
Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 1 of 20

Proving Safety Properties of the Steam Boiler
Controller

Formal Methods for Industrial Applications: A Case Study

Gunter Leeb
leeb@auto.tuwien.ac.at

Vienna University of Technology
Department for Automation

Treitlstr. 3, A-1040 Vienna, Austria

Nancy Lynch
lynch@lcs.mit.edu

Massachusetts Institute for Technology
Laboratory for Computer Science

Technology Square 545, Cambridge, MA

Abstract
In this paper we model a hybrid system consisting of a continuous steam boiler and a

discrete controller. Our model uses the Lynch-Vaandrager Timed Automata model to show
formally that certain safety requirements can be guaranteed under the described assumptions and
failure model. We prove incrementally that a simple controller model and a controller model
tolerating sensor faults preserve the required safety conditions. The specification of the steam
boiler and the failure model follow the specification problem for participants of the Dagstuhl
Meeting “Methods for Semantics and Specification.”

1 Introduction
The number of different formal methods for specifying, designing, and analyzing real-

time systems has grown diff icult to survey. For the purpose of comparison, some problems
have been defined or borrowed from real-li fe applications. One such benchmark problem is
the Steam Boiler Controller problem discussed in this paper. Another representative of this
kind of problem is the Generalized Rail road Crossing (GRC) [Hei93]. Various approaches
have been applied to the latter, e.g., [Cle93,Jah86,Sha93,Hoa93]. Many steps of the
approach described here are similar to the steps described in [Hei94].

steam rate (v)
water level (q)

number of pumps (pr_new)
or emergency stop (stop)

ControllerPumps (pr)

M
2

M1

Steam Boiler

W

 P

active pumps (pr)

Figure 1: The steam boiler system. This picture shows the information flow between the controller
and the steam boiler. It also gives some notion about the capacities of a pump (P), the limits for the

steam rate (W) and the boundaries for the water level (M1 and M2).

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 2 of 20

However, the Steam Boiler Controller represents a different kind of problem. Basically,
it consists of a discrete control loop where several components may fail . The full version of
this paper on the CD-ROM contains a condensed and informal description of the Steam
Boiler Controller specification. The original specification can be found in [AS96]. Since
even the original specification is informal and ambiguous, the condensed version on the
CD-ROM summarizes our interpretation of the described problem.

The rest of this paper is organized as follows: After presenting an outline of our formal
methods (Section 2), we state the assumptions we make for our model and show how the
model is related to the physical model (Section 3). The following two sections describe the
model of the boiler and a simple controller. In Section 6, we show some key model
invariants. In Section 7, we present a similar controller which allows for sensor faults and
we show its correctness incrementally based on the simpler controller model.

2 The Formal Framework
Applying formal methods to a system involves three steps: the system requirements

specification, the design of an implementation, and the verification that the implementation
satisfies the specification. The system requirements specification describes all acceptable
system implementations [Hei94]. It has three parts:

1. A formal model describing the environment (e.g., the steam boiler) and its interface

2. A formal model describing the controller system and its interface at an abstraction level

3. Formal statements of the properties that the system must satisfy

The formal method we used to specify the steam boiler problem and to develop and
verify a solution represents both the controller and the system environment as Timed
Automata, according to the definition of Lynch and Vaandrager [Lyn91]. A Timed
Automaton is a very general automaton, i.e., a labeled transition system. It is not finite-
state: for example, the state can contain real-valued information, such as the current time or
the current steam rate. This characteristic makes Timed Automata suitable for modeling not
only discrete computer systems but also real-world entities such as the steam boiler. We
base our work directly on an automaton model rather than on any particular specification
language, programming language, or proof system, so that we may obtain the greatest
flexibilit y in selecting specification and proof methods. The formal definition of a Timed
Automaton appears in the CD-ROM version in Appendix A. Appendix B describes the
Simulation Mapping method used for incremental reasoning about other increasingly
specific instances of the model.

The Timed Automaton model supports the description of systems as collections of
Timed Automata, interacting by means of common actions. In our example, we define
separate Timed Automata for the steam boiler and the controller system; the common
actions are sensors reporting the current state of some parameters of the boiler and actuators
controlling the pumps of the boiler.

Actions change the state and, in particular, some variables of the state of an automaton.
As a distinction between variables of the pre-state and the post-state, we write variables of
the post-state (or the representation of the whole post-state) with a prime. In changing the

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 3 of 20

state, actions perform a step or transition. Such a step or transition defines the change from
one state s to another state s’ by an action a, which is formally written as (s, a, s’) or

sA
a

A → s’A, where the subscript A stands for the name of the particular automaton.

For the communication with other automata, we define input, output and internal
actions. Such input actions will be enabled by output actions of another automaton. For
example, the actuator output action in the controller model is synchronized with the
actuator input action of the steam boiler model. The inherent flexibilit y of the method
allows, for example, the introduction of a new automaton representing channel and message
transfer characteristics to be employed in-between the boiler automaton and the controller
automaton, interfacing with an input action from the controller and an output action to the
steam boiler model. This allows us to model more complex systems without major changes
to the previous automata. Furthermore, with this composition, we can reuse information we
gained about the separate automata.

We describe the Timed Automata using precondition-effect notation. The precondition
identifies particular states in which the system performs some actions. For any state
fulfilli ng the precondition, the effect part describes how the state is changed by the
particular action. This has several advantages. First of all , it is easy to understand. Even
more important is that implementations can follow the abstract model description and even
allow for simple validity checks in the code. In addition, all the invariants proved represent
useful checks to be validated while running the final application. This approach will help to
identify rare kinds of faults that are not even considered in the model. In this view, formal
verification with Timed Automata is a constructive approach to systems development.

