
Distributed Computing manuscript No.
(will be inserted by the editor)

Distributed Distance Computation and Routing
with Small Messages

Christoph Lenzen · Boaz Patt-Shamir · David Peleg

Abstract We consider shortest paths computation

and related tasks from the viewpoint of network algo-

rithms, where the n-node input graph is also the compu-

tational system: nodes represent processors and edges

represent communication links, which can in each time

step carry an O(log n)-bit message. We identify several

basic distributed distance computation tasks that are

highly useful in the design of more sophisticated algo-

rithms and provide efficient solutions. We showcase the

utility of these tools by means of several applications.

keywords: CONGEST model, source detection, skele-

ton spanner, compact routing, all-pairs shortest paths,

single-souce shortest paths

This article is based on preliminary results appearing at con-
ferences [32,34,35]. This work has been supported by the
Swiss National Science Foundation (SNSF), the Swiss So-
ciety of Friends of the Weizmann Institute of Science, the
Deutsche Forschungsgemeinschaft (DFG, reference number
Le 3107/1-1), the Israel Science Foundation (grants 894/09
and 1444/14), the United States-Israel Binational Science
Foundation (grant 2008348), the Israel Ministry of Science
and Technology (infrastructures grant), the Citi Foundation,
and the I-CORE program of the Israel PBC and ISF (grant
4/11).

Christoph Lenzen
MPI for Informatics
Campus E1.4, 66123 Saarbrücken, Germany
email: clenzen@mpi-inf.mpg.de
phone: 0049 681 9325 1008
fax: 0049 681 9325 199

Boaz Patt-Shamir
School of Electrical Engineering
Tel Aviv University, Tel Aviv 69978, Israel

David Peleg
Faculty of Mathematics and Computer Science
Weizmann Institute of Science, Rehovot 76100, Israel

1 Introduction

The task of routing table construction concerns com-

puting local tables at all nodes of a network that will

allow each node v, when given a destination node u,

to instantly find the first link on a route from v to u,

from which the next hop is found by another lookup etc.

Constructing routing tables is a central task in network

operation, the Internet being a prime example. Routing

table construction (abbreviated rtc henceforth) is not

only important as an end goal, but is also a critical part

of the infrastructure in most distributed systems.

At the heart of any routing protocol lies the com-

putation of short paths between all possible node pairs,

which is another fundamental challenge that occurs in

a multitude of optimization problems. The best previ-

ous distributed algorithms for this task were based on,

essentially, running n independent versions of a single-

source shortest-paths algorithm, where n is the number

of nodes in the network: in each version a different node

acts as the source. The result of this approach is an in-

herent Ω(n) complexity bottleneck in message size or

execution time, and frequently both.

In this work, we provide fundamental building

blocks and obtain sub-linear-time distributed algo-

rithms for a variety of distance estimation and routing

tasks in the so-called CONGEST model. In this mo-

del, each node has a unique O(log n)-bit identifier, and

it is assumed that in each time unit, nodes can send

and receive, on each of their incident links, messages

of O(log n) bits, where n denotes the number of nodes

in the system. This means that each message can carry

no more than a constant number of node identifiers and

integers of magnitude polynomial in n. Communication

proceeds in synchronous rounds and the system is as-

sumed to be fault-free. Initially, nodes know only the

2 Christoph Lenzen et al.

identity of their neighbors and, if the graph is weighted,

the weights of adjacent edges.

It is quite obvious that many distributed tasks, in-

cluding rtc, cannot be solved in fewer rounds than the

network diameter, because some information needs to

cross the entire network. It is also well-known (see, e.g.,

[15]) that in CONGEST model, many basic tasks can-

not be solved in õ(
√
n) rounds in some graphs with

very small diameter.1 As we show, such a lower bound

extends naturally to rtc and other related tasks. We

provide algorithms whose running time is close to the

lower bound.

1.1 Main Contributions

While the derivation of the results on routing and dis-

tance approximation requires overcoming non-trivial

technical challenges, the main insight we seek to convey

in this article is the identification of a few fundamen-

tal tasks whose efficient solution facilitates fast distri-

buted algorithms. These basic tasks include what we

call exact and approximate source detection, and skele-

ton spanner construction. For each of these tasks, we

provide an optimal or near-optimal distributed imple-

mentation, which in turn results in a variety of (nearly)

optimal solutions to distance approximation, routing,

and similar problems. Let us specify what these tasks

are.

Source Detection

Intuitively, in the source detection problem there is

a subset S of nodes called sources, and a parameter
σ ∈ N. The required output at each node is a list of

its σ closest sources, alongside the respective distances.

This is a very powerful basic routine, as it generalizes

various distance computation and breadth-first-search

(BFS) tree construction problems. For instance, the all-

pairs shortest path problem (APSP) can be rephrased

as source detection with S = V and σ = |V | (where V

is the set of all nodes), and single-source shortest paths

translates to |S| = σ = 1.

For the general case of σ < |S|, however, this in-

tuitive description must be refined. Source detection

implies construction of partial BFS trees rooted at the

nodes in S, where each node participates in the trees

rooted at its closest σ sources. To ensure that the pa-

rent of a node in the shortest-paths tree rooted at s ∈ S
also has s in its list, we impose consistent tie-breaking,

1 We use weak asymptotic notation throughout the paper,
where Õ, Ω̃, etc. absorb polylogn factors (irrespective of the
considered function, e.g., Õ(1) = (logn)O(1)), where n is the
number of nodes in the graph.

𝑣7 𝑣6 𝑣5 𝑣4 𝑣3 𝑣2 𝑣1

𝑣8

Fig. 1.1 An example of unweighted source detection. Shaded
nodes represent sources. For σ = 2 and h = 3 and assuming
vi < vj for i < j we have, for example, the outputs Lv2

=
〈(1, v1), (1, v3)〉, Lv7

= 〈(1, v6)〉 and Lv8
= 〈(1, v3), (3, v1)〉.

by relying on the unique node identifiers (any other

consistent tie-breaking mechanism could do as well).

A second salient point is that we limit the “horizon,”

namely the number of hops up to which sources are

considered, because determining distances may require

communication over |V | − 1 hops in the worst case.

By bounding both the number of sources to detect and

the hop count up to which this is required, we avoid

trivial Ω(n) lower bounds on the running time. With

these issues in mind, the source detection problem on

unweighted graphs is formalized as follows.

Unweighted Source Detection. Fix a graph G = (V,E),

and let hd(v, w) denote the distance between any two

nodes v, w ∈ V . (We use hd() to emphasize that this

distance is measured in terms of hops.) Let N0 denote

the set of non-negative integers. Let topk(L) denote the

list of the first k elements of a list L, or L if |L| ≤ k.

Definition 1.1 (Unweighted (S, h, σ)-detection)

Given S ⊆ V , v ∈ V , and h ∈ N0, let L(h)
v be the list

of pairs {(hd(v, s), s) | s ∈ S, hd(v, s) ≤ h}, ordered

in increasing lexicographical order. I.e., (hd(v, s), s) <

(hd(v, s′), s′) iff hd(v, s) < hd(v, s′), or both hd(v, s) =

hd(v, s′) and the identifiers satisfy s < s′.

For σ ∈ N, (S, h, σ)-detection requires each node

v ∈ V to compute topσ(L(h)
v).

Note that σ and/or h may depend on n here; we do not

restrict to constant values only.

Figure 1.1 depicts a simple graph and the resulting

lists. We will show that unweighted source detection

allows for a fully “pipelined” version of the Bellman-

Ford algorithm, running in σ + h− 1 rounds.

Theorem 1.2 Unweighted (S, h, σ)-detection can be

solved in σ + h− 1 rounds.

Given that in our model messages have O(log n)

bits, only a constant number of source/distance pairs

fits into a message. As possibly σ such pairs must be

sent over the same edge, the above running time is es-

sentially optimal (cf. Figure 1.2).

Weighted Source Detection. In a weighted graph G =

(V,E,W), the situation is more complex. As mentioned

Distributed Distance Computation and Routing with Small Messages 3

𝑠1

𝑣1 𝑣2 𝑣3 𝑣ℎ 𝑠2

𝑠𝜎

Fig. 1.2 A graph where uweighted source detection must
take at least h + Ω(σ) rounds. The shaded nodes s1 . . . , sσ
are sources. Node vh receives the first record of a source after
h rounds. Note that if only one distance/source pair fits into
a message, the bound becomes precisely h+ σ − 1.

above, determining the exact distance between nodes

may require tracing a path of Ω(n) hops. Since we are

interested in o(n)-time solutions, we relax the require-

ment of exact distances. We use the following notation.

Given nodes v, w ∈ V , let wd(v, w) denote the weig-

hted distance between them, and let wdh(v, w), called

the h-hop v-w distance, be the weight of the lightest

v-w path with at most h edges (wdh(v, w) = ∞ if no

such path exists). We remark that wdh is not a metric,

since if there is a v-w path of ` hops with weight less

than wdh(v, w), then the triangle inequality is violated

if h < ` ≤ 2h.

Definition 1.3 ((S, h, σ)-detection) Given S ⊆ V ,

v ∈ V , and h ∈ N0, let L(h)
v be the list of pairs

{(wdh(v, s), s) | s ∈ S, wdh(v, s) < ∞}, orde-

red in increasing lexicographical order. For σ ∈ N,

(S, h, σ)-detection requires each node v ∈ V to com-

pute topσ(L(h)
v).

Note that Definition 1.3 generalizes Definition 1.1,

as can be seen by assigning unit weight to the edges of

an unweighted graph.

Unfortunately, there are instances of the weighted

(S, h, σ)-detection problem that require Ω(σh) rounds

to be solved, as demonstrated by the example given in

Figure 1.3. The O(σh) round complexity is easily attai-

ned by another variant of Bellman-Ford, where in each

iteration, current lists are sent to neighbors, merged and

truncated [14,32]. In conjunction with suitable sparsi-

fication techniques, this can still lead to algorithms of

running time õ(n), e.g. for APSP [32]. However, it turns

out that relaxing the source detection problem further

enables an Õ(σ + h)-round solution and, consequently,

better algorithms for APSP and related tasks.

Approximate Source Detection

We relax Definition 1.3 to allow for approximate dis-

tances as follows.

Definition 1.4 (Approximate Source Detection)

Given S ⊆ V , h, σ ∈ N, and ε > 0, let L(h,ε)
v be a

list of {(wd′(v, s), s) | s ∈ S, wd′(v, s) < ∞}, ordered

in increasing lexicographical order, for some wd′ : V ×
S → N ∪ {∞} that satisfies wd′(v, s) ∈

[
wd(v, s), (1 +

ε)wdh(v, s)
]

for all v, s ∈ V . The (1 + ε)-approximate

(S, h, σ)-detection problem is to output topσ(L(h,ε)
v) at

each node v for some such wd′.

See Figure 1.4 for an example. We stress that we

impose very little structure on wd′. In particular,

– wd′ is not required to be a metric (just as wdh is

not necessarily a metric);

– wd′ is not required to be monotone in h (unlike

wdh);

– wd′ is not required to be symmetric (also unlike

wdh); and

– the list L(h,ε)
v could contain entries (wd′(v, s), s)

with wdh(v, s) =∞, i.e., hd(v, s) > h.

Unlike for exact source detection, this entails that there

is no guarantee that the computed lists induce (approxi-

mate, partial) shortest-path trees. In general, this might

pose an obstacle to routing algorithms, which tend to

exploit such trees. Fortunately, our algorithm for sol-

ving approximate source detection is based on solving

a number of instances of unweighted source detection,

whose solutions provide sufficient information for rou-

ting. Assuming positive integer edge weights that are

polynomially bounded in n, our approach results in a

(timewise) near-optimal solution.

Theorem 1.5 If W (e) ∈ {1, . . . , nγ} for all e ∈ E,

for a known constant γ > 0, and 0 < ε ∈ O(1), then

(1 + ε)-approximate (S, h, σ)-detection can be solved in

Õ(ε−1σ + ε−2h) rounds.

Skeleton Spanners

When applying source detection as a subroutine, spar-

sification techniques can help in keeping σ small. Ho-

wever, as mentioned above, in weighted graphs it may

happen that paths that are shortest in terms of weight

have many hops. This difficulty is overcome by con-

structing a sparse “backbone” of the graph that ap-

proximately preserves distances between the nodes of

a skeleton S ⊂ V , where |S| ∈ Θ̃(
√
n). Letting S be

a random sample of nodes of that size, long paths are

broken down into subpaths of Õ(
√
n) hops between ske-

leton nodes with high probability.2 Having information

about the distances of skeleton nodes hence usually im-

plies that we can keep h ∈ Õ(
√
n) when applying source

detection.

2 We use the phrase “with high probability,” abbreviated
“w.h.p.,” as a shorthand for “with probability at least 1−n−c,
for any desired constant c.”

4 Christoph Lenzen et al.

𝑣1

𝑠1,1
𝑠1,2 𝑠1,3

𝑠1,𝜎 𝑠2,1
𝑠2,2 𝑠2,3

𝑠2,𝜎

𝑣2

𝑠ℎ,2 𝑠ℎ,3
𝑠ℎ,1 𝑠ℎ,𝜎

𝑣ℎ 𝑢1 𝑢2 𝑢3 𝑢ℎ

Fig. 1.3 A graph where (S, h+ 1, σ)-detection cannot be solved in o(hσ) rounds. Edge weights are 4ih for edges {vi, si,j} for
all i ∈ {1, . . . , h} and j ∈ {1, . . . , σ}, and 1 (i.e., negligible) for all other edges. Node ui, i ∈ {1, . . . , h}, needs to learn about
all nodes si,j and distances wdh+1(ui, si,j), where j ∈ {1, . . . , σ}. Hence all this information must traverse the dashed edge
{u1, vh}. (The example can be modified into one where there are only σ sources, each connected to all the vi nodes. It can be
shown, by setting the weight of the edges {vi, sj} appropriately, that σh values must be communicated over the dashed edge
in this case too. Therefore, the special case of σ = |S| is not easier.)

𝑣4 𝑣3 𝑣1

1 1 2

1 3 3

2 1 9 2

1

𝑣2 𝑣5

𝑣6 𝑣7 𝑣8 𝑣9

Fig. 1.4 An example of approximate source detection, where
shaded nodes represent sources. For σ = 4, h = 2, and
ε = 1/10 we may have, e.g., Lv3

= 〈(0, v3), (11, v5), (12, v9)〉
and Lv9

= 〈(0, v9), (1, v5), (11, v3), (35, v6)〉. Note that 12 =
wd′(v3, v9) 6= wd′(v9, v3) = 11 and 35 = wd′(v9, v6) >
(1 + ε)wd(v9, v6) = 7.7, where the latter is feasible since
hd(v9, v6) > 2, i.e., wdh(v9, v6) =∞.

A skeleton spanner can be used to concisely repre-

sent the global distance structure of the graph and make

it available to all nodes in a number of rounds compara-

ble to the lower bound of Ω̃(
√
n+D). Let us formalize

this concept. First, we define the skeleton graph.

Definition 1.6 (Skeleton Graph)

Let G = (V,E,W) be a weighted graph. Given S ⊆ V

and h ∈ N, the h-hop S-skeleton graph is the weighted

graph GS,h = (S, ES,h,WS,h) defined by

– ES,h = {{v, w} | v, w ∈ S ∧ v 6= w ∧ hd(v, w) ≤ h};
– For {v, w} ∈ ES,h, WS,h(v, w) = wdh(v, w).

We denote the distance function in GS,h by wdS,h.

It is straightforward to show (see Lemma 6.2) that if S
is a uniformly random set of c · n log n/h nodes, where

c is a sufficiently large constant, then with high proba-

bility, the distances in the skeleton graph are identical

to the distances in G. In particular, choosing h =
√
n

allows us to preserve distances using a skeleton of size

|S| ∈ Θ̃(
√
n).

