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Abstract

In this work, we examine a generic class of simple distributed

balls-into-bins algorithms. Exploiting the strong concentra-

tion bounds that apply to balls-into-bins games, we provide

an iterative method to compute accurate estimates of the re-

maining balls and the load distribution after each round. Each

algorithm is classified by (i) the load that bins accept in a

given round, (ii) the number of messages each ball sends in a

given round, and (iii) whether each such message is given a

rank expressing the sender’s inclination to commit to the re-

ceiving bin (if feasible). This novel ranking mechanism results

in notable improvements, in particular in the number of balls

that may commit to a bin in the first round of the algorithm.

Simulations independently verify the correctness of the results

and confirm that our approximation is highly accurate even

for a moderate number of 106 balls and bins.

1 Introduction & Related Work

Consider a distributed system of n anonymous balls
and n anonymous bins, each having access to (perfect)
randomization. Communication proceeds in synchronous
rounds, each of which consists of the following steps.

1. Balls perform computations and send messages to
bins.

2. Bins receive messages, perform computations, and
respond to the received messages.

3. Each ball may commit to a bin, inform it, and
terminate.1

The main goals are to minimize the maximal number
of balls committing to the same bin, the number of
communication rounds, and the number of messages.
This fundamental load balancing problem has a wide
range of applications, including job assignment tasks,
scheduling, low-congestion routing, and hashing, cf. [7].

The first distributed formulation of the problem was
given in 1995 [1]. Among other things, in this work it was
shown that even a single round of communication permits
an exponential reduction of the bin load compared to
the trivial solution of each ball committing to a random
bin, without increasing the number of messages bins and
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1Observe that this step can be safely merged with the first step

of the subsequent round. Hence, the communication delay incurred

by an r-round algorithm equals that of r round trips plus the one
of a final commit message.

balls send by more than a constant factor. In the sequel,
a number of publications established a clear picture of
the asymptotics of the problem [4, 5, 6, 8]. Algorithms
that run for r rounds and are non-adaptive—each ball
chooses the bins it communicates with in advance—
and symmetric—contacted bins are chosen uniformly and
independently at random (u.i.r.)—can obtain maximal
bin load Θ((log n/ log log n)1/r) [5, 8] (the lower bound
applies for constant values of r and the number of
contacted bins only). Symmetric algorithms sending
O(n) messages in total require at least (1− o(1)) log∗ n−
log∗ L rounds to achieve bin load L, while log∗ n +
O(1) rounds are sufficient for bin load 2 [6]. Finally,
without such constraints, a maximal bin load of 3 can
be guaranteed within O(1) rounds [6].

Unfortunately, this information is of little help to a
programmer or system designer in need of a distributed
balls-into-bins subroutine. How should one decide which
algorithm to pick? For a reasonable value of n, say 105,
the constants in the above bounds are decisive. For
instance, log 105/ log log 105 ≈ 4, whereas log∗ 105 =
2. Moreover, some bounds are not very precise. For
example, Stemann proves no results for maximal bin
loads smaller than 32 [8]. This is a constant, but
arguably of little practical relevance: For n = 109,
letting each ball commit to a random bin results in
maximal bin load smaller than 16 with probability larger
than 99.98%. Yet, our simulations show that Stemann’s
algorithm performs better than an adaptive variant of
the multi-round Greedy algorithm, for which loads of
3-4 in 3 rounds are reported for n ∈ [106, 8 · 106] [4].
The symmetric algorithm from [6] guarantees an even
better bin load of 2, but, again, the asymptotic round
complexity bound of log∗ n+O(1) seems overly cautious:
the corresponding lower bound basically just shows that
a single round is insufficient to this end.

In summary, the existing results are inconclusive for
relevant parameter ranges: values of n that may occur in
practice admit very few rounds and small loads, even for
symmetric algorithms. Hence, it seems natural to explore
this region, aiming for accurate estimates and small loads.

Contribution We analyze two types of simple symmet-
ric algorithms. The first class subsumes the symmetric
algorithm from [6]. The second, novel class strictly im-
proves on the first in terms of the number of balls that



can be placed with the same maximal bin load, number
of rounds, and message complexity. In each round i ∈ N,
our algorithms perform the following steps.

1. Each ball sends a number Mi ∈ N of messages to
uniformly independently random (u.i.r.) bins. These
messages are either identical or are ranked 1, . . . ,Mi.

2. A bin of current load ` responds to (up to) Li − `
balls, where smaller ranks are preferred. Ties are
broken by choosing uniformly at random.

3. Each ball that receives at least one response com-
mits, either to a random responding bin (for un-
ranked messages), or the responding bin to which
it sent the message of smallest rank.

We further restrict that Li+1 ≥ Li for all i ∈ N, since
there is little use in decreasing the accepted loads in
a later round. An algorithm is thus described by the
sequence (Mi)i∈N, the increasing sequence (Li)i∈N, and
whether messages are ranked or not.

We provide an analytical iterative method for com-
puting accurate estimates of the number of committed
balls and the load distribution after each round. While
no technical innovation is required to this end, finding
accurate and simple expressions for the involved expec-
tations proved challenging. Moreover, we devised a pro-
gram that, given the above parameters, computes these
values. Our approach extends to the general case where
there is a different number of balls and bins. We comple-
ment our analysis by simulations, which serve to double-
check the correctness of the analytical bounds and con-
firm that they are highly accurate for practical values of
n. Furthermore, we compare to the algorithms from the
literature by means of simulation. The code is available
online [2].

