP multicast
service component encapsulates the behavior of all communication processes
at all hosts and the underlying network and provides the best-effort multicast
primitive.

We model each reliable multicast process as four interacting components,
each with distinct functionalities. The membership component manages the re-
liable multicast group membership of the host. It handles the join and leave
requests of the client process and issues join and leave requests to the under-
lying IP multicast service. The IP buffer component buffers all packets either
received from or to be transmitted using the underlying IP multicast service. The
recovery component incorporates all the functionality pertaining to the detection
and recovery of missing packets. Finally, the reporting component incorporates
all the functionality pertaining to the exchange of session messages among the
members of the reliable multicast group. Session messages are used to exchange
transmission state and inter-host round-trip-time (RTT) information. This in-
formation aids the detection of losses, in particular during transmission gaps,
and the calculation of inter-host round-trip-time estimates, which are required
by the recovery component.

Figure 5 depicts the interaction of the various components of RMI. The
reliable multicast process SRMh at each host h is the composition of the au-
tomata SRM-memh, SRM-IPbuffh, SRM-rech, and SRM-reph. The reli-
able multicast implementation as a whole, denoted SRM, is the composition

A Formal Venture into Reliable Multicast Territory 157

process-mpkth(p)

mjoinh

mjoin-ackh

mleaveh

mleave-ackh

rec-msendh(p)

msendh(p)

mrecvh(p)

S
R
M

-
m
e
m
h

S
R
M

-
I
P
b
u
f
f
h

rep-msendh(p)

rep-disth(h
0
; d

0)

rep-seqnoh(s; i)

rm-sendh(p)

rm-recvh(p)

rm-joinh

rm-join-ackh

rm-leaveh

rm-leave-ackh

r
m
C
l
ie
n
t
h

S
R
M

-
r
e
c
h

I
P
m
c
a
s
t

S
R
M

-
r
e
p
h

SRMh

r
m
C
l
ie
n
t
s

crashh

SRM

Fig. 5. Reliable Multicast Implementation Component Interaction

of the SRM processes and the underlying IP multicast service after hiding all
output actions that are not output actions of the specification RM(∆), for
any ∆ ∈ R

≥0 ∪ ∞; that is, SRM = hideΦ(
∏

h∈H SRMh × IPmcast), with
Φ = out(

∏
h∈H SRMh × IPmcast)\out(RM(∆)). Finally, we define RMI to be

the composition of the reliable multicast implementation with all the client au-
tomata; that is, RMI = SRM × RM-Clients. Ref. 7 contains complete timed
I/O automaton models of each of the components depicted in Figure 5.

5.2 Overview of RMI’s Packet Loss Recovery

Receivers detect packet losses by identifying sequence number gaps in the stream
of packets received from each source. Upon detecting the loss of a packet p, a host
h initiates a new recovery round for p by scheduling a retransmission request for
p. This request is scheduled for transmission at a point in time in the future that
is uniformly chosen within the interval [C1d̂hs, (C1+C2)d̂hs], where C1, C2 ∈ R

≥0

are request scheduling parameters and d̂hs is half of h’s round-trip-time (RTT)
estimate to the source s of the packet p.

Upon either the transmission of a request for p or the reception of a request for
p while a request for p is pending transmission, the host h initiates a new recovery
round for p by rescheduling the request for p for transmission at a point in time in
the future that is uniformly chosen within the interval 2k−1[C1d̂hs, (C1+C2)d̂hs],
where k ∈ N

+ is the number of recovery rounds for p that h has already initiated.
In effect, the request for p is rescheduled by performing an exponential back-off.
If h receives p while a request for p is pending transmission, then the request for
p is canceled.

158 C. Livadas and N.A. Lynch

Once h reschedules its request for p, it observes a back-off abstinence period.
During this period, it refrains from backing-off its request for p. Any requests for
p received during this period are considered to pertain to prior recovery rounds
and are discarded. Thus, back-off abstinence periods prevent requests from being
backed-off multiple times by requests pertaining to the same recovery round. The
back-off abstinence period for p expires at the point in time that is 2k−1C3d̂hs

time units in the future, where k ∈ N
+ is the number of recovery rounds for p

that h has already initiated and C3 ∈ R
≥0 is the back-off abstinence parameter.