An α-spanner, for a given α ≥ 1, is a subgraph ap-

proximating distances up to factor α. By computing

a sufficiently sparse spanner of the skeleton graph—

referred to as the skeleton spanner—we obtain a com-

pact approximate representation of the skeleton graph

which can be shipped to all nodes fast. To this end,

we show how to simulate the O(k)-round algorithm by

Baswana and Sen [9] that, for an n-node graph, con-

structs (w.h.p.) a (2k − 1)-spanner with Õ(n
k+1
k) ed-

ges; for the skeleton graph this translates to Õ(n
k+1
2k)

edges. Each of the k − 1 iterations of the algorithm

is based on solving a (weighted) instance of (S, h, σ)-

detection, where σ ∈ Õ(n
1
k), and can hence be comple-

ted in Õ(n
k+1
2k) rounds. Pipelining the computed span-

ner to all nodes over a (single) BFS tree makes the ske-

leton spanner known to all nodes within a total number

of Õ(n
k+1
2k +D) rounds.

Theorem 1.7 Let S ⊆ V be a random node set such

that each v ∈ V is in S independently with probabi-

lity c log n/
√
n, i.e., Pr[v ∈ S] = c logn√

n
, for a suffi-

ciently large constant c. For any natural number k ∈
O(log n), a (2k−1)-spanner of the d

√
n e-hop S-skeleton

graph can be computed and made known to all nodes in

Õ(n
k+1
2k + D) rounds with high probability. Moreover,

for each spanner edge e = {s, t}, there is a unique path

pe from s to t in G with the following properties:

– pe has weight WS,d
√
n e(e) (cf. Definition 1.6);

– pe has at most d
√
n e hops;

– each node v ∈ pe \ {s} knows the next node u ∈ pe
in the direction of s; and

– each node v ∈ pe \ {t} knows the next node u ∈ pe
in the direction of t.

The fact that the “magic number”
√
n pops up re-

peatedly is no coincidence. As mentioned before, there

is a well-known lower bound of Ω̃(
√
n) that applies to a

large class of problems in the CONGEST model, even

when the hop diameter D is very small [15,43]. Essen-

tially, the issue is that while D might be small, the

shortest paths may induce a congestion bottleneck. We

demonstrate that this is the case for APSP and routing

table construction in Section 9.

Further Results

The tools described above are applicable to many tasks.

Below we give an informal overview of results that use

them.

Distributed Distance Computation and Routing with Small Messages 5

Name-independent routing and distance approximation.

In the routing table construction (rtc) problem, each

node v must compute a routing table such that given

an identifier of a node w, v can determine a neighbor

u based on its table and the identifier of w; querying u

for w and repeating inductively, the route must even-

tually arrive at w. The stretch of the resulting path

is its weight divided by the weight of a shortest v-w

path. The stretch of a routing scheme is the maximum

stretch over all pairs of nodes.3 In the distance approx-

imation problem, the task is to output an approximate

distance w̃d(v, w) ≥ wd(v, w) instead of the next rou-

ting hop when queried; the stretch then is the ratio

w̃d(v, w)/wd(v, w). Our algorithms always solve both

rtc and distance approximation simultaneously, hence

in what follows we drop the distinction and talk of “ta-

ble construction.”

The qualifier “name-independent,” when applied to

routing, refers to the fact that the algorithm is not

permitted to assign new “names” to the nodes; as de-

tailed below, such a reassignment may greatly reduce

the complexity of the task. For name-independent table

construction, the possible need to communicate Ω(n)

identifiers over a bottleneck edge entails a running time

lower bound of Ω̃(n), even in the unweighted case with

D ∈ O(1). Close-to-optimal algorithms are given by sol-

ving source detection (in the unweighted case, yielding

stretch 1) or (1 + ε)-approximate source detection (in

the weighted case, yielding stretch 1 + ε) with S = V

and σ = h = n. (As an exception to the rule, these algo-

rithms are deterministic; unless we indicate otherwise,

in the following all results rely on randomization, and

all lower bounds also apply to randomized algorithms.)

Name-dependent routing and distance approximation.

If table construction algorithms are permitted to assign

to each node v a (small) label λ(v) and answer queries

based on these labels instead, the game changes sig-

nificantly. In this case, the strongest lower bounds are

Ω(D) (trivial, also in unweighted graphs) and Ω̃(
√
n);

the latter applies even if D ∈ O(log n). Combining ap-

proximate source detection and a skeleton spanner, we

obtain tables of stretch O(k) in Õ(n
k+2
2k + D) rounds,

with labels of optimal size O(log n).

Compact routing and distance approximation. In this

problem, one adds the table size as an optimization cri-

terion. It is straightforward to show that this implies

3 Note that while this formulation of the routing problem
does not deal directly with congestion as a cost measure, em-
ploying low-stretch routes reduces the network load and thus
contributes towards a lower overall congestion. Also, someti-
mes edge weights represent the reciprocal of their bandwidth.

that renaming must be permitted, as otherwise tables

must comprise Ω(n log n) bits, which is trivially achie-

ved by evaluating the tables of any given scheme for all

node identifiers (which can be made known to all no-

des in O(n) rounds). We remark that one can circum-

vent this lower bound by permitting stateful routing,

in which nodes may add auxilliaury bits to the mes-

sage during the routing process. Intuitively, this makes

it possible to distribute the large tables over multiple

nodes, substantially reducing the degree of redundancy

in stored information. In this article, we confine our

attention to stateless routing, in which the routing de-

cisions depend only on the destination’s label and the

local table.

Constructing a Thorup-Zwick routing hierarchy [52]

by solving k instances of source detection on unweig-

hted graphs, we readily obtain tables of size Õ(n1/k)

and stretch O(k) (this trade-off is known to be asymp-

totically optimal) within Õ(n1/k + D) rounds. The

weighted case is more involved: Constructing the hier-

archy through a skeleton spanner results in stretch

Θ(k2) for this table size and a target running time of

Õ(n
k+2
2k +D) rounds. An alternative approach is to re-

frain from the use of a skeleton spanner and construct

the hierarchy directly on the skeleton graph; this can be

seen as constructing a spanner tailored to the routing

scheme. Recently Elkin and Neiman (independently)

pursued this direction, achieving stretch 4k − 5 + o(1)

in (n
k+1
2k +D)no(1) rounds [17].

Single-source shortest paths and distance approxima-

tion. For single-source shortest paths (SSSP), the task

is the same as in APSP, except that it suffices to

determine routing information and distance estima-

tes to a single node. Henziger et al. [24] employ ap-

proximate source detection to obtain a deterministic

(1 + o(1))-approximation in near-optimal n1/2+o(1) +

D1+o(1) rounds. Their result is based on using approx-

imate source detection to reduce the problem to an

SSSP instance on an overlay network on Õ(
√
n) no-

des, which they then solve efficiently. The reduction it-

self does not incur an extra factor-no(1) overhead in

running time (beyond the n1/2 factor). Indeed, very re-

cent advances [10] result in a deterministic (1 + o(1))-

approximation of the distances in Õ(
√
n + D) rounds,

which is optimal up to a polylogn factor. However, for

extracting an approximate shortest path tree [10] relies

on randomization. It is worth mentioning that the lat-

ter result makes use of a skeleton spanner to access a

rough approximation of the distances in the skeleton,

which it then “boosts” to a (1 + o(1))-approximation.

6 Christoph Lenzen et al.

Steiner forest. In the Steiner forest problem, we are gi-

ven a weighted graph G = (V,E,W) and disjoint termi-

nal sets V1, . . . , Vt. The task is to find a minimum weight

edge set F ⊆ E so that for each i ∈ {1, . . . , t} and all

v, w ∈ Vi, F connects v and w. Source detection and

skeleton spanners have been leveraged in several distri-

buted approximation algorithms for the problem [32,

33,34].

Tree embeddings. A tree embedding of a weighted

graph G = (V,E,W) maps its node set to the leaves of

a tree T = (V ′, E′,W ′) so that wdT (v, w) ≥ wd(v, w)

(where wdT denotes distances in the tree) and the ex-

pected stretch E[wdT (v, w)/wd(v, w)] is small for each

v, w ∈ V . Using a skeleton spanner, one can construct

a tree embedding of expected stretch O(ε−1 log n) in

Õ(n1/2+ε +D) rounds [22].

1.2 Organization of this paper

The remainder of the article is organized in a modu-

lar way. In the next section, we discuss related work.

In Section 3, we specify the notation used throughout

this paper and give formal definitions of the routing ta-

ble construction problem and its variants; readers who

already feel comfortable with the terms that appeared

up to this point are encouraged to skip this section and

treat it as a reference to be used when needed. We then

follow through with fairly self-contained sections pro-

ving our claims: source detection (Section 4), approxi-

mate source detection (Section 5), skeleton and skele-

ton spanners (Section 6), table construction in unweig-

hted graphs (Section 7), table construction in weighted

graphs (Section 8), and lower bounds (Section 9).

2 Related Work

Distributed Algorithms for Exact All-Pairs Shortest-

Paths

The exact all-pairs shortest path (APSP) problem has

been studied extensively in the sequential setting, and

was also given several solutions in the distributed set-

ting [2,13,23,29,51]. The algorithm by Kanchi and Vi-

neyard [29] is fast (runs inO(n) time) but involves using

large messages, hence does not apply in the CON-

GEST model. The algorithm of Antonio et al. [2] uses

short (i.e., O(log n) bits) messages, hence it can be

executed in the CONGEST model, but it requires

O(n log n) time, and moreover, it applies only to the

special family of BHC graphs, which are graphs structu-

red as a balanced hierarchy of clusters. Most of the dis-

tributed algorithms for the APSP problem aim at mi-

nimizing the message complexity, rather than the time;

for instance, the algorithm of Haldar [23] requiresO(n2)

time. For unweighted networks, a trivial lower bound of

Ω(n) applies for exact APSP in the CONGEST mo-

del, as Ω(n) node identifiers may have to be commu-

nicated through a bottleneck edge. This lower bound

has been matched (asymptotically) by two distributed

O(n)-time algorithms, proposed independently by Hol-

zer and Wattenhofer [26] and Peleg et al. [42]. Apart

from solving a more general problem, our solution slig-

htly improves on each of these algorithms. Compared

to the first algorithm, our solution attains the optimal

time with respect to the constant factors (cf. Corol-

lary 7.1). Compared to the second, our algorithm never

sends different messages to different neighbors in the

same round.

For weighted networks, prior to this work there has

been little progress from the theoretical perspective on

computing weighted shortest paths faster than the SPD

barrier, where SPD (“shortest paths diameter”) is mini-

mal with the property that wdSPD = wd, i.e., between

each pair of nodes there is a shortest path of at most

SPD hops; see, e.g., Das Sarma et al. [14] and references

therein.

Distributed construction of compact routing tables

There are many centralized algorithms for constructing

compact routing tables (a routing table at a node says

which hop to take for each possible destination); in

these algorithms the goal is usually to minimize space

without affecting the quality of the routes too badly.

Following the early constructions in [3,6,46], Thorup

and Zwick [52] presented an algorithm that achieves,

for any k ∈ N, routes of stretch at most 2k − 1 using

Õ(n1/k) memory, which is optimal up to a constant fac-

tor in worst-case stretch w.r.t. routing [46]. Note that a

näıve distributed implementation of a centralized algo-

rithm in the CONGEST model requires Ω(|E|) time

in the worst case, since the whole network topology has

to be collected at a single node.

Practical distributed routing table construction al-

gorithms are usually categorized as either “distance vec-

tor” or “link state” algorithm (see, e.g., Peterson and

Davie [47]). Distance-vector algorithms are variants of

the Bellman-Ford algorithm [11,18], whose worst-case

time complexity in the CONGEST model is Θ(n2). In

link-state algorithms [37,38], each routing node collects

the complete graph topology and then solves the single-

Distributed Distance Computation and Routing with Small Messages 7

source shortest path problem locally. This approach has

Θ(|E|) time complexity.

Both the approximate shortest paths and the com-

pact routing problems have been studied extensively.

However, most previous work on these problems either

focused on efficient performance (stretch, memory) and

ignored the preprocessing stage (cf. [6,20,41,46] and re-

ferences), or provided time-efficient sequential (centra-

lized) preprocessing algorithms [7,8,30,49,49,53]. Rela-

tively little attention was given to distributed preproces-

sing algorithms, and previous work on such algorithms

either ignored time-efficiency (cf. [3,4]) or assumed a

model allowing large messages (cf. [5]).

Spanners

A closely related concept is that of sparse graph span-

ners [44,45]. It is known that a (2k − 1)-spanner must

have Ω̃(n1+1/k) edges for some values of k, and this

lower bound is conjectured to hold for all k ∈ N. A

matching upper bound is obtained by the construction

of Thorup and Zwick [53]. Our construction of skeleton

spanners simulates an elegant algorithm by Baswana

and Sen [9] on the skeleton. Their algorithm achieves

stretch at most 2k − 1 vs. O(n1+1/k) expected edges

withinO(k) rounds in the CONGEST model. A deter-

ministic construction with similar performance but al-

lowing large messages is presented by Derbel et al. [16].

Distributed Lower Bounds

Lower bounds of Ω̃(
√
n) on the running time of a va-

riety of global distributed problems (including MST,

shortest-paths tree of low weight, and stateless rou-

ting) were presented by Das Sarma et al. [15] and Pe-

leg and Rubinovich [43]. Without relabeling (i.e., when

renaming of the nodes is forbidden), routing table con-

struction and APSP both require Ω(n) rounds [32,39],

regardless of the stretch or approximation ratio, re-

spectively. Another (almost) linear-time barrier arises

from the approximation ratio: any approximation of the

hop diameter better than factor 3/2 [1,19] or the weig-

hted diameter (the maximum weight of a shortest path)

better than 2 [25] takes Ω(n/ log n) rounds. A mat-

ching upper bound of O(n/ log n+D) rounds for exact

APSP in unweighted graphs (with relabeling) proves

this bound to be asymptotically tight [27], as it imme-

diately implies that the hop diameter can be computed

in the same time. Izumi and Wattenhofer [28] prove

a lower bound of Ω̃(n1/(t+1)) (and a lower bound of

Ω̃(n
1
2+

1
5t)) on the running time required to compute in

the CONGEST model a labeling scheme that allows

one to estimate the distances with stretch at most 2t in

unweighted graphs (and in weighted graphs, respecti-

vely).

Leveraging the Shortest-Path-Diameter

Das Sarma et al. [14] show how to construct distance

tables of size Õ(n1/k) with stretch 2k− 1 in the CON-

GEST model in Õ(SPDn1/k) rounds, where SPD is

the minimal hop count such that between any two no-

des there is a weighted shortest path of at most SPD

hops. They exploit the Bellman-Ford relaxation with

termination detection via an (unweighted) BFS tree

within O(D) time. Our analysis enables us to gene-

ralize this result using small labels, albeit with stretch

4k−3 (Corollary 8.1); this is because, unlike in [14], we

disallow access to the destination’s table.

3 Preliminaries

In this section we define the model of computation, in-

troduce some notation, and discuss a few basic subrou-

tines we make explicit or implicit use of frequently.

3.1 The Computational Model

We follow the CONGEST model as described in [41].

The distributed system is represented by a simple, con-

nected weighted graph G = (V,E,W), where V is the

set of nodes, E is the set of edges, and W : E → N is

the edge weight function.4 As a convention, we use n to

denote the number of nodes, and assume that all edge

weights are bounded by some polynomial in n, and that

each node v ∈ V has a unique identifier of O(log n) bits,

to conform with the CONGEST model [41]. (We use

v to denote both the node and its identifier.)

Execution proceeds in global synchronous rounds,

where in each round, each node takes the following three

steps:

(1) Perform local computation,

(2) send messages to neighbors, and

(3) receive the messages sent by neighbors.

Moreover, a node may decide to terminate and output

a result at the end of any given round. A node that ter-

minated ceases to execute the above steps. The running

time or round complexity of a deterministic algorithm

is the worst-case number of rounds (parametrized with

4 We remark that our results can be easily extended to non-
negative edge weights by employing appropriate symmetry
breaking mechanisms.

8 Christoph Lenzen et al.

n, D, etc.) until all nodes have terminated. For rando-

mized algorithms, the respective bound may hold with

a certain probability bound only.

