Fast Routing Table Construction Using Small Messages

[Extended Abstract]

Christoph LenzenT
Dept. Computer Science & Applied Mathematics
Weizmann Institute of Science
Rehovot 76100, Israel

ABSTRACT

We describe a distributed randomized algorithm to con-
struct routing tables. Given 0 < & < 1/2, the algorithm
runs in time O(n'/?*° + HD), where n is the number of
nodes and HD denotes the diameter of the network in hops
(i.e., as if the network is unweighted). The weighted length
of the produced routes is at most O(s™*loge™") times the
optimal weighted length. This is the first algorithm to break
the ©Q(n) complexity barrier for computing weighted short-
est paths even for a single source. Moreover, the algorithm
nearly meets the Q(n'/2 + HD) lower bound for distributed
computation of routing tables and approximate distances
(with optimality, up to polylog factors, for ¢ = 1/logn).
The presented techniques have many applications, including
improved distributed approximation algorithms for Gener-
alized Steiner Forest, all-pairs distance estimation, and esti-
mation of the weighted diameter.

Categories and Subject Descriptors

F.1.2 [Modes of Computation]: Parallelism and concur-
rency; G.2.2 [Graph Theory|: Graph algorithms

General Terms
Algorithms, Theory

Keywords

routing, small messages, approximate shortest paths

*A full version of this paper is available at [18].

TSupported by the Swiss Society of Friends of the Weizmann
Institute of Science and by the Swiss National Science Foun-
dation (SNSF).

iSupported in part by the Israel Science Foundation (grant
1372/09) and by Israel Ministry of Science and Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’13, June 1-4, 2013, Palo Alto, California, USA.

Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

Boaz Patt-Shamiri
School of Electrical Engineering
Tel Aviv University
Tel Aviv 69978, Israel

1. INTRODUCTION

Constructing routing tables is a central task in network
operation, the Internet being a prime example. Besides be-
ing an end goal on its own (facilitating the transmission of
information from a sender to a receiver), efficient routing and
distance approximation are critical ingredients in a myriad
of other distributed applications.

At the heart of any routing protocol lies the computation
of short paths in weighted graphs, where edge weights may
reflect properties such as link cost, delay, bandwidth, relia-
bility etc. In the distributed setting, an additional challenge
is that the graph whose shortest paths are to be computed
serves also as the platform carrying communication between
the computing nodes. The result of this double role is a
superimposition of two metrics: the given shortest paths
metric and the “natural” communication metric of the dis-
tributed system. The first metric is used for the definition of
shortest paths, where an edge weight represents its contribu-
tion to path lengths; the other metric is implicit, controlling
the time complexity of the distributed computation: each
edge is tagged by the time it takes a message to cross it.
If these two metrics happen to be identical, then computing
weighted shortest paths is trivial (to a single destination; for
the all-pairs problem, see below). In the general case, the
standard normalization is that messages cross each link in
unit time, regardless of the link weight; this assumption is
motivated by network synchronization. On the other hand,
the message size must be taken into account as well. In the
commonly-accepted CONGEST model of network algorithms
[22], it is assumed that all link latencies are one unit and
messages have fixed size, typically O(logn) bits, where n
denotes the number of nodes.

The classic algorithm for computing shortest paths dis-
tributedly is the Bellman-Ford algorithm (abbreviated BF),
used in many networks, ranging from local to wide area
networks. The BF algorithm enjoys many properties that
make it an excellent distributed algorithm (locality, simplic-
ity, self-stabilization). However, in weighted graphs, its time
complexity, i.e., the number of parallel iterations, may be as
high as Q(n) for a single destination. This is in sharp con-
trast with the O(HD) time needed to compute unweighted
shortest paths to a single destination, where HD denotes
the unweighted “hop-diameter” of the network. The differ-
ence between n and HD can be huge; suffices to say that
the hop-diameter of the Internet is estimated to be smaller
than 50. Intuitively, the problem originates in the fact that
the Bellman-Ford algorithm explores paths in a hop-by-hop
fashion, and the aforementioned superposition of metrics

may result in a path which is weight-wise short, but con-
sists of Q(n) edges. If shortest paths have at most SD € N
edges, then it suffices to run the Bellman-Ford algorithm for
SD communication rounds. Indeed, the running time of a
few distributed algorithms is stated as a function of SD or a
similar parameter for exactly this reason (e.g., [7, 15, 16]).

To the best of our knowledge, no distributed algorithm for
computing approximate weighted shortest paths in o(SD)
time in the CONGEST model was known to date. In this
paper we present a distributed algorithm that computes ap-
proximate all-pairs shortest paths and distances using small
messages, in time that nearly matches the lower bound of
Q(y/n + HD), regardless of the value of SD.

1.1 Contributions and Main Techniques

Our main contribution, presented in Section 4, is an al-
gorithm that, for any 0 < ¢ < 1/2, using messages of size
O(logn), constructs in O(n'/*** 4+ HD) time routing ta-
bles and node labels (addresses) facilitating routing and dis-
tance estimation with stretch O(¢™'loge™"). The labels
have size O(log e tlog n) bits; we show that relabeling the
nodes is necessary by proving that any (randomized) algo-
rithm achieving polylogarithmic (expected) stretch without
relabeling must run for Q(n) rounds. The running time
of our algorithm is close to optimal: it is not difficult to
show that computing bounded-stretch routing with small
messages must take Q(y/n + HD) time.

Our algorithm comprises two sub-algorithms that may be
of independent interest. One is used for short-range rout-
ing (roughly, to the closest /n nodes), and the other for
longer distances. The short-range algorithm constructs a hi-
erarchy in the spirit of Thorup-Zwick distance oracles [30].
Our main challenge is to implement the algorithm using
small messages; to this end, we introduce a bootstrapping
technique that allows us to build a hierarchy that grows in
double-exponential speed. Using a restricted variant of the
Bellmann-Ford algorithm we call BSP (for “bounded short-
est paths”) as a building block, we construct low-stretch
routing tables for nearby nodes in O(y/n) time.

This approach exceeds our target complexity beyond the
closest O(y/n) nodes, so at that point we switch to the “long-
distance” scheme. The basic idea here is to start with about
v/n random nodes we call the skeleton nodes, and compute
all distances between them. To this end we introduce a vir-
tual skeleton graph over the skeleton nodes, which approx-
imates the distances of G. First, we show that it suffices
to consider only paths of at most h € O(y/nlogn) hops in
G. This is not enough, though: if we introduce a skeleton
edge for each h-hop shortest path connecting skeleton nodes,
we may have O(n) skeleton edges and excessive congestion
during the computation of the skeleton graph. Our solution
is to reduce the number of skeleton edges by simulating the
spanner algorithm by Baswana and Sen [3] while construct-
ing the skeleton graph. Given a parameter k and node set
S, the algorithm of [3] constructs, with high probability, a
spanner with O(|S|**1/¥) edges and stretch 2k—1. Choosing
k € ©(¢7) yields the claimed result.