3 Further Considerations for Our Model
For our model, we need to know some more information about the physical behavior.

Some of the following assumptions follow the informal specification of [AS96] or are
intended to resolve some ambiguity. As suggested by [AS96], to simpli fy reasoning about
the model, we ignore second order effects li ke the volume expansion of water when heated.
This reasoning implies that a unit of water measured as steam can be replaced by pumping
in exactly one unit of water.

Most important is some knowledge about how fast the steam rate may change over time.
We assume a reasonable worst case situation where the steam rate increases at most with U1

liters per second per second. In other words, the maximum gradient of increase of the steam
rate is U1 l/s

2. Symmetric to this, we know that the fastest decrease of the steam rate is
denoted with U2 l/s

2.

Furthermore, no pump supplies water unless activated and then it supplies a constant,
exactly known amount of water per second denoted with P liters per second. The delay
between reading the sensors and consequently changing the active pumps, denoted with S,
is caused mainly by the slow reaction of the physical pumps. As a minor difference to the
specification in [AS96], we assume the same delay for the activation and the deactivation of
pumps. Since the pumps cause most of the delay S, we assume any boiler shut down is
activated instantaneously and the whole process of shutting down the steam boiler is left to
a later phase which we do not consider in this model. In the same way, we omit the

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 4 of 20

initialization phase, which should force the boiler state into a particular acceptable set of
start states before the boiler becomes fully operational. We assume all parameters of the
start state for this model are already in their correct operational ranges. Moreover, we
assume that the controller may decide to shut down the boiler any time it sets the new
pumps. This assumption includes the possibilit y that the operator initiates an emergency
stop, and it provides the flexibility to incorporate other reasons to shut down the boiler.

Shutdown
Phase

Normal
Operation

Initialization
Phase

Emergency
Stop

Water level
in start up
condition.

Time

Analyzed by our Model

Figure 2: Our model only considers the time of normal operation. At the beginning, the initialization
phase provides all parameters in the correct range and the shutdown phase is activated through

setting parameter stop to true.

Other helpful assumptions are correct and accurate sensor values or the detection of a
sensor fault. Perfect fault detection and identification are necessary for our model but will
not be available in reality. In this aspect our model might need improvement if it is
necessary to study such general cases. For example, the techniques developed for
probabili stic Timed Automata [Seg94] seem to be appropriate for a problem requiring the
analysis of such probabili stic properties. Probabili stic Timed Automata would allow one to
assign probabiliti es to certain actions, e.g., for a successful error detection, and to prove the
probability of a certain system behavior.

As a further simpli fication, we choose a very simple fault model which, in fact, includes
or is close to most common fault conditions. The fault model assumes that every pump may
fail and stop pumping water into the boiler. As a minor simpli fication, we assume for our
model that any pump fault only occurs at times when pumps may be activated or stopped.
This happens periodically whenever the parameter set equals the current time (now). Thus,
pumps, when successfully activated, supply water at least to the next instant where pumps
might change their behavior. Moreover, we assume that the activation delay, i.e., the time
from reading the sensor values until consequently the pumps change their behavior, is
smaller than the time between two successive sensor readings (S < I).

The goal of modeling the steam boiler and the controller with Timed Automata is to
show certain important properties. In this case, we want to verify that our controller model
does not violate safety. Therefore, we have to show that neither the steam rate nor the water
level crosses its critical limits.

Next, we summarize the information we have about the physical model.

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 5 of 20

3.1 The Physical Model
We assume the steam rate expressed as a function over time (sr(t) ≥ 0) is differentiable.

Furthermore, we know that

− ≤ ≤U sr t U2 1

.
()

and

wl t wl pr x dx sr x dx
t t

() () () ()= + −∫ ∫0
0 0

where sr t
.

() represents the derivative of the steam rate function and wl(t) the amount of

water in the boiler at the time t and pr(t) (≥ 0) the (discrete) pump rate function over time.
We apply the following transformation to this information to make our model easier to
follow.

We know − ≤U sr t2

.
() , which implies 0 2≤ +sr t U

.
() and in general

 sr t U dt sr t t U C
.

() () *+ = + +∫ 2 2 .

Thus, we know that for all ∆t,
sr t t U t sr t() * ()+ + ≥∆ ∆2

and symmetrically
sr t t U t sr t() * ()+ − ≤∆ ∆1 .

In the following, we use s for sr(t) and snew for sr(t + ∆t). With a similar straightforward
calculation as before, we get

()wl t t wl t pr x dx s s t
t

t t

HIGH new() () () , ,+ ≥ + −
+

∫∆ ∆
∆

δ

and symmetrically

()wl t t wl t pr x dx s s t
t

t t

LOW new() () () , ,+ ≤ + −
+

∫∆ ∆
∆

δ

with

δHIGH ()s s t
tU s tU s t U U s s

U Unew
new new, ,

()
∆

∆ ∆ ∆
=

+ + − −
+

2 2

2 2
2 1

2
1 2

2

1 2

and

()δLOW new

new new new

new

s s t

tU s tU s t UU s s

U U
if

s

U

s

U
t

s

U

s

U
otherwise

, ,

()

∆

∆ ∆ ∆
∆

=

+ − + −
+

 +

 >

+

2 2
2 2

2 2

1 2
2

1 2
2

1 2 2 1
2

2

2

1

δHIGH describes the maximum amount of water that could evaporate and δLOW the
minimum amount of water. Obviously, δLOW depends on whether the steam rate might drop
to 0 in the interval ∆t. Figure 3 represents δHIGH and δLOW graphically for an arbitrary
interval t. Figure 3 ignores the pump rate, and the shaded areas represent the water

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 6 of 20

evaporated into steam until a certain point in time. In other words, δHIGH and δLOW represent
the worst case amount of water that could evaporate into steam in interval ∆t. Both depend
on the knowledge of the steam rate at the beginning and the end of the interval. The basic
dependencies shown in the following Lemma 1 are sufficient for all further proofs.