Initially, nodes have the following information:

– their own identifier;

– the identifiers of the respective other endpoint of

incident edges;5

– the weight of incident edges (if the graph is weigh-

ted); and, in general,

– possible further problem-specific input.

In each round, each edge can carry a message of B bits

for some given parameter B of the model. Throughout

this article, we make the common assumption that B ∈
Θ(log n).

3.2 General Concepts

We use N to denote the natural numbers, N0 to denote

N ∪ {0}, and N∞ to denote N ∪ {∞}.
Given a list L = 〈a1, a2, . . . , a`〉 and k ∈ N, we use

topk(L) to denote the list that consists of the first k

elements of L, or L if ` < k.

We use extensively “soft” asymptotic notation

that ignores polylogarithmic factors. Formally, f(n) ∈
Õ(g(n)) if and only if there exists a constant c ∈ R+

0

such that f(n) ≤ g(n) logc(n) for all but finitely many

values of n ∈ N. Analogously,

– f(n) ∈ Ω̃(g(n)) iff g(n) ∈ Õ(f(n)),

– Θ̃(f(n)) = Õ(f(n)) ∩ Ω̃(f(n)),

– f(n) ∈ õ(g(n)) iff for any c ∈ R+
0 it holds that

lim supn→∞ f(n) logc(n)/g(n) = 0, and

– f(n) ∈ ω̃(g(n)) iff g(n) ∈ õ(f(n)).

Note that polylog n = Õ(1).

To model probabilistic computation, we assume that

each node has access to an infinite string of independent

unbiased random bits. When we say that a certain event

occurs “with high probability” (abbreviated “w.h.p.”),

we mean that the probability of the event not occurring

can be set to be less than 1/nc for any desired constant

c, where the probability is taken over the strings of

random bits. As c is meant to be a constant, it will be

hidden by asymptotic notation. We remark that for all

our results, c affects the time complexity at most as a

multiplicative factor.

3.3 Some Graph-Theoretic Concepts

We consider both weighted and unweighted graphs;

in weighted graphs, we use W : V → N to denote

5 This assumption is made for notational convenience; it
takes a single round to exchange identifiers with neighbors.

the weight function, and assume that edge weights are

bounded by nO(1). With the exception of Sections 4.4

and 5.3, we consider undirected graphs and assume this

to be the case without further notice. Without loss of

generality, graphs are simple; self-loops as well as all

but a lightest edge between a pair of nodes can be de-

leted without changing the solutions, and thus worst-

case instances will not provide additional communica-

tion bandwidth due to parallel edges.

A path p connecting v, u ∈ V is a finite sequence of

nodes 〈v = v0, . . . , vk = u〉 such that for all 0 ≤ i < k,

{vi, vi+1} is an edge in G. Let paths(v, u) denote the set

of all paths connecting nodes v and u. (This set may

contain also non-simple paths, but our focus later on

is on shortest paths, which are always simple.) We use

the following unweighted concepts.

– The hop-length of a path p, denoted `(p), is the num-

ber of edges in it.

– A path p0 between v and u is a shortest unweighted

path if its hop-length `(p0) is minimum among all

p ∈ paths(v, u).

– The hop distance hd : V × V → N0 is defined

as the hop-length of a shortest unweighted path,

hd(v, u) := min{`(p) | p ∈ paths(v, u)}.
– The (hop-)diameter D = maxv,u∈V {hd(v, u)}.

We use the following weighted concepts.

– The weight of a path p, denoted W (p), is its total

edge weight, i.e., W (p) =
∑`(p)
i=1 W (vi−1, vi).

– A path p0 between v and u is a shortest weighted

path if its weight W (p0) is minimum among all p ∈
paths(v, u).

– The weighted distance wd : V × V → N is defined

as the weight of a shortest weighted path,

wd(v, u) = min{W (p) | p ∈ paths(v, u)}.

– The weighted diameter

WD = max{wd(v, u) | v, u ∈ V }.

Finally, we define the following “hybrid” notions.

– For h ∈ N,

wdh(v, u) = inf{W (p) | p ∈ paths(v, u) ∧ `(p) ≤ h}

is the h-hop distance. Note that wdh(v, u) = ∞ iff

hd(v, u) > h.

– The shortest path diameter is

SPD = min{h ∈ N |wdh = wd},

i.e., the minimum hop distance h so that for each

u, v ∈ V there is a shortest weighted path of at most

h hops.

Note that for h < SPD, wdh is not a metric, as it vio-

lates the triangle inequality.

Distributed Distance Computation and Routing with Small Messages 9

3.4 Basic Primitives

The results in this section can be considered folklore.

We will informally sketch the basic algorithmic ideas.

For a more detailed exposition, we refer to [41].

Based on a simple flooding, it is straightforward to

construct a BFS tree rooted at any given node in D

rounds. By starting this routine concurrently for each

node as a potential root, but ignoring all instances ex-

cept for the one corresponding to the node of (so far)

smallest known identifier, one constructs a single BFS

tree and implicitly elects a leader. By reporting back

to the root via the (so far) constructed tree whenever

a new node is added, the root detects that the tree was

completed by round 2D + 2.

Lemma 3.1 A single BFS tree can be constructed in

Θ(D) rounds. Moreover, the root learns the depth d ∈
[D/2, D] of the tree.

Most problems discussed in this article are global,

i.e., satisfy trivial running time lower bounds of Ω(D).

By the above lemma, we can hence assume that termi-

nation is coordinated by the root of a BFS tree wit-

hout affecting asymptotic running times: Nodes report

to their parent when the subtree rooted at them is re-

ady to terminate, and once the root learns that all nodes

are ready, it can decide that all nodes shall terminate

d rounds later and distribute this information via the

tree. Accordingly, we will in most cases refrain from

discussing how nodes decide on when to terminate.

A BFS tree supports efficient basic operations, such

as broadcasts and convergecasts. In particular, it can

be used to determine sums, maxima, or minima of in-

dividual values held by the nodes.

Lemma 3.2 Within Θ(D) rounds, the following can be

determined and made known to all nodes:

– The number of nodes n.

– The maximum edge weight maxe∈E{W (e)}.
– The minimum edge weight mine∈E{W (e)}.
– |S| for any S ⊆ V given locally, i.e., when each

v ∈ V knows whether v ∈ S or not.

Therefore, we may assume w.l.o.g. that such values

are globally known in our algorithms. For simplicity, we

will also assume that D is known; in practice, one must

of course rely on the upper bound 2d ∈ [D, 2D] instead,

at the expense of a constant-factor increase in running

times.

In addition, we will make excessive use of pipeli-

ning, i.e.,running multiple broadcast and convergecast

operations on the BFS tree concurrently.

Lemma 3.3 Suppose each v ∈ V holds mv ∈ N0 mes-

sages of O(log n) bits each, for a total of M =
∑
v∈V mv

strings. Then all nodes in the graph can receive these

M messages within O(M +D) rounds.

In the following, we use this lemma implicitly whe-

never stating that some information is “broadcast to all

nodes” or “announced to all nodes.”

4 Source Detection in Unweighted Graphs

In this section, we present an efficient deterministic al-

gorithm for the source detection task on unweighted

graphs. Accordingly, we assume that the graph is un-

weighted throughout this section. Recall the task we

need to solve:

Definition 4.1 (Unweighted (S, h, σ)-detection,

restated) Given S ⊆ V , a node v ∈ V , and non-

negative integer h ∈ N0, let L(h)
v be the list of elements

{(hd(v, s), s) | s ∈ S ∧ hd(v, s) ≤ h}, ordered in

ascending lexicographical order. For σ ∈ N, (S, h, σ)-

detection requires each node v ∈ V to compute

topσ(L(h)
v).

Without restrictions on bandwidth, a variant of the

Bellman-Ford algorithm solves the problem in O(h)

time. Each node v maintains a list Lv of the (distance,

source) pairs that it knows about. Lv = ∅ if v /∈ S,

and Lv = {(0, v)} if v ∈ S. In each round, each node

v sends Lv to its neighbors. Upon reception of such a

message, for each received pair (h, s) for which there is

no own pair (h′, s) ∈ Lv, it adds (h+1, s) to Lv. After h

rounds, v knows the sources within hop distance h from

itself and their correct hop distance; thus it is able to

order the source/distance pairs correctly. This appro-

ach concurrently constructs BFS trees up to depth h

for all sources s ∈ S.

4.1 Pipelined Bellman-Ford Algorithm

A näıve implementation of the above algorithm in the

CONGEST model would cost O(σh) time, since mes-

sages contain up to σ pairs, each of O(log n) bits. Ho-

wever, it turns out that in the unweighted case, the

following simple idea works: in each round, each node

v ∈ V announces only the smallest pair (h, s) in Lv it

has not announced yet. Pseudocode is given in Algo-

rithm 1. (The algorithm can be trivially extended to

construct BFS trees rooted at the sources.)

4.2 Analysis

The algorithm appears simple enough, but note that

since only one pair is announced by each node in every

10 Christoph Lenzen et al.

Algorithm 1: PBF(S, h, σ): Pipelined

Bellman-Ford at node v ∈ V .
input : S: sources // v ∈ V knows if v ∈ S

h: distance parameter
σ: number of sources to detect

output: list Lv
// list of distance/source pairs

(hs, s) ∈ N0 × S
1 Lv := ∅

// whether a pair in Lv has been sent yet

2 sentv : Lv → {true, false}
3 if v ∈ S then
4 Lv := {(0, v)}
5 sentv(0, v) := false

// one round per iteration

6 for h+ σ − 1 iterations do
7 if ∃(hs, s) ∈ Lv : sentv(hs, s) = false then
8 (hs, s) := argmin{(hs′ , s′) ∈

Lv | sentv(hs′ , s′) = false}
9 send (hs, s) to all neighbors

10 sentv(hs, s) := true

11 for (hs, s) received from some neighbor do
12 if @(h′s, s) ∈ Lv : h′s ≤ hs + 1 then

// remove outdated entry (if exists)

13 Lv := Lv \ {(·, s)}
14 Lv := Lv ∪ {(hs + 1, s)}
15 sentv(hs + 1, s) := false

16 delete all entries (hs, s) from Lv with hs > h
17 return topσ(Lv)

round, it may now happen that a pair (h, s) is stored in

Lv with h > hd(v, s). Further, we need to consider that

v might announce this pair to other nodes. However,

nodes keep announcing smaller distances as they learn

about them, and eventually Lv = {(hd(s, v), s) | s ∈ S}
for all v ∈ V .

To prove this formally, we first fix some helpful no-

tation.

Definition 4.2 For each node v ∈ V and each round

r ∈ N, denote by Lrv the content of v’s Lv variable

at the end of round r; by L0
v we denote the value at

initialization.

We start with the basic observation that, at all ti-

mes, list entries may be incorrect only in that the stated

distances may be too large.

Lemma 4.3 For all v ∈ V and r ∈ N0: If (hs, s) ∈ Lrv,

then s ∈ S and hs ≥ hd(v, s).

Proof By induction on r. For r = 0 the claim holds by

Lines 3–4. For the inductive step, assume that the claim

holds for r ∈ N0 and consider r + 1. If (hs, s) ∈ Lrv we

are done by the induction hypothesis. Thus, consider a

message (h, s) received at time r + 1. First note that

by Line 9, which is the only place where messages are

sent, (s, h) ∈ Lru for some neighbor u of v. Hence, by the

induction hypothesis applied to u, s ∈ S. Now suppose

that (h + 1, s) is inserted into Lv in Line 14. By the

induction hypothesis, we have that h ≥ hd(u, s), and

hence, using the triangle inequality, we may conclude

that h+ 1 ≥ hd(u, s) + 1 ≥ hd(v, s), as required.

This immediately implies that (i) correct pairs will

never be deleted and (ii) if a prefix of L(h)
v is known to

v, v will communicate this prefix to all neighbors before

sending “useless” pairs.

Corollary 4.4 Let s ∈ S and v ∈ V . If v receives

(hd(v, s) − 1, s) from a neighbor in round r ∈ N, or if

(hd(v, s), s) ∈ L0
v, then (hd(v, s), s) ∈ Lr′v for all r′ ≥ r.

Moreover, if topk(L(h)
v) ⊆ Lrv for any r ∈ N0 and k ∈ N,

then topk(Lrv) = topk(L(h)
v).

In particular, it suffices to show that topσ(L(h)
v) ⊆

Lrv at termination. Before we move on to the main

lemma, we need another basic property that goes al-

most without saying: a source s ∈ S \{v} that is among

the k closest sources to v must also be among the k clo-

sest sources of a neighbor w with hd(w, s) = hd(v, s)−1.

Lemma 4.5 For all h, k ∈ N and all v ∈ V ,

topk(L(h)
v) ⊆ L(0)

v ∪
{

(hd(w, s) + 1, s) |

(hd(w, s), s) ∈ topk(L(h−1)
w) ∧ {v, w} ∈ E

}
.

Proof For any (hd(v, s), s) ∈ topk(L(h)
v) \ L(0)

v , con-

sider a neighbor w of v on a shortest path from

v to s. We have that hd(w, s) = hd(v, s) − 1,

i.e., (hd(w, s), s) ∈ L(h−1)
w . Assume for contradiction

that (hd(w, s), s) /∈ topk(L(h−1)
w). Then there are

k elements (hd(w, s′), s′) ∈ topk(L(h−1)
w) satisfying

(hd(w, s′), s′) < (hd(w, s), s). Hence, for each of

these elements, (hd(v, s′), s′) ≤ (hd(w, s′) + 1, s′) <

(hd(w, s)+1, s) = (hd(v, s), s), and hence (hd(v, s), s) /∈
topk(L(h)

v), a contradiction.

We are now ready to prove the key invariants of the

algorithm.

Lemma 4.6 Let v ∈ V , r ∈ {0, . . . , h + σ − 1}, and

let d, k ∈ N0 be such that d + k ≤ r + 1. Then (i)

topk(L(d)
v) ⊆ Lrv; and (ii) by the end of round r + 1, if

not terminated, v sends topk(L(d)
v).

Proof By induction on r. The statement trivially holds

for d = 0 and all k, as topk(L(d)
v) = {(0, v)} if v ∈ S and

topk(L(d)
v) = ∅ otherwise, and clearly this will be sent

by the end of round 1. In particular, the claim holds for

r = 0.

Distributed Distance Computation and Routing with Small Messages 11

Now suppose that the statement holds for r and

consider r + 1. To this end, fix some d + k ≤ r + 2,

where we may assume that d > 0, because the case

d = 0 is already covered.

By part (ii) of the induction hypothesis applied to r

for values d− 1 and k, node v has already received the

lists topk(L(d−1)
w) from all neighbors w. By Lemma 4.5,

v thus has received all elements of topk(L(d)
v). By Corol-

lary 4.4, this implies Statement (i) for d+ k ≤ r + 2.

It remains to show (ii) for d+k = r+ 2 ≤ h+σ−1.

Since we just have shown (i) for d + k = r + 2, we

know that topk(L(d)
v) ⊆ Lr+1

v for all d, k satisfying

d+ k = r + 2. By Corollary 4.4, these are actually the

first elements of Lr+1
v , so v will send the next unsent

entry of topk(L(d)
v) in round r + 2 (if there is one). As

d+ (k − 1) = r + 1, we can apply the induction hypot-

hesis to see that v sent topk−1(L(d)
v) during the first

r + 1 rounds (where we define top0(L(d)
v) = ∅). Hence,

only topk(L(d)
v) \ topk−1(L(d)

v) may still be missing. As∣∣∣topk(L(d)
v) \ topk−1(L(d)

v)
∣∣∣ ≤ 1 by definition, this pro-

ves (ii) for d+ k = r+ 2. This completes the induction

step and thus the proof.

