
Translating Timed I/O Automata Specifications for Theorem
Proving in PVS

by

Hongping Lim

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2006

) Massachusetts Institute of Technology 2006. All rights reserved.

Author-Author
Department of Electrical Engineering and Computer Science

February 6, 2006

Certified by t
Nancy A. Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

A . -..-

Chairman, Department Committee on

MASSACHUSETTS
OF TECHNOL

AUG 14 21

LIBRARIES

Arthur C. Smith
Graduate Students

ARCHIVES
NSTrE
OGY

)06

Accepted by (-

Translating Timed I/O Automata Specifications for Theorem Proving in

PVS

by

Hongping Lir

Submitted to the Department of Electrical Engineering and Computer Science
on February 6, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
The timed input/output automaton modeling framework is a mathematical framework for specifi-
cation and analysis of systems that involve discrete and continuous evolution. In order to employ
an interactive theorem prover in deducing properties of a timed input/output automaton, its state-
transition based description has to be translated to the language of the theorem prover. This thesis
describes a tool for translating from TIOA, the formal language for describing timed input/out-
put automata, to the language of the Prototype Verification System (PVS)--a specification system
with an integrated interactive theorem prover. We describe the translation scheme, discuss the de-
sign decisions, and briefly present case studies to illustrate the application of the translator in the
verification process.

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

2

Acknowledgments

I am grateful to Prof. Nancy Lynch for the opportunity to work with her, and for the excellent

guidance and valuable help she has provided me with.

I would like to thank the following members of the TIOA project. I am particularly grateful

to Savan Mitra with whom I worked closely throughout the development of the translator. His

ideas and suggestions were integral to the design of the translator. Stephen Garland and Panayiotis

Mavrolnmatis have provided me with much help on interfacing with the front-end type checker and

interm-ediate-language parser. Myla Archer and Shinya Umeno have helped me with PVS, proofs

and strategies. Discussions with Dilsun Kaynar and Alexander Shvartsman generated useful ideas

for improving the translator.

3

Contents

1 Introduction

1.1 Motivation.

1.2 Prior Work

1.3 Thesis Overview

2 TIOA Mathematical Model and Language

2.1 TIOA Mathematical Model

2.1.1 Basic Definitions.

2.1.2 Definition of Timed I/O Automata

2.1.3 Executions and Traces

2.1.4 Composition

2.2 TIOA Language.

3 Translation Scheme for Individual Automata

3.1 Data Types.

3.2 Automaton Parameters.

3.3 Automaton States

3.4 Actions and Transitions

3.4.1 Substitution Method.

3.4.2 LET Method.

3.4.3 Comparing the Substitution and LET Methods

3.5 Trajectories .

3.6 Correctness of Translation

3.7 Implementation

4 Proving Properties in PVS

4.1 Case Studies

4.2 Invariant Proofs for Translated Specifications

4

9

9

10

11

13

13

13

14

14

15

16

21

21

25

25

25

26

29

30

31

33

34

35

. 3 6

39

..

.......................

.......................

.......................

.......................

.......................

.......................

.......................

..................................

.................

.................

.................

.................

.................

.................

.................

.................

4.3 Simulation Proofs for Translated Specifications

5 Translating Specifications and Proving Properties of Composite Automata

5.1 Composite and Component Automata in TIOA

5.2 Automaton Parameters and Component Formal Parameters

5.3 Automaton States

5.3.1 Start States

5.4 Actions and Transitions

5.4.1 Definitions for Input and Output Actions

5.4.2 Identifying Actions of the Composition

5.4.3 Predicates for Preconditions and Transitions

5.5 Trajectories

5.6 Proving an Invariant of the LCR Leader Election Algorithm

6 Discussion and Future Work

6.1 Handling a Larger Class of Differential Equations

6.2 Improving Proofs and Developing Proof Strategies

6.3 Developing a Library of User Defined Data Structures

6.4 Developing a Repository of Complete Examples

. . . 41

46

. . . 47

. . . 47.. 49.. 49.. 50.. 50.. 58.. 58.. 59.. 62

65.. 65.. 66

.. . 66.. 66

5

.. . . .

List of Figures

1-1 Theorem proving on TIOA specifications

2-1 TIOA description of TwoTaskRace.

2-2 Component automata for the LCR algorithm

2-3 Composite automaton for the LCR algorithm

3-1 PVS description of TwoTaskRace: states and actions declaration

3-2 PVS description of TwoTaskRace: definitions for actions and trajectories

3-3 PVS description of TwoTaskRace: definition for transition function . . .

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

Actions and transitions in TIOA

Translation of transitions using substitution

Translation of transitions using LET

for loop in TIOA

Translation of for loop using substitution

Translation of for loop using LET...............

Differential inclusion in TIOA

Using an additional parameter to specify rate of evolution .

4-1 TIOA and PVS descriptions of the mutual exclusion property . .

4-2 TIOA description of TwoTaskRaceSpec

4-3 TIOA description of simulation relation from TwoTaskRace to TwoTaskRaceSpec

4-4 Proof tree for proving an invariant of TwoTaskRace

4-5 An invariant of TwoTaskRace

4-6 PVS description of TwoTaskRaceSpec

4-7 PVS description of TwoTaskRaceSpec (continued)

4-8 PVS description of the simulation relation from TwoTaskRace to TwoTaskRaceSpec

5-1 PVS translation for LCR: automaton parameters and states

5-2 PVS translation for LCR: definitions for transitions of Process

6

10

18

19

20

22

23

24

27

27

27

28

28

28

32

32

..37

..37

38

40

40

43

44

45

48

51

5-3 PVS translation for LCR: definitions for transitions of Channel 52

5-4 PVS translation for LCR: actions declaration 53

5-5 PVS translation for LCR: time passage predicate and where clause 54

5-6 PVS translation for LCR: transition predicates 55

5-7 PVS translation for LCR: enabled clauses 56

5-8 PVS translation for LCR: enabled predicate and transition function 57

5-9 Trajectories in TIOA 60

5-10 Translation of trajectories for composition 61

5-11 Al invariant of the LCR algorithm 63

7

List of Tables

3.1 Translation of program statements 26

8

Chapter 1

Introduction

The timed input/output automaton [10, 9] modeling framework is a mathematical framework for

compositional modeling and analysis of systems that involve discrete and continuous evolution. The

state of a timed I/O automaton changes discretely through actions, and continuously over time

intervals through trajectories. A formal language called TIOA [8, 7] has been designed for specifying

timed I/O automata. The TIOA language subsumes its predecessor, the IOA language [6], which

was developed earlier for specification of purely discrete distributed systems. In the TIOA language,

discrete transitions are specified in a precondition-effect style. In addition, TIOA introduces new

constructs for specifying trajectories. Based on the TIOA language, a set of software tools is being

developed [8]: these tools include (1) a front-end type checker, (2) a simulator, and (3) an interface to

the Prototype Verification System (PVS) theorem prover [19] (see Figure 1-1). This thesis describes

the new features of the TIOA language and a tool for translating specifications written in TIOA to

the language of PVS; this tool is a part of the third component of the TIOA toolkit.

1.1 Motivation

Verification of timed I/O automata properties typically involves proving invariants of individual

automata or proving simulation relations between pairs of automata. The key technique for proving

both invariants and simulation relations for state-machine models like the timed I/O automata is

induction. The timed I/O automata framework provides a means for constructing very stylized

proofs, which take the form of induction over the length of the executions of an automaton or a

pair of automata, and a systematic case analysis of the actions and the trajectories. Therefore, it is

possible to partially automate such proofs by using an interactive theorem prover, as shown in [1].

Apart from partial automation, theorem prover support is also useful for managing large proofs,

and for re-checking proofs after minor changes in the specification.

WVe have chosen to use the PVS theorem prover because it provides an expressive specification

9

Library

timed_automaton.pvs

forward_simulation.pv

1 t [p'vs-strategies
urme_macnlne.pvs auto_inauct

deadline check
try_simp

Figure 1-1: Theorem proving on TIOA specifications

language and an interactive theorem prover with powerful decision procedures. PVS also provides a

way of developing special strategies or tactics for partially automating proofs, and it has been used

in many real life verification projects [20].

To use a theorem prover like PVS for verification, one has to write the description of the timed

I/O automaton model of the system in the language of PVS, which is based on classical, typed

higher-order logic. One could write this automaton specification directly in PVS, but using the

TIOA language has the following advantages:

1. TIOA preserves the state-transition structure of a timed I/O automaton,

2. TIOA allows the user to write programs to describe the transitions using operational semantics,

whereas in PVS, transition definitions have to be functions or relations,

3. TIOA provides a natural way for describing trajectories using differential equations, and also,

4. TIOA allows one to use other tools in the TIOA toolkit.

Therefore, it is desirable to be able to write the description of a timed I/O automaton in the

TIOA language, and then use an automated tool to translate this description to the language of

PVS.

1.2 Prior Work

Various tools have been developed to translate IOA specifications to different theorem provers, for

example, Larch [3, 5], PVS [4], and Isabelle [18, 21]. Our implementation of the TIOA to PVS

translator builds upon [3]. The IOA language is designed for specification of I/O automata that

evolve only through discrete actions. However, unlike IOA, TIOA allows the state of a timed I/O

automaton to evolve continuously over time through trajectories.

The Timed Automata Modeling Environment (TAME) [1] provides a PVS theory template for

describing MMT automata [14]- an extension of I/O automaton that adds time bounds for enabled

10

actions. This theory template has to be manually instantiated with the states, actions, and transi-

tions of an automaton. A similar template is instantiated automatically by our translator to specify

timed I/O automata in PVS. This entails translating the operational descriptions of transitions in

TIOA to their corresponding functional descriptions in PVS. Moreover, unlike a timed I/O automa-

ton which uses trajectories, an MMT automaton uses time passage actions to model continuous

behavior. In TAME, a time passage action is written as another action of the automaton, with the

properties of the pre-state and post-state expressed in the enabling condition of the action. This

approach, however, if applied directly to translate a trajectory, does not allow assertion of proper-

ties that must hold throughout the duration of the trajectory. Our translation scheme solves this

problem by embedding the trajectory as a functional parameter of the time passage action.

1.3 Thesis Overview

The main contribution of this thesis is the design of a translation scheme from TIOA to PVS, and

the implementation of the translator. We illustrate the application of the translator in the following

four case studies: Fischer's mutual exclusion algorithm, a two-task race system, a simple failure

detector, and the LCR leader election algorithm [11, 9]. The TIOA specifications of the system and

its properties are given as input to the translator and the output from the translator is a set of PVS

theories, specifying the timed I/O automaton and its invariant properties. The PVS theorem prover

is then used to verify the properties using inductive invariant proofs. In two of these case studies,

we describe time bounds on the actions of interest using an abstract automaton, and then show the

timing properties by proving a simulation relation from the system to this abstraction [12]. The

simulation relations typically involve inequalities between variables of the system and its abstraction.

Our experience with the tool suggests that the process of writing system descriptions in TIOA and

then proving system properties using PVS on the translator output can be helpful in verifying more

complicated systems.

WVe also present an approach to handling composition using the translator, in which sets of

automata are composed into a larger system [11, 9, 22]. The input to the translator consists of

descriptions of the individual automata and a composite automaton which describes how the com-

ponent automata are composed together. The output of the translator is a single system in PVS

representing the composition of the components. Our approach is similar to that of the composer

of the IOA compiler [22]. The composer of the IOA compiler expands a composite automaton

definition into an equivalent individual automaton within IOA so that it can be used with other

tools in the IOA toolkit. For our translation, we are able to make use of the language features of

PVS to produce a more structured and layered expansion of a composite automaton in PVS for the

purpose of theorem-proving. In particular, PVS allows us to write definitions to specify predicates

11

and functions - this feature is not available in IOA. The use of definitions and naming conventions

avoids potential naming conflicts and helps present the composition operation in a clear modular

manner. To illustrate the translation scheme for composition, we have successfully translated the

LCR leader election algorithm using the TIOA to PVS translator, and verified an invariant of the

algorithm using PVS.

In the next chapter, we give a brief overview of the timed I/O automaton framework and the

TIOA language. In Chapter 3, we present the translation scheme for translating TIOA descriptions

into PVS specifications and describe the implementation of the translator. In Chapter 4, we illustrate

the application of the translator with brief overviews of the case studies that do not involve composi-

tion. We present the translation scheme for composition in Chapter 5. Finally, Chapter 6 provides a

brief discussion and suggests possible areas of improvements to the translation and theorem proving

process.

The translator tool, together with the files for the case studies and additional documentation

can be obtained at the following address: http://theory. csail .mit. edu/~hongping/tioa2pvs.

12

Chapter 2

TIOA Mathematical Model and

Language

In this chapter, we briefly describe the timed I/O automaton model and the TIOA language. We

refer the reader to [10] for a complete description of the mathematical framework, and to [8] for the

TIOA user guide and reference manual.

2.1 TIOA Mathematical Model

2.1.1 Basic Definitions

If f is a function, then we denote the domain of f by dom(f). If S is a set, then f S denotes the

restriction of f to S, that is, the function g with dom(g) = dom(f) n S such that g(c) = f(c) for

each c E dom(g).

Let V be the set of variables of a system. Each variable v E V is associated with a static type,

type(v), which is the set of values v can assume. A valuation for V is a function that associates each

variable v E V to a value in type(v). val(V) denotes the set of all valuations of V. Each variable

v E V is also associated with a dynamic type, which is the set of trajectories v may follow.

A time interval J is a nonempty, left-closed sub-interval of R. J is said to be closed if it is also

right-closed. A trajectory r of V is a mapping T: J - val(V), where J is a time interval starting

with 0. The domain of r, -r.dom, is the interval J. A point trajectory is one with the trivial domain

{0}. The first time of T, r.ftime, is the infimum of .dom. If r.dom is closed then r is closed and

its limit time, Tr.ltime, is the supremum of Tr.dom. For any variable v E V, -r I v(t) denotes the

restriction of T to the set val(v). r.fval is the first valuation of T. If T is closed, r.lval is the last

valuation. T.fstate denotes the first state of T, and if r is closed, -r.lstate denotes the last state. Let

7 and T be trajectories for V, with T closed. The concatenation of r and T' is the union of T and

13

the function obtained by shifting 7'.dom until r.ltime = r'.ftime. The suffix of a trajectory is

obtained by restricting -r.dom to [t, oo), and then shifting the resulting domain by -t.