W

sr

v v’

time

U1
-U2

t = I + now - read

now
read

∆t

δLOW(sr, v, t)

δHIGH(sr, v, t)
steam-
rate

Example of the
real steam rate

Figure 3: Example of what δHIGH and δLOW represent. For different intervals the maximum and
minimum amount of water evaporated into steam depends on the steam rate at the beginning of the

interval and at the end.

The following Lemma lists all necessary relations about the steam development
functions δHIGH and δLOW. The intuition for this lemma can be gained from Figure 3.
Obviously, two consecutive intervals can be joined and the minimum and maximum
amount of water is smaller and bigger respectively or equal to the minimum/maximum
water evaporated in both subintervals.

Lemma 1: For all a, b, c ≥ 0, all constants > 0 and t, u > 0:

1) δLOW(a, b, u) ≤ δHIGH(a, b, u)
2) a2/(2*U2) if a < U2 * u
 a * u - U2*u

2/2 otherwise
3) b2/(2*U1) if b < U1 * u
 b * u - U1*u

2/2 otherwise
4) δLOW(a, b, u) + δLOW(b, c, t) ≥ δLOW(a, c, t + u)
5) (a + b)*u/2 ≥ δLOW(a, b, u)
6) δHIGH(a, b, u) ≤ (b * u + U2*u

2/2)
7) δHIGH(a, b, u) + δHIGH(b, c, t) ≤ δHIGH(a, c, u + t)
8) δHIGH(a, b, u) ≥ (a + b)*u/2
9) δHIGH(a, b, u) ≤ (a * u + U1*u

2/2)

Proof: 1. - 9.: By calculus.
æ

Based on this information, we can now model the steam boiler as a Timed Automaton.

δLOW(a, b, u) ≥

δLOW(a, b, u) ≥

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 7 of 20

4 The Boiler Model
Constants

Name Type Restriction Unit Description

I positive real > S s time in-between periodical sensor readings

S positive real < I s delay to activate pumps after the last sensor reading

U1 positive real l/s2 maximum gradient of the increase of the steam rate

U2 positive real l/s2 maximum gradient of the decrease of the steam rate

M1 real ≥ 0, < M2 l minimum amount of water before boiler becomes critical

M2 positive real ≤ C, >M1 l maximum amount of water before boiler becomes critical

W positive real l/s maximum steam rate before boiler becomes critical

P positive real l/s exact rate at which one active pump supplies water to the boiler

#pumps integer > 0 number of pumps that can supply water to the boiler in parallel

C positive real ≥ M2 l capacity of the boiler

Table 1: Constants and their relations for the boiler and controller models

Variables

Name Initial Value Type Values Range Unit Description

now 0 real [0 ... ∞) s current time

pr 0 integer { 0, … #pumps} number of pumps actively supplying water to the
boiler

q >> M1,
<< M2

real [0 ... C] l actual water level in the boiler

v 0 real [0 ... ∞) l/s steam rate of the steam currently leaving the
boiler

pr_new 0 integer { 0, … #pumps} number of pumps that are supposed to supply
water after the activation delay

error 0 integer { 0, … #pumps} number of pumps that fail to supply water to the
boiler after activation

do_sensor true boolean { true, false} enable a single sensor reading

set S real [0 ... ∞) s next time the pumps change to the new settings

read 0 real [0 ... ∞) s next time the sensors will be read

stop false boolean { true, false} flag that determines whether emergency shut-
down is activated

Table 2: Variables of the steam boiler model. They represent the (initial) state of the steam boiler.

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 8 of 20

For providing a formal description of the steam boiler, we first define all constants and
the state (Table 1 and Table 2). For all variables of the state, we provide the type, value
range and description. Moreover, we describe the initial state which immediately forces the
automaton to read the current sensor values and forwards them to the controller. The
controller will provide an appropriate pump setting. The checks in the controller, which is
described in the following section, require that there is a certain minimal amount of water
between the criti cal limit s or otherwise the controller would stop the steam boiler at once.
Thus, a valid start condition of the water level and steam rate must be far enough from the
critical boundaries not to force the controller to execute an emergency stop.

4.1 The Boiler Automaton
Expressing our interpretation of the informal specification more precisely leads to the

following Timed Automaton:

Input Action

actuator (e_stop, pset)
Effect:

 pr_new' = pset
 stop' = e_stop
 do_sensor’ = true
 read’ = now + I

Output Action

sensor (s, w, p)
Precondition:

 now = read
 do_sensor = true
 stop = false
 w = q
 s = v
 p = pr
Effect:

 do_sensor’ = false

Internal Actions

activate
Precondition:

 now = set
 stop = false
Effect:

 set' = read + S
 0 ≤ error’ ≤ pr_new
 pr' = pr_new - error’

νν(∆∆t)
Precondition:

 stop = false
 now + ∆t ≤ read
 now + ∆t ≤ set
Effect:

 v - U2 * ∆t ≤ v' ≤ v + U1 * ∆t
 q + pr * P * ∆t - δHIGH(v, v', ∆t) ≤ q'
 q' ≤ q + pr * P * ∆t - δLOW(v, v', ∆t)
 now' = now + ∆t

This formal description of the steam boiler is easily readable: The steam boiler reads
periodically the current water level and the current steam rate and forwards these values to
the controller. In the addition, the controller learns about the number of pumps that
currently actually supply water to the boiler. The controller evaluates the data and through
the actuator supplies a new pump setting or enables the shut-down phase. After the
activation delay, all non-faulty pumps of the new setting supply water to the boiler. In the
meantime, water evaporates into steam unpredictably but limited by its worst case rules.