The reader may wonder why the final argument in

the above proof addresses all possible combinations

of d + k = r + 2 simultaneously. This is true be-

cause the missing element (if any) is the same for all

such values. To see this, observe the following: (i) if

|topk(L(d)
v)| < k, then topk−1(L(d)

v) = topk(L(d)
v) and

no entry needs to be sent; (ii) if |topk(L(d)
v)| = k, then

topk(L(d′)
v) = topk(L(d)

v) ⊇ topk−(d′−d)(L
(d)
v) for all

d′ ≥ d. Accordingly, for all d and k for which still an

entry needs to be sent, it is the same.
We are now ready to prove our first main re-

sult, Theorem 1.2, showing that unweighted (S, h, σ)-

detection can be solved in σ + h− 1 rounds.

Proof (of Theorem 1.2.) By Lemma 4.6, topσ(L(h)
v) ⊆

Lh+σ−1v . By Corollary 4.4, topσ(L(h)
v) = topσ(Lh+σ−1v),

implying that Algorithm 1 returns the correct output,

which establishes the theorem.

We remark that one can generalize this result to

show that if up to β list entries are sent in a message,

(S, h, σ)-detection is solved within h+dσ/βe−1 rounds.

Likewise, we have a trivial lower bound of h+dσ/βe−1

for (S, h, σ)-detection in this setting. Our technique is

thus essentially optimal.

4.3 Additional Properties

We conclude this section with a few observations that

we use later. First, if we use Algorithm 1 to construct

partial BFS trees of depth h rooted at the sources S

(i.e., σ = |S|), we get a schedule that facilitates flooding

or echo on all partial BFS trees concurrently in σ + h

rounds.

Corollary 4.7 Consider an execution of Algorithm 1.

Let ps(v) denote the node from which a node v receives

the message (hd(s, v) − 1, s) for the first time, where

(hd(s, v), s) is in the output Lv of v. Then

(i) All these messages are received by round h + σ of

the execution.

(ii) The edges {(v, ps(v)) | v ∈ V \ {s}} induce a BFS

tree rooted at s, comprising only nodes within dis-

tance at most h from s. (If σ ≥ |S|, the tree com-

prises all such nodes.)

(iii) The sending pattern of these messages defines a

schedule for concurrent flooding on all such trees.

In the concurrent flooding operation, each node in a

tree sends a message of its choice to all neighbors

(in particular its children in the tree), such that on

any root-leaf path the sending order matches the or-

der of nodes in the path. Thus, each inner node is

scheduled before any of its children, and its message

may depend on the messages sent by its parent.

(iv) If the sending pattern of these messages is rever-

sed (after running the algorithm for one more round

and removing the first round of the execution), this

defines a schedule for concurrent echo on all such

trees. In the concurrent echo operation, each node

in a tree sends a message of its choice to all neig-

hbors (in particular its parent in the tree) such that

on any leaf-root path the sending order matches the

order of nodes in the path. Thus, each inner node

receives the messages of all its children before sen-

ding its own, i.e., its message may depend on those

of its children.

Proof The first statement follows directly from Theo-

rem 1.2. The second follows by observing that for each

v with hd(s, v) ≤ h, by construction ps(v) is in hop

distance hd(s, v)− 1 from s. The third statement holds

because v cannot send the message (hd(s, v), s) before

receiving (hd(s, v)−1, s) for the first time. The last sta-

tement immediately follows from the third (for h+ 1).

Note that, in particular, storing the parent relation

for the BFS trees is sufficient for routing purposes.

Corollary 4.8 Algorithm 1 can be used to construct

routing tables of O(σ log n) bits for destinations in Lv.

4.4 Source Detection in Unweighted Directed Graphs

While this article studies distance problems in undi-

rected graphs, it is worth mentioning that our source

12 Christoph Lenzen et al.

detection primitives work equally well on directed

graphs. Note that in a directed graph, hd(v, w) 6=
hd(w, v), where hd(v, w) is the minimum hop count of

a directed path from v to w.

Definition 4.9 (Unweighted Directed (S, h, σ)-

detection) Given an unweighted directed graph G =

(V,E), define for v, w ∈ V that hd(v, w) is the minimum

number of hops on a directed path from v to w.

Given S ⊆ V , a node v ∈ V , and non-negative

integer h ∈ N0, let L(h)
v be the list of elements

{(hd(s, v), s) | s ∈ S ∧ hd(s, v) ≤ h}, ordered in as-

cending lexicographical order. For σ ∈ N, directed

(S, h, σ)-detection requires each node v ∈ V to com-

pute topσ(L(h)
v).

It is straightforward to verify that the reasoning from

this section applies analogously to the directed case.

Corollary 4.10 If we execute Algorithm 1 on a di-

rected graph such that messages are sent only to out-

neighbors, this solves the unweighted directed (S, h, σ)-

detection problem in σ + h− 1 rounds.

We note that this corollary applies even if communi-

cation is only possible in direction of the graph edges.

However, for performing echo operations as per Corol-

lary 4.7, detecting termination using a BFS tree, or

determinining and making known parameters like the

number of nodes, bidirectional communication is neces-

sary.

5 Approximate Source Detection

We now consider source detection in weighted graphs,

approximately. We recall the definition.

Definition 5.1 (Approximate Source Detection,

restated) Given S ⊆ V , h, σ ∈ N, and ε > 0, let

L(h,ε)
v be a list of {(wd′(v, s), s) | s ∈ S, wd′(v, s) <

∞}, ordered in increasing lexicographical order, for

some wd′ : V × S → N∞ that satisfies wd′(v, s) ∈[
wd(v, s), (1 + ε)wdh(v, s)

]
for all v ∈ V and s ∈ S.

The (1 + ε)-approximate (S, h, σ)-detection problem is

to output topσ(L(h,ε)
v) at each node v for some such

wd′.

5.1 Reduction to the Unweighted Case

Fix 0 < ε ≤ 1 and natural h < n. Following Nanong-

kai [39] and others [12,31,36,48], we reduce approxi-

mate weighted source detection to O(log1+ε n) instan-

ces of the exact unweighted problem. The main idea is

to round edge weights to integer multiples of (1 + ε)i

and replace each edge with a path consisting of the re-

spective number of unit weight edges. One then shows

that for each shortest path, there is a “good” choice of

i ∈ O(log1+ε n) such that its weight is approximately

preserved, yet its hop count does not increase too much.

Formalizing this approach, we define imax =

dlog1+ε(hmaxe∈E{W (e)})e, i.e., imax is the logarithm,

to base (1 + ε), of (an upper bound on) the maximum

weight of paths of h hops. Note that by our assumption

on the magnitude of weights, imax ∈ O(log1+ε n).

For i ∈ {0, . . . , imax}, define b(i) = (1 + ε)i, and

∀e ∈ E : Wi(e) = b(i)dW (e)/b(i)e ,

i.e., Wi(e) is W (e) rounded up to the next integer mul-

tiple of (1 + ε)i. Let wdi denote the distance function

of the graph (V,E,Wi). Then the following crucial pro-

perty holds.

Lemma 5.2 (adapted from [39]) Given 0 < ε ≤ 1 and

distinct nodes v, w ∈ V with hd(v, w) ≤ h, let

iv,w = max

{
0,

⌊
log1+ε

(
εwdh(v, w)

h

)⌋}
.

Then

wdiv,w(v, w) < (1 + ε)wdh(v, w) <
4b(iv,w)h

ε
.

Proof For iv,w = 0 we have wd0 = wd because b(0) = 1

and clearly wd(v, w) < (1+ε)wdh(v, w) for ε > 0. Con-

sider iv,w > 0. As rounding up edge weights increases

the weight of an h-hop path additively by less than

b(i)h, the choice of iv,w yields that

wdiv,w(v, w) < wdh(v, w)+b(iv,w)h ≤ (1+ε)wdh(v, w) .

To see the second bound, note that, by definition,

b(iv,w) >
1

1 + ε
· εwdh(v, w)

h
.

Therefore,

(1 + ε)wdh(v, w) <
(1 + ε)2b(iv,w)h

ε
,

and the result follows since ε ≤ 1.

Next, let Gi be the unweighted graph obtained by

replacing each edge e in (V,E,Wi) by a path of length

Wi(e)/b(i) (recall thatWi(e) is always divisible by b(i)).

Let hdi(v, w) denote the distance between v and w in

Gi. Lemma 5.2 implies that in Giv,w , the resulting hop

distance between v and w is not too large.

Corollary 5.3 For all v, w ∈ V : if hd(v, w) ≤ h, then

hdiv,w(v, w) < 4h/ε.

Distributed Distance Computation and Routing with Small Messages 13

Proof By Lemma 5.2, wdiv,w(v, w) < 4b(iv,w)h/ε. As

edge weights are scaled down by factor b(iv,w) in Giv,w ,

we conclude that hdiv,w(v, w) < 4h/ε.

These simple observations give rise to an efficient al-

gorithm for approximate source detection by reduction

to the unweighted case.

Theorem 5.4 Given 0 < ε ≤ 1, any deterministic al-

gorithm for unweighted (S, h, σ)-detection with running

time R(h, σ) can be employed to solve (1 + ε)-approxi-

mate (S, h, σ)-estimation in O(log1+ε n · R(h′, σ) + D)

rounds, where h′ = d4h/εe.

Proof Let A be any deterministic algorithm for unweig-

hted (S, h, σ)-detection with running time R(h, σ). We

use the following algorithm for approximate source de-

tection.

1. For all i ∈ {0, . . . , imax}, solve unweighted (S, h′, σ)-

detection on Gi by A. Let Lv,i denote the output

for Gi at node v.

2. For each source s ∈ S, each node v computes

w̃d(v, s) = inf{hdi(v, s)b(i) | (hdi(v, s), s) ∈ Lv,i
for some 0 ≤ i ≤ imax}.

3. Let L′v be the list

{(w̃d(v, s), s) | s ∈ S and w̃d(v, s) <∞},

ordered in increasing lexicographical order. Node v

outputs Lv = topσ(L′v).

Clearly, the resulting running time is the one stated

in the claim of the theorem.6 In the remainder of the

proof, we show correctness. First, we define

wd′(v, s) = inf{hdi(v, s)b(i) |
0 ≤ i ≤ imax and hdi(v, s) ≤ h′}.

We claim that wd′ satisfies the problem specification

and that the list returned by v is the one induced by

wd′, which will complete the proof. The claim is esta-

blished using the following properties.

(i) ∀v ∈ V, s ∈ S : wd′(v, s) ≥ wd(v, s),

(ii) ∀v ∈ V, s ∈ S : wd′(v, s) ≤ (1 + ε)wdh(v, s),

(iii) ∀v ∈ V, s ∈ S : (w̃d(v, s), s) ≥ (wd′(v, s), s), and

(iv) ∀v ∈ V, (w̃d(v, s), s) ∈ Lv : w̃d(v, s) = wd′(v, s).

We now prove these four properties.

(i) By definition,

b(i)hdi(v, s) = wdi(v, s) ≥ wd(v, s)

6 The additive D in the running time originates in the need
for nodes to determine imax by learning maxe∈E{W (e)}.

for all v ∈ V and s ∈ S.

(ii) If hd(v, s) > h, then wdh(v, s) = ∞ and the

statement is trivial. Otherwise, hd(v, s) ≤ h, implying

hdiv,s(v, s) ≤ h′ by Corollary 5.3. Hence,

wd′(v, s) ≤ b(iv,s)hdiv,s(v, s)

= wdiv,s(v, s)

< (1 + ε)wdh(v, s)

by Lemma 5.2.

(iii) This trivially holds, because (hdi(v, s), s) ∈ Lv,i
implies that hdi(v, s) ≤ h′ (we executed (S, h′, σ)-

detection on each Gi), i.e., w̃d(v, s) is an infimum taken

over a subset of the set used for wd′(v, s).

(iv) Assume for contradiction that (w̃d(v, s), s) ∈
Lv, yet w̃d(v, s) > wd′(v, s) (by the previous property

w̃d(v, s) < wd′(v, s) is not possible). Choose i such

that b(i)hdi(v, s) = wd′(v, s) and hdi(v, s) ≤ h′. We

have that (hdi(v, s), s) /∈ Lv,i, as otherwise we had

w̃d(v, s) ≤ b(i)hdi(v, s) = wd′(v, s). It follows that

|Lv,i| = σ and, for each (hdi(v, t), t) ∈ Lv,i, we have

that

(w̃d(v, t), t) ≤ (b(i)hdi(v, t), t)

< (b(i)hdi(v, s), s)

= (wd′(v, s), s)

≤ (w̃d(v, s), s) ,

where in the final step we exploit the third property.

As there are σ distinct such sources t, we arrive at the

contradiction that (w̃d(v, s), s) /∈ Lv.

Applying Theorem 5.4 to the source detection al-

gorithm from Section 4 and noting that log1+ε n ∈
Θ(ε−1 log n) for 0 < ε ∈ O(1), we obtain a variant

of our second main result, Theorem 1.5, that does not

rely on an a priori bound on the maximum edge weight.

Theorem 5.5 For 0 < ε ∈ O(1), (1 + ε)-

approximate (S, h, σ)-detection can be solved in

O((ε−1σ + ε−2h) log n+D) rounds.

Theorem 1.5 follows by the same arguments, if we rely

on an a priori bound on imax derived from a known

polynomial upper bound on the maximum edge weight;

then the algorithm given in the proof of Theorem 5.4

can be executed without determinining the maximum

edge weight, avoiding the additive cost ofO(D) in terms

of round complexity.

5.2 Additional Properties

As our approach is based on reduction to the unweigh-

ted case and applying Algorithm 1, the additional useful

properties of the algorithm carry over.

14 Christoph Lenzen et al.

Corollary 5.6 Consider augmenting the algorithm

from Theorem ?? so that each node v ∈ V records the

following information for each instance i of the unweig-

hted source detection:

– The parent of v in each of the induced trees (rooted

at sources).

– The round in which the message establishing the

parent-child relation was received.

– The (weighted) distance in the tree to the source at

which the tree is rooted.

Then Õ(σ/ε) bits suffice to store this extra information,

and it can be used to do

(i) Concurrent flooding on all these trees in Õ(ε−1σ +

ε−2h) rounds.

(ii) Concurrent echo on all these trees in Õ(ε−1σ +

ε−2h) rounds.

(iii) Routing and distance approximation to the nodes

in Lv with stretch 1 + ε. The induced routing paths

have Õ(ε−2h) hops.

(iv) Concurrent flooding on the induced routing trees in

Õ(ε−1σ + ε−2h) rounds.

(v) Concurrent echo on the induced routing trees in

Õ(ε−1σ + ε−2h) rounds.

Remark. One subtlety to be aware of is that, due to the

multiple weight classes, node v may have several options

for the next routing hop to a given destination w with

an entry (hdi(v, w), w) ∈ Lv,i for some i. In order to

ensure that routing is stateless (i.e., the suffix of a rou-

ting path is independent of its prefix), nodes will always

pick the next routing hop by using the entry minimizing

wdi(v, w) = hdi(v, w)b(i) (ties broken by choosing the

smallest suitable value of i). This is necessary to ensure

that the weight of a routing path never exceeds the dis-

tance estimate mini{wdi(v, w) | (hdi(v, w), w) ∈ Lv,i},
but implies that routing paths may have more than

h′ ∈ O(h/ε) hops. The bound of Õ(ε−2h) follows from

observing that for all v, w ∈ V and i < j, it holds that

wdi(v, w) ≤ wdj(v, w), and thus the i-value minimi-

zing wdi(v, w) is decreasing along the routing path; for

each of the O(log1+ε n) ⊂ Õ(ε−1) weight classes, the

subpath for that class has h′ ∈ O(h/ε) hops.

This point is also reflected in parts (iv) and (v) of

Corollary 5.6: exploiting the monotonicity of routing

paths with respect to i, the operations can be broken

down into sequential (partial) flooding or echo operati-

ons for each of the Õ(ε−1) weight classes, which then

each can be handled in O(σ+h′) ⊆ O(σ+ε−1h) rounds.

5.3 Approximate Source Detection in Directed Graphs

As the reduction to the unweighted case is oblivious

to whether the graph is directed or not, also our ap-

proximate source detection algorithm can be used in

directed graphs. Here, we again need to consider the

distance measures induced by directed paths.