Using variants of our techniques, in Section 5 we derive im-
proved solutions to the following related problems (all state-
ments hold with high probability).

e For the Generalized Steiner Forest (GSF) problem we ob-
tain, for any 0 < & < 1/2, an O(e~")-approximation within

O((v/n +t)**= + HD) rounds, where ¢ is the number of ter-
minals. This should be contrasted with the best known dis-
tributed approximation algorithm for GSF [15], which pro-
vides O(log n)-approximation in time O(SD-k), where SD is
the “shortest paths diameter,” namely the maximal number
of hops in any shortest path, and k is the number of terminal
components in the GSF instance.

e For any k € N, we obtain an O((/n)'T/* + HD)-time
algorithm that constructs labels of size O(klogn) and local
tables of size @(nl/(%)), and produces distance estimations
with stretch O(k?). Compare with the recent distributed
algorithm [7] that attains the same local space consumption
at running time O(SD - n'/*)) and stretch 4k — 1.

e Given any 0 < ¢ < 1/2, we can compute an O(s')-
approximation of the weighted diameter in (§(n1/2Jr€ +HD)
rounds. We show that the €(y/n + HD) time lower bound
applies to computing approximate weighted diameter.

e Employing a different routing mechanism for the short-
range scheme, we can assign the fixed labels of 1,...,n. This
comes at the expense of a larger stretch of O(¢™%) within
O(n'/**¢ 4+ HD) rounds, for any 0 < & < 1/2.

1.2 Related Work

There are many centralized algorithms for constructing
routing tables, usually aimed at minimizing space without
incurring a stretch that is considered too large (see below).
We comment that a naive implementation of a centralized
algorithm in the CONGEST model requires Q(|E|) time in
the worst case, since the whole network topology has to be
collected at a single node just for computation.

Distributed routing table construction algorithms are usu-
ally categorized as either “distance vector” or “link state”
algorithms (see, e.g., [27]). Distance-vector algorithms are
variants of the Bellman-Ford algorithm [4, 11], whose worst-
case time complexity in the CONGEST model is @(n?). In
link-state algorithms [20, 21], each routing node collects the
complete graph topology and then solves the single-source
shortest path problem locally. This approach has O(|E|)
time complexity. None of these algorithms uses relabeling,
but it should be noted that the Internet architecture in fact
employs relabeling (IP addresses, which are used instead of
physical addresses, encode some routing information).

From the theoretical perspective, little progress was made
in computing weighted shortest paths beyond the “shortest
path diameter” (we denote by SD) even for the single-source
case (cf. [7] and references). Unpublished results provide
(14 ¢)-approximative and exact shortest paths in O(n) and
O(n*/?) rounds, respectively [6]. For the unweighted case,
an elegant O(n)-time algorithm for exact all-pairs shortest-
paths was recently discovered (independently) in [14] and
[23]. These algorithms do not relabel the nodes. In addition,
a randomized (3/2)-approximation of HD is given in [23],
and a deterministic (1+¢)-approximation is provided by [14].
Combining results, [14] and [23] report a randomized (3/2)-
approximation of the hop-diameter in time @(n3/ 4.

In [8], a lower bound of Q(\/ﬁ) on the time to construct
a shortest-paths tree of weight within a factor of n®" from
the optimum is shown; this implies the same bound on rout-
ing (more precisely, on stateless routing, where routing de-
cisions depend only on the destination and not on the tra-
versed path). We do not know of other explicit lower bounds
on the running time of approximate shortest paths or dis-

tance estimation algorithms, but a lower bound of Q(y/n)
can be easily derived using the technique used in [8] or [24].
In [12] it is shown that in the CONGEST model, approximat-
ing the diameter of unweighted graphs to within a factor of
3/2 — € requires €(y/n) rounds, for any constant & > 0.

In the Generalized Steiner Forest problem (GSF), the in-
put consists of a weighted graph, and a set of terminal nodes
which is partitioned into subsets called terminal components.
The task is to find a set of edges of minimum weight so
that the terminal components are connected. Historically,
the important special case of a minimum spanning tree (all
nodes are terminals, single terminal component) has been
the target of extensive research in distributed computation.
It is known that in the CONGEST model, the time complex-
ity of computing an MST is Q(y/n + HD) [8, 9, 24]. This
bound is essentially matched by an exact deterministic solu-
tion [13, 17]. An O(logn)-approximate MST is presented in
[16], whose running time is O(SD), where SD is the “shortest
path diameter” mentioned previously. For the special case
of Steiner Trees (arbitrary terminals, single component), [5]
presents a 2-approximation algorithm whose time complex-
ity is O(n) (which can easily be refined to O(SD)). For the
general case, [15] presents an O(logn)-approximation algo-
rithm whose time complexity is @(Fa - SD), where « is the
number of terminal components.®

We now turn to a (very brief) overview of centralized algo-
rithms. Thorup and Zwick [29] presented an algorithm that
achieves, for any k& € N, routes of stretch 2k—1 using (’j(nl/k)
memory. In terms of memory consumption, it has been
established that this is optimal up to a constant factor in
(worst-case) stretch w.r.t. routing [26]. This result has been
extended to the average stretch, and tightened to be exact
up to polylogarithmic factors in memory for the worst-case
stretch [1]. For distance approximation, the Thorup-Zwick
scheme is known to be optimal for £ = 1,2, 3,5 and conjec-
tured to be optimal for all k (see [31] and references). The
algorithm requires relabeling with labels of size O(klogn).
It is unclear whether stronger lower bounds apply to name-
independent routing schemes (which keep the original node
identifiers); however, for k = 1 trivially O(nlogn) bits suf-
fice (for O(logn)-bit identifiers), and Abraham et al. [2]
prove a matching upper bound of O(y/n) bits for k = 2.

A closely related concept is that of sparse spanners, intro-
duced by Peleg and Schiiffer [25]. A k-spanner of a graph is
obtained by deleting edges, without increasing the distances
by more than factor k. Similarly to compact routing tables,
it is known that a (2k — 1)-spanner must have Q(n'*'/F)
edges for some values of k, conjectured to hold for all k£ € N,
and a matching upper bound is obtained by the Thorup-
Zwick construction [30]. If an additive term in the distance
approximation is permitted, the multiplicative factor can be
brought arbitrarily close to 1 [10]. In contrast to routing and
distance approximation, there are extremely fast distributed
algorithms constructing sparse spanners. Our long-range
construction rests on an algorithm by Baswana and Sen [3]

We note that in [15], time-optimality is claimed, up to fac-
tor O(k). This comes as a consequence of [16], which in
turn builds on [9]. However, we comment that the latter
construction does not scale beyond the familiar lower bound
of Q(y/n), and a more precise statement would thus be that
a minimum spanning tree (and thus also a GSF) requires

Q(min{SD, \/n}) rounds to be approximated.

that achieves stretch 2k — 1 vs. O(n'*1/*) expected edges
within O(k) rounds in the CONGEST model.

Paper Organization. In Section 2 we formalize the model
and define some basic concepts, and in Section 3 we define
the problem and state several hardness results. Section 4
describes our main algorithm, and in Section 5 we describe
applications of our results. (Missing proofs can be found in
[18].) We conclude in Section 6 with a few open problems.

2. THE MODEL & BASIC CONCEPTS

The Computational Model. We follow the CONGEST(B)
model as described in [22]. The distributed system is repre-
sented by a connected weighted graph G = (V, E, W), where
V is the set of nodes, E is the set of edges, and W : E — N
is the edge weight function. As a convention, we use n to de-
note the number of nodes. We assume that all edge weights
are bounded by some polynomial in n, and that each node
v € V has a unique identifier of O(logn) bits (we use v to
denote both the node and its identifier).