2.1.2 Definition of Timed I/O Automata

A timed automaton B is a tuple of (X, Q, e, E, H, D, T) where:

1. X is a set of variables.

2. Q C val(X) is a set of states.

3. O C Q is a nonempty set of start states.

4. A is a set of actions, partitioned into external E and internal actions H.

5. 1) C Q x A x Q is a set of discrete transitions. We write a transition (x, a, x') E D in short as

x A x'. We say that a is enabled in x if x x' for some x'.

6. T is a set of trajectories for X such that -r(t) C Q for every r c T and every t E r.dom, and

T is closed under prefix, suffix and concatenation.

A timed I/O automaton is a timed automaton with the set of external actions E further parti-

tioned into input and output actions. A timed I/O automaton A is a tuple (B, I, 0) where:

1. B = (X, Q, E, E, H, D, T) is a timed automaton.

2. I and O partition E into input and output actions, respectively.

3. The following additional axioms are satisfied:

(a) (Input action enabling)

For every x c Q and every a E I, there exists x' E Q such that x - x'.

(b) (Time-passage enabling)

For every x E Q, there exists E T such that r.f state = x and either

i. .ltime = oo, or

ii. r is closed and some I C H U O is enabled in r.lstate.

2.1.3 Executions and Traces

An execution fragment of a timed I/O automaton A4 is an alternating sequence of actions and

trajectories a = 0oa1 rla2.. ., where ri E T, ai c A, and if Ti is not the last trajectory in a then Ti is

finite and -ri.lstate + Ti+l.fstate. Informally, an execution fragment records what happens during

a particular run of a system. It includes all the discrete state changes and all the changes that occur

14

while time advances. An execution fragment is closed if it is a finite sequence and the domain of the

final trajectory is a finite closed interval.

An execution is an execution fragment whose first state is a start state of A. A state of A is

reachable if it is the last state of some execution. An invariant property is one which is true in all

reachable states of A.

A trace of an execution fragment a is obtained from a by removing internal actions and modifying

the trajectories to contain only information about the amount of elapsed time. tracesA denotes the

set of all traces of A.

We say that timed I/O automaton A implements timed I/O automaton B if tracesA C traces3.

A forvard simulation relation [10] from A to B is a sufficient condition for showing that A implements

B. A forward simulation from automaton A to B is a relation R C QA x QB satisfying the following

conditions for all states XA QA and x3 E Q :

1. If XA OA then there exists a state xs E Oe such that XA R x3.

2. If xA R x and a is a transition x 4A x', then B has a closed execution fragment 3 with

3.fstate = x3, trace(3) = trace(a), and a.lstate R .lstate.

3. If XA R X3 and a is an execution fragment of A4 consisting of a single closed trajectory, with

ao.fstate = XA, then B has a closed execution fragment 3 with P.fstate = x, trace(3) =

trace(a), and a.lstate R P.1state.

2.1.4 Composition

We first describe the composition operation for timed automata, and then for timed I/O automata.

Composition allows an automaton representing a complex system to be constructed by composing

together individual components. The composition operation identifies external actions with the

same name in different component automata in the following way. When any component automaton

performs a discrete action a, all component automata that have a as an external action will also

perform a simultaneously.

Formally, timed automata B1 and B2 are compatible if H1 n A2 = H2 n Al = 0 and X1 n X2 = 0.

If B1 and B2 are compatible, then their composition, denoted by B1 11 B2, is defined to be the tuple

B = (X, Q, , E, H, D, T) where:

1. X=X U X 2.

2. Q = {x E val(X) I x Xi E Qi, i E {1, 2}}.

3. e = {x E Qlx E Ei,i E {1,2}}.

4. E = E1 U E2 and H = H1 U H2.

15

5. For each x, x' E Q and each a C A, x aA x' iff for i E {1, 2}, either

(a) a Ai and x F Xi -i x', or

(b) a Ai and x Xi = x' Xi.

6. T c_ trajs(X) is given by E T X r I Xi E i,i E {1,2}.

As shown in [10], the result of composing two timed automata is guaranteed to be a timed

automaton.

Composition for timed I/O automata is based on the above definition for timed automata, taking

into consideration the input and output distinction. Timed I/O automata A1 and A2 are compatible

if, for i #7 j, X i n Xj = Hi n A = Oi n Oj = 0 1. If Al = (1, 1, 01) and A2 = (2 ,12,0 2) are

compatible, then their composition, denoted by Al 11 A 2, is defined to be the tuple A = (B, I, 0)

where

1. B B 1 [I B2

2. = (1 U 12) -(01 U 02)

3. 0=0 1 U0 2

An external action a of the composition is classified as an output action if a is an output of one

of the component automata. Otherwise, a is an input action. As shown in [10], the composition of

two timed I/O automata is guaranteed to be a timed I/O automaton.

2.2 TIOA Language

The TIOA language [8] is a formal language for specifying the components and properties of timed

I/O automata. The states, actions and transitions of a timed I/O automaton are specified in TIOA

in the same way as in the IOA language [6]. New features of the TIOA language include trajectories,

a new AugmentedReal data type, and a new vocabulary syntax for specifying user-defined data types

and operators. The trajectories are defined using differential and algebraic equations, invariants and

stopping conditions. This approach is derived from [13], in which the authors had used differential

equations and English to describe trajectories informally .

The AugmentedReal type extends reals with a constructor for infinity. Each variable has an

explicitly defined static type, and an implicitly defined dynamic type. The dynamic type of a Real

variable is the set of piecewise-continuous functions; the dynamic type of a variable of any other

simple type or of the type discrete Real is the set of piecewise constant funictions.

lRelaxing the constraints by removing the requirement i n j = 0 will still yield a timed I/O automaton as the
result of the composition.

16

The set of trajectories of a timed I/O automaton is defined systematically by a set of trajectory

definitions. A trajectory definition w is defined by an invariant inv(w), a stopping condition stop(w),

and a set of differential and algebraic equations daes(w).

Let WA denote the set of trajectory definitions of A. Each trajectory definition w E WA defines a

set of trajectories, denoted by traj(w). A trajectory T belongs to traj(w) if the following conditions

hold. For each t E r.dom:

1. (t)E inv(w).

2. If T(t) E stop(w), then t = .ltime.

3. 7(t) satisfies the set of differential and algebraic equations in daes(w).

4. For each non-real variable v, (-r I v)(t) = (r I v)(O); that is, the value of v is constant

throughout the trajectory.

The set of trajectories TA of automaton A is the concatenation closure of the functions in

U,wEWA traj(w).

Figures 2-1 and 2-2 show three examples of TIOA specifications. The automaton keyword

declares the name of the automaton, together with any automaton parameters and a where clause

constraining the values of the parameters. The signature keyword declares the actions, specifying

whether each action is internal, or external (input or output). State variables are declared

using the states keyword, together with their types and initial values. Transitions are specified

by the transitions keyword. Each transition has a precondition (pre) and an effect (eff). The

trajectories keyword specifies trajectory definitions (trajdef). Each trajectory definition has an

invariant, a stopping condition specified by stop when, and an evolve clause stating the evolution

of variables. Figure 2-3 shows an example of a composite automaton consisting of component

automata of types Process and Channel from Figure 2-2. These examples will be referenced again

and discussed further in subsequent chapters.

17

automaton TwoTaskRace(al, a2, bl, b2: Real) where
2 al > 0 A a2 > 0

A bl > 0 A b2 > 0
4 A a2 > al A b2 > bl

6 signature
internal increment

8 internal decrement
internal set

10 output report
states

12 count: Int := 0,
flag: Bool := false,

14 reported: Bool := false,
now: Real := 0,

16 first_main: Real := al,
last_main: AugmentedReal := a2,

18 first_set: Real : bl,

last_set: AugmentedReal := b2
20 transitions

internal increment
22 pre -flag A now > first_main

eff count := count + 1;
24 first_main := now + al;

last_main := now + a2
26 internal set

pre -flag A now > first_set
28 eff flag := true;

first_set := 0;
30 last_set := \infty

internal decrement
32 pre flag A count > 0 A now > first_main

eff count := count - 1;
34 firstmain := now + a;

lastmain := now + a2
36 output report

pre flag A count = 0 A reported A now > first_main
38 eff reported := true;

first_main := 0;
40 last_main := \infty

trajectories
42 trajdef trajl

invariant now > 0
44 stop when now = last_main V now = last_set

evolve d(now) = 1

Figure 2-1: TIOA description of TwoTaskRace

18

automaton Process(index, n:Int)
2 imports RingVocab

signature
4 input receive(m: Int, h:Int, i:Int)

where h = mod(i - 1, n) A i = index
6 output send(m: Int, i:Int, j:Int)

where j = mod(i + 1, n) A i = index
8 output leader(i:Int) where i = index

states
10 pending: Seq[Int] := {} I id(index),

status: Status := waiting
12 transitions

input receive(m:Int, h:Int, i:Int)
14 eff if (m > id(i)) then

pending:= pending m
16 elseif (m = id(i)) then

status := elected
18 fi

output send(m:Int, i:Int, j:Int)
20 pre pending {} A m = head(pending)

eff if pending i {} then pending:= tail(pending) fi
22 output leader(z)

pre status = elected
24 eff status := announced

26 automaton Channel(sender, receiver: Int)
signature

28 input send(m: Int, i:Int, j:Int)
where i = sender A j = receiver

30 output receive(m:Int, i:Int, j:Int)
where i = sender A j = receiver

32 states
buffer: Seq[Int] := {}

34 transitions
output receive(m:Int, i:Int, j:Int)

36 pre buffer {} A m = head(buffer)
eff if buffer O {} then buffer := tail(buffer) fi

38 input send(m, i, j)
eff buffer := buffer m

Figure 2-2: Component automata for the LCR algorithm

19

vocabulary RingVocab
types Status enumeration [waiting, elected, announced]

operators
mod: Int, Int - Int

id: Int -+ Int

automaton LCR(n: Int) where n > 0

imports RingVocab
components

P[i:Int]: Process(i, n)
where 0 < i A i < n;

C[x:Int]: Channel(x, mod(x + 1, n))
where 0 < x A x < n

Figure 2-3: Composite automaton for the LCR algorithm

20

Chapter 3

Translation Scheme for Individual

Automata

In this chapter, we provide an overview of our approach for translation, and then give details of how

we translate the various components of a TIOA description.

For generating PVS theories that specify input TIOA descriptions, our translator implements

the approach prescribed in TAME [1]. The translator instantiates a predefined PVS theory template

that defines the components of a generic automaton. The translator automatically instantiates the

template with the states, actions, and transitions of the input TIOA specification. This instantiated

theory, together with several supporting library theories, completely specifies the automaton, its

transitions, and its reachable states in the language of PVS (see Figure 1-1). Figures 3-1, 3-2, and

3-3 show the translator output in PVS for the TIOA description in Figure 2-1. Lines 123-125 of

Figure 3-3 show how the translation output in PVS instantiates the timemachine template with the

definitions of the various components of the automaton. In the following sections, we describe the

translation of the various components of a TIOA description.

3.1 Data Types

Simple static types of the TIOA language Bool, Char, Int, Nat, Real and String have their equiv-

alents in PVS. PVS also supports declaration of TIOA types enumeration, tuple, union, and

array in its own syntax. The type AugmentedReal is translated to the type time introduced in the

time theory of TAME. The type time is defined as a DATATYPE consisting of two subtypes: fintime

and infinity. The subtype fintime consists of only non-negative reals, while infinity is a constant

constructor.

The TIOA language allows the user to introduce new types and operators by declaring the types

21

TwoTaskRacedecls : THEORY BEGIN
2

I]IPORTING commondecls

% Automato parameters
6 al: real

a2: real
8 bl: real

b2: real
10

% Where clause on parameters
12 TwoTaskRaceparamsax: AXIOMI

al > () AND a2 > 0 AND bl >
14

% State variables
16 states : TYPE= [#

count: int ,
18 flag: bool

reported bool
20 now: real

firstmain: real
22 lastmain: time,

fi rst set: real
24 lastset: time #]

26 Start state
start(s: states): bool

28 count :=- 0,

flag := false
30 reported := false,

now := 0,
32 fi rstm a i n := al,

lastmain := fintime
34 first set := bl,

lastset fintime(
36

38

% Actions signatures
40 a c t i o n s: DATATYPE BEGIN

nutrajl (delta t: {t: (
42 F: ftype(zero

nutrajl ?
44 increment: increment?

decrement: decrement?
46 set: set'?

report : report'?
48 END actions

translated as axiom

0 AND b2 > 0 AND a2 > al AND b2 > bl

= s=s WTH [

(a2),

b2)]

fintime ?) I dur(t)>0},
, deltat)):

Figure 3-1: PVS description of TwoTaskRace: states and actions declaration

22

f-type (, : (t Ime ?)): TYPE = [in ter a I(,)st ate s

49 % actions 'visibility
visible(a:actions): bool = CASES a OF

51 nutrajl (deltat , F): FALSE,
increment: FALSE,

53 decrement: FALSE,
set : FALSE,

55 report: TRUE
ENDCASES

57

% time passage actions
59 timepassageactions (a: actions): bool = CASES a OF

nutrajl (deltat , F): TRUE,
61 increment: FALSE,

decrement: FALSE,
63 set: FALSE,

report: FALSE
65 ENDCASES

67 % Clauses for trajectory definition trajl
trajlinvariant(s: states): bool = TRUE

69

traj 1lstop (s: states): bool =
71 fintime(now(s)) = lastmain(s) OR fintime(now(s)) = lastset(s)

73 trajlevolve(t: (fintime?) , s: states): states
s WilTH [now :: now(s) + 1 * dur(t)]

75

% Enabled
77 enabled(a: actions , s: states): bool =

CASES a OF
79 nu _trajl (deItat , F):

(FORALL (t: interva I (zero, delta t)): traj 1 i nva ria nt (s))
81 A-ND (FORALL (t: interval (zero, delta t)):

trajlstop(F(t)) t =delta t)
83 AND (FORALL (t: interval (zero, delta t)):

F(t) = trajl evolve(t, s))
85 increment: NOT flag(s) AND now(s) firstmain(s),

decrement: flag(s) AND count(s) > O AND now(s) > firstmain(s),
87 set: N(T flag(s) AND now(s) > firstset(s),

report:
89 flag (s)

AND count(s) = 0
91 AND NOT reported (s)

AND now(s) > firstmain(s)
93

ENDCASE-S

Figure 3-2: PVS description of TwoTaskRace: definitions for actions and trajectories

23

% Transition function
95 trans(a: actions , s: states) : states -

97 CASES a OF
nutrajl (deltat , F): F(deltat),

99
increment:

LET s=s WITH
LET s=s WITH
LET s=s WVVTH

count := count(s) +
firstmain := now(s)
lastmain := fintime

1] IN
+ al] IN
(now(s) +

105 decrement:
LET s=s WVTH

107 LET s=s WITH
LET s=s WITH

109

111

113

set:
LET
LET
LET

115 report
LET

117 LET
LET

119

s=s WVTH
s=s V1TH
s=s WITH

s=s H
s=s WVTH
s=s WITH

[count := count(s) - 1] IN
[firstmain := now(s) + al] IN
[lastmain := fintime(now(s) + a2)] IN s,

[flag := true] IN
[first set := 0] IN
[lastset := infinity] IN s,

[reported := true] IN
[firstmain := 0] IN
[lastmain := infinity] IN s

ENDCASES
121

o Import statements
123 IMPORTING timedautolibtimemachine

[states, actions, enabled, trans, start, visible , timepassageactions,
125 lambda(a :{x: actions I timepassageactions (x)}): dur(deltat(a))]

127 END TwoTaskRacedecls

Figure 3-3: PVS description of TwoTaskRace: definition for transition function

24

101

103 a2)] IN s,

[

[

[

and the signatures of the operators within the TIOA description using the keyword vocabulary.