Main Results The derived bounds (confirmed by our
simulations) show that symmetric algorithms can achieve
bin loads of 2 or 3 within 2 to 3 rounds, using fewer than
6n messages; note that sending fewer than 3n messages
implies that some balls commit without receiving any
message. Since we allow for arbitrary sequences (Mi)i∈N,
we can also infer what can be achieved if the number of
messages balls sent in each round is capped at a small
value. For instance, with M1 = 1 and M2 = M3 = 2,
n = 106 balls can reliably placed within 3 rounds, with
a maximal bin load of 3 and fewer than 3.5n messages in
total. Here it proves useful to pick L1 = 2 and increase
the permitted load to 3 only in later rounds, ensuring
that balls can be placed reliably despite sending few
messages. For all the choices of parameters we considered,
previous algorithms are consistently outperformed by our
approach.

Due to the variety of parameters, algorithms, and
optimization criteria, it is difficult to provide a general
answer to the question which algorithm to use (with
which parameters). Therefore, we consider the method
by which we derive our bounds and the program code
permitting their fast and simple evaluation to be of inde-

pendent interest. In a practical setting, we expect that
the available knowledge on constraints and optimization
criteria will make the search space sufficiently small to
tailor solutions with good performance using the toolbox
we provide.

Paper Organization In Section 2, we discuss why
all random variables of interest are highly concentrated
around their expectations and introduce notational con-
ventions. In Section 3, we analyze the first round of our
algorithms. We discuss how to extend the approach in-
ductively to rounds 2, 3, . . . in Section 4, as well as how to
apply it to the general case of m 6= n balls. In Section 5,
we evaluate a few choice sets of parameters to shed light
on the performance of the resulting algorithms and, by
means of simulation, compare to algorithms from the lit-
erature. Finally, in Section 6 we draw some conclusions.

2 Preliminaries

Concentration Bounds For the considered family of
algorithms, sets of random variables like whether bins
receive at least m ∈ N messages in a given round
are not independent. However, they are negatively
associated, implying that Chernoff’s bound is applicable
[3]. Denoting for any constant m by X≥m (Xm) the
number of bins receiving at least (exactly) m messages
in round 1, it follows for any δ > 0 that

P (|Xm − E[Xm]| > δE[Xm])

≤ P
(
|X≥m − E[X≥m]| > δE[X≥m]

2

)
+P

(
|X≥m+1 − E[X≥m+1]| > δE[X≥m]

2

)
≤ P

(
|X≥m − E[X≥m]| > δE[X≥m]

2

)
+P

(
|X≥m+1 − E[X≥m+1]| > δE[X≥m+1]

2

)
≤ 4e−δ

2 min{E[X≥m],E[X≥m+1]}/16,

where we applied Chernoff’s bound to each of the random
variables in the last step. Note that (i) trivially E[Xm] ∈
O(n) and (ii) E[Xm] decreases exponentially in m for
m ≥M1 ∈ O(1), the expected number of messages a bin
receives in round 1, as messages are sent to u.i.r. bins.
Hence, for any natural number γ,

P

( ∑
m∈N0

|Xm − E[Xm]| ≤ γ3
√
n

)

≥ 1−
γ2−1∑
m=0

P
(
|Xm − E[Xm]| > γ

√
n
)

−
M1n∑
m=γ2

P [Xm > 0] (union bound)



∈ 1− γ2e−Ω(γ2) −
M1n∑
m>γ2

n · e−Ω(m/M1)

(Chernoff (left), Markov + union bound (right))

⊆ 1− e−Ω(γ2)+O(logn). (M1 constant)

Put simply, assuming that the random variables Xm at-
tain their expected value in all computations introduces
only a marginal error: The probability that, say, more
than

√
n log3 n bins receive a different number of mes-

sages than they would if we just “assigned” messages
according to expecations is at most n−Ω(logn). Similar
reasoning applies in case the algorithm utilizes ranks.

Corollary 2.1. (follows from [3] as shown)
For any γ ∈ N,

P

( ∑
m∈N0

|Xm − E[Xm]| ≤ γ3
√
n

)
∈ 1− e−Ω(γ2)+O(logn).

Once the message distribution is fixed, bins decide
to which balls to respond. Since ties are broken by u.i.r.
choices of the bins, the results from [3] show that the
number of balls receiving a certain number of responses
also obey Chernoff’s bound. Finally, we conclude that
the random variables counting the number of bins with
a given load after the first round is subject to Chernoff’s
bound as well. In summary, all the variables we will
consider are tightly concentrated.

By induction, this reasoning extends to (a constant
number of) subsequent rounds. When the total number
of sent messages becomes smaller, also the deviation from
the expected values we need to consider becomes smaller
(i.e., we can replace the factor

√
n above by the root

of the largest considered expected value); concentration
for the number of bins receiving no message follows
from the bounds for the other variables. Overall, these
considerations imply that for the purposes of this work,
it is sufficient to assume that the aforementioned random
variables match their expectation, as the induced error
is negligible. Simulations will confirm this view; for the
sake of a straightforward presentation, we hence refrain
from phrasing statements analogous to Corollary 2.1 for
the random variables considered throughout this paper.

Notational Convention. Given the above observa-
tions, we will base our analysis on expected values. This
entails that we implicitly neglect terms of lower order,
and it will be convenient to do so when computing prob-
abilities as well. For instance, cleary(

n
k

)
nk/k!

=

k∏
i=1

n− (i− 1)

n
≥
(

1− k

n

)k
≥ 1− k2

n
.

Using the approximation
(
n
k

)
≈ nk/k! for k ∈ O(n1/4)

when computing a probability will thus not incur a total

error of more than O(
√
n) when infering an expectation.

Therefore, we adopt the convention of writing x ≈ y
whenever x ∈ (1 ± polylog n/

√
n)y (for probabilities or

expectations).