Execution proceeds in global synchronous rounds, where
in each round, each node takes the following three steps:
(1) Receive the messages sent by neighbors at the previous
round, (2) perform local computation, and (3) send mes-
sages to neighbors. Initially, nodes are aware only of their
neighbors; input values (if any) are assumed to be fed by
the environment at time 0. Output values are placed in spe-
cial output-registers. In each round, each edge can carry a
message of B bits for some given parameter B of the model;
we assume that B € O(logn) throughout this paper. In
this model we may assume, at the price of O(HD) addi-
tional steps, that we have a broadcast facility available, as
formalized in the following lemma.

LEMMA 2.1. Suppose each v € V' holds k, > 0 messages

of O(logn) bits each, for a total of k &f > wev kv messages.
Then all nodes in the graph can receive these k messages
within O(k + HD) rounds.

General Concepts. We extensively use “soft” asymptotic
notation that ignores polylogarithmic factors. Formally, we
say that g(n) € O(f(n)) iff there exists a constant ¢ € RZ
such that f(n) < g(n)log®(f(n)) for all but finitely many
values of n € N. Q, ©, 6, and @ are defined accordingly.

To model probabilistic computation, we assume that each
node has access to an infinite string of independent unbiased
random bits. When we say that a certain event occurs “with
high probability” (abbreviated “w.h.p.”), we mean that the
probability of the event not occurring can be set to be less
than 1/n° for any desired constant ¢, where the probability
is taken over the strings of random bits.

Some Graph-Theoretic Concepts. A path p connect-
ing v,u € V is a sequence of nodes (v = vg,...,vx = u)
such that for all 0 < i < k, {v;,vi41} is an edge in G. Let
paths(v,u) denote the set of all paths connecting nodes v
and u. We use the following unweighted concepts.

e The hop-length of a path p, denoted £(p), is the number
of edges in it.

e The hop distance hd : V x V' — Ny is defined as

hd(v, u) Lof min{¢(p) | p € paths(v,u)}.

e The hop diameter of a graph G = (V, E,W) is

HD & maxy,uev{hd(v,u)}.

We use the following weighted concepts.

e The weight of a path p, denoted W(p), is its total edge
def

weight, i.e., W(p) = S W (v, 1, v:).

i=1
e The weighted distance wd : V x V — N is defined by
wd (v, u) = min{W (p) | p € paths(v,u)}.

e The weighted diameter of G is

WD max{wd(v,u) | v,u € V}.

The following concepts mix weighted and unweighted ones.
e Given h € N and two nodes v,u € V with hop distance
hd(v,u) < h, we define the h-weighted distance wdp (u,v) to
be the weight of the lightest path connecting v and u with
at most h hops, i.e.,

wdp (v, w) of min{W (p) | p € paths(v, w) and £(p) < h}.

If hd(v,u) > h, we define wdy (v, u) < . (Note that wdy,
does not satisfy the triangle inequality.)

e The shortest paths diameter of a graph, denoted SD, is the
maximal number of hops in shortest paths:

SD ' max {min {¢(p) | p € paths(v, u), W (p) = wd(u,v)}}.
Finally, given v € V and an integer ¢ > 0, define ball,(¢) to
be the set of the i nodes that are weight-wise closest to v:

ball, (%) f {u : [{w: wd(v,u) < wd(v,w)}| < i} .

Note that our concept of ball differs from the usual one: we
define a ball by its center and volume, namely the number
of nodes it contains (and not by its center and radius). We
have the following immediate property.

LEMMA 2.2. Let v,u € V. If u € ball,(i) for some i € N
then wd(v,u) = wd;(v,u) for all j >i—1.

3. THE PROBLEMS & LOWER BOUNDS

The Routing Table Construction Problem (RTC). In
the routing table construction problem, the local input at a
node is the weight of incident edges, and the output at each
node v consists of (i) a unique label A\(v) and (ii) a func-
tion “next,” that takes a destination label A and produces
a neighbor of v, such that given the label A(u) of any node
u, we can reach u from v by following the next pointers in
order. Formally, the requirement is as follows. Given a start
node v and a destination label A(u), let vo = v and define
Vi+1 = nexty, (A(u)) for ¢ > 0. Then for some i we must
have v; = u.

The performance of a solution is measured in terms of its
stretch: A route is said to have stretch p > 1 if its total
weight is no more than p times the weighted distance be-
tween its endpoints, and a solution to RTC is said to have
stretch p if all the routes it induces have stretch at most p.

Variants. Routing appears in many incarnations. We list
a few important variants below.

Name-independent routing. Our definition of RTC allows
for node relabeling. This is the case, as mentioned above, in
the Internet. The case where no such relabeling is allowed
(which can be formalized by requiring A to be the identity
function), is called name-independent routing.

Stateful routing. The routing problem as defined above is
stateless in the sense that routing a packet is done regardless
of the path it traversed so far. One may also consider state-
ful routing, where while being routed, a packet may gather
information that helps it navigate later (one embodiment of

this idea in the Internet routing today is MPLS, where pack-
ets are temporarily piggybacked with extra headers). Note
that the set of routes to a single destination in stateless rout-
ing must constitute a tree, whereas in stateful routing even a
single route may contain a cycle. Formally, in stateful rout-
ing the label of the destination may change from one node
to another: The next, function outputs both the next hop
(a neighbor node), and a new label A\, used in the next hop.

The Distance Approximation Problem. The distance
approzimation problem is akin to the routing problem. Also
here, each node v outputs a label A(v), but now, v needs
to construct a function dist, : A(V) — R{ (the table)
such that for all w € V it holds that dist,(w) > wd(v, w).
The stretch of the approximation for a given node w is
dist, (w)/wd(v,w), and the solution has stretch p > 1 if
dist, (w) < pwd(v, w) for all v,w € V.

Similarly to routing, we call a scheme name-independent
if A is the identity function.

3.1 A Few Hardness Results

Name-independent routing. We show that assigning
new labels to the nodes is unavoidable by proving that any
(randomized) algorithm achieving polylogarithmic (expec-
ted) stretch without relabeling must run for Q(n) rounds.
Formally, we prove the following result.

THEOREM 3.1. Any RTC algorithm for name-independent
stateful routing with (expected) average stretch p requires
Q(n/(p*logn)) time.

PRrROOF SKETCH. Consider a tree of depth 2: the root
has n1 children, and each of them has n2 children, where
n1 € O(p) and n2 = n/ni. Assign leaf identifiers as a ran-
dom permutation. We analyze the expected behavior of a
deterministic algorithm. If the RTC algorithm runs for r
rounds, the root receives at most rn; logn bits, and hence
there are at most 2""11°8" different routing tables at the
root. We show that if a packet with a random leaf desti-
nation is routed correctly at the root with probability more
than e?/n; then r € Q(n2/(n1logn)). To deal with stateful-
ness, consider a packet that was routed to a child v. If the
destination is not in v’s subtree, the packet eventually re-
turns to the root; at this point, we may assume w.l.o.g. that
all v’s subtree is known to the packet, but not more, since
all information regarding other subtrees must have passed
through the root. Thus we may apply induction to the tree
after eliminating v’s subtree, and conclude that with con-
stant probability, at least n1/2 attempts are required. []

We remark that this lower bound was shown independently
in [6]. An argument similar in spirit shows that a comparable
lower bound applies to distance approximation.

THEOREM 3.2. Any name-independent distance approxi-
mation scheme of (expected) average stretch p requires time
Q(n/logn) for table construction, even if each edge has ei-
ther weight 1 or weight wmax € O(p).

Consequently, in the remainder of the paper we shall con-
sider name-dependent routing schemes only.

