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This paper addresses the issues of formal description and veri�cation for communication

protocols. Speci�cally, we present the results of a project concerned with proving correctness of

two di�erent solutions to the at-most-once message delivery problem. The two implementations

are the well-known �ve-packet handshake protocol and a timing-based protocol developed for

networks with bounded message delays.

We use an operational automaton-based approach to formal speci�cation of the problem state-

ment and the implementations, plus intermediate levels of abstraction in a step-wise development

from speci�cation to implementations. We use simulation techniques for proving correctness.

In the project we deal with safety, timing, and liveness properties. In this paper, however, we

concentrate on safety and timing properties.
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1. INTRODUCTION

During the past few years, the technology for formal veri�cation of communication

protocols has matured to the point where we believe that it now provides practical as-

sistance for protocol design and validation. Recent advances include the development of

formal models that allow reasoning about timed systems as well as untimed systems, e.g.,

[2, 5, 13], and the development of simulation techniques (including re�nement mappings

and forward and backward simulations) for proving that one protocol implements another,

e.g., [1, 5{7, 13]. In this paper, we show how these techniques can be used to verify an

important class of communication protocols { those for at-most-once message delivery.

The goals of our project are twofold: to provide better understanding, documentation and

proof for these protocols, and to test the adequacy of the models and proof techniques.

The at-most-once message delivery problem is that of delivering a sequence of messages

submitted by a user at one location to a user at another location. Ideally, we would like

to insist that all messages be delivered in the order in which they are sent, each exactly

once, and that an acknowledgement be returned for each delivered message.
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Our de�nition of at-most-once message delivery is di�erent from what some people call at-most-once

message delivery in that we include acknowledgements and require messages to be delivered in order.
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Unfortunately, it is expensive to achieve these goals in the presence of failures (e.g.,

node crashes and timing anomalies). In fact, it is impossible to achieve them at all unless

some change is made to the stable state (i.e., the state that survives a crash) each time a

message is delivered. To permit less expensive solutions, we weaken the statement of the

problem slightly. We allow some messages to be lost when a node crash occurs; however,

no messages should otherwise be lost, and those messages that are delivered should not be

reordered or duplicated. (The speci�cation is weakened in this way because message loss

is generally considered to be less damaging than duplicate delivery.) Now it is required

that the user receive either an acknowledgement that the message has been delivered, or

in the case of crashes, an indication that the message might have been lost.

There are various ways to solve the at-most-once message delivery problem. All are

based on the idea of tagging a message with an identi�er and transmitting it repeatedly

to overcome the unreliability of the channel. The receiver

2

keeps a stock of \good"

identi�ers that it has never accepted before; when it sees a message tagged with a good

identi�er, it accepts it, delivers it, and removes that identi�er from the set. Otherwise,

the receiver just discards the message, perhaps after acknowledging it. Di�erent protocols

use di�erent methods to keep the sender and the receiver more or less in agreement about

what identi�ers to use.

A desirable property, which is not directly related to correctness, is that the implemen-

tations o�er a way of cleaning up \old" information when this cannot a�ect the future

behavior.

In this work, we consider two protocols that are important in practice: the clock-based

protocol of Liskov, Shrira and Wroclawski [10] and the �ve-packet handshake protocol of

Belsnes [3]. The latter is the standard protocol for setting up network connections, used

in TCP, ISO TP-4, and many other transport protocols. It is sometimes called the three-

way handshake, because only three packets are needed for message delivery; the additional

packets are required for acknowledgement and cleaning up the state. The former protocol

was developed as an example to show the usefulness of clocks in network protocols [9] and

has been implemented at M.I.T. Both protocols are su�ciently complicated that formal

speci�cation and proof seems useful.

The basic model we use is based on the (timed) automaton model of Lynch and Vaandrager

[13] with an extra added component to express liveness [5]. We express both protocols,

as well as the formal speci�cation of the at-most-once message delivery problem, in terms

of this model. In the project we carry out complete correctness proofs for both protocols.