With the actuator action the boiler receives the new pump setting requested by the
controller and learns whether the controller shuts down the boiler. Furthermore, it schedules
and enables the next reading of the sensor values. After an emergency stop is executed by
setting the variable stop to true, our model ignores any further development.

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 9 of 20

As an internal action, the boiler changes the steam rate and the water level unpredictably
over time. The purpose of the time-passage action denoted with νν(∆∆t) is to provide a
method for describing formally a time-dependent process. ∆t represents an arbitrary, non-
empty interval of time. A possible value for the parameter ∆t depends on the precondition.
Obviously, ∆t may be arbitrary as long as the next activation of the pumps and the next
sensor reading occur. Formally, the time-passage action must follow some rules as
described in CD-ROM version in the Appendix A, which we are going to verify in the next
section.

The activate action occurs after the pump activation delay. It sets the new pump rate
with respect to an arbitrary number of pumps that fail , expressed as error. We chose this
rather strong fault model where all pumps might fail at the activation time regardless
whether such a pump was already supplying water before. This can be as much as all pumps
that should supply water for the next cycle. Finally, it schedules the next activation time.
Periodically, the sensor action forwards the current amount of water, the current steam rate
and the number of active pumps to the controller. To prevent the sensor action from
happening multiple times, it disables itself by setting do_sensor = false.

4.2 Checking the Model
As described formally in the CD-ROM version in Appendix A (the complete definition

can be found in [Lyn91]), each Timed Automaton has to follow five axioms. We need to
show that the Boiler Model satisfies these axioms. Overall , these axioms are used to define
the concept of time in Timed Automata. Axiom [A1] says that the current time is always 0
in a start state. Axiom [A2] says that non-time-passage steps do not change the time; that is,
they occur “ instantaneously” , at a single point in time. Axiom [A3] says that time-passage
steps must cause the time to increase. The fourth axiom [A4] enforces transitivity in the
representation of time, i.e., transitivity of the time passage action. Whenever it is possible to
describe a development over time with several succeeding time-passage steps it must be
possible to describe this change in a single time-passage step. The fifth axiom [A5]
describes trajectory consistency: Whenever the change from one state to another with the
time-passage action can be expressed as a trajectory (or function), the change between any
two states in this interval follows the same trajectory.

The CD-ROM version contains the details to these proofs. Basically, with these axioms
fulfill ed the Timed Automaton model allows us to combine automata through their input
and output actions. We will combine the boiler model with a controller model, which we
present in the next section.

4.3 Properties of the Boiler
Based on the automaton description, we can derive useful information about the boiler

system. These intermediate results can be favorably employed for fault detection and
consistency checks in any actual boiler implementation based on this model. This
information is expressed in the form of logic expressions invariant in all possible
executions of this boiler model. Therefore, these expressions are called invariants. In other
words, no order of steps will produce a state in which any of these logical expressions is not

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 10 of 20

true. All the statements and their proofs can be found in the CD-ROM version of this
report. All proofs are by induction on the steps of the automaton.

5 The Controller Model
In order to solve the steam boiler problem, we have to find a controller that guarantees

the required safety properties. For this purpose, we take advantage of a characteristic of the
Timed Automaton model. First, we will show that a simple controller that cannot tolerate
sensor faults guarantees the safety properties under described assumptions. Then, the
Simulation Mapping technique is used to show incrementally that a different controller
which allows for sensor failures preserves the safety properties.

Obviously, it is most important that the controller identifies water levels and steam rates
that might cross their criti cal limit s before the next sensor values arrive. In case such sensor
values are identified the controller will enable the shut-down phase. In a non-criti cal case,
the controller chooses an appropriate new setting for the pumps to adjust the water level
and compensate for the amount of steam leaving the boiler.

5.1 The Controller Model

Definitions

Name Type Unit Value Description

max_pumps_after_set integer #pumps maximum number of pumps that can supply
water to the boiler after the delay
considering the pump failure model

min_pumps_after_set integer 0 minimum number of pumps that can supply
water to the boiler after the delay
considering the chosen pump failure model.
For a different pump failure model, e.g., in
which pumps might fail when activated or
stopped, this constant may actually be a
function of the change in the number of
pumps.

min_steam_water(sr) real l sr2/(2*U2) if sr < I* U2

(sr - U2 * I/2)*I otherwise
minimum amount of water that can
evaporate into steam until the next sensor
reading

max_steam_water(sr) real l (sr + U1 * I/2)*I maximum amount of water that can
evaporate into steam until the next sensor
reading

min_steam_water_est(sr) real l sr2/(2*U1) if sr < I* U1

(sr - U1 * I/2)*I otherwise
estimated minimum amount of water that
has evaporated since the next sensor reading

Table 3: Definitions and abbreviations for the controller model

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 11 of 20

Variables

Name Initial Value Type Value Range Unit Description

do_output false boolean { true, false} flag that enables the output. This
represents a kind of program counter.

stopmode true boolean { true, false} flag to activate the shut down, initially
true, since condition is not checked yet.

wl q real [0 ... C] l current water level reading

sr 0 real [0 ... W] l/s current steam rate reading

now 0 real [0 ... ∞) s current time

pumps 0 integer { 0 ...#pumps} number of currently active pumps
supplying water to the boiler

px 0 integer { 0 ...#pumps} number of pumps that shell supply
water next

Table 4: The state of the controller including all variables and their initial values

5.2 The Simple Controller Automaton
The input and output actions are complementary to the input and output actions of the

steam boiler model.