Weighted Diameter Estimation. In [12], it is shown
that approximating the hop-diameter of a network within
a factor smaller than 1.5 cannot be done in the CONGEST
model in 6(y/n) time. Here, we prove a hardness result for
the weighted diameter, formally stated as follows.

THEOREM 3.3. There exists a graph family with hop di-
ameter HD € O(logn) and edge weights of 1 and wmax
only for which any (randomized) algorithm that computes
the weighted diameter to within an (expected) approrimation

factor of o(wWmax//n) requires Q(y/n) time.

Name-dependent routing. A lower bound on name-de-
pendent distance approximation follows from Theorem 3.3.

COROLLARY 3.4. There exists a graph family with hop di-
ameter HD € O(logn) and edge weights in {1, wmax} for
which any (randomized) algorithm that constructs labels of
size 6(\/n) for distance approxzimations with an (expected)

stretch of o(wmax/ /1) requires Q(y/n) time.

A variation of the theme shows that stateless routing re-
quires Q(y/n) time.

COROLLARY 3.5. For any wmax € w(y/n), a graph fam-
ily with hop diameter HD € O(logn) and edge weights in
{1, wmax} ezxists for which any (randomized) algorithm that
constructs labels of size 6(\/n) and stateless routing tables

with (expected) stretch o(wmax/v/n) requires Q(y/n) time.

In summary, these results imply that neither RTC, nor dis-
tance and diameter approximation permit 6(/n)-time algo-
rithms, with the possible exception of stateful name-depen-
dent RTC (whose time complexity remains open).

4. ROUTING ALGORITHM

Overview. The high-level intuition behind our algorithm
is as follows. Naive distributed algorithms explore paths
sequentially, adding one edge at a time, leading to poten-
tially linear complexity, since paths which are weight-wise
short may contain many hops. Our basic idea is to break
hop-wise long paths into small pieces by means of random
sampling. Specifically, motivated by the ©(y/n) lower bound
from Corollaries 3.4 and 3.5, we select a random subset of
O(y/nlogn) nodes we call the routing skeleton. With high
probability, any set of more than /n nodes will contain a
skeleton node. In particular, w.h.p., (1) any simple path of
hop-length +/n contains a skeleton node, and (2) any node
has a skeleton node among its closest y/n nodes. The route
that our scheme will select from a given source to a given
destination depends on their mutual distance: If the destina-
tion is one of the y/n nodes closest to the source, routing will
be done using a “short range scheme;” otherwise, the short
range scheme is used to route from the source to the near-
est skeleton node, from which, using another scheme we call
“long distance routing,” we route to the skeleton node clos-
est to the destination node, and finally, another application
of the short range scheme brings us to the destination. This
leaves two non-trivial problems, namely the short-range and
the long-distance schemes, whose description occupies most
of the remainder of this section. The short range scheme is
described in Section 4.2, and the long-distance in Section 4.3.
We start by describing the variant of the Bellman-Ford al-
gorithm we use as a basic building block in Section 4.1.

4.1 Algorithm Bsp

A basic building block we use throughout the construction
is a bounded version of the Bellman-Ford algorithm, which
we call Algorithm BSP. The input to Algorithm BSP is a

range parameter h, an overlap parameter A, and a set of
sources S. The algorithm computes routes from each node
to the closest A sources in S using only routes of up to
h hops. The implementation is by h parallel iterations of
slightly modified Bellman-Ford relaxations, where at each
iteration, each node v:

(1) receives from its neighbors their current distance esti-
mates to their A closest sources, (2) updates its distance
estimates and next, to the sources based on the information
it received and its incident edge weights, and (3) sends to
all its neighbors its current estimates for the A sources with
the smallest distance (ties broken by ID).

Let L, (t) denote the list of the A closest sources (with their
distances and next, pointers) sent by v at the end of itera-
tion t above. It is easy to see, by mapping the executions of
Algorithm BSP to executions of the standard Bellman-Ford
algorithm, that the top A entries in the list maintained at
node v by the unmodified Bellman-Ford algorithm after it-
eration ¢ is exactly L (t).

Routing. Interestingly, the information provided by L., (h)
(the final list at v) may be insufficient for routing: since
the A closest source node sets may differ between neigh-
bors, it may be the case that for some source s and two
neighbors v and v we have that u is the next node from v
to s in L, (h), but there is no entry for source s in L, (h)!
This occurs, for example, if in iteration h, u learns about
a source that is closer than s, pushing s out of L,(h). Us-
ing (Ly(1),..., Ly(h)) instead of L,(h) only, we can however
still reconstruct the routes. In the example above, L, (h—1)
must contain s. In general, when routing from node vg to
a node s, arriving at a node v; after ¢ > 0 hops, we use
L,,(h —i). (We note that this scheme is not stateless—
routing decisions depend on the number of previous routing
hops—but it is easy to make it stateless. Details can be
found in the full paper.)

We summarize the properties of Algorithm BSP with the
following theorem.

THEOREM 4.1. Algorithm BSP computes the h-weighted
distance and next hop of a shortest path of at most h edges
from each node to its closest A sources. Each node on the
corresponding shortest path can determine the next hop on
the path out of the number of preceding hops and the output
of the algorithm. The time complezity of Algorithm BSP in
the CONGEST model is O(Ah) rounds.

4.2 The Short-Range Scheme

Recall that our goal in the short-range scheme is to allow
each node to find a route to each of its closest y/n neighbors
(roughly). A naive application of Algorithm BSP, where
all nodes are sources, would set the overlap parameter to
A := y/n (this is the number of nodes we want to know
about), and the range parameter to h := /n too (by Lemma
2.2). However, Theorem 4.1 tells us that in this case, the
time complexity would be O(Ah) = O(n), a far cry from
the Q(,/n) lower bound we are shooting for. Our solution is
a hierarchical bootstrapping process, described next.

The Hierarchy. The construction is parametrized by the
number of levels, denoted L (to be determined later). Sets
of nodes, denoted Si,...,Sr, are sampled uniformly and
independently at random with Sp def V,and S; C S;_; for
1 < i < L. In the i'" level, each node v finds a route to

Figure 1: The distance from v to w is at least one
third of the length of the route from v to w via u.

Y;(v), defined to be the node in S; closest to v, and to all
nodes in S;_1 that are closer to v than Y;(v). This property
allows us to bound the routing stretch (following [30]). The
argument for the first level is a simple application of the
triangle inequality (see Fig. 1): Consider a route from node
v to node w. If there is a node v € S; that is closer to v
than w, then the route that consists of shortest paths from
v to u to w has stretch at most 3. Therefore, for routing,
it suffices for v to determine least-weight routes to nodes in
Si—1 that are closer to it than Y;(v) (the interior of the circle
in Fig. 1).

To this end, in each level we invoke Algorithm BSP with
source set S;_1. Let us first see intuitively what are the ap-
propriate choices of h; and A;. Let p; denote the probability
of a node to be selected into S;. W.h.p., each node v has
a member of S; among the O(logn/p;) nodes closest to v.
Hence we set h; := ©(logn/p;). Next, consider the nodes of
S;—1 among the h; nodes closest to a given node. Their ex-
pected number is p;_1h;, which means, by Chernoff’s bound,
that w.h.p., there are at most O(p;—1h;) = O(logn-pi—1/p;:)
sources that need to be detected by each node at level i. We
therefore set A; := O(logn - pi—1/p;).