The semantics of these types and operators are written in PVS library theories, which are imported

by the translator output.

3.2 Automaton Parameters

An automaton can be parameterized; the automaton parameters can be used in expressions within

the description of the automaton. The values of these automaton parameters can be constrained

with an optional where clause (see Figure 2-1, lines 1-4).

In PVS, automaton parameters are declared as constants with axioms stating the relationship

among them as specified by the where clause (see Figure 3-1, lines 5-13).

3.3 Automaton States

The TIOA language provides the construct states for declaring the state variables of an automaton

(see Figure 2-1, lines 11-19). Each variable can be assigned an initial value at the start state. An

optional initially predicate can be used to specify the possible values of the variables in a start

state.

In PVS, the state of an automaton is defined as a record with fields corresponding to the variables

of the automaton (see Figure 3-1, lines 16-24). A boolean predicate start returns true when a given

state satisfies the conditions of a start state (see Figure 3-1, lines 27-35). Assignments of initial

values to variables in the TIOA description are translated as a record equality in the start predicate

in PVS, while the initially predicate is inserted as an additional conjunction clause into the start

predicate.

3.4 Actions and Transitions

In TIOA, actions are declared as internal or external (input or output). In PVS, actions are

declared as subtypes of an actions DATATYPE. A visible predicate returns true for the external

actions.

In TIOA, discrete transitions are specified in precondition-effect style using the keyword pre

followed by a predicate (precondition), and the keyword eff followed by a program (effect) (see

Figure 2-1, lines 20-40). We define a predicate enabled in PVS parameterized on an action a and a

state s to represent the preconditions. The predicate enabled returns true when the corresponding

TIOA precondition for an action a is satisfied at state s.

The program of the effect clause specifies the relation between the post-state and the pre-state

of the transition. The program consists of sequential statements, which may be assignments, if-

25

program P

v := t
if pred then P1 fi
if pred then P1 else P2 fi

for v in A do P1 od

S WITH [:= t]

IF pred THEN transp, (s) ELSE ENDIF

IF pred THEN transp, (s) ELSE transP2 (s) ENDIF

forloop(A, s): RECURSIVE states =

IF empty?(A) THEN S

ELSE

LET v=choose(A), s'=forloop(remove(v, A), s) IN

transpl (s')

ENDIF MEASURE card(A)

Table 3.1: Translation of program statements.

then-else conditionals or for loops. A non-deterministic assignment is handled by adding extra

parameters to the action declaration and constraining the values of these parameters in the enabled

predicate of the action.

In TIOA, the effect of a transition is typically written in an imperative style using a sequence

of statements. We translate each type of statement to its corresponding functional relation between

states, as shown in Table 3.1. The term P is a program, while transp(s) is a function that returns

the state obtained by performing program P on state s. The term v is a state variable; t is an

expression, and its value is assigned to v; pred is a predicate of the conditional statement; A is a

finite set containing the set of elements the for loop iterates over. The PVS keyword WITH makes

a copy of the record s, assigning the field v with a new value t. The PVS function choose picks an

arbitrary element from the given set A.

In PVS, we define a function trans parameterized on an action a and a state s, which returns the

post-state of performing the corresponding TIOA effect of action a on state s. Sequential statements

like P1 ; P2 are translated to a composition of the corresponding functions transp 2 (transp (s)). Our

translator can perform this composition in two ways. The first approach obtains an expression for

the final value of each variable through a series of substitutions. The second approach composes the

sequence of functions together using the PVS LET keyword. When using the translator, the user can

specify which translation method to use to translate all the transitions of an automaton.

3.4.1 Substitution Method

Given a sequential program consisting of two smaller programs P1 and P2 , we first compute transp l .

Then, we replace each variable in transp 2 with its intermediate value obtained from transp 1. This

approach explicitly specifies the resulting value of each variable in the post-state in terms of the

variables in the pre-state [3].

26

transp (s)

automaton A
signature

internal foo(i: Int),
states

x, y, t:Int
transitions

internal foo(i: Int)
eff x := x + i;

y := x * x;
x := x - 1;

y := y + 1

bar

internal bar
eff t := x;

if x y then
x := y;
y := t

fi

Figure 3-4: Actions and transitions in TIOA

trans(a: actions .
foo(i): s VVITH

bar: s VVITH

y := IF x
x(

ELSE

Y(
ENDI

x := IF x

Y(
ELSE

x(
ENDI

t := x(s)

s: states) = CASES a OF
[x := x(s) + i - 1,
y := (x(s) + i) * (x(s)

(s) /= y(s) THEN
s)

s)
F,
(s) /= y(s) THEN
s)

s)
[F,

]

Figure 3-5: Translation of transitions using substitution

trans(a: actions ,
foo(i): LET s =

LET s =
LET s =
LET s =

s: states)
s WTH [x
s WrH [y
s WTH [x
s WTH [y

= CASES a OF
:= x(s) + i] IN
:= x(s) * x(s)] IN
:= x(s) - 1] IN
:= y(s) + 1] IN s,

bar: LET s = s WITH [t := x(s)] IN
LET s =
IF x(s) /= y(s) THEN

LET s = s VVITH [x := y(s)]
LET s = s WVVTH [y := t(s)]

ELSE s ENDIF IN s
ENDCASES

IN
IN s

Figure 3-6: Translation of transitions using LET

27

+ i) + 1],

ENDCASES

I

automaton A

signature internal foo(n:
states x, sum: Int
transitions

internal foo(n: Int)
eff sum := x;

for i:Int where i
sum := sum + i

od;
sum := sum + sum

Int)

> 1 A i < n do

Figure 3-7: for loop in TIOA

forloop (A: set [int] , s: states) = RECURSIVE states
IF empty?(A) THEN s ELSE

LET i = choose(A) IN
LET s2 = forloop(remove(i , A), s) IN

s2 VITIH [sum := sum(s2) + i]
ENDIF MEASURE ca rd (A)

trans (a:
foo (n)

[sum

ENDCASES

actions, s: states) = CASES a OF
: s WITH

:= forloop({i:int I i > 1 AND i < n

s VV1TH [sum := x(s)])
+ forloop({i:int I i > 1 AND i <

s WITH [sum := x(s)])]
n},

Figure 3-8: Translation of for loop using substitution

ioophelpertheory[t:TYPE, states :TYPE]: THEORY
BEGIN

forloop(A: finiteset[t], s: states,
p:[t, states-*states]): RECURSIVE states

= IF empty?(A) THEN s ELSE
LET i = choose(A) IN
LET poststate = p(i , s) IN

forloop(remove(i , A), poststate , p)
ENDIF MEASURE ca rd (A)

END loophelpertheory

IIPORTING loophelpertheory [int ,states]
trans(a: actions, s: states) = CASES a OF

foo(n): LET s=s VVWITH [sum := x(s)] IN
LET s=

forloop ({ i:int I i > 1 AND i < n}, s,
lambda(i: int , s: states):

LET s=s WITH [sum := sum(s) + i]) IN
LET s=s WITH [sum := sum(s + sum(s)l

ENDCASES

Figure 3-9: Translation of for loop using LET

28

I . \ -- ,

Figure 3-4 shows a simple example to illustrate this approach. The action foo performs some

arithmetic, while the action bar swaps x and y if they are not equal.

The corresponding transition function in PVS is shown in Figure 3-5. In the PVS output, we

use the WITH keyword to obtain a copy of the record s representing the pre-state with new values

assigned to some of its fields. Fields that are not assigned new values are not modified. The term

x(s) refers to the value of variable x in the pre-state s. In the transition of bar, x and y are assigned

new values only when their values are not equal in the pre-state. Otherwise, they are assigned their

original values in the pre-state.

Figure 3-7 shows an example in TIOA that makes use of the for loop construct. The action foo

first assigns the value of x to sum. Then, every integer between 1 and the action parameter n is

added to the value of sum. Finally, the value of sum is added to itself.

Figure 3-8 shows the translation in PVS. The function forloop takes in two parameters: a set of

integers A, and a state s. It performs an iteration of the loop in the following way. First, it extracts

an arbitrary element i from the set A. Then, it calls itself recursively on the set A with i removed

and the state s. The result of this call is recorded into s2, which represents the state obtained after

iterating through all the elements of the set A on s except for i. Finally, the body of the loop is

applied to s2, so that sum is incremented by i.

In the definition of trans, the first parameter to forloop in the PVS transition function is a set

consisting of integers between 1 and n inclusive. At the point of the TIOA program when the loop

is first entered, the value of sum has been set to x by the first statement. Thus, in the trans function

in PVS, the function forloop is called with the state parameter: s WITH [sum := x(s)].

The last statement of the TIOA program has two occurrences of sum on the right hand side.

Since explicit substitution is used, the term representing the application of forloop is duplicated in

the final expression.

3.4.2 LET Method

Instead of performing the substitution explicitly, we make use of the PVS LET keyword to obtain

intermediate states on which to apply subsequent programs. The program P1; P2 can be written in

PVS as LET = transp, (s) IN transp2 (s). In the translation output, each LET statement corresponds

to a statement in the original program in TIOA. In each LET statement, the variable s representing

the current state has one of its fields modified according to the corresponding program statement.

The resulting state of this modification is then used as the current state in the next LET statement.

In this manner, the translation output preserves the sequential structure of program statements,

with each assignment and conditional statement embedded within the syntactical expression of the

LET construct. This structure is illustrated in Figure 3-6, which shows the translation of the effects

of actions foo and bar from Figure 3-4.

29

Figure 3-9 shows the translation of the for loop from Figure 3-7. The theory loophelpertheory is

a parameterized template for defining the forloop function for arbitrary sets and states. Using this

generic theory template allows us to reuse the forloop function for separate loops which have loop

variables of different types. The function forloop takes in three parameters:

1. A, a set of elements of type t,

2. s, a state representing the pre-state before the current iteration of the loop is performed, and

3. p, a function mapping a state to another state, representing the transition function of the

program within the for loop

The function forloop iterates through elements of A in the following way. First, forloop selects

an arbitrary element i from the set A. Next, forloop applies program p on element i and state s.

The resulting state obtained by performing this operation is recorded as poststate. Finally, forloop

is called recursively on the set A with element i removed, and the state poststate.

Before defining the transition function of the effect of action foo in PVS, the helper theory

loophelpertheory is instantiated with the type of the loop variable int, and the record type states

representing the states of the automaton. Each LET statement then corresponds to an original

statement in TIOA. The function forloop is applied on the following parameters:

1. the set of integers between 1 and n inclusive,

2. the resulting state after the first LET statement, and

3. a function that takes in the value of the loop variable and a state, and applies the program

within the for loop on the given state.

The use of the third parameter allows us to provide the transition function representing the

program within a loop to the function forloop inline without breaking the sequential structure of the

program.

3.4.3 Comparing the Substitution and LET Methods

In the substitution method, the translator does the work of expressing the final value of a variable

in terms of the values of the variables in the pre-state. In the LET method, the theorem prover has

to perform these substitutions to obtain an expression for the post-state in an interactive proof.

Therefore, the substitution method is slightly more efficient for theorem proving. Moreover, for

simple programs with only a few assignments, the resulting translation using the substitution method

tends to be more compact. The LET structure contains the expression LET S = S WITH for every

single statement, whereas the substitution method simply assigns each variable its final value.

30

On the other hand, the LET method preserves the sequential structure of the program, which

is lost when the substitution method is applied. This feature can be useful when programs are

complex, allowing the user to easily verify that every statement has been correctly translated, and

leaving the actual work of substitution to the theorem prover. The substitution method may also

yield more complicated expressions for longer and more complex programs.

Since the style of translation in some cases may be a matter of preference, we currently support

both approaches as an option for the user.

3.5 Trajectories

As mentioned previously in Section 2.2, the set of trajectories of an automaton is the concatenation

closure of the set of trajectories defined by the trajectory definitions of the automaton. A trajectory

definition w is specified by the trajdef keyword in a TIOA description, followed by the following

components (see definition of traj 1 in Figure 2-1, lines 41-45):

1. an invariant predicate for inv(w),

2. a stop when predicate for stop(w), and

3. an evolve clause for specifying daes(w).