Definition 5.7 (Directed Approximate Source

Detection) Given a weighted directed graph G =

(V,E), define for v, w ∈ V that hd(v, w) is the mini-

mum number of hops on a directed path from v to w.

Moreover, denote for h ∈ N by wdh(v, w) the minimum

weight of paths from v to w of at most h hops (or ∞ if

no such path exists).

Given S ⊆ V , h, σ ∈ N, and ε > 0, let L(h,ε)
v be a list

of {(wd′(s, v), s) | s ∈ S, wd′(s, v) <∞}, ordered in in-

creasing lexicographical order, for some wd′ : S × V →
N∞ that satisfies wd′(s, v) ∈

[
wd(s, v), (1+ε)wdh(s, v)

]
for all s ∈ S and v ∈ V . The directed (1 + ε)-

approximate (S, h, σ)-detection problem is to output

topσ(L(h,ε)
v) at each node v for some such wd′.

In the simulation argument, one simply replaces undi-

rected edges by directed edges, which does not affect

the running time. If communication is still possible in

both directions of each edge, this yields the following

corollary.

Corollary 5.8 For 0 < ε ∈ O(1), directed (1 +

ε)-approximate (S, h, σ)-detection can be solved in

O((ε−1σ + ε−2h) log n+D) rounds.

We stress that also here, determining parameters glo-

bally, detecting termination, or other more advanced

operations require bidirectional communication. If this

is not possible, the above corollary does not apply, and

only Theorem 1.5 applies (which assumes a known a-

priori bound on the maximum edge weight).

6 Skeletons and Skeleton Spanners

In this section we define a skeleton graph GS,h of G,

where |S|, h ∈ Õ(
√
n), and construct a sparse spanner

of this graph. Later, we discuss approximate versions

based on approximate source detection.

Definition 6.1 (Skeleton Graph, restated) Let

G = (V,E,W) be a weighted graph. Given S ⊆ V

and h ∈ N, the h-hop S-skeleton graph is the weighted

graph GS,h = (S, ES,h,WS,h) defined by

– ES,h = {{v, w} | v, w ∈ S ∧ v 6= w ∧ hd(v, w) ≤ h};
– For {v, w} ∈ ES,h, WS,h(v, w) = wdh(v, w).

We denote the distance function in GS,h by wdS,h.

A simple but crucial observation on distances in

skeleton graphs (which, in this context, are meant to

Distributed Distance Computation and Routing with Small Messages 15

be weighted distances) is that if the skeleton S con-

sists of nodes chosen independently at random, and if

h ∈ Ω(n log n/|S|), then w.h.p., the distances in GS,h
are equal to the corresponding distances in G. The fol-

lowing lemma formalizes this idea.

Lemma 6.2 Let 1 ≥ π ≥ c log n/h for a sufficiently

large constant 0 < c ≤ h/ log n, and let S be a set of

random nodes defined by Pr[v ∈ S] = π independently

for all nodes. Then w.h.p. wdS,h(v, w) = wd(v, w) for

all v, w ∈ S.

Proof Fix v, w ∈ S. Clearly, wdS,h(v, w) ≥ wd(v, w)

because each path in GS,h corresponds to a path of

the same weight in G. We show that wdS,h(v, w) ≤
wd(v, w) as well. Let p =

〈
u0 = v, u1, . . . , u`(p) = w

〉
be

a shortest path connecting v and w in G, i.e., W (p) =

wd(v, w). We prove, by induction on `(p), that wd(p) ≥
wdS,h(v, w) w.h.p.

For the base case note that if `(p) ≤ h, then by

definition wdS,h(v, w) ≤ W (p) = wd(v, w) and we are

done. For the inductive step, assume that the claim

holds for all values of `(p) ≤ i for some i ≥ h and

consider a path of length `(p) = i+ 1. We have

P [|S ∩ {u1, . . . , ui}| = ∅] ≤ (1− π)
h ≤ e−hπ

= e−c logn ∈ n−Ω(c),

and thus w.h.p. the intersection is non-empty. Assume

that this is the case and let u ∈ {u1, . . . , ui}∩S. Since p

is a shortest path in G, so are (v, . . . , u) and (u, . . . , w).

Both these paths are of length at most i, implying by

the induction hypothesis that wdS,h(v, u) ≤ wd(v, u)

and wdS,h(u,w) ≤ wd(u,w) w.h.p., respectively. The-

refore wdS,h(v, w) ≤ wdS,h(v, u) + wdS,h(u,w) ≤
wd(v, u) + wd(u,w) = W (p) = wd(v, w) w.h.p., com-

pleting the induction. Note that the overall number of

events we consider throughout the induction is in nO(1),

and since the probability of the bad events is polyno-

mially small, the union bound allows us to deduce that

the claim holds w.h.p.

With this in mind, we fix h = d
√
ne and sufficiently

large π ∈ Θ(log n/
√
n) for Lemma 6.2 to apply to GS,h

throughout this section. (Note that both can be deter-

mined in O(D) time.)

6.1 The Baswana-Sen Construction

The algorithm by Baswana and Sen [9] computes a

(2k − 1)-spanner of an n-node graph with O(kn1+1/k)

edges in expectation, in O(k) rounds of the CON-

GEST model.

Definition 6.3 (Weighted α-Spanners) Let H =

(V,E,W) be a weighted graph and α ≥ 1. An α-

spanner of H is a subgraph H ′ = (V,E′,W ′) of G where

E′ ⊆ E and W ′ is a restriction of W to E′, such that

wdH′(u, v) ≤ α ·wdH(u, v) for all u, v ∈ V , where wdH
and wdH′ denote weighted distances in H and H ′, re-

spectively.

We will simulate the Baswana-Sen algorithm on

GS,h, while running on the underlying physical graph

G, without ever constructing the skeleton graph ex-

plicitly. Before discussing the simulation, let us recall

the algorithm; we use a slightly simpler variant that

may select some additional edges, albeit without af-

fecting the probabilistic upper bound on the number of

spanner edges (cf. Lemma 6.5). The input is a graph

H = (VH , EH ,WH) and a parameter k ∈ N.

1. Initially, each node is a singleton cluster : R1 :=

{{v} | v ∈ VH}.
2. For i = 1, . . . , k − 1 do (the ith iteration is called

“phase i”):

(a) Each cluster from Ri is marked independently

with probability |VH |−1/k. Ri+1 is defined to be

the set of clusters marked in phase i.

(b) If v is a node in an unmarked cluster:

i. Define Qv to be the set of edges that consists

of the lightest edge from v to each cluster in

Ri it is adjacent to.

ii. If v is not adjacent to any marked cluster,

all edges in Qv are added to the spanner.

iii. Otherwise, let u be the closest neighbor of

v in a marked cluster. In this case v adds

to the spanner the edge {v, u}, and also all

edges {v, w} ∈ Qv with (WH(v, w), w) <

(WH(v, u), u) (i.e., ordered by weight, bre-

aking ties by identifiers). Also, let X be the

cluster of u. Then X := X ∪ {v}. (I.e., v

joins the cluster of u.)

3. Each node v adds, for each cluster X ∈ Rk it is

adjacent to, the lightest edge connecting it to X.

For this algorithm, Baswana and Sen prove the fol-

lowing result.

Theorem 6.4 ([9]) Given H = (VH , EH ,WH) and

and k ∈ N, the algorithm above computes a (2k − 1)-

spanner of H. It has O(k|VH |1+1/k log n) edges w.h.p.7

7 Baswana and Sen prove that the expected number of ed-
ges is O(k|VH |1+1/k). The modified bound directly follows
from Lemma 6.5.

16 Christoph Lenzen et al.

6.2 Constructing the Skeleton Spanner

In our case, each edge considered in Steps (2b) and (3)

of the spanner algorithm on GS,h corresponds to a shor-

test path in G. Essentially, we implement these steps by

letting each skeleton node find its closestO(|S|1/k log n)

clusters (w.h.p.), by running (S, h, σ)-detection with

σ = O(|S|1/k log n). This requires a tweak: all no-

des v in a cluster X use the same source identifier

source(v) = X; logically, this can be interpreted as con-

necting them to a virtual source X by edges of weight

0. Consequently, σ needs to account for the number of

detected clusters only, i.e., the number of nodes per

cluster is immaterial. The following lemma shows that

this strategy is sound.

Lemma 6.5 W.h.p., for a sufficiently large constant

c > 0, execution of the centralized spanner construction

algorithm yields identical results if in Steps (2b)

and (3), each node considers the lightest edges to the

c · |VH |1/k log n closest clusters only.

Proof Fix a node v and a phase 1 ≤ i < k. If v

has at most c|VH |1/k log n adjacent clusters, the lemma

is trivially true. So suppose that v has more than

c|VH |1/k log n adjacent clusters. By the specification of

Step (2b), we are interested only in the clusters clo-

ser than the closest marked cluster. Now, the proba-

bility that none of the closest c|VH |1/k log n clusters is

marked is (1 − |VH |−1/k)c|VH |
1/k logn ∈ n−Ω(c). In ot-

her words, choosing a sufficiently large constant c, we

are guaranteed that w.h.p., at least one of the closest

c|VH |1/k log n clusters is marked.

Regarding Step (3), observe that a cluster gets mar-

ked in all of the first k − 1 iterations with independent

probability |VH |−(k−1)/k. By Chernoff’s bound, the pro-

bability that more than c|VH |1/k log n clusters remain

in the last iteration is thus bounded by 2−Ω(c logn) =

n−Ω(c). Therefore, w.h.p. no node is adjacent to more

than c|VH |1/k log n clusters in Step (3), and we are

done.

We remark that while nodes v in the same cluster

X act as a single source, we need to keep account of

the actual node v ∈ X to which an edge in GS,h (i.e.,

the corresponding path in G) leads. This is achieved by

simply adding the identifier v to the messages (dv, X)

of the source detection algorithm that indicate a path

to v and storing it alongside the respective entry of Lv;

this does not affect the execution of the algorithm in

any other way. Detailed pseudo-code of our implemen-

tation is given in Algorithm 2. Each skeleton node s ∈ S
records the ID of its cluster in phase i as Fi(s); nodes

in V \ S or those which do not join a cluster in some

phase i have Fi(s) = ⊥.

Algorithm 2: Construction of skeleton span-

ner.
input : // trades approximation for sparsity

k: integer in [1, logn]
output: S ⊆ V // skeleton nodes

ES,h,k ⊆ V // skeleton spanner edges

WS,h,k : Ek → N // edge weights

1 S := ∅
2 ES,h,k := ∅
3 foreach v ∈ V do

// c is a sufficiently large constant

4 add v to S with probability c logn/
√
n

F1(v) :=

{
v if v ∈ S
⊥ otherwise

5 broadcast S to all nodes
// cluster leaders; initial clusters are

singletons of S
6 R1 := S

// c is a sufficiently large constant

7 σ := c · |S|1/k logn for i := 1 to k do
8 if i < k then
9 Ri+1 := random subset of Ri of expected

size |S|1−i/k = |Ri|/|S|1/k
// make leaders of marked clusters

known

10 broadcast Ri+1 to all nodes

11 else
// no clusters marked in final

iteration

12 Ri+1 := ∅
13 solve (S, d

√
n e, σ)-detection on G, using source

identifier Fi(v) at v;8 record the node w for
each entry (d, Fi(w)) ∈ Lv

14 foreach s ∈ S do
15 Let Ls denote the list returned by the call to

(S, d
√
ne, σ)-detection

16 Fi+1(s) := ⊥
17 foreach (wd(s, t), Fi(t)) ∈ Ls in increasing

lexicographical order do
18 if s 6= t then

// add edge to spanner

19 ES,h,k := ES,h,k ∪ {s, t}
WS,h,k := wd(s, t)

20 if Fi(t) ∈ Ri+1 then
// leader of closest marked

cluster

21 Fi+1(s) := Fi(t)
22 break

23 broadcast ES,h,k, and WS,h,k to all nodes
24 return (S, ES,h,k,WS,h,k)

To prove the algorithm correct, we argue that its

executions can be mapped to executions of the centra-

lized algorithm on the skeleton graph and then apply

Theorem 6.4. This mapping is straightforward. Clus-

ters are referred to by the identifiers of their leaders.

Initially, these are the nodes sampled into S, each of

which forms a singleton cluster. The leader of a cluster

Distributed Distance Computation and Routing with Small Messages 17

in phase i + 1 is the leader of the corresponding clus-

ter from phase i that was marked in Line 9 of iteration

i of the main loop of the algorithm. The broadcast in

Line 5 ensures that all nodes know the cluster leaders

and can decide whether Fi(t) ∈ Ri+1 in Line 20 locally.

A call to source detection then serves to discover the

skeleton edges that are added to the spanner in ite-

ration i. The call uses h = d
√
ne, as we consider the

d
√
ne-hop skeleton, and σ ∈ O(S|1/k log n) suffices ac-

cording to Lemma 6.5. Nodes evaluate which skeleton

edges to add to the spanner locally, and update their

cluster leader to the one of the closest marked cluster of

this iteration. Checking for s 6= t when adding spanner

edges avoids adding 0-weight loops, as of course each

node will determine that its own cluster is the closest

source. Finally, the spanner is made known to all nodes

by broadcasting it over a BFS tree.

Lemma 6.6 W.h.p., Algorithm 2 can be implemented

with the following guarantees.

(i) |S| ∈ Θ(n1/2 log n).

(ii) It computes a weighted (2k−1)-spanner of the ske-

leton graph GS,d
√
n e that is known at all nodes and

has Õ(n1/2+1/(2k)) edges.

(iii) The weighted distances between nodes in S are

identical in GS,d
√
n e and G.

(iv) The algorithm terminates in Õ(n
k+1
2k +D) rounds.

Proof Statement (i) is immediate from an application

of Chernoff’s bound, as each node joins S indepen-

dently with probability Θ(log n/
√
n). To prove State-

ment (ii), we note that Algorithm 2 simulates the cen-

tralized algorithm, except for considering only the clo-

sest O(|S|1/k log n) clusters when adding edges to the

spanner. By Lemma 6.5, this results in a (simulated)

correct execution of the centralized algorithm w.h.p.

Hence, Statement (ii) follows from Theorem 6.4 and

Statement (i). Statement (iii) follows from Lemma 6.2.

It remains to analyze the running time of the al-

gorithm. All steps but the broadcast operations (Li-

nes 5, 10, and 23) and the call to source detection

(Line 13) are local computations. Lemma 3.3 together

with Statements (i) and (ii) implies that the broadcast

operations can be completed within Õ(n1/2+1/(2k) +D)

rounds in total. (Note that k factors are absorbed in the

weak Õ notation because k ≤ log n.) Source detection

can be solved in O(σh) rounds [32]. As h = d
√
n e and,

by Statement (i), σ ∈ Õ(n1/(2k)), the time complexity

bound follows.

8 I.e., at initialization of Algorithm 1 set Lv := {(0, Fi(v))}
if Fi(v) 6= ⊥ and Lv := ∅ otherwise.

We remark that it is not difficult to derandomize

the algorithm at the cost of a multiplicative increase of

O(log n) in the running time, see [10].

6.3 Routing on the Skeleton Spanner

Algorithm 2 constructs a (2k− 1)-spanner of the skele-

ton graph and makes it known to all nodes. This ena-

bles each skeleton node to determine low-stretch rou-

ting paths in GS,h by local computation. To use this in-

formation, we must map each spanner edge e = {s, t} ∈
ES,h to a path in G of weight WS,h(s, t). Since the con-

struction of the spanner was carried out by source de-

tection, we can readily map a spanner edge to a route in

G in one direction: if, say, s added the edge {s, t} to the

spanner, then that edge corresponds to a path in the in-

duced tree (of depth at most h) rooted at t, which can

be easily reconstructed using the weight information,

thus facilitating routing from s to t. However, to route

in the opposite direction we need to do a little more.9

Specifically, we add a post-processing step where we

“reverse” the unidirectional routing paths, i.e., inform

the nodes on the paths about their predecessors (if we

have paths both from s to t and vice versa, we select

one to reverse and drop the other). This can be done in

O(σh) rounds by using the idea in Corollary 4.7, part

(iv).