3 The First Round

3.1 Unranked Messages In order to compute the
(approximate) probability p that a ball successfully com-
mits in the first round, we need to determine how likely it
is to receive a response to a message from a bin. To this
end, we let all balls but one make their random choices
and determine the expected number E[Xm] of bins with
m messages. As argued in Section 2, the Xm are sharply
concentrated around their expectation, so this is suffi-
cient for estimating p with negligible error. Note also
that, choosing γ ∈ Ω(

√
log n), we can apply the union

bound over all n balls to see that this estimate is accu-
rate for all balls concurrently.

Since M1n messages are sent to u.i.r. bins in the first
round, we have

E[Xm] = n ·
(
M1n

m

)(
1

n

)m(
1− 1

n

)M1n−m

≈ n · M
m
1

m!

(
1− 1

n

)M1n

≈ n · Mm
1

eM1m!
.

Recall that each bin chooses a subset of at most L1

received messages to respond to. The probability that
a ball may commit is thus

(3.1) p(M1, L1) ≈ 1− (1− ps(M1, L1))M1 ,

where ps(M1, L1) is the probability that a single message
does result in a response. Note that we “held back” the
messages of the ball in question when approximating the
number of bins with a given load. Hence we need to add
one to the load of a contacted bin when determining the
probability that it responds to a message. We compute

ps(M1, L1) ≈
L1−2∑
m=0

Mm
1

eM1m!
+

∞∑
m=L1−1

Mm
1

eM1m!
· L1

m+ 1

=
1

eM1

L1−2∑
m=0

Mm
1

m!
+

L1

M1eM1

∞∑
m=L1

Mm
1

m!
.

Inserting these values into Equality (3.1), we obtain the
(asymptotic) percentage of balls that will not commit in
the first round, given in Table 1; simulation results from
100 runs, each with 106 balls and bins, confirm the tight
concentration of the values.

We see that increasing the number of messages
beyond 2 has little impact, with M1 > 3 even being
counterproductive. Intuitively, the congestion caused by
many messages prevents bins from choosing the “right”
ball to respond to. In the extreme case of each ball



M1 estimated % avg. % max. %
1 10.364 10.364 10.550
2 7.333 7.346 7.380
3 7.222 7.218 7.412
4 7.774 7.740 7.870
5 8.407 8.413 8.466
10 10.745 10.732 10.860
20 12.158 12.177 12.252
∞ 13.536

M1 estimated % avg. % max. %
1 2.334 2.333 2.465
2 1.188 1.182 1.249
3 1.125 1.131 1.228
4 1.290 1.288 1.400
5 1.546 1.549 1.678
10 2.838 2.848 2.981
20 3.876 3.878 4.007
∞ 4.978

Table 1: Remaining balls after one round, for L1 = 2 (left) and L1 = 3 (right), without ranks. 100 simulation runs
were performed with 106 balls each. The entry “∞” gives the limit for M1 →∞.

contacting each bin, the situation gets reversed: The bins
“throw” nL1 responses “into n balls”, and the probability
for a ball to not receive a response is (1−1/n)nL1 ≈ e−L1 .

Bin Loads To determine the load distribution after
the first round, we compute the probability p(k)(M1, L1)
that a given bin gets load k ∈ {0, . . . , L1}. To this
end, we consider the number of messages m it received
and determine the probability that exactly k out of
min{m,L1} (the number of responses the bin sent) balls
will choose this bin. It holds that

p(k)(M1, L1) ≈
L1−1∑
m=k

E[Xm]

n
·
(
m

k

)
pkc (1− pc)m−k

+

∞∑
m=L1

E[Xm]

n
·
(
L1

k

)
pkc (1− pc)L1−k,(3.2)

where pc = pc(M1, L1) is the probability that one of
the balls contacted by the bin indeed chooses the bin
to commit to. As the ball picks uniformly from the
responding bins, we can instead order the ball’s messages’
destinations randomly and pick the first responding bin
according to this order. We know that the considered
bin is among them and—up to negligible error—the other
messages will be sent to different bins. Therefore, we can
sum over all M1 possible positions of the target bin and
multiply 1/M1 (the probability that it is at this position)
with the probability that all previous messages do not
receive a response. Writing ps = ps(M1, L1), we get

(3.3) pc ≈
M1−1∑
i=0

(1− ps)i

M1
=

1− (1− ps)M1

psM1
.

Table 2 lists, for varying M1, the derived estimates of
p(k)(M1, 2) and p(k)(M1, 3), respectively, and compares
to results from simulations.

3.2 Ranked Messages To avoid the issue that in-
creasing M1 is detrimental, we rank the messages of each
node, and bins give preference to messages of small rank.
We can immediately see that this guarantees that the
number of allocated balls must increase with the number

of sent messages, since messages of higher rank do not
affect whether a bin responds to a message of small rank.

We already computed the number of bins receiving a
certain number of messages given M1. We now reuse
this information as follows, where Xm(k) denotes the
expected number of bins receiving m messages given that
each ball sends k messages. The probability pi(L1) that
a message with rank i ∈ {1, . . . ,M1} receives a response
can be inferred as

pi(L1) ≈
L1−1∑
m=0

E[Xm(i− 1)]

n

·
∞∑

m′=0

E[Xm′(1)]

n
·min

{
L1 −m
m′ + 1

, 1

}
,

where E[Xm(i − 1)]/n is the probability of a bin to
receive m messages of rank smaller than i, E[Xm′(1)]/n
is the probability to receive m′ messages of exactly rank
i (different from the considered message of rank i), and
min{L1 − m/(m′ + 1), 1} is the probability that a bin
receiving these messages will choose to respond to the ball
we consider. Here we exploit that all respective decisions
are made independently and messages of rank larger than
i are of no concern.