Some highlights of our proofs are as follows:

Although the two protocols appear to be quite di�erent, we have found that both can

be expressed formally as implementations of a common generic protocol G, which, in

turn, is an implementation of the problem speci�cation. To prove that G implements the

speci�cation, for proof-technical reasons we introduce an additional level of abstraction,

the delayed-decision speci�cation D. This is depicted in Figure 1. Introducing interme-

diate levels of abstraction, like G and D, is a general proof strategy that allows large,

2

We denote by \receiver" the protocol entity that is situated on the receiver node, and use phrases like

\the user at the receiver end" to denote the user that communicates with the receiver. Correspondingly

for \sender".



3

C H

G

D

S

Speci�cation

Delayed-Decision Speci�cation

Generic Protocol

Five-Packet Handshake

Protocol

Clock-Based Protocol

?

?

�

�

�+

Q

Q

Qs

Figure 1. Overview of the levels of abstraction in our work.

complicated proofs to be split into smaller and more managerable subproofs.

The proof that an implementation correctly implements a speci�cation is divided into

two parts. First, a simulation technique is applied to show that the implementation

safely implements the speci�cation, i.e., that all safety (and timing) properties of the

implementation are allowed by the speci�cation. Then, heavily based on the simulation

result, we prove liveness properties, and thus, correctness.

As proof techniques we use a backward simulation to show that D safely implements

the speci�cation, and forward simulations to show that each of the two protocols safely

implements G and that G safely implements D. Because of space limitations, we only

treat safe implementation in this paper. Our intention with this paper is to give an

overview of our work and to convey our experiences with specifying and verifying practical

communication protocols. For this reason we have left out many formal details. We refer

to our full report [8] for such details. The full report also contains an exhaustive treatment

of liveness properties of the protocols.

The rest of the paper is organized as follows. We start in Section 2 by giving an intro-

duction to our model. Then in Sections 3 and 4 we present the problem speci�cation and

the low-level protocol C. In this paper we will only briey deal with the H protocol. In

Section 5 we show how aspects of both low-level protocols can be captured in the generic

protocol G, and in Section 6 we outline the correctness proofs. In doing so we present the

delayed-decision speci�cation D. Finally, we give concluding remarks in Section 7.

2. THE UNDERLYING THEORY

The general model we use to specify safety and timing properties at all levels of ab-

straction is based on the (timed) automaton model of [5, 13] and the I/O automaton

model of [11, 12]. An automaton is a state machine with named actions associated with

its transitions. Thus, an automaton consists of

� a (possibly in�nite) set of states. In timed systems a now component indicates the

time,
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� a (nonempty) set of start states,

� a set of actions partitioned into visible actions (which are furthermore partitioned

into input actions and output actions), internal actions (which are invisible from the

environment of the system), and, for timed systems, a special time-passage action,

and

� a transition relation of ((pre-)state, action, (post-)state) triples. Each triple is called

a step.

For timed systems, the steps involving the time-passage action have to satisfy certain

axioms that give natural properties of real time, e.g., that time cannot go backwards.

Correctness of an automaton is speci�ed in terms of its external behavior given by the

set of traces, each of which consists of a sequence of visible actions that the automaton

can perform. In timed systems these actions are furthermore paired with their time of oc-

currence to form timed traces. One automaton, A, safely implements another automaton,

B, if the set of (timed) traces of A is included in that of B.

The papers [6, 13, 5] present a collection of simulation proof techniques (re�nement

mappings, forward and backward simulations, etc.) for showing that one (timed) automa-

ton safely implements another. Each of these techniques involves describing a relation

between the states of an implementation automaton and those of a speci�cation automa-

ton. Each technique requires a particular type of correspondence between initial states

of the two automata, as well as a particular type of correspondence between their steps.

Figure 2 illustrates how each step of the implementation automaton must correspond to a

(possibly empty) sequence of steps of the speci�cation automaton containing exactly the

same visible actions.