Corollary 6.7 Let e = {s, t} be a skeleton spanner

edge selected by Algorithm 2. Denote by pe ∈ paths(s, t)

the corresponding path in G of `(pe) ≤ h hops and

weight W (pe) = wdh(s, t) = WS,h(s, t) that was (im-

plicitly) found by the call to source detection when the

edge was added. Then, concurrently for all e ∈ ES,h,

each node v on pe can learn the next nodes on this path

in both directions within Õ(n
k+1
2k) rounds w.h.p.

Our third main result, Theorem 1.7, now follows

from Lemma 6.6 and Corollary 6.7.

6.4 Approximate Skeleton and Skeleton Spanner

The reduction of the single-source shortest path pro-

blem to an overlay network on Õ(
√
n) nodes given

in [24] is based on computing approximate distances to

the source on a skeleton. However, this requires the ske-

leton to be known as an overlay network, which means

that its nodes have knowledge of their incident edges.

9 This asymmetry is not due to our implementation: consi-
der an n-node star graph. Its k-spanner is the whole star (for
any k ≥ 1). However, the center adds only Õ(n1/k) edges to
the spanner.

18 Christoph Lenzen et al.

We illustrated in Figure 1.3 why an algorithm obtai-

ning this information cannot be fast. However, using

approximate source detection, we can compute an “ap-

proximate” skeleton graph.

Definition 6.8 (Approximate Skeleton Graph)

Let G = (V,E,W) be a weighted graph. Given S ⊆ V

and h ∈ N, a (1+ε)-approximate h-hop S-skeleton graph

is a weighted graph G̃S,h = (S, ES,h, W̃S,h) satisfying

– ES,h = {{v, w} | v, w ∈ S ∧ v 6= w ∧ hd(v, w) ≤ h};
– For {v, w} ∈ ES,h, wdh(v, w) ≤ W̃S,h(v, w) ≤ (1 +

ε)wdh(v, w).

We denote the distance function in G̃S,h by w̃dS,h.

Recall that, for sufficiently large h, an (exact) skele-

ton on independently sampled nodes preserves distan-

ces w.h.p. Analogously, a (1 + ε)-approximate skeleton

preserves distances up to factor 1 + ε.

Corollary 6.9 For a given parameter h ∈ N, let S be

a set of nodes obtained by adding each node from V

independently with probability π ≥ c log n/h, where 0 <

c ≤ h/ log n is a sufficiently large constant. Let G̃ be

any (1 + ε)-approximate h-hop S-skeleton of G for a

given parameter ε > 0. Then w.h.p. (over the choice of

S), for all v, w ∈ S we have wd(v, w) ≤ w̃dS,h(v, w) ≤
(1 + ε)wd(v, w).

Proof As for Lemma 6.2, taking into account that h-

hop distances are only approximated up to factor 1+ε.

Using approximate source detection, we can compute

an approximate skeleton, in the sense that each skeleton

node learns its incident edges and their weights.

Corollary 6.10 Let S and h be as in Corollary 6.9 and

0 < ε ∈ O(1). We can compute a (1 + ε)-approximate

h-hop S-skeleton of G in Õ(ε−1|S|+ε−2h+D) rounds.

Proof After determining |S| in O(D) rounds, we run

(1+ε)-approximate (S, h, |S|)-detection, which by The-

orem 5.4 completes within the stated time bounds.

Note, however, that the distance estimates nodes s, t ∈
S have obtained from each other may differ. To fix this,

we leverage Statement (i) of Corollary 5.6, “reversing”

the flow of distance information as compared to the al-

gorithm, again taking Õ(ε−1|S| + ε−2h) rounds. As a

result, s will obtain the estimate t has of its distance

to s and vice versa. Now each skeleton edge is assigned

the minimum of the two values as weight.

Given the information obtained in the construction

of the overlay, one can readily run the Baswana-Sen

algorithm on the overlay to obtain a spanner of the

approximate skeleton.

Corollary 6.11 For any integer k ∈ [1, log n], w.h.p.

we can compute and make known to all nodes a

(2k − 1)-spanner of the approximate skeleton deter-

mined in Corollary 6.10 of Õ(|S|1+1/k) edges within

Õ(|S|1+1/k +D) additional rounds.

We remark that [10,24] provide derandomizations, re-

sulting in a deterministic (1 + o(1))-approximation to

SSSP distances within Õ(
√
n+D) rounds.

For later use in our routing schemes we specialize

the result as follows.

Corollary 6.12 For any 0 < ε ∈ O(1) and any integer

k ∈ [1, log n], within Õ(ε−2n
2k+1
4k + D) rounds a graph

GS = (S, ES ,WS) with the following properties can be

computed and made known to all nodes w.h.p.

(i) Nodes are sampled independently into S, so that

|S| ∈ Θ(n
2k−1
4k log n).

(ii) |ES | ∈ Õ(n
2k+1
4k).

(iii) For all s, t ∈ S, wd(s, t) ≤ wdS(s, t) ≤ (1+ε)(2k−
1)wd(s, t), where wdS is the distance metric induced

by WS .

Proof Choose sampling probability π = n
−2k−1

4k log n,

pick h = c log n/π ∈ Õ(n
2k+1
4k), and apply Corollary 6.9,

Corollary 6.10, and Corollary 6.11.

Regarding the mapping of edges in GS to paths in

G, we have the following.

Corollary 6.13 For each edge e = {s, t} ∈ ES as in

Corollary 6.12, let pe ∈ paths(s, t) denote its correspon-

ding path in G. Then, after Õ(ε−2n
2k+1
4k +D) additional

rounds, w.h.p., every node v on every path pe knows the

next nodes on this path in both directions (including the

weight of the respective subpaths).

To prove this corollary, we use the powerful tool of la-

beling schemes. A tree labeling scheme is an assignment

of labels to tree nodes such that determining the next

hop from one node towards another, or the distance

between two nodes, can be done based on the labels of

the two nodes alone. We note that determining the next

hop can be achieved with O(log n)-bit labels [50], while

determining the distance requires Θ(log2 n)-bit labels

[21,40]. We shall use the following result, which is im-

plicit in the work by Thorup and Zwick (see Section 2.1

and Theorem 2.6 in [52]).

Theorem 6.14 (based on [52]) It is possible to con-

struct a tree labeling scheme with O(log n)-bit tables

and O(log2 n)-bit labels using O(log n) flooding/echo

operations in the CONGEST model.

Distributed Distance Computation and Routing with Small Messages 19

Proof (of Corollary 6.13) In each iteration of the

Baswana-Sen construction, nodes may add at most

σ ∈ Õ(|S|1/k) edges corresponding to their σ closest

clusters to the spanner. By Corollary 5.6 (iv),(v), we

can perform concurrent flooding and echo operations

on the corresponding routing trees in Õ(ε−
2k+1
k n

2k+1
4k)

rounds w.h.p. Therefore, by Theorem 6.14, we can con-

struct tree labels of O(log2 n) bits. To get rid of the

labels and let each node acquire full information on the

paths pe corresponding to edges e ∈ ES , each skeleton

node s ∈ S announces the tree labels for its tree Ts and

for each other tree Tt such that {s, t} ∈ ES . Using a

BFS tree, this takes O(σ|S| + D) ⊆ Õ(ε−2n
2k+1
4k + D)

rounds w.h.p. Since for each edge e = {s, t} ∈ ES , we

have that p(e) ∈ Ts or p(e) ∈ Tt, each node can deter-

mine whether it is in p(e) and, if so, its neighbors in

p(e) in direction of s and t, respectively.

7 Table Construction in Unweighted Graphs

7.1 Exact Tables

As a warm-up, let us state the following immediate re-

sult.

Corollary 7.1 On unweighted graphs, name-indepen-

dent tables for exact (i.e., stretch-1) routing and dis-

tances can be computed in n+O(D) rounds.

Proof Using a BFS tree, find a bound on the diameter

d ∈ O(D) and the number of nodes n (cf. Section 3.4).

Then run source detection with S = V , σ = n and

h = d. The result follows from Theorem 1.2.

7.2 Tables of Size Õ(n1/k) and Stretch 4k − 3

While Corollary 7.1 merely reproduces earlier results

(albeit with improved leading constants), the fact that

we solve source detection in unweighted graphs in σ+h

rounds irrespectively of |S| permits efficient distributed

construction of a Thorup-Zwick routing hierarchy [52].

Algorithm

Assume that n and D are known (cf. Section 3.4). Let

k ∈ [1, log n] be an integer parameter (k controls the

trade-off between table size and maximum stretch). The

construction algorithm is as follows.

1. Define S0 = V . Given Si−1, construct Si, for

i ∈ {1, . . . , k − 1}, by independently including each

member of Si−1 in Si with probability n−1/k. Set

Sk = ∅.

2. For i = 0, . . . , k− 1, run (Si, D, σ)-detection, where

σ := cn1/k log n for a sufficiently large constant c.

Let Ts,i denote the induced tree for source s ∈ Si.
3. For each tree Ts,i, construct a tree labeling scheme

as in Theorem 6.14. The result, for each v ∈ Ts,i, is

a label λi(v) and a routing table Rs,i(v) of O(log n)

bits, facilitating routing in Ts,i.

4. Let sv,i be the node in Si minimizing hd(v, sv,i).

The output of a node v ∈ V consists of (i) its la-

bel λ(v) constructed from the ID of v and the list

of pairs {(sv,i, λi(v))}k−1i=1 , and (ii) a table contai-

ning the lists Lv,i constructed by source detection10

and the routing table Rs,i(v) for each s, i for which

(hd(v, s), s) ∈ Lv,i.

Routing proceeds as follows. Let v be any node, and

suppose v is given the label λ(w) of the destination w.

Then v determines the next routing hop to w as follows.

If (hd(v, w), w) ∈ Lv,0, exact routing is given by Tw,0.

Otherwise, v finds the minimum i ∈ {0, . . . , k − 1} so

that v ∈ Tws,i,i and reports back the next routing hop

from v to w in Tws,i,i. Note that this rule does not rely

on prior routing decisions, i.e., it is stateless. Distance

approximation is done using the same mechanism.

Analysis

The following lemma is an immediate consequence of

Chernoff’s bound.

Lemma 7.2 In the above algorithm, we have, w.h.p.,

that (i) |Sk−1| ≤ σ; and (ii) for all v ∈ V and i ∈
{0, . . . , k − 2}, ∃s ∈ Si+1 satisfying (hd(v, s), s) ∈ Lv,i.

Note that part (i) of the lemma implies that for any

v, w ∈ V , there is an index i so that v ∈ Tws,i,i, and

hence the routing scheme is correct.

The tables and labels, by construction, are of size

Õ(n1/k) and O(k log n) bits, respectively. The round

complexity of the construction can be readily bounded

using our previous results.

Corollary 7.3 The above algorithm runs in Õ(n1/k +

D) rounds.

Proof Steps 1 and 4 involve local computations only. By

Theorem 1.2, Step 2 takes O(k(σ+D)) ⊂ Õ(n1/k +D)

rounds. By Theorem 6.14, constructing the labels and

tables in Step 3 can be performed by Õ(1) flooding and

echo operations on each of the trees. By Corollary 4.7,

these operations can be executed for each level i con-

currently within Õ(σ +D) ⊂ Õ(n1/k +D) rounds.

10 Including the respective parents in the induced trees; we
will refrain from repeating this every time in what follows.

20 Christoph Lenzen et al.

Finally, we prove that the resulting stretch is at

most 4k−3. We follow [52], but in our case (since the ta-

ble of the destination node is not available), each step of

the induction contains an additional application of the

triangle inequality. Consequently the stretch is 4k − 3

rather than 2k − 1.

Lemma 7.4 Let v, w ∈ V and 1 ≤ j ≤ k − 1. If v /∈
Tsw,j , then w.h.p., (a) hd(v, sv,j) ≤ (2j − 1)hd(v, w),

and (b) hd(w, sw,j) ≤ 2j · hd(v, w).

Proof We show, by induction on i ∈ {1, . . . , j}, that

(a) hd(v, sv,i) ≤ (2i− 1)hd(v, w) and (b) hd(w, sw,i) ≤
2i · hd(v, w). For the basis of the induction, consider

i = 0. In this case, since S0 = V , we have that, su,0 = u

for all nodes u and the claim is trivial.

For the inductive step, assume that (b) holds for 0 ≤
i < j and consider i+1. By assumption, v /∈ Tsw,i,i, i.e.,

(hd(v, sw,i), sw,i) /∈ Lv,i. However, by Statement (ii) of

Lemma 7.2, (hd(v, sv,i+1), sv,i+1) ∈ Lv,i w.h.p. Hence,

hd(v, sv,i+1) ≤ hd(v, sw,i)

≤ hd(v, w) + hd(w, sw,i)

≤ (2i+ 1)hd(v, w),

where in the last step we use the induction hypothesis.

This proves part (a) of the claim for index i + 1. As

sw,i+1 is the closest node from Si+1 to w, using the

above inequality we also obtain

hd(w, sw,i+1) ≤ hd(w, sv,i+1)

≤ hd(w, v) + hd(v, sv,i+1)

≤ (2i+ 2)hd(v, w),

which proves part (b) of the claim, completing the in-

ductive step.

Rephrasing, we obtain the following result.

Corollary 7.5 Let v, w ∈ V , and let 0 ≤ i0 ≤ k − 1

be minimal such that v ∈ Tsw,i0 ,i0 . Then wd(v, sw,i0) +

wd(sw,i0 , w) ≤ (4i0 + 1)wd(v, w) ≤ (4k − 3)wd(v, w)).

Proof By Lemma 7.4,

wd(v, sw,i0) + wd(sw,i0 , w) ≤ wd(v, w) + 2wd(w, sw,i0)

≤ (4i0 + 1)wd(v, w)

≤ (4k − 3)wd(v, w)

and the corollary is proved.

To summarize, we arrive at the following theorem.

Theorem 7.6 Given an unweighted graph and an inte-

ger k ∈ [1, log n], we can compute in O(n1/k+D) rounds
Õ(n1/k)-bit tables and O(k log n)-bit labels which faci-

litate, w.h.p., stateless (4k− 3)-stretch routing and dis-

tance approximation.

We note that we can obtain stretch 2k−1 at the cost

of increasing the label size to Õ(n1/k): simply append

the destination’s table to its label.

8 Table Construction in Weighted Graphs

In this section, we use approximate source detection

and skeleton spanners for constructing tables for weig-

hted graphs. We first consider the case where the

Shortest-Path Diameter (SPD, cf. Section 3.3) is small.

8.1 Small Shortest-Path Diameter

If the SPD is small, then, intuitively, we do not need

to construct a skeleton (whose role is to split shortest

paths with many hops into few-hops subpaths), and we

can directly apply the strategy for the unweighted case

using SPD instead of D. However, this approach rai-

ses two issues. First, it is not known how to compute

– or approximate – SPD efficiently. Second, source de-

tection has time complexity Θ̃(hσ) in general, resulting

in a multiplicative running time overhead of Θ̃(n1/k)

for tables of stretch 4k − 3.

We can solve each of these concerns, but we do not

know whether one can construct tables of stretch Θ(k)

in Õ(n1/k + SPD) rounds. In order to obtain an algo-

rithm that requires no initial knowledge on SPD, one

can exploit the fact that for h ≥ SPD, source detection

is solved if and only if each node knows the exact dis-

tance to its σ closest sources, which holds at a round if

and only if no node v changes its Lv list in that round.

The latter property, and hence global termination, can

be detected (by means similar to the ones used to prove

Lemma 3.2) in O(D) ⊆ O(SPD) additional rounds. We

therefore have the following.

Corollary 8.1 For any natural k ∈ [1, log n], tables of

size Õ(n1/k) and labels of size O(k log n) for routing

and distance approximation with stretch 4k − 3 can be

computed in O(n1/kSPD) rounds w.h.p.