Observe that the inner sum equals ps(1, L1 − m).
Inserting this and the values for E[Xm] with M1 = i− 1
we computed before, we obtain

pi(L1) ≈
L1−1∑
m=0

(i− 1)m

ei−1m!
· ps(1, L1 −m);

here we use the convention that 00 = 1 here to ensure
that the terms are correct for i = 1 as well. We conclude
that the probability pranked(M1, L1) for a ball to commit
in the first round using ranked messages is

pranked(M1, L1) = 1−
M1∏
i=1

(1− pi(L1)).

Some values together with the results from 100 simulation
runs n = 106 are given in Table 3.



M1 load estimated % avg. % max. %

1
0 36.788 36.785 37.180
1 36.788 36.792 37.143
2 26.424 26.423 26.766

2
0 31.303 31.310 31.512
1 44.720 44.710 45.098
2 23.977 23.981 24.167

3
0 29.701 29.715 29.989
1 47.814 47.791 48.221
2 22.485 22.494 22.671

4
0 29.384 29.385 29.566
1 48.971 48.976 49.269
2 21.644 21.639 21.845

5
0 29.516 29.521 29.712
1 49.375 49.366 49.736
2 21.109 21.112 21.314

10
0 30.662 30.662 30.992
1 49.421 49.414 49.767
2 19.917 19.923 20.094

20
0 31.448 31.454 31.647
1 49.261 49.251 49.692
2 19.291 19.295 19.469

∞
0 32.203
1 49.089
2 18.708

M1 load estimated % avg. % max. %

1

0 36.788 36.779 36.990
1 36.788 36.807 37.155
2 18.394 18.386 18.707
3 8.030 8.029 8.214

2

0 33.822 33.814 34.151
1 39.056 39.067 39.473
2 21.609 21.606 21.877
3 5.513 5.513 5.635

3

0 32.439 31.968 32.208
1 42.664 41.615 42.013
2 22.776 21.998 22.282
3 4.611 4.419 4.548

4

0 31.057 31.055 31.250
1 43.105 43.122 43.584
2 21.910 21.881 22.174
3 3.993 3.942 4.037

5

0 30.791 30.696 30.913
1 43.993 43.848 44.330
2 21.846 21.761 21.995
3 3.707 3.695 3.810

10

0 30.913 30.919 31142
1 44.411 44.395 44.762
2 21.277 21.289 21.560
3 3.399 3.396 3.483

20

0 31.386 31.383 31.600
1 44.394 44.391 44.932
2 20.931 20.937 21.280
3 3.290 3.289 3.443

∞

0 31.883
1 44.362
2 20.575
3 3.181

Table 2: Fractions of bins with a given load after round one, for L1 = 2 (left) and L1 = 3 (right), without ranks and
100 simulation runs with n = 106. Entry “∞” gives the limit for M1 →∞.

M1 estimated % avg. % max. %
1 10.364 10.372 10.622
2 4.536 4.542 4.703
3 3.210 3.212 3.323
4 2.764 2.760 2.858
5 2.590 2.593 2.734
10 2.471 2.471 2.608
20 2.470 2.474 2.589
∞ 2.470

M1 estimated % avg. % max. %
1 2.334 2.340 2.434
2 0.454 0.455 0.510
3 0.206 0.205 0.234
4 0.139 0.139 0.170
5 0.115 0.115 0.138
10 0.097 0.984 0.123
20 0.096 0.974 0.123
∞ 0.096

Table 3: Remaining balls at the end of the first round with ranking, for L1 = 2 (left) and L1 = 3 (right). 100
simulation runs were performed with 106 balls each. The entry “∞” gives the limit for M1 →∞.

Bin Loads Approximating the bin loads algebraically
for the algorithm with ranking is tedious. Since the load
is a function of the number of messages of each rank re-
ceived, the number of summands increases rapidly with
M1. However, the associated terms decrease exponen-

tially, implying that the number of summands that need
to be considered can be reasonably bounded.

For the purpose of approximating the probability

p
(k)
ranked(M1, L1) that a bin has load k ∈ N at the end

of the first round with ranking, we sum over all vectors



(k1, . . . , kM1
), (m1, . . . ,mM1

) ∈ NM1
0 that represent fea-

sible combinations of the number of balls mi sending a
rank i message to the bin and the number ki of such
balls that commit to the bin due to a response to such
a message, respectively. Hence, the vectors must clearly
satisfy that mi ≥ ki for all i and that k =

∑M1

i=1 ki. How-
ever, it is also necessary that for each i with ki 6= 0,
the bin actually responds to at least ki messages of
rank i. This holds true if (and only if) for each i,

ri := max{min{mi, L1 −
∑i−1
j=1mj}, 0} ≥ ki. Out of the

ri balls receiving a response, exactly ki need to commit
to the bin. Overall, we have that

p
(k)
ranked(M1, L1) ≈

∑
(k1,...,kM1

)∈NM1
0

k=
∑M1

i=1 ki

∑
(m1,...,mM1

)∈NM1
0

∀i∈{1,...,M1}: ri≥ki{
M1∏
i=1

E[Xmi
(1)]

n
·

(
ri
ki

)
· pc(i)ki(1− pc(i))ri−ki

}
,

where

pc(i) = pc(i, L1) =

i−1∏
j=1

1− pj(L1)

is the probability that a ball receiving a response to its
message of rank i is committing to the respective bin
(i.e., it did not receive a response to a message of smaller
rank). Similar to the previous cases, this infinite sum
can be transformed into a finite one, exploiting that we
know the limit

∑∞
mi=Li−

∑i−1
j=1mj

E[Xmi
(1)]. A program

can easily approximately compute p
(k)
ranked(M1, L1); as Li

and thus k is small, the exponential number of summands
in k does not result in prohibitive complexity. Table 4
lists the computed bin loads and compares to the results
from simulation.