The main distinction between forward and backward simulations, which are abstract

representations of history [16] and prophecy [1] variables, respectively, lies in the way

these corresponding sequences of steps of the speci�cation are found given a step of the

implementation: in a forward simulation it must be shown that from each state of the

speci�cation which is related to the pre-state of the step of the implementation, there

exists a sequence of steps (with the right actions) ending in some state of the speci�cation

which is related to the post-state of the step of the speci�cation. Thus, one must, for all

states related to the pre-state, trace forward to �nd some state related to the post-state.

Conversely, in a backward simulation one must, for all states related to the post-state,

trace backward to �nd some state related to the pre-state. A re�nement mapping is a

forward simulation where the relation is a function.

Since we only have to consider the steps of the implementation automaton which start

in a reachable state, we will usually prove some invariants, i.e., properties that are true

of all the reachable states, to restrict the states that we need to consider.

More formally, let A and B be automata and let R be a relation over the states of A

and the states of B. Then R is a forward simulation from A to B i�

� For each start state of A, there is a related (by R) start state of B.

� For each step (s; a; s

0

) of A, where s and s

0

satisfy the invariants of A, and each

state u related to s that satis�es the invariants of B, there exists a sequence of steps



5

s s s s s s

s s s s s s

- - - - -

- - - - -

6 6

? ?

6 6

? ?

�

��

�

��

�

�	

�

�	

a

a

b

b

� � �

� � �

Simulation Relation

Speci�cation Level

Implementation Level

Figure 2. Example of a simulation. The actions a and b are visible actions. The rest of

the transitions are thought of as labelled by internal actions.

of B, starting in u and ending in some state related to s

0

, such that the sequence of

steps contains the same visible actions as (s; a; s

0

).

For timed systems the now components and time-passage actions require additional treat-

ment. A backward simulation can be de�ned similarly.

Inductive proofs show the soundness of the simulation proof techniques, i.e., that they

imply safe implementation. However, not all techniques are complete, meaning that for

some of the simulation techniques, e.g., forward and backward simulations, safe imple-

mentation does not imply the existence of such a simulation. Also, di�erent simulation

techniques apply to di�erent situations. Thus, although a forward simulation is the most

intuitive technique, there are some situations that require other techniques, like backward

simulations. For instance, a backward, but not a forward, simulation can be used in

situations where the implementation makes some decisions later than the corresponding

decisions are made in the speci�cation. We will see an example of this in Section 6.

3. SPECIFICATION S

This section is devoted to giving the speci�cation, called S, of the at-most-once mes-

sage delivery problem more formally. Since this is an untimed speci�cation, we give the

speci�cation in terms of an untimed automaton.

Figure 3 shows the user-interface of the protocols to be developed by depicting the

speci�cation as a \black box" with visible input and output actions. A user can send a

message m by performing a send msg(m) action and the protocol can deliver the next

message m by performing a receive msg(m) action. A Boolean acknowledgement b is

passed to the user at the sender side by an ack (b) action. At both the sender and receiver

sides, a crash action causes the protocol to enter a recovery phase where messages might

be lost (modelled by an internal lose action). A recover action, at the side where the

crash occurred, then signals the end of the recovery phase, after which no messages can

be lost unless new crashes occur.

The following code describes the speci�cation S in a simple precondition-e�ect style com-

monly used for I/O-automata protocols [11, 12]. Note that input actions have no precon-

ditions since our system should be able to respond to input from the environment at any

time.
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Figure 3. The speci�cation S as a \black box"

The state of the automaton contains a queue of pending messages, plus two ags rec

s

and rec

r

, where the subscripts refer to the sender and receiver sides, to indicate that we

are in a recovery phase, and a status component giving the status of the last message

sent. The status can be either \?" denoting that the last message sent is still in queue ,

true denoting that the last message sent has been successfully delivered to the user, or

false . A status value of false, and therefore a negative acknowledgement, only allows the

user to conclude that there has been a crash, but even in this situation the last message

sent may have been successfully delivered.