Input Action

sensor (s, w, p)
Effect:

 sr' = s
 wl' = w
 pumps' = p
 do_output' = true

 # safety checks:
 if sr' ≥ W - U1* I or
 wl' ≥ M2 - P *(pumps' *S +
 (max_pumps_after_set) * (I - S)) +
 min_steam_water(sr) or
 wl' ≤ M1 -P*(pumps' * S +
 (min_pumps_after_set) * (I - S)) +
 max_steam_water(sr)
 then
 stopmode' = true
 else
 stopmode’ = {true, false} arbitrary

Internal Actions

controller
Precondition:

 true
Effect:

 0 ≤ px’ ≤ #pumps

νν(∆∆t)
Precondition:

 true
Effect:

 now' = now + ∆t

Output Action

actuator (e_stop, pset)
Precondition:

 do_output = true
 pset = px
 e_stop = stopmode
Effect:

 do_output' = false

With the sensor action, the controller receives periodically the current steam rate, water
level and number of activated pumps. Its primary purpose is to test if the current sensor
values are “close” to either criti cal limit . In such a case the sensor action sets a flag for the
actuator to initiate the shut-down. Likewise, external criti cal conditions are modeled by
non-deterministically setting stopmode to true. Furthermore, the sensor action enables the

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 12 of 20

actuator action. The test for what is “close” depends on the particular fault model used and
controller capabiliti es. The controller can try to start all pumps every period and our fault
model allows up to all pumps to fail . The point in time for the decision how many pumps
actually supply water to the boiler is every set time. Therefore, we must choose all pumps
for max_pumps_after_set. On the other hand, all pumps could fail and therefore
min_pumps_after_set equals 0. Similarly, min_steam_water and max_steam_water express
the minimum and maximum amounts of water that can evaporate into steam in the
following period starting with given current steam rate, respectively. The test simply
calculates the worst case situations for the water level and steam rate and compares the
results with the critical limits M1, M2 and W.

The controller action chooses an appropriate new pump setting. Actually, it can choose
any pump setting. For our approach, we are not particularly interested in the performance of
the controller. On the other hand, we are interested in generality. Therefore, we chose a
controller model that can incorporate any possible control algorithm for setting the pumps.
As a consequence, our results concerning the safety are valid for an arbitrary control
algorithm. Although the choice of a new setting for the pumps is irrelevant to the safety of
the steam boiler system, for a performance analysis the pump setting would be of major
importance. The time-passage action (νν(∆∆t)) allows time to pass. For the following proofs,
we ignore these two actions, since they do not provide additional information and are
irrelevant to the proofs.

Finally, the actuator action forwards the new pump setting and whether the boiler must
be stopped to the boiler environment. Furthermore, it disables itself, by setting do_output
back to false.

As suggested in the original specification, this controller model acts instantaneously.
Therefore, the time-passage action is trivial and all five axioms for Timed Automata are
satisfied. Moreover, there is no useful information gained from the controller model alone.
So far the proofs have involved only either the steam boiler model or the controller model.
Next, we use the composition property of Timed Automata for combining the two
automata, and we prove the required safety properties.

6 Properties of the Combined Steam Boiler System
Following, we show in several steps that the combined model (formally a composition),

consisting of the steam boiler model and the simple controller model together, guarantee the
safety conditions. The first safety property requires that the steam rate must always stay
below W. Before the steam rate can cross this limit , the boiler must be shut down.
Expressing this in terms of the state of the steam boiler system, we have to show

S1) v < W or stop = true

The second safety property requires that the water level must always stay between its
criti cal limit s M1 and M2. Before the water level can cross either limit , the boiler must be
stopped. Thus, we have to show

S2) M1 < q < M2 or stop = true

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 13 of 20

6.2 Steam Boiler System Properties
The following lemmas lead us step-by-step toward proving the safety conditions. While

we provide only some important statements in this version of this paper, all the statements
(lemmas and theorems) and their proofs can be found on the CD-ROM. The numbering is
consistent.

Coming up with the right invariants that lead to showing the safety properties is the
most complicated task in working with Timed Automata. On the other hand, the proofs
themselves are usually straightforward and follow well -established, stylized methods and
the usual pattern for proving by induction. The main work for proving the safety properties
is done by means of these invariants. All the proofs for our model are by induction on the
model and can easily be verified using current mechanical proof technology.

The following lemma describes the conditions when the controller decides that the
boiler needs to be emergency-stopped.

Lemma 3: In all reachable states of the controller model,

1) M2 > wl + P * (pumps * S + #pumps * (I - S)) - min_steam_water(sr) or stopmode
= true

2) M1 < wl + P * pumps * S - (sr * I + U1 * I
2/2) or stopmode = true

3) sr + U1*I < W or stopmode = true

Using the test conditions in Lemma 3.3, we can prove that the actual steam rate will stay
under a certain limit depending on how long it takes until the next sensor reading. This
lemma depends on sr + U1*I < W or stopmode = true (Lemma 3.3) and if do_output then
now = read and sr = v (Lemma 4).