Proof (sketch) We use the algorithm described in

Section 7.2, replacing the invocations of source de-

tection in step 2 with approximate source detection

using infinity as the hop bound, in conjuction with

termination detection as discussed above. We observe

that the stretch bound can be shown analogously to

Lemma 7.4, by replacing hd with wd.

Distributed Distance Computation and Routing with Small Messages 21

8.2 The General Case

If SPD is large or unknown, the algorithms outlined

above may be too slow. Our approach is to use approx-

imate source detection and a skeleton spanner.

Algorithm

We first describe a stateful routing variant (i.e., the next

hop may be a function of traversed hops); we extend it

to a stateless one later. The routing table computation

algorithm takes 0 < ε ≤ 1 as a parameter and proceeds

as follows.

1. Construct an (approximate) skeleton spanner GS =

(S, ES ,WS) and make it known to all nodes (Corol-

lary 6.12). Node v ∈ V also stores the solution

Lv(S) to (1 + ε)-approximate (S, h, |S|)-detection,

where h = n
2k+1
4k , which is computed during the

construction, as well as the routing information for

(1 + ε)-stretch routing to the detected nodes (com-

puted using Corollary 5.6).

2. Construct a routing path pe in G for each edge in

e ∈ ES (Corollary 6.13).

3. Run (1 + ε)-approximate (V, h, h)-detection, obtai-

ning a list Lv(V) for each v ∈ V (Theorem 1.5).

Determine the necessary information to route from

v to w with stretch 1 + ε, for each v, w ∈ V such

that (wd′(v, w), w) ∈ Lv(V) (Corollary 5.6).

4. For each v ∈ V , let s′v be the closest node of S
w.r.t. wd′, i.e., (wd′(v, s′v), s

′
v) is the first entry of

Lv(V) with s′v ∈ S.11 For each s ∈ S, let Ts be

the tree defined by the union of all routing paths

from nodes v with s′v = s. Using Corollary 4.7 and

Theorem 6.14, compute tree labels λv,s as in [52] in

each such tree Ts for each v ∈ Ts. The label of node

v is λv := (v, s′v,wd′(v, s′v), λv,s′v) and its routing

table contains all that was computed in the previous

steps.

Routing and distance approximation is done as fol-

lows. Given the label λw of w ∈ V at node v ∈ V , v

checks whether there is an entry (wd′(v, w), w) ∈ Lv(V)

with wd′(v, w) ≤ wd′(w, s′w). If there is one, v can

estimate the distance to w as wd′(v, w) and it knows

the next hop on the corresponding route to w. Other-

wise, v estimates the distance as mins∈S{wd′(v, s) +

wdS(s, s′w) + wd′(w, s′w)}, where wdS is the distance

metric on GS (using the list Lv(S), its knowledge of

11 We slightly abuse notation here in that we do not indi-
cate whether the distance function wd′ corresponds to the
lists Lv(S) or Lv(V) explicitly. Unless explicitly indicated
otherwise, we refer to both instances.

GS , and the label λw). If a message needs to be rou-

ted, v picks the next hop on the corresponding path;

by adding the sequence of nodes in S that are still to

be visited to the message,12 each intermediate node on

the path can determine its next routing hop in G. The

weight of the routing path is bounded from above by

the distance estimate computed by v.

Analysis

Due to the choice of h = (c log n)/E(|S|), with pro-

bability 1 − n−Θ(c), there is some s ∈ S such that

(wd′(v, s), s) ∈ Lv(V) (cf. Corollary 6.12). Thus, w.h.p.

all steps of the algorithm can be executed as described.

Based on the information computed (and stored) by v

and the label λw, v can always determine the above

distance estimate. With the additional information in-

cluded in the routing message (i.e., the subpath to take

in GS), nodes can determine the next routing hop.

Concerning the round complexity, recall that tree

labelings can be constructed using Õ(1) flooding/echo

operations by Theorem 6.14. Hence, by Theorem 1.5

and Corollaries 5.6, 6.12, and 6.13, the scheme can be

implemented in Õ(ε−2n
2k+1
4k +D) rounds w.h.p.

It remains to prove that the scheme guarantees,

w.h.p., stretch at most (1 +O(ε))(4k− 1). To this end,

we first show that for close-by nodes, wd′ actually ap-

proximates the real distances well. The key observation

is simple: the internal nodes on any shortest path from v

to w are closer to v than w, and therefore if w is among

the closest h+1 nodes to v, then wdh(v, w) = wd(v, w).

Lemma 8.2 Fix v and order V in increasing lexico-

graphical order of (wd(v, w), w). Let w1, . . . , wn be the

resulting node sequence. Then wdh(v, wi) = wd(v, wi)

for i ≤ h+ 1.

Proof For any i ≤ h + 1, choose a shortest path p ∈
paths(v, wi), i.e., W (p) = wd(v, wi). All nodes u ∈ p \
{wi} satisfy that wd(v, u) < W (p) = wd(v, w), because

edge weights are positive and there is a strict subpath

of p connecting v and u. We conclude that `(p) ≤ h and

therefore wdh(v, wi) = wd(v, wi).

Applying Lemma 8.2, we relate wd′ and wd for

close-by nodes.

Corollary 8.3 Given v ∈ V , let sv ∈ S and s′v ∈ S
denote the skeleton nodes minimizing (wd(v, s), v) and

(wd′(v, s), v), respectively. Suppose wd′ is the distance

function of an instance of (1+ε)-approximate (S, h, σ)-

detection for any σ and S ⊇ S, and S and h as in the

above algorithm. Then, w.h.p.,

12 We ignore message size for the moment, as making the
scheme stateless will remove this header.

22 Christoph Lenzen et al.

(i) ∀w ∈ V : (wd(v, w), w) ≤ (wd(v, sv), sv) ⇒
wdh(v, w) = wd(v, w);

(ii) ∀w ∈ V : wd′(v, w) ≤ wd′(v, sv) ⇒ wd′(v, w) ≤
(1 + ε)wd(v, w);

(iii) ∀w ∈ V : wd(v, w) < wd′(v, s′v)/(1 + ε) ⇒
wdh(v, w) = wd(v, w).

Proof Recall that nodes have been sampled into S
with uniform and indepent probability c log n/h (for

a sufficiently large constant c). Using the notation of

Lemma 8.2, the probability that sv 6= wi for all i ≤ h

equals(
1− c log n

h

)h
∈ e−Θ(c logn) = n−Θ(c).

In other words, sv = wi for some i ≤ h w.h.p., implying

(i) by Lemma 8.2.

To show (ii), we distinguish between two cases.

If wd(v, w) < wd(v, sv), then w.h.p., wdh(v, w) =

wd(v, w) by (i). In this case, the claim follows directly

from the properties of source detection, namely that

wd′(v, w) ≤ (1 + ε)wdh(v, w). Otherwise, wd(v, w) ≥
wd(v, sv) and we can bound

wd′(v, w) ≤ wd′(v, sv)

≤ (1 + ε)wd(v, sv)

≤ (1 + ε)wd(v, w) .

For (iii), observe that

wd′(v, s′v)

1 + ε
≤ wd′(v, sv)

1 + ε
≤ wd(v, sv)

by (ii) and hence wd(v, w) < wd(v, sv). Thus we can

apply (i) to obtain (iii).

In order to show the stretch bound, we use a stra-

tegy similar to the one employed in Section 7, for a sin-

gle level, where sw is replaced by s′w. Moreover, we need

to bound the additional stretch incurred by (i) using

approximate source detection (costing factor 1 +O(ε))

and (ii) approximating distances between skeleton no-

des using the spanner GS (costing factor 2k − 1).

Lemma 8.4 The above algorithm guarantees w.h.p.

stretch (1 +O(ε))(4k − 1).

Proof Assume that v ∈ V is given label λw for some

w ∈ V . If we route using Lv(V), then wd′(v, w) ≤
wd′(w, s′w) ≤ wd′(w, sw) and Statement (ii) of Corol-

lary 8.3 bounds the stretch by 1 + ε. Moreover, if

wd(v, w) < wd′(w, s′w)/(1+ε), Statement (iii) of Corol-

lary 8.3, applied to w, implies that

wd′(w, v) ≤ (1 + ε)wdh(w, v)

= (1 + ε)wd(v, w)

< wd′(w, s′w)

and we route using Lv(V).

Therefore, if we route via s′w, it must hold that

wd′(w, s′w) ≤ (1 + ε)wd(v, w) and thus also

wd(v, s′w) ≤ wd(v, w) + wd(w, s′w) ≤ (2 + ε)wd(v, w) .

Consider a shortest path p ∈ paths(v, s′w), i.e., W (p) =

wd(v, s′w) and denote by s the first node on the path

that is in S. Analogously to Lemma 8.2, w.h.p. s

is among the first h nodes of the path and hence

wdh(v, s) = wd(v, s). From Statement (iii) of Corol-

lary 6.12 and the above bounds, we infer that

wd′(v, s) + wdS(s, s′w) + wd′(w, s′w)

≤ (1 + ε)wdh(v, s) + (1 + ε)(2k − 1)wd(s, s′w)

+ (1 + ε)wd(v, w)

= (1 + ε)wd(v, s) + (1 + ε)(2k − 1)wd(s, s′w)

+ (1 + ε)wd(v, w)

≤ (1 + ε)(2k − 1)wd(v, s′w) + (1 + ε)wd(v, w)

≤ (1 + ε)(2 + ε)(2k − 1)wd(v, w) + (1 + ε)wd(v, w)

∈ (1 +O(ε))(4k − 1)wd(v, w) ,

where in the last step we used the assumption that

ε ∈ O(1). It follows that

min
s∈S
{wd′(v, s) + wdS(s, s′w) + wd′(w, s′w)}

≤ (1 +O(ε))(4k − 1)wd(v, w) ,

proving the stated bound on the stretch also in the

second case.

From Stateful to Stateless Routing

From a high-level point of view, the routing is es-

sentially already stateless: Suppose a destination la-

bel λ(w) of node w given at node v. If we consider

the “path” on node set S ∪ {v, w} induced by con-

tracting all edges of the routing path from v to w con-

taining nodes u ∈ V \ (S ∪ {v, w}), then we route on

each resulting edge {s, t} at cost wd′(s, t). The main

issue is that when routing over an edge e = {x, y}
towards some node t ∈ S ∪ {w} in G, it is neither

guaranteed that wd′(y, t) = wd′(x, t) −W (e) nor that

(wd′(x, t), t) ∈ Lx(·).
To resolve this, we adapt the approach used in the

remark in Section 5.2. For each spanner edge e =

{s, t} ∈ ES , a routing path p(e) is found using Corol-

lary 6.13, so that each v ∈ p(e) knows the next routing

hop on p(e) = (s, . . . , v, . . . , t) to both s and t, as well

as the respective weights of the subpaths Wp(e)(v, s) :=

W ((s, . . . , v)) and Wp(e)(v, t) := W ((v, . . . , t)). Note

that W (p(e)) = Wp(e)(v, s) + Wp(e)(v, t) ≤ WS(e). Let

Distributed Distance Computation and Routing with Small Messages 23

us extend the domain of the distance metric wdS from

S × S to V × S by setting

wdS(v, s) := min({wd′(v, t) + wdS(t, s) | t ∈ S} ∪
{Wp(e)(v, t) + wdS(s, t) |
e = {t, t′} ∈ ES ∧ v ∈ p(e)}) .

Intuitively, wdS(v, s) is an upper bound on the cost

from routing from v to s based on the information from

the first two steps of the algorithm, where we account

for the possibility that an edge of the spanner has been

“partially” traversed by following a prefix of some path

p(e) up to node v.

Let Lv,i(V) denote the lists computed by the un-

weighted source detection algorithm for weight class i

in Step (3). To determine its distance estimate and the

next routing hop to node w, node v finds the following

minimum, where i ranges over all O(ε−1 log n) weight

classes used by the approximate source detection algo-

rithm (cf. Section 5):

min
{

wdS(v, s′w) + wd′(s′w, w),

min
0≤i≤imax

{
wdi(v, w) | ∃(hdi(v, w), w) ∈ Lv,i(V)

}}
.

The next node on the routing path is then selected in

accordance with the minimum. In case of a tie we give

precedence to Lv,i(V) for minimal i.

By construction, the modified routing scheme sa-

tisfies the following properties: (i) If v computes dis-

tance estimate w̃d(v, w) and routes via neighbor u, then

u computes distance estimate w̃d(u,w) ≤ w̃d(v, w) −
W ({v, u}), and (ii) w̃d(v, w) is bounded from above by

the distance estimate used in the stateful variant of

the algorithm. These two properties immediately im-

ply that the stretch guarantee of the stateful scheme

carries over to the stateless scheme, and we obtain the

following theorem.

Theorem 8.5 Given an integer k ∈ [1, log n] and 0 <

ε ∈ O(1), tables and O(log n)-bit labels for routing and

distance approximation with stretch (1 +O(ε))(4k − 1)

can be computed in Õ(ε−2n
2k+1
4k +D) rounds w.h.p.

9 Lower Bounds

In this section we prove that the asymptotic complexity

of our algorithms is nearly the best possible within the

CONGEST model. We start with a lower bound on

the time required to estimate the diameter of the net-

work, which is immediately applicable to, say, APSP

distance estimation.

BobAlice

ଵ,ଵݒ ଶ,ଵݒଵ,ݒ ଷ,ଵݒଷ,ݒଶ,ݒ
,ଵݒ ,ݒ

treeݑଵ ݑ

Fig. 9.1 An illustration of the graph used in the proof of
Theorem 9.1. Thick edges denote edges of weight ωmax, other
edges are of weight 1. The shaded triangle represents a binary
tree.

9.1 Approximating the Diameter in Weighted Graphs

Frischknecht et al. [19] show that approximating the di-

ameter of an unweighted graph to within a factor smal-

ler than 1.5 cannot be done in the CONGEST model

in o(n/ log n) time. Here, following the framework of

Das Sarma et al. [15], we prove a hardness result for

the weighted diameter, formally stated as follows.

Theorem 9.1 For any ωmax ≥
√
n, there is a function

α(n) ∈ Ω(ωmax/
√
n) such that the following holds. In

the family of weighted graphs of hop-diameter D ∈
O(log n) and edge weights 1 and ωmax only, an (ex-

pected) α(n)-approximation of the weighted diameter

requires Ω̃(
√
n) communication rounds in the CON-

GEST model.

Proof Let n ∈ N. Like in [15], we construct a graph

family Gn where each G ∈ Gn has Θ(n) nodes. Let m =

d
√
ne. All graphs in Gn consist of the following three

conceptual parts. Figure 9.1 illustrates a part of the

construction.

– Nodes vi,j for 1 ≤ i, j ≤ m. These nodes are con-

nected as m paths of length m−1 (horizontal paths

in the figure). All path edges are of weight 1.

– A star rooted at an Alice node, whose the child-

ren are v1,1, . . . , vm,1, and similarly, a star rooted at

a Bob node, whose leaves are v1,m, . . . , vm,m. The

weights of these edges may be either 1 or ωmax

(that’s the only difference between graphs in Gn).

– For each 1 ≤ j ≤ m there is a node uj connected to

all nodes vi,j , 1 ≤ i ≤ m in “column” j, with edges

of weight ωmax. In addition, there is a binary tree

whose leaves are the nodes uj . All tree edges have

weight 1. Finally, Alice and Bob are connected to

u1 and um, respectively, by edges of weight 1.

Clearly, the hop-diameter of any graph in Gn is

O(log n): the hop-distance from any node to one of

24 Christoph Lenzen et al.

the nodes uj is O(log n), and the distance between any

two such nodes is also O(log n). Furthermore, the fol-

lowing fact is shown by Das Sarma et al. [15], based on

the two-party communication complexity of deciding

set disjointness.

Fact 9.1 (Complexity of Set Disjointness [15])

Let M = {1, . . . ,m}. Suppose that Alice holds a set

A ⊆ M and that Bob holds a set B ⊆ M. If deciding

whether A ∩B = ∅ can be reduced to running a CON-
GEST algorithm on Gn (where edge weights incident

to the Alice node depend only on A and those incident

to the Bob node depend only on B), then this algorithm

runs for Ω̃(m) rounds, even if it is randomized.