3

send msg(m)

E�: queue := queue ^m

status := ?

ack (b)

Pre: status = b (2 Bool)

E�: none

receive msg(m)

Pre: queue 6= hi ^ hd queue = m

E�: queue := tlqueue

if queue = hi ^ status = ? then

status := true

crash

s

E�: rec

s

:= true

crash

r

E�: rec

r

:= true

lose

Pre: rec

s

= true _ rec

r

= true

E�: delete arbitrary elements of queue

if the element at the end of queue was deleted then

status := false

else

optionally status := false

recover

s

Pre: rec

s

= true

E�: rec

s

:= false

recover

r

Pre: rec

r

= true

E�: rec

r

:= false

3

Throughout this paper we use the following operations on lists: let l be a list he

0

; : : : ; e

n

i with elements

e

0

through e

n

. Then l^m and tl l denote the lists he

0

; : : : ; e

n

;mi and he

1

; : : : ; e

n

i, respectively, and hd l

and last l denote the elements e

0

and e

n

, respectively.
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4. CLOCK-BASED PROTOCOL C

Figure 4 shows the structure of the clock-based protocol of [10], which we call C. An

additional component, \the clock subsystem", is needed to keep the local clocks of the

sender and the receiver \almost" synchronized.

Informally, the clock-based protocol works as follows. The sender associates a time-

stamp with each message it wishes to transmit. The timestamps are obtained from the

sender's local clock time

s

. The receiver uses the associated timestamp to decide whether

or not to accept a received message|roughly, it will accept a message provided that

the associated timestamp is greater than the timestamp of the last message that was

accepted. However, the receiver does not always remember the timestamp of the last

accepted message: it might forget this information because of a crash, or simply because

a long time has elapsed since the last message was accepted and it is no longer e�cient

to remember it. Therefore, the receiver uses safe time estimates determined from its own

local clock (time

r

) to decide when to accept a message. The estimates are kept in the

variables lower

r

and upper

r

; the receiver accepts if the message's timestamp is in the

interval (lower

r

; upper

r

].

The lower

r

bound is designed to be at least as big as the time of the last message

accepted. It can be bigger, however, as long as it is su�ciently less than the receiver's

local time (at least approximately a one-way message delay less). This is because the

receiver should not accidentally fail to accept a valid message that takes the maximum

time to arrive. We note that the reason that we do not want to remember just the last

timestamp is that we envision using this protocol in parallel for many users, and a single

lower

r

bound could be used for all users that have not sent messages for a long while.

The upper

r

bound is chosen to be big enough so that the receiver still accepts the most

recent messages, even if they arrive very fast. That is, it should be somewhat larger than

the current time. But this bound will be kept in stable storage, and therefore should not

be updated very often. Thus, it will generally be set to be a good deal larger than the

current local time. In particular, it will be larger than the timestamp of any message so

far accepted.

All that needs to be kept in stable storage is just the local clocks, plus the one variable

upper

r

of the receiver. When the receiver side crashes and recovers again, it resets its

lower

r

bound to the old upper

r

bound, to be sure that it will not accept, and thus deliver,
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any message twice. This explains why we cannot just set upper

r

to in�nity.

There is also a simple acknowledgement protocol, which we do not discuss in detail

here.

We now consider how to model this protocol formally. Since we are in a timed setting, the

architecture of the protocol consists of the parallel composition of a timed automaton for

each of the sender and receiver, plus timed automata to represent the two communication

channels, plus an additional timed automaton to represent an almost-synchronized clock

subsystem.

Each communication channel acts as follows. A send pkt(p) action places the indicated

packet

4

p in the channel. The channel is allowed to lose, duplicate, and reorder any

packets, but we will assume that for every k send pkt(p) actions for a particular packet,

at least one packet p is not lost. For each such packet p, a receive pkt (p) action will occur

within time d, the maximum channel delay time. We note that it is possible to give a

more abstract description of the channels; our results do not depend on this particular

description.

The clock subsystem updates the local clocks of the sender and receiver by issuing tick

actions in arbitrary ways so as to keep those clocks within � of real time. We do not

describe the channels and the clock subsystem formally in this paper.