Lemma 11: v + U1*(read - now) < W or stop = true

The following lemma describes the amount of water above the lower limit of the water
level depending on the current steam rate and pump rate. Lemma 12 depends on Lemma

1.9, now ≤ set (Lemma 2), wl > M1 - P * pumps * S + (sr * I + U1 * I2/2) or stopmode =
true (Lemma 3.2), if do_output then now = read and wl = q and sr = v (Lemma 4), set =
read + S or set = read - I + S (Lemma 5), now ≤ read - I + S or set = read + S (Lemma
6), if now < read then do_output = false (Lemma 7) and Lemma 10: if set = read + S and
do_output = false then pr = pr_new - error else pr = pumps.

Lemma 12: if do_output = false then

if set = read - I +S then

 M1 < q + P*pumps*(set-now) - (v * (read-now) + U1*(read-now)2/2) or stop = true

else M1 < q - (v * (read-now) + U1*(read-now)2/2) or stop = true

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 14 of 20

Similar to the previous lemma, the following lemma describes the minimum amount of
water in the boiler before the upper water level limit could be reached. This lemma depends
on Lemma 1.2, now ≤ set (Lemma 2), M2 > wl + P* (pumps*S + #pumps* (I-S)) -
min_steam_water(sr) or stopmode = true with

sr2 /(2*U2) if sr < U2*I

(sr*I - U2*I2/2) otherwise

(Lemma 3.1), if do_output then now = read and wl = q and sr = v (Lemma 4), set = read +
S or set = read - I + S (Lemma 5), now ≤ read - I + S or set = read + S (Lemma 6), if now
< read then do_output = false (Lemma 7) and Lemma 10: if set = read + S and do_output =
false then pr = pr_new - error else pr = pumps.

Lemma 13: if do_output = false then

if set = read - I + S then

 M2 > q + P*(pumps*(set-now) + #pumps*(I-S)) - steam or stop = true

else M2 > q + P*#pumps*(read - now) - steam or stop = true

v2 /2*U2 if v < U2(read-now)

(v*(read-now) - U2*(read-now)2/2) otherwise

Lemma 14: d(u) is convex:

d(u) ≥ min(0, d(S)) for S ≥ u ≥ 0, d(u) = A*u - B*u2 with A real and B positive real

6.3 Summarizing Theorems
The following theorems summarize the previous lemmas and translate them into the

form in which the required safety properties were expressed.

Theorem 1: In all reachable states of boiler system, v < W or stop = true.

Theorem 2: In all reachable states of boiler system, M1 < q < M2 or stop = true.

With above proofs, we have shown that the steam boiler model together with the
controller model meets all the safety requirements. As a further step, we must modify the
controller model to allow sensor faults. This is presented in the following section.

with steam =

min_steam_water(sr) =

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 15 of 20

7 Sensor Fault-tolerant Controller
In this section, we extend the model of the controller to be tolerant to sensor faults.

Rather than proving the safety properties all over again, we use a technique called
Simulation Mapping. This technique is used to show consistency between abstraction
levels. In particular, it provides a means to show that properties proved for an abstract
model are preserved in a particular implementation. In this case, the previously described
boiler system represents the specification and a new controller that tolerates sensor faults
represents a possible implementation.

The two lemmas which supply additional information about the boiler system with the
previous controller can be found in the CD-ROM version of this text. Next, we present the
Timed Automaton model of the sensor fault-tolerant controller.

7.1 The Controller Model Allowing Sensor Faults

Variables

Name Initial
Value

Type Value Range Unit Description

do_output false boolean { true, false} flag that activates the output; This parameter
represents a kind of program counter.

stopmode true boolean { true, false} flag to activate the emergency stop, initially true,
since condition is not checked yet.

wll q real [0 ... C] l lower bound of the estimation of the current water
level

srl 0 real [0 ... W] l/s lower bound of the estimation of the current steam
rate

wlh q real [0 ... C] l upper bound of the estimation of the current water
level

srh 0 real [0 ... W] l/s upper bound of the estimation of the current steam
rate

sr_ok true boolean { true, false} flag that tells whether the steam rate sensor has
failed

wl_ok true boolean { true, false} flag that tells whether the water level sensor has
failed

now 0 real [0 ... ∞) s current time

pumps 0 integer {0 ... #pumps} number of currently active pumps supplying water
to the boiler

px 0 integer {0 ... #pumps} number of pumps that shall supply water next

Table 5: The initial state of the fault-tolerant controller including all variable declarations

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 16 of 20

7.2 The Fault-tolerant Controller Automaton
Input Action

sensor (s, w, p)
Effect:

 pumps' = p
 do_output' = true

 # estimate steam rate
 if sr_ok then srh' = srl' = s
 else srh' = srh + U1 * I
 srl' = srl - U2 * I

 # estimate water level
 if wl_ok then wlh' = wll' = w
 else wlh' = wlh - min_steam_water_est(srl’)
 + P * pumps * S + P * pumps’ * (I - S)
 wll' = wll - (srh’ + U2* I/2)*I
 + P * pumps * S + P * pumps’ * (I - S)

 # safety checks
 if srh' ≥ W - U1 * I or
 wlh' ≥ M2 - P *(pumps' * S +
 (max_pumps_after_set) * (I - S)) +
 min_steam_water(srl) or
 wll' ≤ M1 + P *(pumps' * S +
 (min_pumps_after_set) * (I - S)) -
 max_steam_water(srh)
 then stopmode' = true
 else stopmode’ = {true, false} arbitrary

Internal Actions

bad
Precondition:

 true
Effect:

 sr_ok’ = {true, false} arbitrary
 wl_ok’ = {true, false} arbitrary

controller
Precondition:

 true
Effect:

 0 ≤ px’ ≤ #pumps

νν(∆∆t)
Precondition:

 true
Effect:

 now' = now + ∆t

Output Action

actuator (e_stop, pset)
Precondition:

 do_output = true
 pset = px
 e_stop = stopmode
Effect:

 do_output' = false

The controller model that allows sensor faults has the same structure as the simple
controller. An additional action bad tell the controller whether a sensor has failed. The fault
model allows arbitrary combinations of sensor break downs and fast or slow repairs. The
sensor action expresses the strategy of the controller to cope with sensor faults. Basically,
the strategy is to calculate an upper and lower limit for the missing value of the failed
sensor, using its last recent value and the remaining sensor values. Even in the case that
both sensors break, the controller still may allow the operation of the boiler and guarantee
safety. In this respect, our controller definition is better than the one suggested in [AS96],
since he suggests to shut down the boiler system whenever both steam rate and water level
sensors fail.

The various operational modes (normal, degraded and rescue) as specified in [AS96]
can be inferred from the variables sr_ok, wl_ok and the difference between pumps and px.
In our model, these modes are not relevant to the safety of the boiler system and have
therefore been ignored.

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 17 of 20

7.3 Proving the Safety Properties by Simulation Mapping
After composing the steam boiler automaton with the new fault-tolerant controller, we

have to prove that the safety properties are satisfied in the new model.

We use a Simulation Mapping for proving that one Timed Automaton “ implements”
another. This technique shows that all possible traces* of the new automata are included in
the traces of the already proven model. Therefore, all safety properties involving the states
of the steam boiler with the simple controller are valid for the system with the fault-tolerant
controller, too. A Simulation Mapping is most useful to show that an implementation
actually preserves properties of the specification. This method can be applied repeatedly to
get from a very abstract model, which is proven to fulfill t he required properties, to a
detailed implementation (maybe even the final implementation). Like invariants, the
Simulation Mappings involve time deadline information, in particular, they include
inequaliti es between time deadlines. Therefore, they are suitable for showing timing
properties, too.

We apply a Simulation Mapping from states of the steam boiler system with the fault-
tolerant controller (in short “ fault-tolerant controller system”) to the system with the simple
controller (“simple controller system”). Appendix B of the CD-ROM version contains a
formal definitions of the Simulation Mapping technique and the correctness properties it
guarantees.

7.3.1 Simulation Relation

Theorem 3: The relation f as defined below is a Simulation Mapping from the states of the
fault-tolerant controller system to the states of the simple controller system.

Let s denote a state of the simple controller system and i denote a state of the fault-
tolerant controller system. We define s and i to be related by the relation f provided that:

1) i.Boiler = s.Boiler†

2) i.do_output = s.do_output, s.px = i.px, s.pumps = i.pumps, s.now = i.now

3) i.srl ≤ s.sr ≤ i.srh

4) i.wll ≤ s.wl ≤ i.wlh

5) s.stopmode = i.stopmode

Proof sketch: Let i lead to i’ via action a in the fault-tolerant controller. We must find an s’
such that s’ f i’ and there exists an execution fragment from s to s’ with the same trace as a.
Usually, we break by cases on the type of a. In the initial state f is fulfill ed. For this proof it
remains to show the case for the sensor action because all other actions are identical in the
specification and implementation. It remains to show that there is an equivalent sensor step
enabled in s, and s’ relates to i’ following the definition of f. In particular, we must show
the three conditions in the definition of a Simulation Mapping in Appendix B in the CD-
ROM version. The first condition, preservation of the now value, is immediate from the

* The exact meaning of “traces” is defined in Appendix A on the CD-ROM.
† This relation expresses that the entire boiler state is preserved.

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 18 of 20

definition of f. The second condition, correspondence of the start states, is also immediate,
because f is fulfill ed between the start states. The interesting condition is the induction
step. As before, the detailed proof can be found in the full version of this text. The proof
depends on Lemma 1.3&6, s.now ≤ s.read - I + S or s.set = s.read + S (Lemma 6), -U2* (I +
s.now - s.read) ≤ s.v - s.sr ≤ U1* (I + s.now - s.read) (Lemma 15) and if s.do_output = false
then ps - δHIGH(s.sr, s.v, t) ≤ s.q - s.wl ≤ ps - δLOW(s.sr, s.v, t) with ps = if s.set = s.read + S -
I then P * s.pumps * t else P * (s.pumps * S + s.pr * (t - S)) and t = (I + s.now - s.read)
(Lemma 16).

This Simulation Mapping maps every reachable state of the boiler system with the fault-
tolerant controller to a corresponding reachable state in the system with the simple
controller by the relation f. Therefore, the safety properties involving the states of the
specification (simple controller) are valid for the implementation (fault-tolerant controller),
too. Thus, we have shown that the steam boiler system with the fault-tolerant controller
satisfies the required safety properties.

8 Conclusion
We have applied a formal method based on Timed Automata, invariant assertions and

Simulation Mappings to the steam boiler model, and verified that our controller fulfill s the
required safety properties. In doing so we have made it possible to compare our techniques
to other approaches.

Summarizing, the Timed Automata, composition and Simulation Mapping techniques
present an excellent combination for system analysis. The main advantage of Timed
Automata is their flexibilit y in modeling a hybrid system. Timed Automata allow us to
combine a continuous environment that is fairly unpredictable over time with a discrete
control system such as a computer. The composition and Simulation Mapping techniques
supplement this specification tool for formal verification, for more flexibilit y in how to
search for a solution and for the reuse of already gained knowledge. The composition
technique lets you combine different automata and scale incrementally solutions from
smaller problems to more complex ones. The Simulation Mapping technique provides a
consistent transition between different abstraction layers.