Thus, the running time of Algorithm BSP in level i is
Ti € O(hili) C O(pi—1/p?). Setting T; = v/n, po = 1,
and ignoring polylog factors, the solution to this recursive
equation is p; = n~ (' ~D/2""
obtain

Plugging in this value we

hi = 9(711/2_1/21.4rl logn), and A; = G(nl/zi+1 logn) . (1)

(Note that L = loglogn levels suffice to ensure that S; €
O(y/nlogn) w.h.p., so we assume that L € O(loglogn)
henceforth.) Running Algorithm BSP with parameters as
above, we get that w.h.p., after O(L\/n) = O(y/n) time,
each node knows of the closest A; nodes from S;_1, and
how to route to them, for all 1 <4 < L.

This facilitates routing in one direction. We now describe

how to route from nodes in S;. Let Cy(7) = {u e V|
Y;(u) = v}, i.e., for each level ¢, the sets C, () are a Voronoi
decomposition of V' with centers Y;(V) = S;. We need to
find routes from Y;(v) to Cy(z). But the sheer size of C,(7)
could be overwhelming: while the depth of the tree rooted
at Y;(v) is bounded by h;, its size |Cy(2)| could be Q(n). To
solve this problem we rely on the shortest-paths tree rooted
at Y;(v) that spans C(¢) (which is already constructed), and
employ one of the known techniques for tree routing (e.g.,
[28]). To minimize space consumption, we use the technique

of [29], which constructs in O(h;) time routing tables of size
log®® n and node labels of O(logn) bits.

We now present a more formal description of the construc-
tion for short-range routing. Given n € N and L < loglogn,
we define the following for 1 < ¢ < L.
® Do def 1, and p; def (\/ﬁ)f(2L/(2L71))<2i71>/2i.

e For each node v, Y, (%) is the node from S; closest to v (ties
broken by ID).

e For each u € S;, define

Cu(i) € {v | Yy (4) = u}, and C,(0) < {u}.

e For each node v € V, define
.\ def

H, (%) = {u € Si—1 |wd(v,u) < wd(v,Ys(7))}
Our construction maintains (w.h.p.) the following properties
at stage i € {1,...,L}.

(1) S; is a uniformly random subset of S;—_1, where
Pr[v € Si] = ps, and Prjv € S; | v € Si—1] = pi/pi—1.

(2) For any node v, it it is possible to route from v to
Y, (i) on a lightest path.

(3) For any node v, it is possible to compute Y, (z) and
wd(v, Y, (7)) from the label of v.

(4) For each node u € S;, given the label A(w) of any node
w € Cy (1), we can route from u to w on a lightest path.

(5) For any node v, H,(i) is locally known at v, and it is
possible to route from v to any node u € H,(i) on a
lightest path (whose weight is known at v).

Suppose that we have such a hierarchy of L stages. Then,
given the label of any node w € U, <i<p yem, @y Culi — 1),
v can route a message to w as follows: First, find some
i1 €{1,...,L} such that w € Cy(i—1) for some u € H,(7) (cf.
Properties (3,5) of the construction). The route from v to w
is then defined by the concatenation of two lightest paths:
the one from v to u, and the one from u to w (cf. Proper-
ties (4,5)). Moreover, the long-range scheme will make sure
that we can always route to any destination via the closest
skeleton nodes in S, which is feasible due to Property (2)
and Property (4). By always choosing from the available
routes such that the weight of the computed route is mini-
mal (which can be done by Property (3) and Property (5)
for the short-range construction, and will also be possible
for the long-range scheme), routing becomes stateless.

Stretch Analysis. To bound the weight of the routes con-
structed by the stated scheme with respect to the weight of
the shortest paths, we have the following key lemma.

LEMMA 4.2. Suppose that for v,w € V and 1 < j <
L we have that w ¢ Uj_; U,cp,) Culi — 1). Then (a)
wd(v, Yy (4)) < (2§ — Dwd(v,w), and (b) wd(w,Yw(j)) <
2jwd (v, w).

ProOOF. We use induction on i, for a fixed j. More specif-
ically, we show for each 1 < ¢ < j that (a) wd(v,v;) <
(2¢ — 1)wd(v,w) and (b) wd(w,w;) < 2iwd(v,w). For the
basis of the induction, consider ¢ = 0 in Statement (b). In
this case, since So = V, we have that, Y,,(0) = w and State-
ment (b) holds because wd (v, w) > 0 = wd(w, w).

For the inductive step, assume that Statement (b) holds
for 0 < i < j and consider i+41. Since trivially w € Cy,, ¢ (i—
1), the premise of the lemma implies that Y3, (i) € H,(i+1).
However, Y, (i + 1) € Hy(i + 1), and hence we obtain

wd(v, Yo (i + 1)) < wd(v, Yo (i) < wd(v,w) + wd(w, Vi (4))
< (2t + 1)wd(v, w),

where the first inequality follows from the definitions, the
second from the triangle inequality, and the last by induction
hypothesis. This proves part (a) of the claim. Using the
above inequality we also obtain

wd(w,Yu(i+1)) < wd(w,Y,(i+1))
< wd(w,v) + wd(v, Yo (i + 1))
< (2i+2)wd(v, w),

where the first inequality holds since wd(w, Y, (i + 1)) <
wd(w, u) for u € Siy1, the second follows from the triangle
inequality, and the last from part (a) of the claim. This
proves part (b) of the claim, completing the induction. [

Lemma 4.2 gives rise to the following result we shall use.

COROLLARY 4.3. Let v,w € V, and let 1 < ig < L be
mingmal such that Yy (io — 1) € Hy(i0). Then wd(v, Y (io —
1) +wd(Yw(io—1),w) < (4io—3)wd(v,w) € O(L-wd(v,w)).

On the other hand, if there is no ip as in the corollary, then
by Lemma 4.2, routing via the skeleton nodes closest to
source and destination incurs only bounded stretch.

Implementation and Time Complexity. We now ex-
plain how to construct the hierarchy efficiently in more de-
tail, and analyze the time complexity of the construction.
(Pseudocode is given in the full paper.) The algorithm is
parametrized by the total number of nodes n, and by the
number of hierarchy levels L.

The algorithm works as follows. First all sets S; are se-
lected, for 0 < ¢ < L (this is done by local coin tosses).
Then L phases are executed. In phase ¢, BSP is invoked
with sources S;_1, and range and overlap parameters as in
Eq. (1). Routing information is recorded only for the set
H, (i) (the nodes in S;_; closer to v than Y, (z), the node
closest to v from S;). To allow for the reverse routing, the
last step in a phase ¢ is to invoke the tree-routing algorithm
for the trees rooted at the S; nodes.

We now analyze the algorithm. Property (1) is trivially
satisfied by the local coin tosses. In addition, the following
properties are easily derived using the Chernoff bound.

LEMMA 4.4. For appropriate choices of the constants in
Eq. (1), for all 1 < i < L it holds w.h.p. that:
* [Si| € ©(pin) (|So| = n).
e For allv eV, |S; N ball,(hi)| € ©(logn).
e For allv eV, Hy,(i) C ball,(h;).
o Forallv eV, |Hy(i)| € O(hipi—1) = O(pi—1logn/p;).
e Forallv eV, A; > |H,(3)|.