4 Later Rounds

Having determined the remaining balls and bin loads at
the end of a given round r−1, we can compute these val-
ues for round r in a similar fashion as we did for round
1; for the considered class of algorithms, no other param-
eters are of relevance. We continue to exploit the strong
concentration of these random variables, enabling us to
base our computations on expected values without intro-
ducing substantial errors—as long as the number of balls
does not become very small. Once, say polylog n balls re-
main, it is likely that all balls commit in the next round;
the computed probability bounds for commitment and
Markov’s inequality then yield an estimate of the proba-
bility to terminate. Note that our approximation intro-
duces an error of up to polylog n/

√
n in the probability

to receive a response to a message, which is to be taken
into account in this bound.

To simplify the notation, we will use a generic
notation with respect to some variables both for unranked
and ranked messages. By Y` we denote the random
variable counting the number of bins with load ` ∈

{0, . . . , Lr−1} at the end of round r − 1. Denote by nr
the number of balls at the beginning of round r and set
α := MrE[nr]/n. The expected number of bins receiving
m messages in round r is approximately

E[Xm] = n ·
(
Mrnr
m

)(
1

n

)m(
1− 1

n

)Mrnr−m

≈ n · α
m

eαm!
.

As all random choices are made uniformly and indepen-
dently, it follows that the expected number of bins X`,m

of load ` that receive m messages is roughly E[X`,m] ≈
αmE[Y`]/(e

αm!).

4.1 Unranked Messages To estimate the probability
ps that a specific message receives a response in the
unweighted case, we again fix the destination of all but
one message. Now we simply sum over all combinations
of ` and m, yielding

ps ≈
Lr−1∑
`=0

∞∑
m=0

E[X`,m]

n
·min

{
1,
Lr − `
m+ 1

}

≈
Lr−1∑
`=0

E[Y`]

n

∞∑
m=0

αm

eαm!
·min

{
1,
Lr − `
m+ 1

}
.

Analogously to (3.1), the probability that a ball commits
is p ≈ 1− (1− ps)Mr and thus determined by ps.

Bin Loads To determine the probability p(k) for a bin
to have load k ∈ {0, . . . , Lr} at the end of round i + 1,
we follow the same approach. We sum over the loads
at the beginning of the round, where each summand is
the probability to have load ` ∈ {0, . . . , L− r − 1} at the
beginning of the round multiplied by the probability to
have load k at the end of the round conditional to this
event. Note that having loads ` and k at the beginning
and end of the round, respectively, is equivalent to being
empty, accepting up Lr−` balls, and attaining load k−`.
Using (3.2) with these replacements, we obtain

p(k) ≈
Lr−1∑
`=0

E[Y`]

n
·(

Lr−`−1∑
m=k−`

E[Xm]

n

(
m

k − `

)
pk−`c (1− pc)m−k+`

+

∞∑
m=Lr−`

E[Xm]

n

(
Lr − `
k − `

)
pk−`c (1− pc)Lr−k+`

)
,

where, as in (3.3),

pc ≈
Mr−1∑
i=0

(1− ps)i

Mr
=

1− (1− ps)Mr

psMr
.



M1 load estimated % avg. % max. %

1
0 36.788 36.794 37.014
1 36.788 36.771 37.203
2 26.424 26.435 26.591

2
0 33.475 33.484 33.739
1 37.585 35.576 37.881
2 28.939 28.940 29.128

3
0 32.584 32.578 32.816
1 38.042 38.045 38.415
2 29.374 29.377 29.572

4
0 32.255 32.239 32.408
1 38.253 38.279 38.603
2 29.492 29.482 29.660

5
0 32.112 32.112 32.300
1 38.350 38.357 38.726
2 29.530 29.531 29.700

10
0 32.022 32.026 32.265
1 38.427 38.418 38.770
2 29.551 29.556 29.696

20
0 32.021 32.037 32.245
1 38.428 38.394 38.822
2 29.551 29.569 29.732

M1 load estimated % avg. % max. %

1

0 36.788 36.783 37.000
1 36.788 36.792 37.238
2 18.394 18.392 18.639
3 8.030 8.032 8.195

2

0 35.958 35.957 36.256
1 36.845 36.843 37.179
2 18.890 18.898 19.200
3 8.307 8.301 8.501

3

0 35.826 35.820 36.041
1 36.882 36.891 37.299
2 18.965 18.965 19.229
3 8.327 8.324 8.499

4

0 35.785 35.790 36.064
1 36.900 36.894 37.226
2 18.984 18.982 19.292
3 8.330 8.335 8.484

5

0 36.769 35.778 36.029
1 36.909 36.903 37.306
2 18.991 18.973 19.176
3 8.332 8.346 8.487

10

0 35.755 35.747 35.949
1 36.918 36.934 37.295
2 18.995 18.986 19.245
3 8.332 8.333 8.494

20

0 37.755 35.743 35.939
1 36.919 36.935 37.299
2 18.995 18.996 19.218
3 8.332 8.326 8.541

Table 4: Percentage of bins with a given load, for L1 = 2 (left) and L1 = 3 (right), with ranks. 100 simulation runs
were performed with 106 balls each.