This method seems to scale better than other formal verification techniques because of
the possibilit y of applying this method to different abstraction layers, and applying various
decomposition techniques [Wei96]. A Simulation Mapping can be used to prove that two
abstraction layers preserve certain properties. Decomposition techniques provide modular
and incremental verification. For instance, suppose that you have proved that a certain
implementation of a shared register provides mutual exclusion. The automaton model
together with already proved properties may then be composed into a bigger application
without having to prove the mutual exclusion property again.

Constructing the proofs, though not diff icult, requires significant work. The hardest
parts were getting the details of the models right and finding the right invariants.
Unfortunately, this seems to be an art rather than an automatic procedure. Nevertheless, our
experience in this paper and others (e.g., [Hei94]) shows that this art is easily learnable
even for application engineers. The techniques are very systematic and understandable. The

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 19 of 20

description allows for much flexibilit y and is very powerful in describing the possible
progression of a system.

The actual proofs of the invariants were tedious but routine work. Much work can be
avoided by proving the required properties on a general model and using Simulation
Mappings for more specialized models. Moreover, the characteristics of these techniques
make them amenable for mechanical generation and verification of proofs. Related to this,
we are currently considering the use of automatic provers such as Larch [Soe93] or PVS
[Sha93] with the described techniques.

The only major disadvantage we encountered while working with Timed Automata and
the Simulation Mapping technique is that we could not gain any information or any
measurement towards the optimality of parameters of a solution. Although our controllers
preserve provable safety, there are obviously better implementations. For example, on a
steam rate sensor failure, the steam rate estimation could take into account the amount of
water which has evaporated since the last sensor reading. Moreover, we like to note that
more of the reality could be modeled formally with a more relaxed pump failure model and
diverse pump controller algorithms. The latter might lead to interesting performance
comparisons and tighter parameters such as the distance between M1 and M2.

Future work includes applying this method to larger and more complex examples, and
developing the appropriate computer assistance for carrying out and checking the proofs.
On-going research in our group shows that the timed-automata method provides high
potential for automating the generation of the proofs [Sha93], [Arc96].

Acknowledgments
We thank Anya Pogosyants and Roberto Segala for several useful comments as well as

Angelika Leeb and Dave Evans for comments and proofreading.

References
[AS96] Abrial, J.-R.: A B-solution for the steam-boiler problem. Contains: Steam-boiler

control specification problem for the meeting Methods for Semantics and
Specification, Dagstuhl; See chapter AS in this LNCS volume.

[Arc96] Archer, M.; Heitmeyer, C.: Mechanical Verification of Timed Automata: A Case
Study, To appear in the proceedings of RTAS, 1996

[Cle93] Cleaveland, R.; Parrow, J.; Steffen, B.: The concurrency workbench: A
semantics-based tool for verification of concurrent systems. ACM Trans. on
Prog. Lang. and Sys., 15(1):36-72, Jan. 1993

[Hei93] Heitmeyer, C.; Jeffords, R.; Labaw, B.: A benchmark for comparing different
approaches for specifying and verifying real-time systems. In Proc., 10th Intern
Workshop on Real-Time Operating Systems and Software, May, 1993

[Hei94] Heitmeyer, C.; Lynch, N.: The Generalized Rail road Crossing: A Case Study in
Formal Verification of Real-Time Systems. In Proceedings of the 15th IEEE
Real-Time Systems Symposium, San Juan, Puerto Rico, IEEE Computer Society
Press, pages 120 -131, December 1994

Proving Safety Properties of the Steam Boiler Controller

G. Leeb, N. Lynch Page 20 of 20

[Hoa93] Hoare, C.: Communicating Sequential Processes. Prentice-Hall , Englewood
Cliffs, NJ, 1985

[Jah86] Jahanian, F.; Mok, A.: Safety analysis of timing properties in real-time systems.
IEEE Trans. Software Engineering, SE-12(9), Sep. 1986

[Lyn91] Lynch, N.; Vaandrager, F.: Forward and backward simulations for timing-based
systems. In Proceedings for REX Workshop: Real-Time: Theory in Practice, vol.
600 of Lecture Notes in Computer Science, p. 397-446, Mook, Netherlands,
Springer-Verlag, June 1991

[Lyn94] Lynch, N.: Simulation Techniques for Proving Properties of Real-time Systems,
In REX Workshop ‘93, Lecture Notes in Computer Science, Mook, the
Netherlands, Springer Verlag, 1994

[Soe93] Soegaard-Anderson, J.; Garland, S.; Guttag, J.; Lynch, N.; Pogosyants, A.:
Computer-assisted simulation proofs, In Costas Courcoubetis, Computer-Aided
Verification: 5th International Conference, (CAV'93 Elounda, Greece, June/July
1993, Lecture Notes in Computer Science 697, p. 305-319, Springer-Verlag,
1993

[Seg94] Segala, R.; Lynch, N.: Probabili stic Simulations for Probabili stic Processes. In J.
Parrow, Editor, Proceedings of CONCUR 94, Lecture Notes in Computer
Science, volume 836, pages 481-496, Uppsala, Sweden, August 1994.

[Sha93] Shankar, N.: Verification of real-time systems using PVS. in Proc. Computer
Aided Verification (CAV’93), pages 280-291. Springer-Verlag 1993

[Wei96] Weinberg, H.: Correctness of a Vehicle Control System: A Case Study, Master’s
Thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, 1996