For the sender and receiver, we �rst mention the state variables not described above

and then de�ne the transition relations.

For the sender, mode

s

, ranging over idle, send, and rec, indicates whether the sender

is idle, sending the current message to the channel, or in recovery phase, respectively.

The variable current-msg

s

holds the current message, while last

s

holds its timestamp.

The list of messages buf

s

contains the remaining messages waiting to be sent. Finally,

current-ack

s

of type Bool holds the acknowledgement received from the receiver.

For the receiver, mode

r

, ranges over idle, rcvd, ack, and rec. rcvd indicates that

packets have been received on the channel but the associated messages not yet passed to

the user, ack indicates that all messages have been passed to the user and that the receiver

is issuing positive acknowledgements, and �nally rec indicates the recovery phase. The

list of messages buf

r

holds the messages received from the channel but not yet passed to

the user. For the simple acknowledgement protocol, we have last

r

to hold the timestamp

of the last accepted message, and nack-buf

r

to hold the timestamps for which negative

acknowledgements must be issued. Finally, the variable rm-time

r

is used by the cleanup

r

action.

The de�nition of the steps is listed in the left column below for the sender and in the right

for the receiver. We have aligned the send pkt and corresponding receive pkt actions to

increase readability.

We treat timing requirements implicitly by giving upper time bounds on certain classes

of actions. This corresponds to the way timing requirements are speci�ed in [15]. The

code contains three unspeci�ed timing constants �, �, and �, to be explained after the

code.

4

Here and elsewhere, we use the term \packet" to denote objects sent over the channels in an implemen-

tation; we reserve the term \message" for the \higher-level", user-meaningful messages that appear, e.g.,

in the speci�cation.
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send msg(m)

E�: if mode

s

6= rec then buf

s

:= buf

s

^m

choose id(t)

Pre: mode

s

= idle ^ buf

s

6= hi ^ time

s

= t ^ t > last

s

E�: mode

s

:= send

last

s

:= t

current-msg

s

:= hd buf

s

buf

s

:= tl buf

s

send pkt

sr

(m; t)

Pre: mode

s

= send ^

current-msg

s

= m ^ last

s

= t

E�: none

receive pkt

sr

(m; t)

E�: if mode

r

6= rec then

if lower

r

< t � upper

r

then

mode

r

:= rcvd

buf

r

:= buf

r

^m

last

r

; lower

r

:= t

else if last

r

< t � lower

r

then

nack-buf

r

:= nack-buf

r

^ t

else if mode

r

= idle ^ last

r

= t then

mode

r

:= ack

receive msg(m)

Pre: mode

r

= rcvd ^ buf

r

6= hi ^ hd buf

r

= m

E�: buf

r

:= tl buf

r

if buf

r

= hi then

mode

r

:= ack

rm-time

r

:= time

r

receive pkt

rs

(t; b)

E�: if mode

s

= send ^ last

s

= t then

mode

s

:= idle

current-ack

s

:= b

current-msg

s

:= nil

ack (b)

Pre: mode

s

= idle ^

buf

s

= hi ^ current-ack

s

= b

E�: none

send pkt

rs

(t; true)

Pre: mode

r

= ack ^ last

r

= t

E�: mode

r

:= idle

send pkt

rs

(t; false)

Pre: mode

r

6= rec ^

nack-buf

r

6= hi ^ hdnack-buf

r

= t

E�: nack-buf

r

:= tlnack-buf

r

crash

s

E�: mode

s

:= rec

crash

r

E�: mode

r

:= rec

recover

s

Pre: mode

s

= rec

E�: mode

s

:= idle

last

s

:= time

s

rm-time

r

:=1

buf

s

:= hi

current-msg

s

:= nil

current-ack

s

:= false

recover

r

Pre: mode

r

= rec ^ upper

r

+ 2� < time

r

E�: mode

r

:= idle

last

r

:= 0

rm-time

r

:=1

buf

r

; nack-buf

r

:= hi

lower

r

:= upper

r

upper

r

:= time

r

+ �
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increase-lower

r

(t)