4.2 Ranked Messages Applying the same pattern,
deriving the expressions for the algorithm with ranking is
now straightforward. We sum over the possible bin loads
` ∈ {0, . . . , Lr−1} from the previous round, weigh with
the probability for a bin to have this load, and multiply
with the probability for a bin with (effective) maximal
bin load of Lr − ` in round r to have k − ` balls commit
to it.

pi ≈
Lr−1∑
`=0

E[Y`]

n
·
Lr−`−1∑
m=0

E[Xm(i− 1)]

n

·
∞∑

m′=0

E[Xm′(1)]

n
·min

{
Lr − `−m
m′ + 1

, 1

}
,

Here Xm(i−1) and Xm′(1) denote the variables counting
the number of bins receiving m messages of rank smaller
than i and m′ messages of rank i, respectively (i.e., Xm

when assuming that i− 1 or 1 messages are sent per ball,
respectively). As in the first round, the probability for a
ball to commit to some bin then is

pranked = 1−
Mr∏
i=1

(1− pi).

Bin Loads In order to determine the bin loads at
the end of the round, we need to adjust the value
ri := max{min{mi, Lr − `−

∑i−1
j=1mj}, 0}, i.e., take into

account the bin load ` ∈ {0, . . . , Lr−1} carried over from
the previous round, and obtain

p
(k)
ranked ≈

Lr−1∑
`=0

E[Y`]

n
·

∑
(k1,...,kMr )∈NMr

0

k−`=
∑Mr

i=1 ki

∑
(m1,...,mMr )∈NMr

0

∀i∈{1,...,Mr}: ri≥ki{
Mr∏
i=1

E[Xmi(1)]

n
·
(
ri
ki

)
· pc(i)ki(1− pc(i))ri−ki

}
,(4.4)

where

pc(i) =

i−1∏
j=1

1− pj .

In addition to ri and the weighted summation over
` ∈ {0, . . . , Lr−1}, the only other change here is that∑Mr

i=1 ki = k− `, since only k− ` additional balls need to
commit to the bin to reach load k.



4.3 Different Numbers of Balls and Bins Note
that the expression we gave in this sections can also be
applied to the first round, where we simply have that
Y0 = n and Y` = 0 for all ` 6= 0. Setting n1 6= n merely
changes α, without affecting the expressions in any other
way. Thus, our analysis can be applied to the general
case of different numbers of balls and bins.

However, if n1 � n, Li will have to be chosen
fairly large. This will render computing the bin loads
with ranked messages using (4.4) problematic, since the
number of summands with non-negligible contribution
grows rapidly. This could be tackled by grouping them
together into blocks and use approximate terms (with
small error) to simplify the expressions. We note that
n1 � n also implies that even the trivial algorithm
placing balls uniformly at random performs well, though,
so we refrain from addressing this issue formally.

5 Selected Results and Comparison to Other
Algorithms

Due to the sheer number of possible combinations of
the parameters, we believe that an attempt to discuss
the parameter space exhaustively would be fruitless.
Therefore, in this section we discuss several combinations
of parameters we consider of particular interest. To round
off the presentation, we make a best effort at a fair
comparison to algorithms from the literature; the relevant
candidates here are variants of the Greedy algorithm [1, 4]
and Stemann’s collision algorithm [8].

We will focus on choices of parameters that optimize
for load, rounds, and the total number of messages,
respectively, while not neglecting the other optimization
criteria. We will constrain the number of bins a ball
may contact in a given round to at most 5; this more or
less arbitrary choice serves to demonstrate that it is not
necessary to enable balls to contact a very large number of
bins concurrently. Given that the performance is strictly
better with ranked messages, we examine only this case.
We will keep the bin loads to a maximum of 2 or 3. Under
this constraint, Table 1 and Table 3 show that there is
little to gain in choosingM1 > 2. Since a key advantage of
adaptiveness is that it permits to keep the total number of
messages small, we will hence keep M1 ∈ {1, 2}. It turns
out that even with these restrictions, we can do well in 3
or even 2 rounds. Given that 1 round or maximum load
1 are clearly insufficient, this leaves a reasonably small
number of options to explore.

5.1 Equal Number of Balls and Bins The following
results have been confirmed by simulations with 106 balls
to the extent possible; as observed in Section 2, the com-
puted expectations are close to the exact ones and the
respective random variables are strongly concentrated.
Spot checks confirmed that, as expected, standard de-
viations behave approximately as

√
n, i.e., for 104 balls

the relative deviations from expectations increase by fac-
tor 10. Given the minuscule variations observed already

for 106 balls, we focus on this number in the following,
with the goal of essentially eliminating one free param-
eter. We note that in most cases the expected number
of remaining balls at the end of the experiment was far
below 1, so all balls were placed in the simulations.

Minimizing the Maximal Bin Load We use the
following set of parameters: 3 rounds, L1 = L2 = L3 = 2,
M1 = 2, M2 = 5, M3 = 5. The computed fraction of
remaining balls is 5.45 · 10−7. We point out that if the
expected number of remaining balls is smaller than 1,
Markov’s inequality gives a straightforward upper bound
on the probability that not all balls commit. Because we
apply Chernoff’s bound only in rounds prior to the last
when there are still sufficiently many balls, the computed
expectations are still accurate. The total number of
messages sent is bounded from above by n + 2R, where
R is the total number of requests sent, since each request
receives a response and each ball sends a final message
to commit. We compute R ≈ 2.23n, implying that fewer
than 5.5n messages are sent in total. The fractions of bins
with loads 0, 1, and 2 are approximately 31.4%, 37.3%,
and 31.4%, respectively.

Minimizing the Number of Rounds Here, our goal
is to place all balls in two rounds. We choose M1 = 2
and M2 = 5, and pick L1 = 2 and L2 = 3. Increasing the
permitted load in the second round has the advantage
that all bins still accept at least one ball, reducing the
probability for a ball to have “collisions” for all requests.
As a positive side effect, the load distribution improves
compared to the case L1 = L2 = 3, since fewer bins will
have load 3. An expected fraction of 5.7 · 10−10 of the
balls remain, roughly R ≈ 2.23n messages are sent (i.e.,
fewer than 5.5n total messages), and the load distribution
is about 31.98%, 37.37%, 29.32%, and 1.33% for loads 0,
1, 2, and 3, respectively.