Each trajectory definition in TIOA is translated as a time passage action in PVS containing

the trajectory map as one of its parameters. The precondition of this time passage action contains

the conjunction of the predicates corresponding to the invariant, the stopping condition, and the

evolve clause of the trajectory definition. To translate the evolve clause of the trajectory definition,

the translator solves the differential equation given in the evolve clause, and provides the solu-

tion as a predicate in the precondition. In general, translating an arbitrary set of differential and

algebraic equations in the evolve clause to the corresponding precondition may be hard. The trans-

lator currently handles algebraic equations, constant differential equations and constant differential

inclusions.

Like other actions, a time passage action is declared as a subtype of the actions DATATYPE, and

specified using the enabled predicate and the trans function in a precondition-effect style. A time

passage action has two required parameters: the length of the time interval of the trajectory, deltat,

and a trajectory map F mapping a time interval to a state of the automaton. An interval is defined

as a subtype of fintime, containing only values between two given values.

The transition function of the time passage action returns the last state of the trajectory, obtained

by applying the trajectory map F on the action parameter delta-t (see Figure 3-3, line 98).

The precondition of a time passage action states the following predicates (see definition of nutrajl

in Figure 3-2, lines 79-84, corresponding to traj 1 in Figure 2-1):

31

trajdef traj2
invariant x > 0
stop when x = 10
evolve

d(x) > 0;
d(x) < 2

Figure 3-10: Differential inclusion in TIOA

enabled(a: actions , s:states): bool = CASES a OF
CASES a OF nutraj2(deltat , F, xr):

(FORAIL (t:interval(zero ,deltat)): traj2_invariant(s))
AND (FORALL (t: interval (zero ,delta t)):

traj2_stop(s) = t = delta t)
AND (FORALL (t: interva I (zero , deltat)) :

F(t) = traj2_evolve(t, s))
AND (xr > 0 AND xr < 2)

ENDCASES

trans(a: actions s : states): states
CASES a OF nutraj2(deltat , F, xr): F(deltat)

ENDCASES

Figure 3-11: Using an additional parameter to specify rate of evolution

1. the trajectory invariant holds throughout the trajectory,

2. the stopping condition holds only in the last state of the trajectory, and

3. the evolution of variables during the trajectory satisfies the given algebraic equations, differ-

ential equations and differential inclusions of the evolve clause.

Currently. the translator handles constant differential equations and inclusions of the form d(x) =

k1 and d(x) < k2, where k1 and k2 are constants. Thus, the third predicate of the conjunction states

that the variable increments at the constant rate specified by the differential equation in the evolve

clause.

If the evolve clause contains a constant differential inclusion of the form d(x) < k, we introduce

an additional parameter xr in the time passage action for specifying the rate of evolution. We then

insert an additional predicate into the conjunction in the precondition to assert the restriction xr

< k.

The example in Figure 3-10 uses a constant differential inclusion that allows the rate of change

of x to be between 0 and 2. The definition of nutraj2 in the corresponding PVS output shown in

Figure 3-11 contains an additional parameter xr as the rate of change of x. The value of xr is

constrained by the fourth predicate of the conjunction in the precondition.

32

3.6 Correctness of Translation

In this section, we attempt to show that the automaton obtained in PVS through our translation

corresponds to the original automaton described in TIOA. Since the goal of the translation is to

allow proving properties of systems using inductive proofs in PVS, we show the correspondence

between an execution of an automaton in TIOA and an execution of its translation in PVS.

Consider a timed I/O automaton A, and its PVS translation B. A closed execution of B is an

alternating finite sequence of states and actions (including time passage actions): 3 = so, bl, s, b2 ,

... , br, s, where so is a start state, and for all i, 0 < i < r, si is a state of B, and bi is an action of

B.

We define the following two mappings, F and 5.

Let/3 = so, bl, Sl, b2, ... , br, sr be a closed execution of B. We define the result of mapping F,

F(3), as a sequence To, a, T1, .. . obtained from 3 by performing the following:

1. Each state si is replaced with a point trajectory j such that j.fstate = Tj.lstate = si.

2. Each time passage action bi is replaced by T(bi), where T(bi) is the parameter F of bi, which

is the same as the corresponding trajectory in A. Other actions remain unchanged.

3. Consecutive sequences of trajectories are concatenated into single trajectories.

Let a = O,a l,1,i... be a closed execution of A. We define the result of mapping , (a),

as a sequence so, bl ,sl,b 2, ... , br, sr obtained from a by performing the following. Let 7i be a

concatenation of T(i,), 7(i,2),.-., such that T(i,j) traj(wj) for some trajectory definition wj of A.

Replace 7(i,1), 7(i,2), -. with 7(i,l).fstate, v(T(i,l)), (i).lstate, (7(i,2)), (i,2).lstate, ... , where v(T)

denotes the corresponding time passage action in B for r.

Using these mappings, we state the correctness of our translation scheme as a theorem, in the

sense that anv closed execution (or trace) of a given timed I/O automaton A has a corresponding

closed execution (resp. trace) of the automaton B, and vice versa, where B is described by the PVS

theories generated by the translator.

Theorem 1 (a) For any closed execution / of B3, F(/3) is a closed execution of A. (b) For any

closed execution a of A, Q(a) is a closed execution of B.

Part (a): let p = so, bl, sl, b2,... 7, br, sr, and F(/) = 0, al, T1 Since so is replaced by a point

trajectory, 7To.fstate = so as a result of the concatenation. Thus To.fstate is a start state. Consider

a sequence si, bi+l, si+l in . If bi+1 is a time passage action, then by our construction T(bi+1) is a

trajectory of A. If b+l is not a time passage action, then let Tj,aj+l,rj+l be a sequence in F(P),

where aj+l is the corresponding action for bi+l. Note that F does not modify actions that are not

time passage actions. The action bi+l is enabled in si, and si - si+l. The state si is replaced

33

by a point trajectory and concatenated into rj, so rj.lstate = si. Similarly, si+l is replaced by a

point trajectory and concatenated into j+l, so Tj+l.fstate = si+l. Since aj+l is the same as bi+l,

aj+l has the same enabling condition and transition as bi+l. Thus, aj+l is enabled in 7rj.lstate, and
aj+ij.lstate -+ Tj+i.fstate.

Part (b): let a = 0, al, T1,..., and (a) = so, bl, sl, b2,..., b, sr. Since so is obtained from

To.fstate, so is a start state. By our translation of trajectories, a time passage action bj+l in Q(a)

is enabled in the pre-state sj, and the post-state sj+l is exactly T(bj+l).lstate. This is because

bj+l satisfies its precondition which asserts the conditions of the trajectory definition which T(bj+l)

belongs to. Consider a sequence i,ai+l,Ti+l in a. The action ai+l is enabled in ri.lstate and

-ri.lstate --+ i+l.fstate. Now, consider the sequence sj, bj+l, sj+l in g(a), where bj+l corresponds

to ai+l, sj = Ti.lstate, and sj+l = i+l.fstate. Note that 5 does not modify actions. Since bj+l is

the same as ai+l, bj+l has the same enabling condition and transition as ai+l. Thus, bj+l is enabled

in sj and sj b+ Sj+l.

3.7 Implementation

Written in Java, the translator is a part of the TIOA toolkit (see Figure 1-1). The implementation of

the tool builds upon the existing IOA to Larch translator [3, 2]. Given an input TIOA description, the

translator first uses the front-end type checker to parse the input, reporting any errors if necessary.

The front-end produces an intermediate language which is also used by other tools in the TIOA

toolkit. The translator parses the intermediate language to obtain Java objects representing the

TIOA description. Finally, the translator performs the translation described in this chapter, and

generates a set of files containing PVS theories specifying the automata and their properties. The

translator accepts command line arguments for selecting the translation style for transitions, as well

as for specifying additional theories that the output should import for any user defined data types.

The current version of the translator is available for download as a JAR (Java archive) file at

the following address: http://theory.csail.mit.edu/~hongping/tioa2pvs.

34

Chapter 4

Proving Properties in PVS

In this chapter, we briefly discuss our experiences in verifying systems using the PVS theorem prover

on the theories generated by our translator. We have specifically selected distributed systems with

timing requirements so as to test the scalability and generality of our proof techniques. Although

these distributed systems are typically specified component-wise, for the purpose of testing the

basic translation scheme and the proof techniques, we use a single automaton, obtained by manually

composing the components, as input to the translator for each system. We will discuss our experience

in translating and proving a composition example in the next chapter.

We specify the systems and state their properties in the TIOA language. The translator generates

separate PVS theory files for the automaton specifications, invariants, and simulation relations (see

Figure 1-1). We invoke the PVS theorem prover on these theories to interactively prove the translated

lemmas.

One advantage of using a theorem prover like PVS is the ability to develop and use special

strategies to partially automate proofs. PVS strategies are written to apply specific proof techniques

to recurring patterns found in proofs. In proving the system properties, we use special PVS strategies

developed for TAME and TIOA [1, 15]. As many of the properties involve inequalities over real

numbers, we also use the Manip [17] and the Field [23] packages, which contain numerous useful

strategies for manipulating inequalities.

PVS generates Type Correctness Conditions (TCCs), which are proof obligations to show that

certain expressions have the right type. As we have defined the enabled predicate and trans function

separately, it is sometimes necessary to add conditional statements into the eff program of the

TIOA description, so as to ensure type correctness in PVS. For example, consider the receive

action of automaton Channel in Figure 2-2 that is enabled when the sequence buffer is non-empty.

The receive action removes the message from the head of buffer using the operator tail. When

type-checking the trans function for receive, PVS will generate a TCC asserting the non-emptiness of

35

buffer because the operation of removing the head (cdr in PVS) is defined only for non-empty lists

(sequences in TIOA are translated into lists in PVS). This TCC can only be proved if we add the

non-emptiness assertion as a conditional in the eff program (see line 37 of Figure 2-2). In proving

invariants, this condition will evaluate to true due to the predicate of the precondition.

The proofs for these examples, together with the TIOA and PVS files are available for download

at the following address: http://theory.csail.mit. edu/hongping/tioa2pvs.

4.1 Case Studies

This section provides an overview of the examples and their properties. We refer the reader to [11], [7]

and [9] for more detailed descriptions of these systems.

1. Fischer's mutual exclusion algorithm [11] solves the mutual exclusion problem in which multi-

ple processes compete for a shared resource. In this algorithm, each process proceeds through

different phases in order to get to the critical phase where it gains access to the shared

resource. Each phase has a corresponding action in the automaton. The interesting cases are

test, set, and check. The action set has an upper time bound, u_set, while the action

check has a lower time bound l_check, and u_set < l_check. When a process enters the

test phase, it tests whether the value of a shared variable x has been set by any process. If x

has not been set, then the process can proceed to the next phase, set, within the upper time

bound, u_set. In the set phase, the process sets a shared variable x to its index. Thereafter,

the process can proceed to the next phase check only after l_set amount of time has elapsed.

In the check phase, the process checks to see if x contains the index of the process. If so, it

proceeds to the critical phase.

The safety property we want to prove is that no two processes are simultaneously in the

critical phase, as stated in Figure 4-1. Each process is indexed by a positive integer; pc is

an array recording the region each process is in. Notice that we are able to state the invariant

using universal quantifiers without having to bound the number of processes. Informally, the

invariant holds because the timing constraint uset < lcheck prevents undesirable interleav-

ing from occurring by ensuring that a process performs check only after all other processes

have performed set.

2. The two-task race system [11, 7] (see Figure 2-1 for its TIOA description) increments a variable

count repeatedly, within al and a2 time, al < a2, until it is interrupted by a set action. This

set action can occur between bl and b2 time from the start, where b < b2. After set, the

value of count is decremented (every [al, a2] time) and a report action is triggered when count

reaches 0. We want to show that the time bounds on the occurrence of the report action are:

36

invariant of fischer_me:
V i: Int V j: Int

((i > A j > 0 A i j)

(pcCi] pccrit V pc[j] # pc_crit))

Inv(s: states): bool =
FORALL (i i : nt): FORAILL (j: int):

(i > O A j > 0 nA i /= j)
(pc(s)(i) /= pc crit OR pc(s)(j) /= pccrit)

Figure 4-1: TIOA and PVS descriptions of the mutual exclusion property

automaton TwoTaskRaceSpec(al, a2, b, b2: Real) where
al > 0 A a2 > 0 A bi > 0

A b2 > 0 A a2 > al A b2 > bl

signature
output report

states
reported: Bool := false,
now: Real := 0,

first-report: Real
if a2 < bl then min(bl, al) + (((bi - a2) * al) / a2) else al,

last_report: AugmentedReal := b2 + a2 + ((b2 * a2) / al)
transitions

output report
pre -reported A now > firstreport
eff reported := true;

first_report := 0;
lastreport := \infty

trajectories
trajdef pre_report

invariant -reported
stop when now = lastreport
evolve
d(now) = 1

trajdef post_report
invariant reported
evolve
d(now) = 1

Figure 4-2: TIOA description of TwoTaskRaceSpec

37

forward simulation from TwoTaskRace to TwoTaskRaceSpec:
% al,a2,bl,b2 are assumed to be the

% automata parameters by the translator
V al: Real V a2: Real V bl: Real V b2: Real

V last_set: Real V lastmain: Real V last_report: Real
(al > O0 A a2 > O0 A bl > O0 A b2 > 0 A a2 > al A b2 > bl

A last_set > 0 A last_set = TwoTaskRace.last_set
A last_main > 0 A last_main = TwoTaskRace.last_main
A last_report > 0 A lastreport = TwoTaskRaceSpec.last_report

TwoTaskRace.reported = TwoTaskRaceSpec.reported
A TwoTaskRace.now = TwoTaskRaceSpec.now
A

(-TwoTaskRace.flag A last_main < TwoTaskRace.first_set

TwoTaskRaceSpec.first_report

(min(TwoTaskRace.first_set,
TwoTaskRace.first_main)

+
((TwoTaskRace.count

+ ((TwoTaskRace.first_set - last_main)
/ a2))

* al)))
A

(TwoTaskRace.flag V last_main > TwoTaskRace.first_set

TwoTaskRaceSpec.first_report

(TwoTaskRace.first_main +
(TwoTaskRace.count * a)))

A
(-TwoTaskRace.flag A TwoTaskRace.first_main < last_set

last_report

(lastset
+

((TwoTaskRace.count + 2
+ ((lastset - TwoTaskRace.firstmain)

/ al))

* a2)))
A

(-(TwoTaskRace.reported)
A (TwoTaskRace.flag V TwoTaskRace.first_main

> last_set)
= last_report

(lastmain + (TwoTaskRace.count * a2))))

Figure 4-3: TIOA description of simulation relation from TwoTaskRace to TwoTaskRaceSpec

38

lower bound: if a2 < bl then min(bl,al) + (bl-a2)*al else al, and upper bound: b2 + a2

+ b2a2. To prove this, we create an abstract automaton TwoTaskRaceSpec which performs a

report action within these bounds, as shown in Figure 4-2. We then show a forward simulation

from TwoTaskRace to TwoTaskRaceSpec (see Figure 4-3). The PVS translations of the abstract

automaton and the simulation relation are shown in Figures 4-6, 4-7, and 4-8 at the end of

this chapter.