By these properties and Theorem 4.1, Property (5) is sat-
isfied w.h.p., because we invoke Algorithm BSP with sources
S;, depth parameter h;, and overlap parameter A;: after
this invocation, each node v can identify the set H, (i) and
route to any u € H,(i) on a path of known weight; since
H, (i) C bally(h;) w.h.p., these routing paths are shortest
paths. Moreover, the invocation of BSP(h, A, S;) allows
each node v also to learn what is Y, () and route to it on
a shortest path of known weight, establishing Property (2).
In order to satisfy Property (3), we simply add Y,(¢) and
wd(v, Yy (7)) = dv(Yo(2)) to the label of v for all . To route
to Cy, (s), as mentioned above, we use the tree routing of [29]
that constructs routing tables of size logo(l) n and labels of
size (1+0(1))logn in O(h;) time, and we add the respective
tree label to v’s label to ensure Property (4).

We summarize the complexity of the short-range construc-
tion as follows.

LEMMA 4.5. Given 1 < L < loglogn, constructing the
L-levels short-range routing tables and labels can be done
in (’)(L(\/ﬁ)zL/@L*l) logZn) C (7)((\/71)2L/(2L71)) rounds,
such that node labels have O(Llogn) bits.

4.3 Long-Distance Routing

We now explain how to route between the nodes in the
top level of the hierarchy created by the short-range scheme.
Our central concept is the skeleton graph, defined as follows.

DEFINITION 4.1 (SKELETON GRAPH). Given a weight-
ed graph G = (V,E,W), and skeleton set S C V, and h €
N, the h-hop skeleton-S graph is a weighted graph Gs,, =
(S, Es.n,Ws.n) defined by

o Egp ™ {{v,w} | v,w € S and hdg (v, w) < h}, and

o for each {v,w} € Espn, Wsn(v,w) def wdp (v, w), i.e.,
W, n(v,w) is the h-weighted distance between v and w in G.

The key observation on skeleton graphs is that if the skele-
ton S is a random set of nodes, and if h € Q(nlogn/|S|),
then w.h.p., the distances in G are equal to the corre-
sponding distances in G. This means that it suffices to con-
sider paths of O(nlogn/|S|) hops in G in order to find the
exact distances in G. The following lemma formalizes this
idea. (We state it for a skeleton containing a random subset;
this generality will become useful in Section 5.)

LEMMA 4.6. Let Sr be a set of uniform random nodes
with Prlv € Sg] = « for some given 7, and Let S O Sg.
If 1 > clogn/h for a sufficiently large constant ¢ > 0, then
w.h.p., wdgp(v,w) = wd(v,w) for allv,w € S.

Our strategy to solve long-distance routing is to construct
Gs,n and compute its all-pairs shortest paths. But imple-
menting this approach is not straightforward. First, the
edges of the skeleton graph are virtual: each edge represents
the shortest path of up to h hops in GG; and second, the num-
ber of skeleton graph edges may be as large as Q(|S|*). We
solve both problems together: While computing the edges
of the skeleton graph, we sparsify the graph, bringing the
number of edges down to near-linear in the skeleton size.
Once we are done, we can afford to let each skeleton node
learn the full topology of the sparsified skeleton graph, from
which all-pairs routes and distances can be computed locally.
Technically, we use the concept of sparse spanners.

DEFINITION 4.2 (SPANNER). Let H = (V,E,W) be a
weighted graph and let k > 1. A weighted k-spanner of H is
a weighted graph H' = (V,E',W') where E' C E, W'(e) =
W(e) for all e € E', and wdy/(u,v) < k- wdg(u,v) for all
u,v € V (where wdy and wdys denote weighted distances
in H and H', respectively).

We shall compute a spanner of the skeleton graph by sim-
ulating the spanner construction algorithm of Baswana and
Sen [3] on the implicit skeleton graph. Let us recall the al-
gorithm of [3]. We use a slightly simpler variant that may
select some additional edges, albeit without affecting the
probabilistic upper bound on the number of spanner edges
(cf. Lemma 4.8). The input is a graph H = (Vg, Ex, Wr)
and a parameter k € N.

1. R :={{v} | v € Vu} (each node is a singleton cluster)
2. Repeat k — 1 times:
(a) Mark each cluster from R; independently with proba-

bility |VH|71/’“. Let Rit1 def {marked clusters}.
(b) If v is a node in an unmarked cluster:

i. Let @, be the set of edges that consists of the lightest
edge from v to each of the clusters v is adjacent to.

ii. If v has no adjacent marked cluster, then v adds to the
spanner all edges in Q.

iii. Otherwise, let u be the closest neighbor of v in a
marked cluster. In this case v joins the cluster of wu,
and it adds to the spanner the edge {v,u}, as well as all
lighter edges from Q..

3. Each node v adds, for each cluster X € Ry it is adjacent
to, the lightest edge connecting it to X.

For this algorithm, the following result is proven in [3].

THEOREM 4.7 ([3]). Given a weighted graph H and an
integer k > 1, the algorithm above computes a (2k — 1)-
spanner of H. It has O(k|V (H)|***/*logn) edges w.h.p.?

Constructing the Skeleton Graph. In our case, each
edge considered in Steps (2b) and (3) of the spanner algo-
rithm corresponds to a shortest path. We implement these
steps in our setting by letting each skeleton node find its
closest O(|S|'/*logn) clusters by running a slightly mode-
ified Algorithm BSP. We now explain how. First, to find
the closest cluster, all nodes in a cluster use the same source
ID (the one of the cluster leader). Second, we append the
ID of the actual destination of the indicated path to each
message to allow for routing (without treating nodes in the
same cluster as different sources!). We refer to the modified
algorithm as BSP’. Third, regarding the range parameter,
Lemma 4.6 shows that it is sufficient to consider paths of
O(nlogn/|S|) hops only. Finally, the following lemma im-
plies that we may modify the spanner construction algorithm
in a way that allows us to use a small overlap parameter.

LEMMA 4.8. W.h.p., the centralized spanner construction
algorithm yields identical results if in Steps 2b and 3, each
node considers the lightest edges to the C\VH\l/k logn closest
clusters only (for a sufficiently large constant ¢ > 0).

PRrOOF. Fix a node v and an iteration 1 < 7 < k. If
v has at most ¢|Vi|'/*logn adjacent clusters, the claim is
trivial. So suppose that v has more than c|VH|1/'€ log n adja-
cent clusters. By Step 2b of the algorithm, we are interested
only in the clusters closer than the closest marked cluster.
Now, the probability that none of the closest C\VH|1/k logn
clusters is marked is (1 — WH|_1/’“)C‘VH‘1/’C10gn e n~ e,
In other words, for ¢ sufficiently large, we are guaranteed
that w.h.p., at least one of the closest ¢|Vi|**logn clus-
ters is marked. Regarding Step 3, observe that a cluster
gets marked in all of the first kK — 1 iterations with inde-
pendent probability |Vz|~*~Y/*¥ By Chernoff’s bound,
the probability that more than c¢|Vi|'/*
main in the last iteration is thus bounded by 2~
n=20), Therefore, w.h.p. no node is adjacent to more than
|V |** log n clusters in Step 3, and we are done. [

logn clusters re-
Q(clogn) _

*In [3], it is proved that the expected number of edges is

O(k|V (H)|**'/*). The modified bound directly follows from
Lemma 4.8.