Minimizing Communication We choose M1 = 1 and
M2 = M3 = 2. The load sequence is (2, 3, 3); we note
that compared to the sequence (3, 3, 3), the expected
number of remaining balls drop by a factor of roughly
250. The expected fraction of remaining balls is roughly
4.88 · 10−8, R ≈ 1.21n (i.e., fewer than 3.5n messages
are sent), and the load distribution is 33.12%, 36.60%,
27.45%, and 2.83% for loads 0 to 3, respectively.

Maximizing the Probability to Terminate at Low
Communication Overhead We choose M1 = 1, M2 =
4, and M3 = 5. The load sequence is (2, 2, 3); we note
that compared to the sequence (3, 3, 3), the expected
number of remaining balls drops by a factor of roughly
107. The expected fraction of remaining balls is roughly
5.9 · 10−19, R ≈ 1.41n (i.e., fewer than 3.85n messages
in total), and the load distribution is 31.759%, 36.524%,
31.675%, and 0.042% for loads 0 to 3, respectively.



Comparison to Variants of the Parallel Greedy
Algorithm The general idea underlying the greedy al-
gorithm is that balls send d requests to bins, which assign
ranks to the received messages. In the basic version, bins
respond with these values and balls commit to a bin from
which they received a lowest rank. In the multi-round
version, bins send a message to the non-committed ball
with lowest rank containing their current load, and re-
ceivers commit to the bin from which they received the
smallest load. Note that the ranking system here follows
a different idea than our approach, in which balls rank
their messages.

We simulated the simple (“one-shot”) Greedy algo-
rithm [1] for d = 5 contacted bins and 106 balls and
determined the fraction of balls that would be able to
commit if we restricted the bin loads to 2 and 3, respec-
tively. This requires roughly 11n messages and a fraction
of 1.53% and 2.21 · 10−4 of balls remained, respectively.
The message complexity can be reduced by decreasing
the number of bins contacted by each ball, but this would
result in even fewer committing balls.

For the multi-round version of Greedy [1] with d = 5
and n = 107, we determined the fraction of balls that
could be placed in 3 rounds (resulting in maximal load
3). This also resulted in roughly 11n messages; after 2
rounds, a fraction of 1.14% of the balls remained, while
all balls were placed in 3 rounds. In comparison, our
algorithm with L1 = 2, L2 = 3, M1 = 1, and M2 = 2
retains a fraction of 6.1 · 10−5 of the balls after 2 rounds,
i.e., performs notably better at lower communication
complexity.

In [4], the authors propose an adaptive variant of the
multi-round Greedy algorithm called H-retry that runs
for 3 rounds. After running an initial round of the multi-
round Greedy algorithm with d = 2 in the first round and
trying to resolve conflicts in the second round, balls that
are still unsuccessful contact 2 additional bins in the third
round. The authors report simulation results. These
indicate that the fraction of remaining balls after 3 rounds
is slightly above 10−7 for bin loads of 3; the number of
messages is larger than 5n. This is outperformed in all
considered criteria by our algorithm for message and load
sequences (1, 2, 2) and (2, 3, 3), respectively.

In summary, we see that the Greedy algorithm com-
pares unfavorably to our approach, even if we permit each
ball to contact 4 or 5 different bins and send a substan-
tially larger number of messages.

Comparison to Stemann’s Algorithm We ran Ste-
mann’s collision algorithm with accepted loads of 2 and 3,
respectively. In Stemann’s algorithm, each ball contacts
2 bins. In each round, the bins for which the accepted
load threshold L is large enough to accommodate all un-
committed balls that contacted them initially inform the
respective balls, which then commit to (one of) the ac-
cepting bin(s). This process can be implemented by each
ball (i) sending the initial requests, (ii) sending a commit

message to the respective bin, and (iii) sending a “will
not commit” message to the bin it initially contacted but
does not commit to. Since there are 2n initial requests
only, the total number of messages sent by bins will be
at most 2n. This results in a total of at most 6n mes-
sages. Roughly n of these messages can be saved because
balls do not need to send a “will not commit” message in
case both of the bins they contacted accept them in the
same round, and bins do not need to inform a ball that
committed in an earlier round that it could be accepted.

For load 2 and n = 107, after 3 rounds the fraction
of remaining balls is 2.09%, and 4.94n messages have
been sent for the implementation described above. For
load 3, after 2 rounds a fraction of 7.8 · 10−4 of the balls
remained and 4.998n messages had been sent. In round 3
the remaining balls all committed and the message total
increased to 5n.

In comparison, for the parameters M1 = 1, M2 =
M3 = 2, L1 = 2, and L2 = L3 = 3 we picked to
minimize communication, after two rounds the fraction of
remaining balls was 6.1·10−5; recall that the total number
of messages sent was smaller than 3.5n. We conclude
that even under the constraint that balls send no more
than 2 messages in each round, our approach outperforms
Stemann’s algorithm in terms of the achievable trade-off
between maximal load and communication. Moreover,
since in Stemann’s algorithm loads of L are accepted right
from the start, for L = 3 a fraction of 5.51% of the bins
ended up with load 3, whereas in our case only 2.83% of
the bins had this load.

5.2 Different Numbers of Balls and Bins

Few Balls We now consider the case where there are
n = 106 bins, but only λn balls for some λ ∈ (0, 1).
Clearly, this makes it strictly easier to achieve better
performance.