Our modeling of back-off abstinence periods departs slightly from SRM.
Floyd et al. [1] propose two schemes for ensuring that requests are backed off only
once per recovery round. The first scheme involves back-off abstinence periods
that expire once half the time to the transmission time of the respective request
has elapsed. Our use of a parameter for specifying how long to abstain from
backing off allows more tuning freedom. Moreover, having back-off abstinence
periods expire once half the time to the transmission time of the respective re-
quest has elapsed allows for the back-off abstinence period to overlap the interval
within which requests are scheduled. This seems to go against the intention of
the abstinence period. Requests received within the interval within which the
current request was scheduled, should be considered to be requests of the cur-
rent round and, thus, should result in the rescheduling of the current request.
The second scheme annotates requests with their recovery round and backs off
requests only upon receiving a request pertaining to the same or, presumably, a
later round.

If a host h′ receives a request for the packet p from the host h and it has
already either sent or received p, then it schedules a reply for (retransmission of)
p. This reply is scheduled for transmission at a point in time in the future that
is uniformly chosen within the interval [D1d̂h′h, (D1+D2)d̂h′h], where D1, D2 ∈
R

≥0 are reply scheduling parameters and d̂h′h is half of h′’s RTT estimate to
h (the requestor of p). If h′ receives a reply for p while its own reply for p is
pending transmission, then h′ cancels its own reply for p.

Once h′ either receives a reply for p or retransmits p itself, it observes a reply
abstinence period ; a period during which it refrains from scheduling replies to
requests for p. The reply abstinence period for p expires at the point in time
that is D3d̂hh′ time units in the future, where D3 ∈ R

≥0 is the reply abstinence
parameter. The reply abstinence period prevents multiple requests pertaining to
a given recovery round from generating multiple replies.

5.3 Constraints on RMI’s Parameters

Figure 6 illustrates the behavior of RMI’s packet loss recovery scheme. In par-
ticular, for any k ∈ N

+, it depicts the transmission of a k-th round request by h,
the scheduling of a k+1-st round request by h, and the scheduling of a reply to
h’s k-th round request by a host h′. th is the point in time at which h schedules
its k-th round request, t′h is the point in time for which h schedules its k-th
round request, th′ is the point in time h′ receives h’s k-th round request, and t′h′

is the point in time for which h′ schedules its reply to h’s k-th round request.

A Formal Venture into Reliable Multicast Territory 159

Back-o� Abstinence IntervalRequest Interval Reply Interval Reply Abstinence Interval

th th + 2k�1
C1d̂hs

t
0

h

th + 2k�1(C1 +C2)d̂hs

t
0

h
+ 2kC3d̂hs

th0 th0 +D1d̂h0h th0 + (D1 +D2)d̂h0h

t
0

h0
t
0

h0
+D3d̂h0h

t
0

h
+ 2k(C1 +C2)d̂hst

0

h
+ 2kC1d̂hs

Requestor h Timeline

Replier h0 Timeline

t
00

h

t
0

h0
+ dh0h

t
00

h
+ dhh0

Fig. 6. Timing Diagram of SRM’s Loss Recovery Scheme

d̂hs is half of h’s RTT estimate to the source s of the packet being recovered,
dhh′ and dh′h are the actual transmission latencies between h and h′, and d̂h′h
is half of h′ RTT estimate to the host h.