Accordingly, we now show that if the diameter of

G ∈ Gn can be approximated within factor ωmax/
√
n in

time T in the CONGEST model, then set disjointness

can be decided in time T + 1. To this end, we set the

edge weights of the stars rooted at Alice and Bob as

follows: for all i ∈ {1, . . . ,m}, the edge from Alice to

vi,1 has weight ωmax if i ∈ A and weight 1 else; likewise,

the edge from Bob to vi,m has weight ωmax if i ∈ B and

weight 1 otherwise.

Note that given A at Alice and B at Bob, we can

inform the nodes vi,1 and vi,m of these weights in one

round. Now run any algorithm that outputs a value

between WD (the weighted diameter) and α(n)WD :=

ωmaxWD/(
√
n + C log n) (for a suitable constant C)

within T rounds, and output “A and B are disjoint” if

the outcome is at most ωmax and output “A and B are

not disjoint” othwerwise.

It remains to show that the outcome of this compu-

tation is correct for any inputs A and B and the sta-

tement of the theorem will follow from Fact 9.1 (recall

that the number of nodes in G is Θ(n)). Suppose first

that A∩B = ∅. Then for each node vi,j , there is a path

of at most
√
n edges of weight 1 connecting it to Alice

or Bob, and Alice and Bob are connected to all nodes in

the binary tree and each other via O(log n) hops in the

binary tree (whose edges have weight 1 as well). Hence

the weighted diameter of G is
√
n + O(log n) in this

case and the output is correct (where we assume that

C is sufficiently large to account for the O(log n) term).

Now suppose that i ∈ A∩B. In this case each path from

node vi,1 to Bob contains an edge of weight ωmax, since

the edges from Alice to vi,1 and Bob to vi,m as well as

those connecting vi,j to uj have weight ωmax. Hence,

the weighted distance from vi,1 to Bob is strictly larger

than ωmax and the output is correct as well. This shows

that set disjointness is decided correctly and therefore

the proof is complete.

9.2 Hardness of Name-Dependent Distributed Table

Construction

A lower bound on name-dependent distance approxi-

mation follows directly from Theorem 9.1.

Corollary 9.2 For any ωmax ≥
√
n, there is a function

α(n) ∈ Ω(ωmax/
√
n) such that the following holds. In

the family of weighted graphs of hop-diameter D ∈
O(log n) and edge weights 1 and ωmax only, con-

structing labels of size õ(
√
n) and tables for distance ap-

proximation of (expected) stretch α(n) requires Ω̃(
√
n)

communication rounds in the CONGEST model.

Proof We use the same construction as in the previous

proof, however, now we need to solve the disjointness

problem using the tables and lables. Using the same se-

tup, we run the assumed table and label construction

algorithm. Afterwards, we transmit, e.g., the label of

Alice to all nodes vi,1. This takes õ(
√
n) rounds by as-

sumption on label size. We then query the estimated

distance to Alice at the nodes vi,1 and collect the results

at Alice. Analogously to the proof of Theorem 9.1, the

maximum of these values is large if and only if the input

satisfies that A ∩ B = ∅. Since transmitting the label

costs only õ(
√
n) additional rounds, the same asympto-

tic lower bound as in Theorem 9.1 follows.

A variation of the theme shows that stateless rou-

ting requires Ω̃(
√
n) time.

Corollary 9.3 For any ωmax ≥
√
n, there is a function

α(n) ∈ Ω(ωmax/
√
n) such that the following holds. In

the family of weighted graphs of hop-diameter D ∈
O(log n) and edge weights 1 and ωmax only, con-
structing stateless routing tables of (expected) stretch

α(n) with labels of size õ(
√
n) requires Ω̃(

√
n) commu-

nication rounds in the CONGEST model.

Proof We consider the graph Gn as defined in the proof

of Theorem 9.1 and input sets A and B at Alice and

Bob, respectively, but we use a different assignment of

edge weights.

– All edges incident to a node in the binary tree have

weight ωmax.

– For each i ∈ {1, . . . ,m}, the edge from Alice to vi,1
has weight 1 if i ∈ A and weight ωmax else. Likewise,

the edge from Bob to vi,m has weight 1 if i ∈ B and

otherwise weight ωmax.

– The remaining edges (on the m paths from vi,1 to

vi,m) have weight 1.

Observe that the distance from Alice to Bob is
√
n+ 1

if A ∩ B 6= ∅ and at least ωmax + 2 if A ∩ B = ∅. Once

static routing tables for routing on paths of stretch at

Distributed Distance Computation and Routing with Small Messages 25

most ωmax/(
√
n + 1) are set up, e.g. Bob can decide

whether A and B are disjoint as follows. Bob sends its

label to Alice via the binary tree (which takes time

õ(
√
n) if the label has size õ(

√
n)). Alice responds with

“i” if the first routing hop from Alice to Bob is node

vi,1 and i ∈ A (i.e., the weight of the edge is 1), and

“A∩B = ∅” else (this takes O(log n) rounds). Bob then

outputs “A ∩ B 6= ∅” if Alice responded with “i” and

i ∈ B (i.e., the weight of the routing path is
√
n+1 since

the edge from Bob to vi,m has weight 1) and “A∩B = ∅”
otherwise.

If the output is “A ∩ B 6= ∅”, it is correct because

i ∈ A ∩B. On the other hand, if it is “A ∩B = ∅”, the

route from Alice to Bob must contain an edge of weight

ωmax, implying by the stretch guarantee that there is no

path of weight
√
n+ 1 from Alice to Bob. This in turn

entails that A∩B = ∅ due to the assignment of weights

and we conclude that the output is correct also in this

case. Hence the statement of the corollary follows from

Fact 9.1.

As a final remark, we point out that name-

independent routing (i.e., λ(v) = v for all v ∈ V) re-

quires Ω̃(n) rounds, which is shown by similar techni-

ques [32,39]. Thus, relabeling is essential for achieving

small running times.

References

1. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lo-
wer bounds for distributed distance computations, even
in sparse networks. In: Proc. 30th Int. Symp. on Dis-
tributed Computing (DISC), pp. 29–42 (2016). DOI
10.1007/978-3-662-53426-7 3. URL https://doi.org/

10.1007/978-3-662-53426-7_3

2. Antonio, J., Huang, G., Tsai, W.: A fast distributed shor-
test path algorithm for a class of hierarchically cluste-
red data networks. IEEE Trans. Computers 41, 710–724
(1992)

3. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Com-
pact distributed data structures for adaptive network
routing. In: Proc. 21st ACM Symp. on Theory of Com-
puting, pp. 230–240 (1989)

4. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Impro-
ved routing strategies with succinct tables. J. Algorithms
11(3), 307–341 (1990)

5. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-
linear cost sequential and distribured constructions of
sparse neighborhood covers. In: Proc. 34th Symp. on
Foundations of Computer Science (FOCS), pp. 638–647
(1993)

6. Awerbuch, B., Peleg, D.: Routing with polynomial
communication-space trade-off. SIAM J. Discr. Math.
pp. 151–162 (1992)

7. Baswana, S., Kavitha, T.: Faster algorithms for ap-
proximate distance oracles and all-pairs small stretch
paths. In: Proc. 47th Symp. on Foundations of Computer
Science (FOCS), pp. 591–602 (2006)

8. Baswana, S., Sen, S.: Approximate distance oracles for
unweighted graphs in expected O(n2) time. ACM Trans.
Algorithms 2, 557–577 (2006)

9. Baswana, S., Sen, S.: A simple and linear time randomi-
zed algorithm for computing sparse spanners in weighted
graphs. Random Structures and Algorithms 30(4), 532–
563 (2007)

10. Becker, R., Karrenbauer, A., Krinninger, S., Lenzen, C.:
Near-Optimal Approximate Shortest Paths and Transs-
hipment in Distributed and Streaming Models. In: 31st
Symposium on Distributed Computing (DISC) (2017)

11. Bellman, R.E.: On a routing problem. Quart. Appl.
Math. 16, 87–90 (1958)

12. Bernstein, A.: Maintaining shortest paths under deleti-
ons in weighted directed graphs: [extended abstract]. In:
Proc. 45th Symposium Theory of Computing (STOC),
pp. 725–734 (2013)

13. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.,
Petricola, A.: Partially dynamic algorithms for distribu-
ted shortest paths and their experimental evaluation. J.
Computers 2, 16–26 (2007)

14. Das Sarma, A., Dinitz, M., Pandurangan, G.: Efficient
computation of distance sketches in distributed networks.
In: Proc. 24th ACM Symp. on Parallelism in Algorithms
and Architectures (2012)

15. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanong-
kai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.:
Distributed verification and hardness of distributed ap-
proximation. In: Proc. 43th ACM Symp. on Theory of
Computing, pp. 363–372 (2011)

16. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the
locality of distributed sparse spanner construction. In:
Proc. 27th Symp. on Principles of Distributed Computing
(PODC), pp. 273–282 (2008)

17. Elkin, M., Neiman, O.: On efficient distributed con-
struction of near optimal routing schemes: Extended ab-
stract. In: Proc. 34rd Symp. on Principles of Distributed
Computing (PODC), pp. 235–244 (2016)

18. Ford, L.R.: Network flow theory. Tech. Rep. P-923, The
Rand Corp. (1956)

19. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks
cannot compute their diameter in sublinear time. In:
Proc. 23rd ACM-SIAM Symp. on Discrete Algorithms,
pp. 1150–1162 (2012)

20. Gavoille, C., Peleg, D.: Compact and localized distribu-
ted data structures. DC 16, 111–120 (2003)

21. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance la-
beling in graphs. In: Proc. 12th ACM Symp. on Discrete
Algorithms, pp. 210–219 (2001)

22. Ghaffari, M., Lenzen, C.: Near-Optimal Distributed Tree
Embedding. In: 28th Symposium on Distributed Com-
puting (DISC), pp. 197–211 (2014)

23. Haldar, S.: An ‘all pairs shortest paths’ distributed algo-
rithm using 2n2 messages. J. Algorithms 24(1), 20–36
(1997)

24. Henzinger, M., Krinninger, S., Nanongkai, D.: An
Almost-Tight Distributed Algorithm for Computing
Single-Source Shortest Paths. CoRR abs/1504.07056
(2015)

25. Holzer, S., Pinsker, N.: Approximation of Distances and
Shortest Paths in the Broadcast Congest Clique. CoRR
abs/1412.3445 (2014)

26. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs
shortest paths and applications. In: Proc. 31st ACM
Symp. on Principles of Distributed Computing (2012)

27. Hua, Q.S., Fan, H., Qian, L., Ai, M., Li, Y., Shi, X., Jin,
H.: Brief Announcement: A Tight Distributed Algorithm

https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1007/978-3-662-53426-7_3

26 Christoph Lenzen et al.

for All Pairs Shortest Paths and Applications. In: 28th
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, pp. 439–441 (2016)

28. Izumi, T., Wattenhofer, R.: Time lower bounds for dis-
tributed distance oracles. In: Proc. 18th Int. Conf. on
Principles of Distributed Systems (OPODIS), pp. 60–
75. Springer International Publishing (2014). DOI
10.1007/978-3-319-14472-6 5. URL https://doi.org/

10.1007/978-3-319-14472-6_5
29. Kanchi, S., Vineyard, D.: An optimal distributed algo-

rithm for all-pairs shortest-path. Int. J. Information The-
ories and Applications 11(2), 141–146 (2004)

30. Kavitha, T.: Faster algorithms for all-pairs small stretch
distances in weighted graphs. In: Proc. FSTTCS, pp.
328–339 (2007)

31. Klein, P.N., Subramanian, S.: A fully dynamic approxi-
mation scheme for shortest paths in planar graphs. Al-
gorithmica 22, 235–249 (1998)

32. Lenzen, C., Patt-Shamir, B.: Fast Routing Table Con-
struction Using Small Messages [Extended Abstract]. In:
Proc. 45th Symposium on the Theory of Computing
(STOC) (2013). Full version at http://arxiv.org/abs/

1210.5774.
33. Lenzen, C., Patt-Shamir, B.: Improved Distributed Stei-

ner Forest Construction. In: Proc. 32nd Symp. on Prin-
ciples of Distributed Computing (PODC), pp. 262–271
(2014)

34. Lenzen, C., Patt-Shamir, B.: Fast Partial Distance Esti-
mation and Applications. In: Proc. 33rd Symp. on Prin-
ciples of Distributed Computing (PODC) (2015)

35. Lenzen, C., Peleg, D.: Efficient distributed source de-
tection with limited bandwidth. In: Proc. 32nd ACM
Symp. on Principles of Distributed Computing (2013)

36. Madry, A.: Faster approximation schemes for fractional
multicommodity flow problems via dynamic graph algo-
rithms. In: Proc. 42nd ACM Symp. on Theory of Compu-
ting, STOC 2010, Cambridge, Massachusetts, USA, 5-8
June 2010, pp. 121–130 (2010)

37. McQuillan, J., Richer, I., Rosen, E.: The new routing
algorithm for the arpanet. IEEE Trans. Communications
COM-28(5), 711–719 (1980)

38. Moy, J.: OSPF version 2. RFC 2328, Network Working
Group (1998)

39. Nanongkai, D.: Distributed Approximation Algorithms
for Weighted Shortest Paths. In: Proc. 46th Symposium
on Theory of Computing (STOC), pp. 565–573 (2014)

40. Peleg, D.: Proximity-preserving labeling schemes and
their applications. In: Proc. 25th Int. Workshop on
Graph-Theoretic Concepts in Computer Science, pp. 30–
41 (1999)

41. Peleg, D.: Distributed Computing: A Locality-Sensitive
Approach. SIAM, Philadelphia, PA (2000)

42. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for
network diameter and girth. In: Proc. 39th Int. Colloq.
on Automata, Languages, and Programming (2012)

43. Peleg, D., Rubinovich, V.: A Near-tight Lower Bound on
the Time Complexity of Distributed Minimum-Weight
Spanning Tree Construction. SIAM J. Computing 30,
1427–1442 (2000)

44. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph The-
ory 13(1), 99–116 (1989)

45. Peleg, D., Ullman, J.D.: An optimal synchronizer for the
hypercube. SIAM J. Comput. 18(2), 740–747 (1989)

46. Peleg, D., Upfal, E.: A trade-off between space and effi-
ciency for routing tables. J. ACM 36(3), 510–530 (1989)

47. Peterson, L.L., Davie, B.S.: Computer Networks: A Sys-
tems Approach, 5th edn. Morgan Kaufmann (2011)

48. Raghavan, P., Thompson, C.D.: Provably good routing in
graphs: Regular arrays. In: Proc. 17th Ann. ACM Symp.
on Theory of Computing, STOC ’85, pp. 79–87 (1985)

49. Roditty, L., Thorup, M., Zwick, U.: Deterministic con-
structions of approximate distance oracles and spanners.
In: Proc. 32nd Colloq. on Automata, Languages, and
Programming (ICALP), pp. 261–272 (2005)

50. Santoro, N., Khatib, R.: Labelling and implicit routing
in networks. The Computer Journal 28, 5–8 (1985)

51. Segall, A.: Distributed network protocols. IEEE Trans.
Information Theory 29, 23–35 (1983)

52. Thorup, M., Zwick, U.: Compact routing schemes. In:
Proc. 13th ACM Symp. on Parallel Algorithms and Ar-
chitectures (2001)

53. Thorup, M., Zwick, U.: Approximate distance oracles. J.
ACM 52(1), 1–24 (2005)

https://doi.org/10.1007/978-3-319-14472-6_5
https://doi.org/10.1007/978-3-319-14472-6_5
http://arxiv.org/abs/1210.5774
http://arxiv.org/abs/1210.5774

	Introduction
	Related Work
	Preliminaries
	Source Detection in Unweighted Graphs
	Approximate Source Detection
	Skeletons and Skeleton Spanners
	Table Construction in Unweighted Graphs
	Table Construction in Weighted Graphs
	Lower Bounds