3. A simple failure detector system [9] consists of a sender, a delay prone channel, and a receiver.

The sender sends messages to the receiver, within ul time after the previous message. A

timed_queue delays the delivery of each message by at most b. A failure can occur at any

time, after which the sender stops sending. The receiver times out after not receiving a message

for at least u2 time. We are interested in proving two properties for this system:

(a) Safety: A timeout occurs only after a failure has occurred.

(b) Timeliness: A timeout occurs within u2 + b time after a failure.

As in the two-task race example, to show the time bound, we first create an abstract automaton

that times out within u2 + b time of occurrence of a failure, and then we prove a forward

simulation from the system to its abstraction.

4.2 Invariant Proofs for Translated Specifications

To prove that a property holds in all reachable states, we use induction to prove that:

1. the property holds in the start states, and

2. given that the property holds in any reachable pre-state, the property also holds in the post-

state obtained by performing any action that is enabled in the pre-state.

We use the auto_induct (short for "automaton induction") strategy to inductively prove in-

variants. This strategy breaks down the proofs into a base case, and one subgoal for each action

type. Trivial subgoals are discharged automatically, while other simple branches are proved by using

TIOA strategies like applyspecific_precond and try_simp with decision procedures of PVS. The

strategy apply_specif ic_precond applies reasoning based on the predicates of the precondition of

the action, while the strategy try_simp performs propositional, equational, and data type simplifi-

cations. Harder subgoals require more careful user interaction in the form of using simpler invariants

and instantiating formulas.

In branches involving time passage actions, to obtain the post-state, we instantiate the universal

quantifier over the domain of the trajectory in the time passage action with the limit time of the

39

(auto nduct)

(trysimp) (apply specific_precond) (apply_specitic_p recond)

___ry~s Im p) nw" (try~sip)(deadline_check last-set" "now) ri.... - (try imp)

ilemma 1) (apply
(apply_inv lemma 1) (applynv lemma 1)

Figure 4-4: Proof tree for proving an invariant of TwoTaskRace

Inv_5 (s :states) : bool =
((now(s) > 0) (last_set(s) > fintime(now(s))))

lemma_5: LEMMA (FORALL (s:states): reachable(s) = Inv_5(s));

Figure 4-5: An invariant of TwoTaskRace

trajectory. A commonly occurring type of invariant asserts that a continuously evolving variable, say

vt, does not cross a deadline, say d. Within the trajectory branch of the proof of such an invariant,

we instantiate the universal quantifier over the domain of the trajectory with the time required for v

to reach the value of d. In particular, if v grows at a constant rate k, we instantiate with (d - v)/k.

We also make use of a PVS strategy deadlinecheck which performs this instantiation.

The strategies provided by Field and Manip deals only with real values, while our inequalities

may involve time values. For example, in the two-task race system, we want to show that lastset >

fintime(now). Here, lastset is a time value, that is, a positive real or infinity, while now is a real value.

If lastset is infinite, the inequality follows from the definitions of > and infinity in the time theory

of TAME. For the finite case, we use the operator dur to extract the real value from lastset, and

then prove the version of the same inequality involving only reals. The strategy trysimp includes

proof steps which will automatically discharge such inequalities.

Figure 4-4 shows a proof tree displaying the proof steps for proving an invariant of the two-

task race example. The invariant states that the variable now never crosses the deadline lastset.

Figure 4-5 shows this invariant translated as a lemma in PVS. In this proof, all but three of the cases

have been automatically discharged by autoinduct. The first remaining branch is easily proved

40

using try_simp. The second branch is proved by first using the strategy apply_specific_precond,

followed by applying deadline_check on lastset and now. A simpler invariant is then invoked in

the resulting two sub-branches to complete the proof of this branch. The third branch is proved

using apply_specific_precond, followed by try_simp.

4.3 Simulation Proofs for Translated Specifications

In our examples, we prove a forward simulation relation from the system to the abstract automaton

to show that the system satisfies the timing properties. The proof of the simulation relation involves

using induction, performing splits on the actions, and verifying the inequalities in the relation. The

induction hypothesis assumes that a pre-state xA of the system automaton A is related to a pre-state

x3 of the abstract automaton B. If the action aA is an external action or a time passage action, we

show the existence of a corresponding action a in B such that the a is enabled in xB and that

the post-states obtained by performing aA on XA and a on xB are related. If the action aA is

internal, we show that the post-state of aA is related to xB. In the general case, we may have to

show the existence of a closed execution fragment in B with an equivalent trace and a related final

state, as described in Sections 2.1.2 and 3.6. To show that two states are related, we prove that the

relation holds between the two states using invariants of each automaton, as well as techniques for

manipulating inequalities and the time type. We have not used automaton-specific strategies in our

current proofs for simulation relations. Such strategies have been developed in [16]. Once tailored

to our translation scheme, they will make the proofs shorter.

A time passage action contains the trajectory map as a parameter. When we show the existence

of a corresponding action in the abstract automaton, we need to instantiate the time passage action

with an appropriate trajectory map. For example, in the proof of the simulation relation in the

two-task race system, the time passage action nutrajl of TwoTaskRace is simulated by the following

time passage action of TwoTaskRaceSpec:

nu postreport (delta _t (aA),
LAMBDA(t: TwoTaskRaceSpecdecls. interval (zero , delta_t(a_A))):

s_B W1VTH [now := now(sB) + dur(t))

The time passage action nupostreport of TwoTaskRaceSpec takes two parameters, as shown in

Figure 4-6. In the proof, it is instantiated with the following two parameters. The first parameter

has value equal to the length of aA, the corresponding time passage action in the automaton

TwoTaskRace. The second parameter is a function that maps a given time interval of length t to a

state of the abstract automaton. This state is same as the pre-state s_B of TwoTaskRaceSpec, except

that the variable now is incremented by t.

Prior to proving the properties using the translator output, we had proved the same properties

41

using hand-translated versions of the system specifications [7]. These hand-translations were done

assuming that all the differential equations are constant, and that the all invariants and stopping

conditions are convex. In the proof of invariants, we are able to use a strategy to handle the

induction step involving the parameterized trajectory, thus the length of the proofs in the hand

translated version were comparable to those with the translators output. However, such a strategy

is still not available for use in simulation proofs, and therefore additional proof steps were necessary

when proving simulation relations with the translator output, making the proofs longer (in terms

of number of proof steps) by 105% in the worst case. Nonetheless, the advantage of our translation

scheme is that it is general enough to work for a large class of systems and that it can be implemented

in software.

42

TwoTaskRaceSpecdecls THEORY BEGIN

IMPORTING commondecls

% State variables
states: TYPE = [#

reported: bool,
now: real ,
firstreport : real,
lastreport: time #]

% Start state
start(s: states): bool = s=s WITH

reported := false
now := 0,
firstreport

IF a2 < bl THEN min(bl, al) + (bl - a2 * al) / a2 ELSE al ENDIF,
lastreport := fintime(b2 + a2 + (b2 · a2) / al)]

ftype(i j: (fintime?)): TYPE = [interval(i, j)-states]

% Actions signatures
actions: DATI'ATYPE BEGIN

nuprereport(deltat: {t: (fintime?) I dur(t)>o},
F: ftype(zero, delta_t)): nuprereport?

nupostreport(deltat: {t: (fintime?) I dur(t)>0},
F: ftype(zero, deltat)): nupostreport?

report: report?
END actions

X actions visibility
visible(a:actions): bool = CASES a OF

nuprereport(deltat, F): TRUE,
nupostreport(deltat, F): TRUE,
report: TUE

ENDCASES

% time passage actions
timepassageactions (a: actions): bool = CASES a OF

nuprereport(deltat , F): TRUE,
nupostreport(deltat , F): TRUE,
report: FALSE

ENDCASES

% Clauses for trajectory definition prereport
prereportinvariant (s: states): bool = NOT reported(s)
prereportstop(s: states): bool = fintime(now(s))= lastreport(s)
prereportevolve(t: (fintime?), s: states): states =

s wITH [now := now(s) + 1 * dur(t)]

% Clauses for trajectory definition postreport
postreportinvariant(s: states): bool = reported(s)
postreportstop(s: states): bool = true
postreportevolve(t: (fintime?), s: states): states

s \VITH [now := now(s) + 1 * dur(t)]

Figure 4-6: PVS description of TwoTaskRaceSpec

43

% Enabled
enabled (a: actions , s: states): bool =

CASES a OF
nuprereport(deltat, F):

FORALL (t: interval (zero ,deltat)): prereportinvariant(s)
AND

(FORALL (t: interval(zero,deltat)):
prereportstop(F(t)) => t = deltat)

AND
FOIRALL (t: interval (zero ,deltat)):

F(t) = prereportevolve(t, s),

nupostreport(deltat, F):
FORALL (t: interval (zero,deltat)): postreportinvariant(s)

AND
(FORALL (t: interval (zero, deltat)):

postreportstop(F(t)) = t = deltat)
AND

FORALL (t: interval(zero, deltat)):
F(t) = postreportevolve(t, s),

report: NOT reported(s) AND now(s) > firstreport(s)

ENDCASES

%o Transition function
trans (a: actions, s:states):states

CASES a OF
report:

LET s=s WITH [reported := true] IN
LET s=s WITH [firstreport := 0] IN
LET s=s WITH [lastreport := infinity] IN s

ENDCASES

S Import statements
IMPORTING timedautolibtimemachine

[states, actions, enabled, trans, start, visible, timepassageactions,
lambda(a:{x: actions I timepassageactions (x) }): dur(deltat (a))]

reachable(s:states): MACRO bool = reachable(s)
equivalent(s,sl :states): hIACRO bool = equivalent(s, sl)
timeequivalent(s,sl:states, t:real): M\IACRO bool = timeequivalent(s, sl,t)

END TwoTaskRaceSpec-decls

Figure 4-7: PVS description of TwoTaskRaceSpec (continued)

44

TwoTaskRace2TwoTaskRaceSpec: THEORY BEGIN

IMPORTING TwoTaskRace_invariants
IMPORTING TwoTaskRaceSpecinvariants
timed_auto_lib: LIBRARY = "../ timed_autolib"
MA: THEORY= timed_auto_libtimed-automaton :-4 TwoTaskRace_decls
MB: THEORY = timed_autolibb@timed-automaton :- TwoTaskRaceSpecdecls

% Action mappings
amap(aA:

{a: MA. actions I visible(a) AND NOT timepassageactions(a)}):MB. actions=
CASES a_A of report: report ENDCASES

% Relation
ref(sA: MA. states , sB : MB. states): bool =

FORALL (last_set: real):
FORALL (last_main : real):

FORALL (lastreport: real):
al > 0

AND a2 > 0 AND bl > 0 AND b2 > 0 AND a2 > al AND b2 > bl
AND last-set > 0 AND fintime(last-set) = lastset(sA)
AND lastmain > 0 AND fintime(last_main) = lastmain(s_A)
AND last_report > 0 AND fintime(last-report) = lastreport(sB)

reported (sA) = reported (s_B)
AND now(s_A) = now(s_B)
AND

(NOT flag(sA) AND lastmain < firstset(s_A)

first report(s_B)

min(first_set (s_A), firstmain(sA))
+

count(s_A) + (firstset(sA) - lastmain) / a2
* al)

AND
(flag(sA) OR last_main > firstset(sA)

firstreport (sB)
< firstmain(sA) + count(sA) * al)

AND
(NOT flag(sA) AND firstmain(s-A) < last-set

last report

last set
+

count(s_A) + 2
+ (lastset - first_main(sA)) / al
* a2)

AND
(NOT reported (sA)

AND (flag(s_A) OR firstmain(sA) > last_set)
=> last_report > last-main + count(sA) * a2)

IMIPORTING timedauto_lib@forwardsimulation [MA, MB, ref,
(LAMBDA(a : MA. actions): timepassageactions(a)),
(LAMBDA(a: {a: MA. actions Itimepassageactions(a)}): dur(deltat(a))),
amap]

fw-simulationthm: THEOREM forwardsimulation

END TwoTaskRace2TwoTaskRaceSpec

Figure 4-8: PVS description of the simulation relation from TwoTaskRace to TwoTaskRaceSpec

45

Chapter 5

Translating Specifications and

Proving Properties of Composite

Automata

This chapter describes our approach for translating a composite automaton from TIOA to PVS.

For each component automaton of a given composite automaton, the translator generates separate

definitions for its states, actions and trajectories. The definitions of the composition are then

obtained by combining the definitions of the component automata.

We find that this approach produces a structured and layered output which presents the composi-

tion operation in a clear modular fashion. This layered approach also prevents any potential naming

conflicts that may occur if we simply combined expressions from different component automata

directly into the same expression.

In this chapter, we will use the LeLann-Chang-Roberts (LCR) leader election algorithm [11, 6]

to illustrate the translation of a composite automaton. The LCR algorithm solves the problem

of asynchronously electing a unique leader process from a set of processes in a ring network. The

processes are arranged in a ring, and can send messages to adjacent processes through communication

channels. In the algorithm, each process sends a unique identifier representing its name to its right

neighbor. Each time an identifier is received, the process compares the identifier to its own. If

the received identifier is greater than the identifier of the receiving process, the receiving process

transmits the received identifier to the right; otherwise, the received identifier is discarded. When

a process receives its own identifier, the identifier must have gone through all other processes in

the ring, thus the process can declare itself to be the leader. The TIOA description of the LCR

algorithm is shown in Figures 2-2 and 2-3. In the TIOA description, we assume that the n processes

46

are indexed from 0 to n - 1, and are arranged according to their indices in a circular fashion, with

process i + 1 to the right of process i, and process n - 1 to the left of process 0. A channel with

index i is used by the process with index i to send messages to the right neighbor of the process.