RMI must ensure that the back-off abstinence intervals do not overlap with
request intervals. From Figure 6, this requirement is enforced by imposing the pa-
rameter constraint C3 < C1. Moreover, RMI must ensure that requestors sched-
ule their retransmission requests such that they succeed the reception of replies
pertaining to prior recovery rounds. Prematurely transmitting requests would
result in wasteful recovery traffic. From Figure 6, this requirement corresponds
to the satisfaction of the inequalities dhh′ + (D1 + D2)d̂h′h + dh′h < 2kC1d̂hs,
for k ∈ N

+. Presuming that inter-host transmission latencies are fixed and sym-
metric and that RMI’s inter-host RTT estimates are accurate, these inequalities
are satisfied if D1 + D2 + 2 < 2C1. Finally, RMI must also ensure that a par-
ticular round’s requests are not discarded by potential repliers because they are
received during the repliers’ abstinence periods pertaining to the prior recovery
round. From Figure 6, this requirement corresponds to the satisfaction of the
inequalities dhh′ + (D1 + D2)d̂h′h + D3d̂h′h < 2kC1d̂hs + dhh′ , for k ∈ N

+. Pre-
suming that inter-host transmission latencies are fixed and symmetric and that
RMI’s inter-host RTT estimates are accurate, these inequalities are satisfied if
D1 + D2 + D3 < 2C1.

The following assumption summarizes the constraints on RMI’s parameters.

Assumption 1 RMI ’s parameters C1, C2, C3, D1, D2, and D3 satisfy the
following constraints: C3 < C1, D1 + D2 + 2 < 2C1, and D1 + D2 + D3 < 2C1.

To our knowledge, these constraints on SRM’s request/reply scheduling pa-
rameters, or even similar ones, have not been expressed to date. In fact, most
analyses and simulations presume that no recovery packets are lost; that is, they
presume that the initial recovery round is always successful. Our timing analysis
illustrates that if the parameters are chosen arbitrarily it is possible to cause
either superfluous requests and replies or the failure of a recovery round due

160 C. Livadas and N.A. Lynch

to replier abstinence. Although in practice, due to inaccurate inter-host RTT
estimates and varying and non-symmetric inter-host transmission latencies, su-
perfluous traffic and/or recovery round failure may indeed be unavoidable, it is
still important to realize their tie to SRM’s parameters.

5.4 Safety and Liveness Analysis of RMI

The following theorem states that the reliable multicast implementation, RMI ,
is safe, in the sense that it implements RMS(∞); that is, it may only deliver
appropriate packets to each member of the reliable multicast group.

Theorem 3. RMI ≤ RMS(∞)

We let aexecsk(RMI), for k ∈ N, be the subset of admissible timed executions
of RMI within each of whose elements the number of packet drops suffered
collectively by all packets pertaining to the transmission and, potentially, the
recovery of any packet p is at most k. Finally, we let attracesk(RMI) be the traces
of all executions of RMI in aexecs(RMI). Let C-aexecsk(RMI), for k ∈ N

+, be
the subset of aexecsk(RMI) comprised of all admissible timed executions of RMI

that satisfy the following constraints:
1. hosts neither leave the reliable multicast group nor crash,
2. the transmission latency incurred by any packet multicast using the IP mul-

ticast service by h and received by h′ lies in the interval [d, d], for d, d ∈ R
≥0,

such that d > 0, d > 0, and d ≤ d,
3. the fate of any packet transmitted using the IP multicast service is resolved

within d time units; that is, for any member h′ of the IP multicast group
when any packet p is transmitted, either h′ delivers p or p is dropped on its
way to h′ within d time units of the transmission of p,

4. the inter-host transmission latency estimates of the recovery component of
each reliable multicast process of RMI lie in the interval [d, d], and

5. the delay in detecting losses is bounded by DET-BOUND, for DET-BOUND ∈ R
≥0,

such that d ≤ DET-BOUND.
Let C-attracesk(RMI) be the traces of all executions in C-aexecsk(RMI). Fi-
nally, let k∗ = �log2[(D1+D2+D3+2)d−d]− log2(C3d)� and REC-BOUND(k′) =
[(2k′ − 1)(C1 + C2) + D1 + D2 + 2]d, for any k′ ∈ N

+.
The following theorem states that, under the aforementioned constraints,

RMI implements the timely reliable multicast service specification RMS(∆),
for k ∈ N

+ and ∆ = DET-BOUND+ REC-BOUND(k∗ + k).