Algorithm LDC, our implementation for the long-distance
construction, therefore follows the modified Baswana-Sen
algorithm as described above. The input is the skelton
set S and the stretch parameter k. To facilitate Step 2,
the set Ri+1 (determined locally) is broadcast in the begin-
ning of each phase 7. Step 2b is implemented by invoking
BSP’ with sources R;i1, range ©(nlogn/|S|) and ovelap
O(|S|** logn) (this value of the overlap parameter is justi-
fied by Lemma 4.8). The spanner edges are added according
to the rule of Step 2b and announced to all nodes. This en-
ables to locally compute the clusters of the next iteration and
locally store the routing pointers of the paths corresponding
to the added spanner edges. Detailed pseudo-code of our
implementation is given in the full paper. To prove the al-
gorithm correct, we show that its executions can be mapped
to executions of the centralized algorithm, and then apply
Theorem 4.7. We omit details here, and summarize with the
following lemma.

LEMMA 4.9. Suppose the set S input to Algorithm LDC
contains a uniformly random subset Sr of V.. Then w.h.p.,
after O(n/|Sg|*~V* + |S|*TY/* 4 HD) rounds:

(i) The algorithm computes a weighted (2k — 1)-spanner of
the skeleton graph Gs n(sy) with O(|S|* 1/ *logn) edges.
(i) The weighted distances between nodes in S are identical

mn Gsvh<SR> and G.

Completing the Skeleton Routing Tables. Algorithm
LDC constructs a globally-known skeleton-spanner, so each
node can locally find a low-stretch route between any two
skeleton nodes. However, to use skeleton routes we need to
map skeleton edges to graph routes, where we encounter the
following subtle issue. Algorithm BSP, used to detect the
skeleton edges, marks the route in one way only: if a node
s added the edge {s,t} to the spanner, then Algorithm BSP
sets only the next pointers from s to ¢, and the route from
t to s is not necessarily established. (Similarly, Lemma 4.8
guarantees low directed degree.) This is easily resolved as
follows. Say edge {s,t} was added by node s. We send a
message from s to t (we have next pointers for this direc-
tion), where the message carries the weight of the s-t route.
While progressing, each node on the route records the im-
mediate origin of the message as the next hop to s, and the
distance to s; the content of the message is decremented by
the weight of the edge it crossed, and then sent to the next
node. By Lemma 4.9, there are at most O(|S|'T/*) edges
in the constructed spanner of G'g (sy) W.h.p., implying that
the maximal number of messages routed over each edge of G
is bounded by O(|S|*T'/*) w.h.p. as well. Moreover, no rout-
ing path has more than h(Sgr) € ©(nlogn/|Sr|) hops. Since
the messages traverse shortest h-hop paths, all of them reach
their destinations within O(n/|Sr| + |S|***/*) rounds [19].

We summarize the properties of the long-distance scheme.

THEOREM 4.10. Let S C V be a superset of a uniformly
random set of nodes Sgr, and let k € {1,...,logn}. Then
w.h.p., within O(n|S|** /|Sg| + |S|*+1/* 4 HD) rounds, Al-
gorithm LDC(S, k) constructs routing tables for routing be-
tween nodes in S with stretch (2k — 1).

4.4 Putting the Pieces Together

The overall algorithm is a composition of the short-range
and long-distance algorithms, linked by identifying the skele-
ton set from the long-distance algorithm with the top level

of the hierarchy of the short-range algorithm (we determine
the value of the parameters L and k later).

Route Selection. Suppose v wants to send a message to
w. The next routing hop is selected by v as follows.

1. If Y, (4) = Yu (i) for some 4, choose the next routing hop

within (the tree on) Cy, ;) to w and set d = wd(Ye (2), w).

2. Otherwise, node v computes as follows.
(a) For ¢ = 1,...,L, if Y,(s — 1) € Hy(4), then d; :=
wd(v, Yy (i — 1)) + wd(Yw(i — 1),w). Else d; := oo.
(b) Let S, be the set of skeleton nodes v knows how to route
to, let ds be the route weight for each s € S, and let wd”
denote the distance function in the skeleton graph spanner.
Set dr+1 := minses, {ds + wd"®(s, Vi (L)) + wd(Yau (L), w)}.
(c) Finally, set d := min;eq1,... r4+13{di}. The next routing
hop is selected by the route giving rise to d (for minimal 7).
Note that the routing decision is stateless. The following
lemma bounds the stretch.

LEMMA 4.11. Fix L and k. For any node v and label
Aw), consider the distance value d and next routing hop
next computed by v according to the above scheme. Then
w.h.p., d < (8kL—1)wd(v,w) and next will compute a value
d < d— wd(v,next).

Finally, we set k and L to state our main result as follows.

THEOREM 4.12. Let 1/2 < a <1 be given. If « > 1/2 4
1/logn let k := [1/(2a — 1)], and otherwise let k := logn.
Tables of size @(no‘) for stateless routing and distance ap-
prozimation with stretch p(a) = 8k [log(k + 1)] —1 and label
size O(log(k + 1) logn) can be constructed in the CONGEST
model in O(n® 4+ HD) rounds.

Note that p(1/2) € O(lognloglogn) and that p(a) €
O(1) for any constant o > 1/2.

S. EXTENSIONS AND APPLICATIONS

Generalized Steiner Forest. The Generalized Steiner
Forest problem (GSF) is defined as follows.

Input: A weighted graph G = (V, E, W), a set of terminals
T C V, and for each terminal ¢ € T' a component number
C(t). In the distributed setting, we assume that each node
knows whether it is a terminal, and if so, what is its com-
ponent number.

Output: An edge set F' C E such that for all pairs s,t € T
with C(s) = C(t), s is connected to ¢ in the graph (V, F).
Goal: Minimize) . W(e).

To solve GSF, we do the following.

1. Broadcast all terminal labels and compute distance esti-
mates for all terminal-terminal distances.

2. Locally construct the terminal graph G' = (T, E',W'),
where E' := {{s,t}|s#t €T}, and W'(s,t) is the com-
puted estimate of wd(s,).

3. Apply any centralized algorithm ALG for GSF to G’ with
the same terminal components. Obtain solution F”.

4. Identify and output all edges on paths in G that corre-
spond to edges in F’.

It is not difficult to see that (1) solving GSF in the terimnal
graph at most doubles the cost of an optimal solution, and
(2) using p-approximate edge weights increases the optimal
cost by a factor of at most p. To implement Step 1, we
apply the long-range routing scheme with skeleton set S :=

T U Rs, where Rg is sampled uniformly and independently
at random with probability n='/2 from V (cf. Lemma 4.9).
We thus arrive at the following result.

THEOREM 5.1. Giwen any integer k € [1,logn] and any
centralized a-approzimation algorithm to GSF, GSF can be
solved with approzimation ratio 2a(2k —1) in time O((v/n+
|T|)**+/k + HD), where T denotes the set of terminal nodes.

Distance Sketches. The problem of distributed distance
sketches requires each node to have a label and store a small
amount of information (called the sketch), so that each node
v can estimate the distance to each other node u when given
the label of u.®> Technically speaking, we already solved this
problem, since our machinery enables to estimate distances
with small stretch. However, since o > 1/2, the basic con-
struction always consumes €2(y/n) memory.

If we discard the routing information, we can reduce the
space requirements of the sketches at the expense of also
increasing the stretch. To this end, we tune the sizes of the
sets S;, and change the choice of the skeleton to be Sp /5.
For the remaining sets Sp /241, ...,S5L, we can construct the
hierarchy locally at each node by approximating distances
based on the skeleton spanner, avoiding the need to explore
long paths. We arrive at the following result.

THEOREM 5.2. Giwen any integer k € [1,...,logn|, dis-
tance sketches with stretch p(k) = 2k(8k — 3) € O(k?), label
size O(klogn), and sketch size O(n* ®®)Y can be constructed
w.h.p. in O(n'/**/ (8 L HD) rounds.