Bin Loads of 1 with 2 Rounds Given this expectation,
we start by trying to enforce bin loads of at most 1. As
shown in Table 5, trying to achieve this in 2 rounds is too
much to ask for unless λ ≤ 10%. Here we use M = (2, 5);
the number of messages sent is roughly 3.5λn. This result
is not too surprising, since there is a notable fraction of
bins that cannot accept a ball in the second round.

Do 3 Rounds Help in Achieving Load 1? Next,
Table 5 gives a comparison between M = (2, 5, 5) and
M = (2, 10). The third round achieves a decrease in the
number of remaining balls of about a factor of 1/(1−λ)5;
however, there is little difference to just sending more
messages in round 2: since each bin receiving a ball
becomes fully occupied, the “congestion” reduces too
little.

Bin Loads of 2 in 2 rounds We give the expected
remaining loads for L = (2, 2), M1 ∈ {1, 2}, and M2 = 5,



λ L = (1, 1) L = (1, 1, 1) L = (1, 1) L = (2, 2) L = (2, 2)
M = (2, 5) M = (2, 5, 5) M = (2, 10) M = (1, 5) M = (2, 5)

1 12.3% 7.6% 10.2% 5.7 ∗ 10−4 1.8 ∗ 10−4

0.9 8.3% 3.8% 6.0% 2.0 ∗ 10−4 5.4 ∗ 10−5

0.8 5.0% 1.5% 2.9% 6.1 ∗ 10−5 1.4 ∗ 10−5

0.7 2.7% 0.4% 1.1% 1.5 ∗ 10−5 2.8 ∗ 10−6

0.6 1.2% 9.0 ∗ 10−4 2.7 ∗ 10−3 2.8 ∗ 10−6 4.4 ∗ 10−7

0.5 0.4% 1.2 ∗ 10−4 4.0 ∗ 10−4 3.7 ∗ 10−7 4.7 ∗ 10−8

0.4 0.1% 9.9 ∗ 10−6 3.0 ∗ 10−5 3.1 ∗ 10−8 3.0 ∗ 10−9

0.3 1.4 ∗ 10−4 3.4 ∗ 10−7 8.5 ∗ 10−7 1.2 ∗ 10−9 7.7 ∗ 10−11

0.2 8.7 ∗ 10−5 2.8 ∗ 10−9 4.9 ∗ 10−9 1.1 ∗ 10−11 4.0 ∗ 10−13

0.1 7.0 ∗ 10−8 7.0 ∗ 10−13 8.5 ∗ 10−13 3.7 ∗ 10−15 3.8 ∗ 10−17

Table 5: Percentage of remaining balls with ranks for, n bins, λn balls for varying λ, and certain choices of L and
M ; we give the computed estimates only.

for varying λ, in the final columns of Table 5. For
λ ≤ 0.5, two rounds are clearly sufficient for the number
of considered balls.

Many Balls Note that the larger the ratio between
balls and bins gets, the smaller the relative variances
in terms of the number of messages received by bins,
loads, remaining balls, etc. As mentioned in Section 4,
it becomes non-trivial to evaluate (4.4). Given the close
match between analysis and simulation observed in our
previous studies, we provide simulation results only here.
For simplicity, we fix λ = 10 and use 10 runs with 107

balls; the idea is to get better indication of the threshold
around which 106 balls can be placed fairly reliably. Since
the larger ratio of balls to bins implies an average bin load
of 10 and we can expect tighter concentration, it seems
natural to aim for a maximum bin load that is not much
larger than 10.

2 rounds We fix the number of rounds to 2, L1 = 10,
and M1 = 1. For L2 = 15 and M2 = 2, an average
fraction of 3.51 · 10−6 of the balls remain. On the other
hand, using L1 = 15 with all other parameters changed
increases this fraction to 8.13 · 10−5. We see that again
it pays off to reserve some of the bins’ capacity for later.

3 rounds Interestingly, for 3-round algorithms this gen-
eral trend even extends to the case in which we start
with sub-average accepted bin loads, i.e., L1 < λ is ben-
eficial. Fixing M = (1, 2, 5), the choices L = (13, 13, 13),
L = (10, 13, 13), and L = (8, 10, 13) yield fractions of
1.9 · 10−6, 1.3 · 10−7, and 0.5 · 10−8 remaining balls, re-
spectively.

6 Conclusion

We presented a novel class of simple adaptive algorithms
and an accompanying analysis technique for the paral-
lel balls-into-bins problem. Analytical and experimental
results show substantial improvements over previous al-

gorithms. We hope that this work and the accompanying
simulation code [2] provide tools for practitioners looking
for a distributed balls-into-bins routine tailored to their
needs.

In this paper, we restricted our attention to the syn-
chronous setting. However, we believe that the presented
approach bears promise also for asynchronous systems.
If bins process messages in the order of their arrival
and message delays are independently and uniformly dis-
tributed, the resulting behavior of the algorithm would
be identical if no messages from round i + 1 arrive at
a bin before all messages from round i are processed.
To handle this case, a bin can delay processing messages
from rounds larger than i until it is not expecting a re-
sponse from a ball which it permitted to commit to it
anymore. If a message from a later round is processed
by a bin not awaiting any further responses, we conjec-
ture that it is beneficial to favor the request over those of
earlier rounds, since the respective ball is in greater need
to commit. This reasoning suggests that the respective
asynchronous variants of our algorithms provide promis-
ing heuristics for asynchronous systems; extensions of our
analysis technique seem possible. Such hope does not ex-
ist for algorithms from the literature with low communi-
cation overhead, like H-retry or Stemann’s collision al-
gorithm, whose strategies cannot work without synchro-
nization points.
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