Theorem 4. For k ∈ N
+ and ∆ = DET-BOUND + REC-BOUND(k∗ + k), it is the

case that C-attracesk(RMI) ⊆ attraces(RMS(∆)).

6 Contributions & Future Work

The contributions of this paper are several. First, we present a timed I/O au-
tomaton model of the reliable multicast service. This model formally specifies

A Formal Venture into Reliable Multicast Territory 161

the behavior of several reliable multicast protocols that strive to provide even-
tual delivery with, possibly, some timeliness guarantees. In particular, it dictates
what it means to be a member of a reliable multicast group and which packets
are guaranteed delivery to which members of the reliable multicast group. More-
over, we present a timed I/O automaton model of the SRM protocol. This model
decomposes the functionality of the reliable multicast service, thus facilitating
reasoning and the future modeling of either variations and extensions to SRM’s
recovery scheme, or other reliable multicast protocols altogether. We show that
our model of SRM is safe, in the sense that it may only deliver appropriate pack-
ets to each member of the reliable multicast group. We also show that, under
certain constraints, our implementation is live, in the sense that it guarantees
the timely delivery of the appropriate packets to each member of the reliable
multicast group.

In the future, we intend to relax the constraints used in our liveness analysis of
SRM and to analyze the performance of SRM in the context of a dynamic group
membership. We also intend to model, analyze, and compare the performance of
extensions to SRM and other reliable multicast protocols. The safety analysis of
each such protocol will guarantee that the protocols are compared on an equal
footing; something rarely done precisely when comparing protocols.

Acknowledgments. We thank Idit Keidar and the reviewers for helpful com-
ments and suggestions.

References

[1] Floyd, S., Jacobson, V., McCanne, S., Liu, C.G., Zhang, L.: A Reliable Multicast
Framework For Light-Weight Sessions And Application Level Framing. IEEE/ACM
Transactions on Networking 5 (1997) 784–803

[2] Holbrook, H.W., Singhal, S.K., Cheriton, D.R.: Log-Based Receiver-Reliable Multi-
cast For Distributed Interactive Simulation. In: Proc. ACM/SIGCOMM’95. (1995)
328–341

[3] Lin, J.C., Paul, S.: RMTP: Reliable Multicast Transport Protocol. In: Proc.
IEEE/INFOCOM’96. Volume 3. (1996) 1414–1424

[4] Paul, S., Sabnani, K.K., Lin, J.C., Bhattacharyya, S.: Reliable Multicast Transport
Protocol (RMTP). IEEE Journal on Selected Areas in Communications 15 (1997)
407–421

[5] Papadopoulos, C., Parulkar, G., Varghese, G.: An Error Control Scheme For Large-
Scale Multicast Applications. In: Proc. IEEE/INFOCOM’98. Volume 3. (1998)
1188–1196

[6] Li, D., Cheriton, D.R.: OTERS (On-Tree Efficient Recovery using Subcasting): A
Reliable Multicast Protocol. In: Proc. IEEE/ICNP’98. (1998) 237–245

[7] Livadas, C., Lynch, N.A.: A Formal Venture into Reliable Multicast Territory.
Technical Report, Lab. for Computer Science, MIT (2002)

[8] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc. (1996)
[9] Liu, C.G., Estrin, D., Shenker, S., Zhang, L.: Local Error Recovery in SRM: Com-

parison of Two Approaches. IEEE/ACM Transactions on Networking 6 (1998)
686–692

	Introduction
	Modeling Framework and Notation
	The Physical System
	Reliable Multicast Specification (RMS)
	The $textnormal {textsc {RM}}futurelet nobreakspace {} (Delta)$ Automaton
	The $textnormal {textsc {RM-Client}}futurelet nobreakspace {} _h$ Automata
	Preliminary Properties and Definitions
	Reliability Properties

	Reliable Multicast Implementation (RMI)
	RMI's Architecture
	Overview of RMI's Packet Loss Recovery
	Constraints on RMI's Parameters
	Safety and Liveness Analysis of RMI

	Contributions & Future Work