Approximate Weighted Diameter. Dropping the short-
range scheme, identifying the skeleton set S as one source
set, and using Algorithm BSP with parameters A = 1 and
h € O(nlogn/|S|), we can prove the following result.

THEOREM 5.3. Given k € N, the weighted diameter WD
can be approzimated w.h.p. to within a factor of 2k + 1 in
the CONGEST model in O(n*/?**/ (%) L HD) rounds.

Tight Labels. Our routing scheme relabels the nodes ac-
cording to the Voronoi partition on each level. However,
using a different labeling scheme, we can set the labels to be
{1,...,n}, with increased stretch.

THEOREM 5.4. Gwen o € [1/2,1], let k = [1/(2a — 1)]
if o >1/24+1/logn and k = [1/logn]| otherwise. Tables
for stateless routing and distance approximation with stretch
pla) = 4k - 4l°eCADT Lok 1 ¢ O(k®) with node labels
1,...,n can be constructed in O(n® 4+ HD) rounds.

6. OPEN PROBLEMS

In this paper we have made a first step toward finding
good distributed solutions to the routing table construction
problem. There still are many hurdles to overcome in this
research direction. We list a few below.

3The formulation in [7] permits to use both sketches to ap-
proximate the distance. However, from the distributed point
of view it is more appropriate to assume that only a minimal
amount of information is exchanged.

e We did not treat the problem of dynamic networks, or
more generally fault-tolerant routing. Almost all practical
routing algorithms must cope with dynamic changes in the
network, or faults. Can our algorithm be extended to such
scenarios, and at what cost?

e It is interesting to better understand stateful routing (note
that our lower bounds do not cover the case of stateful,
name-dependent routing). What can be done with general
stateful routing?

e Our algorithm is designed specifically to optimize the
worst case. It is very interesting to find a “competitive”
algorithm, whose running time is related to the best possi-
ble for any given network.

Acknowledgment

We thank David Peleg for valuable discussions.

7. REFERENCES

[1] I. Abraham, C. Gavoille, and D. Malkhi. On
Space-Stretch Trade-Offs: Lower Bounds. In Proc.
18th ACM Symp. on Parallelism in Algorithms and
Architectures, pages 207-216, 2006.

[2] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and
M. Thorup. Compact name-independent routing with
minimum stretch. ACM Transactions on Algorithms,
4(3):37:1-37:12, 2008.

[3] S. Baswana and S. Sen. A Simple and Linear Time
Randomized Algorithm for Computing Sparse
Spanners in Weighted Graphs. Random Structures and
Algorithms, 30(4):532-563, 2007.

[4] R. E. Bellman. On a routing problem. Quart. Appl.
Math., 16:87-90, 1958.

[5] P. Chalermsook and J. Fakcharoenphol. Simple
distributed algorithms for approximating minimum
steiner trees. In Proc. 11th Ann. Conf. on Computing
and Combinatorics, volume 3595 of LNCS, pages
380-389, 2005.

[6] J. Chawachat, J. Fakcharoenphol, and D. Nanongkai.
Fast shortest-path algorithms on distributed networks.
Unpublished manuscript, 2013.

[7] A. Das Sarma, M. Dinitz, and G. Pandurangan.
Efficient Computation of Distance Sketches in
Distributed Networks. In Proc. 24th ACM Symp. on
Parallelism in Algorithms and Architectures, 2012.

[8] A. Das Sarma, S. Holzer, L. Kor, A. Korman,

D. Nanongkai, G. Pandurangan, D. Peleg, and

R. Wattenhofer. Distributed Verification and Hardness
of Distributed Approximation. In Proc. 43th ACM
Symp. on Theory of Computing, pages 363-372, 2011.

[9] M. Elkin. An Unconditional Lower Bound on the
Time-Approximation Tradeoff for the Minimum
Spanning Tree Problem. SIAM Journal on Computing,
36(2):463-501, 2006.

[10] M. Elkin and D. Peleg. (1 + ¢, 8)-Spanner
Constructions for General Graphs. SIAM Journal on
Computing, 33(3):608-631, 2004.

[11] L. R. Ford. Network flow theory. Technical Report
P-923, The Rand Corp., 1956.

[12] S. Frischknecht, S. Holzer, and R. Wattenhofer.
Networks Cannot Compute their Diameter in
Sublinear Time. In Proc. 23rd ACM-SIAM Symp. on
Discrete Algorithms, pages 1150-1162, 2012.

[13] J. A. Garay, S. Kutten, and D. Peleg. A Sub-Linear
Time Distributed Algorithm for Minimum-Weight
Spanning Trees. In Proc. 84th IEEE Symp. on
Foundations of Computer Science, pages 659—668,
1993.

[14] S. Holzer and R. Wattenhofer. Optimal Distributed
All Pairs Shortest Paths and Applications. In Proc.
31st ACM Symp. on Principles of Distributed
Computing, 2012.

[15] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and
K. Talwar. Efficient Distributed Approximation
Algorithms via Probabilistic Tree Embeddings.
Distributed Computing, 25:189-205, 2012.

[16] M. Khan and G. Pandurangan. A Fast Distributed
Algorithm for Minimum Spanning Trees. Distributed
Computing, 20:391-402, 2008.

[17] S. Kutten and D. Peleg. Fast Distributed Construction
of Small k-Dominating Sets and Applications. Journal
of Algorithms, 28(1):40-66, 1998.

[18] C. Lenzen and B. Patt-Shamir. Fast Routing Table
Construction Using Small Messages. ArXiv e-prints,
Oct. 2012.

[19] Y. Mansour and B. Patt-Shamir. Greedy packet
scheduling on shortest paths. Journal of Algorithms,
14:449-465, 1993.

[20] J. McQuillan, I. Richer, and E. Rosen. The new
routing algorithm for the arpanet. IEEE Trans. on
Communications, COM-28(5):711-719, May 1980.

[21] J. Moy. OSPF version 2. RFC 2328, Network Working
Group, 1998.

[22] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[23] D. Peleg, L. Roditty, and E. Tal. Distributed
Algorithms for Network Diameter and Girth. In Proc.
39th Int. Colloquium on Automata, Languages, and
Programming, 2012.

[24] D. Peleg and V. Rubinovich. Near-tight Lower Bound
on the Time Complexity of Distributed MST
Construction. SIAM Journal on Computing,
30:1427-1442, 2000.

[25] D. Peleg and A. A. Schiiffer. Graph Spanners. Journal
of Graph Theory, 13(1):99-116, 1989.

[26] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. Journal of the ACM,
36(3):510-530, 1989.

[27] L. L. Peterson and B. S. Davie. Computer Networks:
A Systems Approach. Morgan Kaufmann, 5th edition,
2011.

[28] N. Santoro and R. Khatib. Labelling and Implicit
Routing in Networks. The Computer Journal, 28:5-8,
1985.

[29] M. Thorup and U. Zwick. Compact routing schemes.
In Proc. 13th Ann. ACM Symp. on Parallel
Algorithms and Architectures, 2001.

[30] M. Thorup and U. Zwick. Approximate Distance
Oracles. Journal of the ACM, 52(1):1-24, 2005.

[31] U. Zwick. Exact and Approximate Distances in
Graphs - A Survey. In Proc. 9th Ann. European Symp.
on Algorithms, pages 33-48, 2001.

