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ABSTRACT
We show that there is no deterministic local algorithm (con-
stant-time distributed graph algorithm) that finds a (7− ε)-
approximation of a minimum dominating set on planar
graphs, for any positive constant ε. In prior work, the best
lower bound on the approximation ratio has been 5− ε; there
is also an upper bound of 52.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems
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1. INTRODUCTION
This work studies one of the last uncharted corners in the

area of deterministic local algorithms: planar graphs.
A local algorithm is a distributed graph algorithm that runs

in O(1) communication rounds, independently of the size of
the network. While the theory of randomised local algorithms
is still in its infancy, we have nowadays a good understanding
of the capabilities of deterministic local algorithms.

For many classical graph problems, there are exactly match-
ing upper and lower bounds on the best possible approxi-
mation ratio that can be achieved by a deterministic local
algorithm [6]. In many cases, we can apply a straightforward
two-step procedure to derive tight lower bounds:

1. Prove tight bounds for anonymous networks (without
unique identifiers).

2. Apply a simulation argument [2] to show that unique
identifiers do not help.
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However, there are some isolated examples of natural ques-
tions in which the above two-step procedure fails badly. Per-
haps the most intriguing example is dominating sets on
planar graphs:

1. We do not have tight bounds for this problem in anony-
mous networks.

2. Planar graphs are not closed under lifts, and therefore
the simulation argument [2] cannot be applied.

In this work we are interested in the smallest α such that
there is a deterministic local algorithm that finds an α-
approximation of a minimum dominating set in any planar
graph. The current bounds are very far from being tight:

• 5− ε < α ≤ 636 for anonymous networks [1, 7],
• 5− ε < α ≤ 52 in the LOCAL model [1, 3, 4, 8].

In this work we give the first improvement on the lower
bounds in six years: we prove a lower bound α > 7− ε for
both models, for any positive constant ε.

2. PROOF OVERVIEW
Let A be a deterministic distributed algorithm with run-

ning time T = O(1) in the LOCAL model. Assume that A
finds a dominating set D = A(G) in any planar graph G
(that is, each node that is not in D is adjacent to at least
one node of D).

Pick sufficiently large m � T and r. Let m′ = m − 2T .
We will construct a planar graph G with n = m2r nodes
as shown in Figure 1a. There are r blocks with m × m
nodes in each block. The nodes of each block are partitioned
to internal nodes and boundary nodes: there are m′ ×m′
internal nodes, and they are surrounded by boundary areas
of width T . Let Bi be the set of nodes in block i, and let
Ii ⊆ Bi be the set of internal nodes in block Bi. We will
prove the following lemma.

Lemma 1. For any m and any sufficiently large r, we
can assign unique identifiers in G so that Ii ⊆ A(G) for all
1, 2, . . . , r − `, for some ` = o(r).

In other words, all internal nodes of blocks 1, 2, . . . , r− ` are
in the dominating set D = A(G) produced by algorithm A.
Now if we choose large enough m and r, we can make the
contributions of the boundary nodes and the contributions
of the remaining o(r) blocks arbitrarily small. In particular,
for any positive constant ε′, we can pick m and r such that
|D| ≥ (1− ε′)n.
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Figure 1: (a) Construction of graph G for T = 1,
m = 7, and r = 3. There are 3 blocks. In each block
there are 7 × 7 nodes: 5 × 5 internal nodes (white
area), surrounded by a boundary area of width 1
(shaded). (b) A dominating set D∗ of G that con-
tains only a fraction 1/7 of internal nodes—the fig-
ure shows only a part of a large triangular grid.
(c) The local output of an internal node v (black
node) only depends on its radius-T neighbourhood
(white nodes, here T = 2). In particular, if we know
the unique identifiers in the k× k region Rv around
v (shaded area), we know the local output of node v.

On the other hand, there is a dominating set D∗ which con-
tains only a fraction 1/7 of the internal nodes; see Figure 1b.
Therefore |D∗| ≤ (1/7 + ε′)n, and the claim follows: for any
positive constant ε we can show that algorithm A cannot
find a factor 7− ε approximation of a minimum dominating
set on planar graphs.

3. PROOF OF LEMMA 1
The proof uses the strategy of repeated applications of

Ramsey’s theorem; cf. Czygrinow et al. [1, Lemma 4]. We
will use the notation A(G, v) ∈ {0, 1} to refer the local output
of node v when we apply algorithm A to graph G; we have
A(G, v) = 1 if node v is in the dominating set computed by
algorithm A. By definition, A(G, v) only depends on the
radius-T neighbourhood of v in G.

Let k = 2T + 1, K = k2, and M = m2. Consider any
internal node v ∈ Ii of any block Bi. The structure of
graph G in the radius-T neighbourhood does not depend on
the choice of v. The local output of node v only depends
on the unique identifiers in the local neighbourhood. The
local neighbourhood is contained within a rectangular k × k
region Rv ⊆ Bi; see Figure 1c.

Let V = {1, 2, . . . , n} be the set of unique identifiers.
Consider any K-subset of identifiers X ⊆ V , |X| = K. We
will associate a colour c(X) ∈ {0, 1} with each such set, as
follows:

1. Pick an internal node v.
2. Assign the identifiers from X to region Rv in an in-

creasing order by rows: the smallest k identifiers to the
bottom row from left to right, etc. Assign the identifiers
from V \X to the remaining nodes arbitrarily.

3. Apply algorithm A, and set c(X) = A(G, v).

Now we have defined a colouring of all K-subsets of V ;
by restriction, we also have a colouring of all K-subsets
of any V ′ ⊆ V . We say that Y ⊆ V is monochromatic
if c(X1) = c(X2) for any K-subsets X1 and X2 of Y . By
Ramsey’s theorem [5] there exists an integer N = N(K,M)
such that the following holds: if V ′ is any N -subset of V ,
then there always exists a monochromatic subset Y ⊆ V ′ of
size M .

Now we will pick r and ` so that `M > N and ` = o(r). Let
V1 = V . For each i = 1, 2, . . . , r − `, we define the identifiers
of block i as follows.

1. As |Vi| ≥ N , we can find a monochromatic subset
Yi ⊆ Vi of size M .

2. Assign the identifiers from Yi to block Bi in an increas-
ing order by rows: the smallest m identifiers to the
bottom row from left to right, etc.

3. Set Vi+1 = Vi \ Yi.

Finally, assign the remaining `M identifiers from Vr−`+1 to
blocks r − `+ 1, . . . , r arbitrarily.

To complete the proof, consider a block i, where 1 ≤ i ≤
r − `. Let v ∈ Ii be an internal node of the block. Consider
the k×k region Rv around v, and let Xv be the set of unique
identifiers assigned to region Rv. Observe that the identifiers
of Xv are assigned in an increasing order by rows. It follows
that A(G, v) = c(Xv), i.e., the local output of the internal
node v is simply the colour of subset Xv. Furthermore,
Xv ⊆ Yi and Yi was monochromatic. Hence all internal
nodes of block i produce the same output. The common
output cannot be 0; otherwise there would be nodes that are
not dominated. Hence Ii ⊆ A(G).
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