The mapping id returns the identifier id(i) of a process with index i.

5.1 Composite and Component Automata in TIOA

A composite automaton A in TIOA defines its components using the components construct. Each

component has a name Ci, and is based on the instantiation of some component automaton Ai.

The composite automaton can accept parameters which can be used in the instantiation of the

component automata. A set of indexed components based on the same component automaton can

be defined by declaring formal parameters for that component. These parameters, together with the

actuals used for instantiation, can be constrained by a where clause. The system defined by the

composite automaton is the composition of the components obtained by instantiating the component

automata.

Figure 2-3 shows the TIOA definition of a composite automaton for the LCR leader election

algorithm. The definitions of the component automata Process and Channel can be found in

Figure 2-2. Component P[i] is the instantiation Process(i, n), while component C[x] is the

instantiation Channel(x, mod(x + 1, n)). The variable i is a formal parameter of component P,

while variable x is a formal parameter of component C. The terms i and n are the actuals used to

instantiate the automaton Process, while the terms x and mod(x + 1, n) are the actuals used to

instantiate automaton Channel.

Our naming convention prefixes definitions with the name of the component the definitions are

defined for. Thus, definitions in PVS related to component P will contain the prefix P_.

5.2 Automaton Parameters and Component Formal Param-

eters

Parameters of the composite automaton are declared as constants in PVS, together with an axiom

stating the where clause constraining the parameters. Lines 5--8 of Figure 5-1 show the declaration

of the automaton parameter n, as well as the axiom stating the where clause.

For each component with a where clause, the translator generates a predicate that takes in the

formal parameters of the component as arguments. The body of this predicate is the translated

where clause (see predicates Pparams and Cparams in Figure 5-1, lines 14 and 16). This predicate

asserts that the given parameters are valid formal parameters of the component.

47

LCR_decls : 'IHEORY BEGIN

IMPORTING commondecls

% Automaton parameters
n: int

LCRparams_ax: AXIOM n > 0

%% CMPOENT AUTOMATON PARAMETERS
e 2~ 2t

Pparams(i: int):bool = 0 < i AND i < n
Pactuals(i: int): [int , int] = (i, n)

Cparams(x: int):bool = 0 < x AND x < n
C_actuals(x: int): [int , int] = (x, mod(x + 1, n))

%% STATES DECLARATION

% State variables for component P of type Process
Pstates: TPE = [#

pending: list [int],
status: Status #]

% State variables for component C of type Channel
Cstates: TYPE = [#

buffer: list [int] #]
o State variables for composition
states : TYPE = [#

P: [int - P_states],
C: [int - Cstates] #]

ftype(i j : (fintime?)): TYPE = [interval(i , j)-states]

%% START STATES

Pstart(index: int , n: int , s: Pstates): bool = s=s WTH [
pending := append(null , cons(index, null)),
status := waiting]

Cstart(sender: int , receiver: int , s: Cstates): bool = s=s WITH
buffer := null]

start(s: states): bool =
(FORALL(Pi: int): Pparams(P_i)

LET s = P(s)(Pi) IN
LET (index, n) = P_actuals(P_i) IN P_start(index , n, s))

AND
(FORALL(Cx: int): Cparams(Cx) =

LET s = C(s)(Cx) IN
LET (sender , receiver) = Cactuals(C_x) IN

Cstart(sender , receiver , s))

Figure 5-1: PVS translation for LCR: automaton parameters and states

48

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

4-2

44

46

48

50

52

54

56

58

60

For each component that instantiates a component automaton with actuals, the translator gen-

erates a function that takes in the formal parameters as arguments. This function returns a tuple

containing the actuals used for instantiating the component automaton. Lines 15 and 18 of Figure 5-1

show the definitions of Pactuals and Cactuals.

5.3 Automaton States

The state of each component is represented as a record containing the state variables of the com-

ponent automaton as the fields of the record. In Figure 5-1, P_states and Cstates are record types

representing the states of components P and C respectively.

The state of the composition is defined as a record containing a field for each component. The

name of the field is the name of the component the field corresponds to. The type of each field

is the record type declared for the state of the component automaton corresponding to that field.

When a component is indexed with formal parameters, the type of the field corresponding to that

component is declared as a mapping from the types of the formal parameters to the record type

representing the state of the component automaton.

Thus, in our example, the record type states, which represents a state of the composition, has

two fields: P and C (see lines 33-36 of Figure 5-1). The field P is a mapping from an int to P_states,

while the field C is a mapping from an int to Cstates. To obtain the state variable pending of

component P with formal parameter i from a state s of the composition, we would use the expression

pending(P(s)(i)) in PVS.

5.3.1 Start States

A state of the composition is a start state if the corresponding state of every component is also a

start state. To define the start states of the composition, we first define predicates for the start

states of each component separately. The predicate for the start states of the composition is then

obtained by conjoining these predicates.

In Figure 5-1, lines 45-50 show the definitions of the predicates Pstart and Cstart. The predicate

Pstart takes as arguments the actuals used to instantiate the component automaton, and a state

s of the component P. The predicate Pstart returns true if state s is a start state of component P.

The names of the arguments representing the actuals are the same as the names of the automaton

parameters in the definition of the component automaton Process (see Figure 2-3). Having the

automaton parameters as arguments allows them to be used in the definition of Pstart. The pred-

icate Pstart compares the values of the state variables to their initial values (see Figure 5-1, lines

45-47), as specified in the state declaration of component automaton (see Figure 2-2. lines 9-11).

The definition of Cstart (see Figure 5-1, lines 49-50) is similar to that of Pstart, corresponding to

49

the definition of the component automaton Channel (see Figure 2-2, lines 32-33).

The predicate start returns true if the given state s is a start state of the composition (see

Figure 5-1, lines 52-60). The predicate start contains a conjunction of two clauses. The first clause

is a universal quantifier for the integer variable Pi. If Pi satisfies the predicate Pparams which

represents the where clause for component P, then P_i is a valid formal parameter for component

P. Thus, when Pparams(Pi) is true, the expression LET s = P(s)(Pi) binds variable s to the state

of component P with formal parameter P_i, represented by P(s)(Pi). Then, variables n and index

are bound to the actuals obtained by applying Pactuals on Pi in the expression LET (index, n) =

Pactuals(Pi). The last term in the first clause then applies the predicate Pstart on the actuals and

the state. The second clause of the conjunction is defined in a similar fashion for component C.

5.4 Actions and Transitions

For each transition of a component automaton, the translator generates following five definitions:

1. transwhere: a predicate representing the where clause of the transition,

2. pre: a predicate representing the precondition of the transition,

3. eff: a function representing the effect of the transition,

4. transpred: a predicate relating two states, asserting that the second state can be obtained by

applying the effect function on the first state, and

5. where: a predicate representing the where clause in the action declaration, conjoined with the

where clause of the transition.

The name of each of the above definitions is prefixed with the component name and the ac-

tion name (see Figures 5-2 and 5-3). Thus, the action receive of component P has the fol-

lowing definitions (see Figure 5-2, lines 65-86): Preceivetranswhere, Preceivepre, P_receive_eff,

Preceivetranspred, and Preceivewhere.

The actions DATATYPE then declares an action for every unique action name (see Figure 5-4, lines

172-176). Each action takes an additional parameter of type states, which represents the post-state.

The use of this additional parameter will be described in Section 5.4.3.

5.4.1 Definitions for Input and Output Actions

The predicate input? returns true if an action a is an input action of the system, while the predicate

output? returns true if a is an output action of the system. These two predicates are defined in the

following manner. An action a is an output action of the composition if a is an output action of

50

62 %% input receive for Process

64
P_receive_trans_where(m: int, h: int i, : int, index: int, n: int): bool

66 TRUE

68 P_receivepre(m: int, h: int, i: int, index: int, n: int, s: P_states):
bool = TRUE

70
P-receive-eff(m: int, h: int, i: int, index: int, n: int, s: Pstates):

72 Pstates =
LET s= IF m > i

74 THEN LET s=s WITH [pending := append(pending(s), cons(m, null))] IN s
ELSIF m = i

76 THEN LET s=s WITH [status := elected] IN s
ELSE s

78 ENDIF IN s

80 P-receivetranspred (m: int , h : int , i : int , index: int , n: int , sl:
P-states , s2: P_states): bool =

82 s2 = Preceiveeff(m, h, i , index, n, sl)

84 P-receivewhere(m: int, h: int, i: int, index: int, n: int): bool
h = mod(i - 1, n) AND i = index AND

86 P_receive_transwhere (m, h, i, index, n)

88
%% output send for Process

90

92 P-sendtranswhere (m: int , i: int , j : t , index: int n: int): bool = TRUE

94 P.sendpre(m: int , i: int, j: int, index: int, n: int, s: Pstates): bool =
pending(s) /= null AND rm= car(pending(s))

96
P-send-eff(m: int , i: int, j: int , index: int, n: int, s: P states):

98 Pstates = LET s=s WITH [pending := cdr(pending(s))] IN s

100 P-send-transpred (m: int , i : int , j: int , index: int , n: int , sl: P.states,
s2: P_states): bool =

102 s2 = Psend-eff(m, i, j, index, n, sl)

104 Psend-where(m: int, i: int , j: int, index: int, n: int): bool =
j = mod(i + 1, n) AND i = index AND P_sendtrans-where (m, i , j, index, n)

106

108 %% output leader for Process

110
P-leader_transwhere (z: int , index: int , n: int): bool = TRUE

112
P-leaderpre(z: int , index: int, n: int, s: Pstates): bool =

114 status (s) = elected

116 P-leadereff(z: int , index: int, n: int, s: P-states): Pstates =
LET s=s WITH [status := announced] IN s

118
P-leadertrans-pred (z: int , index: int , n: int , s: P_states , s2:

120 Pstates): bool = s2 = Pleadereff(z, index n , s)

122 P-leaderwhere (i: int , index: int , n: int): bool =
i = index AND P_leadertrans_where(i , index, n)

Figure 5-2: PVS translation for LCR: definitions for transitions of Process

51

126 % input send for Channel

128
C-send-trans-where(m: int, i: int, j: int, sender: int , receiver: int):

130 bool = TRUE

132 C-send-pre (m: int, i: int, j: int, sender: int, receiver: int, s:
C-states): bool = TRUE

134
C_sendeff(m: int , i: int , j : int, sender: int, receiver: int, s:

136 Cstates): Cstates =
LE' s=s WITH [buffer := append(buffer(s), cons(m, null))] IN s

138
C-send-transpred (m: int , i : int j : int, sender: int , receiver: int, s1:

140 Cstates, s2: Cstates): bool =
s2 = Csendeff(m, i, j, sender, receiver , sl)

142
C-send-where(m: int, i: int, j: int , sender: int, receiver: int): bool

144 i = sender AND j = receiver AND
C_sendtranswhere(m, i , j , sender , receiver)

146

148 %% output receive for Channel

150
C-receivetranswhere(m: int , i: int j : int, sender: int , receiver: int):

152 bool = TRUE

154 C-receivepre(m: int , i : int , j: int , sender: int, receiver: int , s:
C-states): bool = buffer(s) /= null AND m = car(buffer(s))

156
Creceiveeff(m: int, i: int, j: int, sender: int, receiver: int , s:

158 C.states): C-states =
LET s=s WiTH [buffer := cdr(buffer(s))] IN s

160
Creceivetranspred (m: int , i : int , j: int , sender: int , receiver: int,

162 sl: Cstates , s2: Cstates): bool =
s2 = Creceiveeff(m, i, j, sender , receiver , sl)

164
C-receivewhere(m: int , i: int, j: int, sender: int , receiver: int): bool =

166 i = sender AND j = receiver AND
Creceivetranswhere(m, i , j , sender , receiver)

Figure 5-3: PVS translation for LCR: definitions for transitions of Channel

52

168
%% ACTIONS DECLARATION

170

172 a c t i o n s: DATATYPE BEGIN
send(il: int , i2: int , i3: int , s:states): send?

174 leader(il: int, s:states): leader?
receive(il: int , i2: int, i3: int , s:states): receive?

176 END actions

178
%% INPUT/OUTPUT/VISIBILITY

180

182 input?(a: actions): bool = CASES a OF
send (il, i2, i3 , s):

184 (EXISTS(C-x: int): Cparams(Cx) AND
LET (sender, receiver) = C_actuals(Cx) IN

186 C send where(il , i2, i3 , sender , receiver)) AND
NOT

188 (EXISTS(Pi: int): P_params(Pi) AND
LEI' (index, n) = P_actuals(Pi) IN

190 Psendwhere(il , i2 , i3 , index , n)),

192 leader (il, s):
FALSE,

194
receive(il , i2 , i3, s):

196 (EXISTS(Pi: int): Pparams(P_i) AND
LET (index, n) = Pactuals(P_i) IN

198 Preceivewhere(il , i2 , i3 , index , n)) AND
NOT

200 (EXISTS(Cx: int): Cparams(C-x) AND
LET (sender, receiver) = Cactuals(C-x) IN

202 Creceivewhere (il , i2 , i3 , sender, receiver))
ENDCASES

204
output?(a:actions): bool = CASES a OF

206 send(il, i2, i3, s):
(EXISTS(P_i: int): P_params (P_i) AND

208 LET (index, n) = Pactuals(Pi) IN
Psend-where(il , i2 , i3 , index , n)),

210
leader(il, s):

212 (EXISTS(P_i: int): P_params(P_i) AND
LET (index, n) = Pactuals(Pi) IN

214 Pleader_where(il, index , n)),

216 receive(il, i2, i3, s):
(EXISTS(C-x: int): Cparams(Cx) AND

218 LET (sender, receiver) = Cactuals(Cx) IN
Creceivewhere(il , i2 , i3 , sender , receiver))

220 ENDCASES

222 visible(a:actions):bool = input?(a) OR output?(a)

Figure 5-4: PVS translation for LCR: actions declaration

53

224 o% TIME PASSAGE ACTIONS PREDICATE

226
timepassageactions(a: actions): bool =

228 CASES a OF
send(il , i2 , i3 , s): FALSE,

230 leader(il, s): FALSE,
receive(il, i2, i3, s): FALSE

2:32 ENDCASES

2:34
%% MRE CLA USES

236

238 Pactions_where (a: actions): bool =
EXISTS(Pi: int): Pparams(P_i) AND

240 LET (index, n) = P_actuals(Pi) IN
CASES a OF

242 send(il , i2, i3, s): Psendwhere(il, i2, i3, index, n),
leader(il , s): Pleaderwhere (il , index , n),

244 receive(il, i2, i3, s):
Preceivewhere(il , i2, i3, index, n)

246 ENDCASES

248 C-actionswhere (a: actions): bool =
EXISTS(Cx: int): C-params(Cx) AND

250 LETI' (sender, receiver) = Cactuals(C_x) IN
CASES a OF

252 send(il, i2, i3, s):
C-sendwhere (il , i2 , i3 , sender , receiver),

254 leader(il, s): FALSE,
receive(il, i2, i3, s):

256 C-receivewhere(il, i2, i3, sender, receiver)
ENDCASES

258
actions-where(a:actions): bool = Pactionswhere(a) OR C_actionswhere(a)

Figure 5-5: PVS translation for LCR: time passage predicate and where clause

some component. An action a is an input action of the composition if a is an input action of some

component and not an output action of any component. We use the where definition of an action of

a component to determine whether the action is an action of that component.

In our example, receive is an input action of the component automaton Process, and an output

action of the component automaton Channel (see Figure 2-2 lines 4 and 30). Thus, the definition

of output? for the action receive simply checks that Creceivewhere is satisfied for some valid formal

parameter Cx (see Figure 5-4, lines 216 - 219). The definition of input? for the action receive checks

that Preceivewhere is satisfied for some valid formal parameter Pi, and that Creceivewhere is not

satisfied for any valid formal parameter C-x (see Figure 5-4, lines 195 and 202).

The predicate visible? is then defined simply as the disjunction of the predicates input? and

output?.

54

259 _
%% TRANSITION PREDICATES

261.

263 sendtranspred(il, i2, i3:int, sl, s2:states): bool =
(FORALL(Pi: i nt): Pparams(Pi)

265 LET (index, n) = P_actuals(P-i) IN
LET ssl = P(sl)(P-i), ss2 = P(s2)(P_i) IN

267 IF Psend-where (il, i2, i3, index, n) THEN
Psendtranspred(il , i2 , i3 , index , n, ssl, ss2)

269 ELSE ssl = ss2 ENDIF)
AND

271 (FORALL(Cx: int): Cparams(Cx) =>
LE' (sender, receiver) = Cactuals(Cx) IN

273 LET ssl = C(sl)(C_x), ss2 = C(s2)(C_x) IN
IF Csend where (il , i2, i3, sender , receiver) THEN

275 C send trans_pred (il, i2 , i3 , sender , receiver, ssl, ss2)
ELSE ssl = ss2 ENDIF)

277

279 leader_trans_pred (il: int , sl , s2 : states): bool =
(FORALL(Pi: int): Pparams(Pi) =>

281 LET (index, n) = Pactuals(Pi) IN
LET ssl = P(sl)(P-i), ss2 = P(s2)(Pi) IN

283 IF Pleaderwhere(il, index, n) THEN
P_leadertrans_pred (il, index , n, ssl, ss2)

285 ELSE ssl = ss2 ENDIF)
AND

287 (FORALL(Cx: int): C_params(C x) =>
LET (sender, receiver) = C actuals(C_x) IN

289 LET ssl = C(sl)(C_x), ss2 = C(s2)(Cx) IN ssl = ss2)

291
receivetrans_pred (il, i2 , i3: int, sl, s2: states): bool =

293 (FORALL(P_i: int): P_params(Pi) =>
LET (index, n) = P_actuals(Pi) IN

295 LET ssl = P(sl)(P-i), ss2 = P(s2)(P_i) IN
IF Preceive-where(il , i2, i3 , index , n) THEN

297 P_receivetrans_pred(il, i2 , i3 , index , n, ssl, ss2)
ELSE ssl = ss2 ENDIF)

299 AND
(FORALL(C_x: int): Cparams(C-x) =

301 LET (sender, receiver) = C-actuals(C_x) IN
LET ssl = C(sl)(C-x), ss2 = C(s2)(C_x) IN

303 IF Creceivewhere(il, i2, i3, sender, receiver) THEN
Creceive_tra ns_pred (il , i2 , i3 , sender , receiver , ssl, ss2)

305 ELSE ssl = ss2 ENDIF)

Figure 5-6: PVS translation for LCR: transition predicates

55

307 %% ENABLED CLA USES

309
send_enabled(il, i2, i3: int , s, s2: states): bool

311 (FORALL(Pi: int): Pparams (P_i) =
LET (index, n) = P.actuals(Pi) IN

313 LET s = P(s)(P_i) IN
(P.send_where (il, i2, i3, index, n) =

315 P_send pre(il, i2, i3, index, n, s)))
AND

317 (FORALL(C-x: int): Cparams(Cx) =>
LET (sender, receiver) = Cactuals(C_x) IN

31.9 LET s = C(s)(C_x) IN
(C-send-where(il, i2 , i3 , sender , receiver) =>

321 C_sendpre(il, i2, i3, sender, receiver, s)))

323 leader_enabled(il : int , s, s2:states): bool =
(FORALL(P-i: int): Pparams(P-i) ==

325 LET (index, n) = P_actuals(Pi) IN
LET s = P(s)(Pi) IN

327 (P_leader_where(il, index, n) =>
P-leaderpre(il, index, n, s)))

329
receiveenabled(il , i2 , i3:int , s, s2:states): bool =

331 (FORALL(P-i: int): P_params(Pi)
LET (index, n) = Pactuals(Pi) IN

333 LET s = P(s)(P_i) IN
(Preceive-where (il, i2, i3, index, n) =

335 P-receive_pre(il, i2, i3, index, n, s)))
AND

337 (FORAIL(C_x: int): Cparams(Cx) =
LET (sender , receiver) = Cactuals(Cx) IN

339 LET s = C(s)(Cx) IN
(C_receive_where (il , i2 , i3 , sender , receiver) =

341 C_receive_pre(il, i2, i3, sender, receiver , s)))

Figure 5-7: PVS translation for LCR: enabled clauses

56

343 %% ENABLED PREDICATE AND TRANSITION FUNCTION

345
enabled (a: actions , s: states): bool =

347 CASES a OF
send(il i2 , i3 , s2):

349 (input?(a) OR
(actionswhere(a) AND send_enabled(il, i2, i3 , s,

351 AND send_trans-pred(il, i2 , i3 , s, s2),

leader (1 il, s2):
(input?(a) OR

(actionswhere(a) AND lead
leadertranspred (il, s, s2),

er-enabled(il, s, s2))) AND

receive(il, i2, i3, s2):
359 (input?(a) OR

(actionswhere(a) AND receive-enabled(il,
361 AND receivetrans_pred (il , i2 , i3 , s, s2)

ENDCASES

i2, i3, s, s2)))

trans (a: actions , s:states):states = CASES a OF
send (il, i2 , i3 , s2): s2,
leader(il, s2): s2,
receive(il , i2, i3, s2): s2

ENDCASES

371 % Import statements
IMPORTING timedauto_lib@time_machine

373 t states , actions , enabled , trans , start , visible ,
lambda (a :{x : actions timepassageactions(x) }) : 0]

375
END LCRdecls

timepassageactions ,

Figure 5-8: PVS translation for LCR: enabled predicate and transition function

57

353

355

357

s2)))

363

365

367

369

5.4.2 Identifying Actions of the Composition

The predicate actionswhere checks if a given action a is an action of the composition (see Figure 5-5,

lines 238-259). It does so by checking if a is an action of some component using the disjunction

of the actionswhere predicates (prefixed with the component name) of the components. Consider

component C. The predicate Cactionswhere is specified for each action a of the composition using

the CASES keyword. If C has an action with the same name as a, then Cactionswhere returns the

where definition of the action of component C. Otherwise, Cactionswhere return false. Since the

action leader is defined only for component P, Cactionswhere returns false for the action leader.

5.4.3 Predicates for Preconditions and Transitions

A transition predicate, actionname-transpred, is defined for each action of the composition, as shown

in Figure 5-6, where the prefix actionname is the name of the action. The purpose of this transition

predicate is to relate the pre-state and post-state of a transition. This transition predicate takes

two parameters, sl, the pre-state of the composition, and s2, the post-state of the composition, in

addition to the original parameters of the action. The transition predicate is defined as a conjunction

of universal quantifiers over the types of the formal parameters for each component. Each universal

quantifier asserts that when the quantified variable is a valid formal parameter, then the pre-state

ssl and post-state ss2 of the component satisfy the transition predicate defined for the corresponding

action of that component. Otherwise, the action does not change the state, thus the pre-state and

the post-state are equivalent.

For each action of the composition, a predicate actionnameenabled is defined, as shown in

Figure 5-7. Like the transition predicate, this actionnameenabled predicate takes two parameters,

sl, the pre-state of the composition, and s2, the post-state of the composition, in addition to the

original parameters of the action. The actionnameenabled predicate is defined as a conjunction

of universal quantifiers over the types of the formal parameters for each component. The term

within each universal quantifier is an implication, with the hypothesis of the implication asserting

that the quantified variables are valid formal parameters of the component. The conclusion of this

implication binds the component automaton parameters and then asserts another implication. This

second implication asserts that the precondition of the action of the component is true whenever the

where clause of the action of the component is satisfied. Whenever the where clause is not satisfied,

the hypothesis of the implication is false and thus the implication evaluates to true. Thus, the

evaluation of the universal quantifier only depends on actions which satisfy the where clause .

'As noted in Section 2.1.4, it is possible to relax the requirement that output actions from two component automata
have to be disjoint. In the case where an action is an output action of two components, the current definition of enabled
will still correctly assert the preconditions of the action in both components. This is because the params and where
clauses of that action in the two components will evaluate to true in the hypothesis of the implications, thereby
asserting the preconditions of that action in both components. Similarly, the transition predicates of the action in
both components will be asserted in the definition of transpred.

58

Having defined the transition predicates and the actionnameenabled predicates, we are now in

the position to define the enabled predicate for the composition. The enabled predicate is defined for

each action as a conjunction of two clauses, for the purpose of asserting that the action is enabled

in the pre-state, and that the post-state is related to the pre-state as defined by the transition

predicate.

The first clause of the enabled predicate states that action a is enabled in state s by asserting

that either (1) action a is an input action, or that (2) action a is an action of the composition, and

its parameters satisfy the corresponding actionnameenabled predicate.

The second clause constrains the possible values for the post-state s2 by asserting the correspond-

ing transition predicate on the action parameters, the pre-state and the post-state. Lines 346-362

of Figure 5-8 show the definition of the enabled predicate for the LCR example.

Finally, the transition function trans is then defined simply by returning the state parameter

representing the post-state, as shown in lines 364-368 of Figure 5-8.

An alternative approach for defining the transition function trans is to define the transition

function directly in terms of the transition functions of the transitions of various components. For

components with formal parameters, this would require combining the transition functions of all

components with valid formal parameters specified by the where clause of the component. The

straightforward way to combine the necessary transition functions is to use the equivalent of a for

loop in PVS, which we have described in Chapter 3 [22]. The definition will iterate through the set of

valid formal parameters, and apply the corresponding transition function in each iteration. However,

the function forloop is recursively defined in PVS, and therefore requires the use of induction over

finite sets and recursive definitions in proofs. By using transition predicates, we have replaced the

recursive forloop structure with universal quantifiers which are easier to work with in proofs using

simple instantiation and skolemization techniques.

An alternative way to obtain the post-state of a transition is to define the transition function

trans by first obtaining a set of possible post-states using the transition predicate, and then using the

choose function to non-deterministically pick a post-state which satisfies the transition predicate.

To avoid complications that may occur when reasoning about the choose function, we have therefore

decided to use the additional parameter to represent the post-state, and then asserting the properties

of this post-state in the enabled predicate.

5.5 Trajectories

For every trajectory definition in the components, the translator generates definitions for its in-

variant, stopping condition and evolve clause, prefixing the definition names with the name of the

component. Each trajectory definition of the composition will be a combination of one trajectory

59

automaton X_aut(n: Int)
2 signature output out(i: Int)

states x: Real
ZI transitions output out(i)

trajectories
6 trajdef traj_xl

invariant x > 0 A x < 5
8 stop when x = 5

evolve d(x) = 1
:10 trajdef trajx2

invariant x > 5
-12 stop when x = 10

evolve d(x) = 2
11t

automaton Y
16 signature output out(i: Int)

states y: Real
18 transitions output out(i)

trajectories
20 trajdef traj_y

invariant y > 0
22 stop when y = 10

evolve d(y) = 1
24

automaton XY
26 components

X[i: Int]: X_aut(i);
28 Y

Figure 5-9: Trajectories in TIOA

60

enabled(a: actions , s: states): bool =
CASES a OF

nutrajl (deltat , F):
Inva,-iants

(FORALIL (t: interval (zero. deltat):
LET s = F(t) IN

((FORALL(X-i: int): Xparams(X_i) =>
LET n = Xparams(Xi) IN
LET s = X(s)(Xi) IN

Xtrajxlinvariant (n, s)) AND
(LET s = Y(s) IN

Ytrajyinvariant (s)))) AND

% Stopping conditions
(FORAIL (t: interval (zero .deltat)):

LEI' s = F(t) IN
((EXISTS (Xi: int): Xparams(Xi) AND

LET n = Xparams(Xi) IN
LET s = X(s)(Xi) IN

Xtrajxlstop (n s)) OR
(LET s = Y(s) IN

Ytraj-ystop (s))) = t = deltat) AND

% Evolve clause
(FORALL (t: interval (zero, deltat)):

(FORALLL(Xi: int): Xparams(Xi) =
LET n = Xparams(Xi) IN
LET s = X(s)(Xi) IN

X(F(t)) = Xtrajxlevolve(n, t s)) AND
(LET s = Y(s) IN

Y(F(t)) = Ytrajyevolve (t s)),

nutraj_2 (deltat F):
% Inva,riants
(FORALL (t: interval (zero . deltat)):

LET s = F(t) IN
((FORALL(Xi: int): Xparams(X i) =>

LET n = Xparams(X-i) IN
LET s = X(s)(Xi) IN

Xtrajx2_invariant (n s)) AND
(LET s = Y(s) IN

Ytrajyinvariant (s)))) AND

% Stopping conditions
(FORALL (t: interval (zero, delta-t)):

LET s = F(t) IN
((EXISTS (Xi: int): Xparams(Xi) AND

LET n = Xparams(Xi) IN
LET s = X(s)(Xi) IN

Xtraj x2_stop (n s)) OR
(LET s = Y(s) IN

Ytraj-y-stop(s))) = t = deltat) AND

N Evolve clause
(FORALL (t: interval (zero .deltat)):

(FORALL(Xi: int): Xparams(Xi) :=
LET n = Xparams(Xi) IN
LET s = X(s)(Xi) IN

X(F(t)) = Xtrajx2 evolve(n, t, s)) AND
(LET s = Y(s) IN

Y(F(t)) = Ytrajyevolve(t , s))
ENDCASES

trans(a: actions s: states): states =
CASES a OF

nutrajl (deltat F): F(delta _t)
nutraj 2 (deltat F): F(deltat)

ENDCASES

Figure 5-10: Translation of trajectories for composition

61

definition from each component. Thus, when there is only one trajectory definition in each compo-

nent, the composition will only have one resulting trajectory definition. If the component C1 has

ml trajectory definitions, and component C2 has m2 trajectory definitions, then the composition

C1 [C2 will have ml x nm2 trajectory definitions.

As in the translation scheme for trajectories described in Chapter 3, we use a time passage action

for each trajectory definition of the composition. The enabled predicate for each time passage action

contains the conjunction of three predicates for the invariant, the stopping condition and the evolve

clause:

1. The first clause is the conjunction of all the invariants of the component trajectory definitions.

2. The second clause of the conjunction states that the stopping condition of some component

trajectory definition is satisfied only in the last state of the trajectory.

3. The third clause asserts that the evolution of the state variables during the trajectory satisfies

the given algebraic equations, differential equations and differential inclusions specified by the

evolve clauses of all component trajectory definitions.

The transition function trans for the time passage action corresponding to the trajectory definition

simply returns the last state of the trajectory.

As the LCR example does not use trajectories, we illustrate the translation with another simple

example. Figure 5-10 shows the enabled predicate for the translation of the trajectories of the

composition of components X[i] and Y shown in Figure 5-9. Component X has two trajectory

definitions, traj_xl and traj_x2, while component Y has only one trajectory definition, traj_y.

In the translation output, the time passage action nutrajl is the combination of the trajectory

definitions trajxl and trajy, while nutraj2 is the combination of trajx2 and trajy.

5.6 Proving an Invariant of the LCR Leader Election Algo-

rithm

To illustrate the translation scheme we have described for translating and expanding composite

automata from TIOA to PVS, we describe our experience with verifying a property of the LCR

algorithm in PVS. We have successfully translated the TIOA description of the algorithm to PVS

using the translator, and proved an invariant of the algorithm using PVS. The invariant is shown in

Figure 5-11.

Let imax be the index of the process with the largest identifier. The property we want to show

is that for any i, where i #7 imax, the message containing the identifier for process i does not appear

anywhere in the segment of the ring network between process imax and process i. Informally, this

62

LCRinvariants : THEORY BEGIN

IMPORTING L CRdecls

uniqueax: AOM FORALL(i ,j: int):
i /= j => id (i) /= id (j)

isindex(i:int): bool = 0 < i AND i < n

hasmaxid(i: int): bool =
isindex(i) AND FORALL(k: int): isindex(k) AND i /= k =

id(i) > id(k)

% checks if i is between x and y
% x is included, y is excluded
between(i , x, y: int): bool =

IF x = y THEN TRUE
ELSIF x < y THEN

x < i AND i < y

ELSE
(0 < i AND i < y) OR (x < i AND i < n)

ENDIF

Inv_0(s:states):bool
FORALL(imax: int): hasmax.id(imax) =

(FORALL (i j int):
isindex (i) AND isindex(j) AND
id(i) /= id(imax) AND
between(j , imax, i)

NOT member(id(i), pending(P(s)(j))) AND
NOT member(id (i), buffer(C(s)(j))))

lemma_0: IEIMAFORALL (s:states): reachabIe(s) Inv 0(s);

END LCRinvariants

Figure 5-11: An invariant of the LCR algorithm

63

property holds for the following reason: if the message containing the identifier of process i reaches

process i,ax, the message will be discarded.

In the proof of the invariant, we use the autoinduct strategy described in Chapter 4 to break

down the proof into four branches: the base case for showing that the invariant holds in the start

state. and three cases for each of the inductive steps for the three actions. We also use a local strategy

usespecialdefs to automatically expand the various definitions used in the PVS specification. The

proof involves reasoning about membership of identifiers in lists, when we show that the identifier

does not appear in the pending and buffer lists in the start state, and in the post-states of the

inductive steps. The proof also requires the use of the axiom uniqueax stating the uniqueness of

identifiers.

The proof for this invariant, together with the TIOA and PVS files for the LCR example are avail-

able for download at the following address: http://theory. csail.mit. edu/~hongping/t ioa2pvs.

64

Chapter 6

Discussion and Future Work

In this thesis, we have introduced the TIOA language and presented a tool for translating TIOA

descriptions to the language of the PVS theorem prover. Although the TIOA language described

in Section 2.2 provides convenient and natural constructs for describing a timed I/O automaton, it

cannot be used directly in a theorem prover such as PVS. Our tool performs the translation from

TIOA to PVS, translating programs in the transition effects of TIOA descriptions into functional

relations in PVS, and trajectories into parameterized time passage actions. We have outlined the

translation scheme for the various components of a timed I/O automaton in Chapter 3. In Chapter 4,

we have described briefly three case studies in which we have successfully written the systems in

TIOA, and proved properties of the systems in PVS using the output of the translator. We have also

described a method for translating and expanding a composite automaton from TIOA to PVS using

a structured approach in Chapter 5. Our experience suggests that the process of writing system

descriptions in TIOA and then proving system properties using PVS on the translator output is

usefill for analyzing more complicated systems.

In this chapter, we highlight areas in which the translator may be improved and extended to

increase its usability as an interface between the TIOA language and the PVS theorem prover.

6.1 Handling a Larger Class of Differential Equations

Currently, the translator handles algebraic equations, constant differential equations and constant

differential inclusions for trajectories. While this set of differential equations may suffice for many

examples, we would also like the translator to be able to handle examples that involve more complex

differential equations.

It might be worth considering the possibility of having the translator interface with public domain

differential equation solvers to obtain solutions to the differential equations. This extension will allow

the translator to translate more complex classes of differential equations.

65

Another possibility for dealing with differential equations is to allow the user to enter the solutions

separately from the TIOA description as an input to the translator.

6.2 Improving Proofs and Developing Proof Strategies

Although the proofs of invariants are typically short and well-structured due to the use of TIOA and

TAME strategies, they could be further refined to provide more annotation to enhance readability.

The current proofs of simulation relations are complete, but suffer from their size and complexity.

Tailoring the TAME strategies and improving the proofs through application of these strategies will

help make the proofs more compact and readable. We also hope to identify recurring patterns in

the proofs and develop useful strategies for handling frequently occurring cases.

In our examples, we use simulation relations involving inequalities to show time bounds. In

the proofs, we often have to manipulate and combine inequalities of the inductive hypothesis with

inequalities stated in invariants to show the relation. Developing strategies to automatically apply

the strategies from Field and Manip on these inequalities intelligently will help reduce the amount

of user interaction required. It may also be possible to further simplify the proofs by providing a

strategy to help with the instantiation of a corresponding trajectory or action.

6.3 Developing a Library of User Defined Data Structures

When working with the failure detector example, we define the timed queue data type in PVS as

well as prove properties about the data type. These properties are then used in the proofs of the

invariants and the simulation relation.

In addition to the timed queue data type, we hope to develop a library of commonly used data

structures, such as queues, lossy channels, stacks, and various types of graphs, complete with proofs

of their properties. This library can then be easily reused by future examples.

6.4 Developing a Repository of Complete Examples

Application of the translator and proof techniques on more case studies will help evaluate the

translator as a theorem proving interface for the TIOA language. A repository of complete examples

will further increase the usability of our tool, serving as a reference for users, and will also allow us

to identify areas for improvement.

For testing the translation scheme for composite automata, we currently have one example that

does not involve the use of trajectories. Including more compositional examples involving trajectories

would further help test and refine the translation methods. Moreover, all our examples do not

66

involve the use of the for loop construct. Work on examples that use the for construct will aid us

in developing the necessary strategies for reasoning about recursive loops in PVS.

The clock synchronization system [9] may serve as an appropriate composition example involving

trajectories. Other distributed examples that involve the use of for loops include the breadth-first

search and Bellman-Ford algorithms [11].

It may also be an interesting exercise to rewrite the three examples presented in Chapter 4 as

compositions of individual automata, and to compare the proofs of properties of the hand-composed

systems and the machine-translated compositions.

67

Bibliography

[1] Myla Archer. TAME: PVS Strategies for special purpose theorem proving. Annals of Mathe-

matics and Artificial Intelligence, 29(1/4), February 2001.

[2] Andrej Bogdanov. Formal verification of simulations between I/O automata. Master's thesis,

Massachusetts Institute of Technology, Cambridge, MA, 2000. Available at http://theory.

Ics.mit.edu/tds/ioa.html.

[3] Andrej Bogdanov, Stephen Garland, and Nancy Lynch. Mechanical translation of I/O automa-

ton specifications into first-order logic. In Formal Techniques for Networked and Distributed

Sytems - FORTE 2002: 22nd IFIP WG 6.1 International Conference, pages 364-368, Texas,

Houston, USA, November 2002.

[4] Marco Devillers. Translating IOA automata to PVS. Technical Report CSI-R9903, Computing

Science Institute, University of Nijmegen, February 1999. Available at http://www. cs. ru. nl/

research/reports/info/CSI-R9903.html.

[5] Stephen Garland and John Guttag. A guide to LP, the Larch prover. Technical report, DEC

Systems Research Center, 1991. Available at http://nms.lcs.mit. edu/Larch/LP.

[6] Stephen Garland, Nancy Lynch, Joshua Tauber, and Mandana Vaziri. IOA User Guide and

Reference Manual. MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,

MA, 2003. Available at http://theory.lcs. mit.edu/tds/ioa.html.

[7] Dilsun Kaynar, Nancy Lynch, and Sayan Mitra. Specifying and proving timing properties with

tioa tools. In Work in progress session of the 25th IEEE International Real-Time Systems

Symposium (RTSS 2004), Lisbon, Portugal, December 2004.

[8] Dilsun Kaynar, Nancy Lynch, Sayan Mitra, and Stephen Garland. TIOA User Guide and

Reference Manual. MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,

MA, 2005. Available at http://tioa. csail. mit. edu.

68

[9] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory of timed I/O

automata. Technical Report MIT/LCS/TR-917, MIT Laboratory for Computer Science, 2003.

Available at http://theory.lcs. mit.edu/tds/reflist. html.

[10] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed I/O automata: A

mathematical framework for modeling and analyzing real-time systems. In RTSS 2003: The

24th IEEE International Real-Time Systems Symposium, Cancun, Mexico, December 2003.

[11] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

[12] Nancy Lynch and Hagit Attiya. Using mappings to prove timing properties. Distributed Com-

puting, 6(2), September 1992.

[13] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata. Information and

Computation, 185(1):105-157, August 2003.

[14] Merritt, Modugno, and Tuttle. Time-constrained automata. In CONCUR: 2nd International

Conference on Concurrency Theory. LNCS, Springer-Verlag, 1991.

[15] Sayan Mitra and Myla Archer. Reusable PVS proof strategies for proving abstraction prop-

erties of I/O automata. In STRATEGIES 2004, IJCAR Workshop on strategies in automated

deduction. Cork, Ireland, July 2004.

[16] Sayan Mitra and Myla Archer. PVS strategies for proving abstraction properties of automata.

Electronic Notes in Theoretical Computer Science, 125(2):45-65, 2005.

[17] Cesar Munoz and Micela Mayero. Real automation in the field. Technical Report NASA/CR-

2001-211271 Interim ICASE Report No. 39, ICASE-NASA Langley, ICASE Mail Stop 132C,

NASA Langley Research Center, Hampton VA 23681-2199, USA, December 2001.

[18] Toh Ne Win. Theorem-proving distributed algorithms with dynamic analysis. Master's thesis,

Massachusetts Institute of Technology, Cambridge, MA, May 2003.

[19] Sam Owre, Sreeranga Rajan, John Rushby, Natarajan Shankar, and Mandayam Srivas. PVS:

Combining specification, proof checking, and model checking. In Rajeev Alur and Thomas A.

Henzinger, editors, Computer-Aided Verification, CAV '96, number 1102 in Lecture Notes in

Computer Science, pages 411-414, New Brunswick, NJ, July/August 1996. Springer-Verlag.

[20] Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-Calvert. PVS: an experience

report. In Dieter Hutter, Werner Stephan, Paolo Traverso, and Markus Ullman, editors, Applied

Formal Methods-FM-Trends 98, volume 1641 of Lecture Notes in Computer Science, pages

338-345, Boppard, Germany, oct 1998. Springer-Verlag.

69

[21] Lawrence Paulson. The Isabelle reference manual. Technical Report 283, University of Cam-

bridge, 1993.

[22] Joshua Tauber and Stephen Garland. Definition and expansion of composite automata in IOA.

Technical report, MIT Computer Science and Artificial Intelligence Laboratory, August 2004.

Available at http://theory.lcs.mit.edu/tds/reflist. html.

[23] Ben Vito. A PVS prover strategy package for common manipulations, 2003. Available at

http://shemesh.larc.nasa.gov/people/bld/manip.html.

70