Pre: mode

r

6= rec ^ lower

r

� t < time

r

� �

E�: lower

r

:= t

increase-upper

r

(t)

Pre: mode

r

6= rec ^ upper

r

� t = time

r

+ �

E�: upper

r

:= t

cleanup

r

Pre: mode

r

2 fidle; ackg ^

time

r

> rm-time

r

+ �

E�: mode

r

:= idle

last

r

:= 0

rm-time

r

:=1

tick

s

(t)

E�: time

s

:= t

tick

r

(t)

E�: time

r

:= t

The correctness of the clock-based protocol requires that we put upper time bounds on

one set of actions of the sender. Informally,

� every time a send pkt

sr

(m; t) action becomes possible (or stays possible after being

executed), it must occur within time l

s

unless it gets disabled in the meantime.

Similarly, for the receiver we need to put upper bound on two classes of actions:

� send pkt

rs

(id ; true) has an upper bound of l

r

, and

� increase-upper

r

(t) has an upper bound of l

0

r

.

The correctness of the protocol depends on the timing constants in the code being re-

lated properly to these time bounds, and to channel and local clock characteristics. The

requirements are: � � 2�+ l

0

r

, � � kl

s

+ d+2�, and � � k(l

r

+ d) + (k� 1)kl

s

+2�. Note,

how all three constants depend on the maximum di�erence of 2� between the local clocks.

In this paper we do not give a formal speci�cation of H. Unlike C, which uses timing

assumptions, H uses handshakes to �rst make the sender and receiver agree on a message

identi�er and then perform the actual message transmission. An additional packet type

is used as cleanup information. We proceed by describing the generic protocol G.

5. GENERIC PROTOCOL G

The two protocols C and H both go through three major phases during normal opera-

tion:

Choosing a message identi�er The sender picks an identi�er id that is within the set

of identi�ers that the receiver is willing to accept. In C time bounds are used to

choose a good identi�er; in H an initial handshake between the sender and the

receiver is used.
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Sending the message and getting acknowledgement This phase is similar in both

C and H. The sender (re)transmits the current message with the chosen id , until

it receives an acknowledgement packet for that id .

Cleaning up Here again, C uses time bounds (in particular timeouts) whereas H uses

a handshake to determine when some \old" information may be discarded.

Our generic protocol G is designed to capture these three phases in an abstract way that

both C and H implement. The key abstractions incorporated into the protocol G are two

variables, good

s

and good

r

. The variable good

s

represents the identi�ers that the sender

might shortly assign to messages, and good

r

represents the identi�ers that the receiver is

willing to accept.

Four actions of G deal with \growing" and \shrinking" good

s

and good

r

, respectively.

As an example, remember that in C the identi�er for the current message is taken from

the sender's local clock time

s

. Every time the local clock time

s

is advanced, the identi�er

that the sender might assign to the current message is changed from the old value of time

s

to the new value. In G this corresponds to �rst \shrinking" good

s

with the old value and

then \growing" it with the new value.

The preconditions of the grow and shrink actions are designed to preserve certain key

invariants, one of which we will present in Section 6. We actually allow more freedom in

these actions than is actually needed by C and H. This leaves open the possibility that

other low-level protocols, other than C and H, can be proved to be implementations of

G. We show the parts of G that deal with good

s

and good

r

.

send msg(m) : : :

prepare

Pre: mode

s

= idle ^ buf

s

6= hi

E�: mode

s

:= needid

good

s

:= f g

current-msg

s

:= hd buf

s

buf

s

:= tl buf

s

if mode

r

6= rec then current-ok := true

choose id(id )

Pre: mode

s

= needid ^ id 2 good

s

E�: mode

s

:= send

last

s

:= id

used

s

:= used

s

^ id

send pkt

sr

(m; id)

Pre: mode

s

= send ^

last

s

= id ^ current-msg

s

= m

E�: none

receive pkt

sr

(m; id)

E�: if mode

r

6= rec then

if id 2 good

r

then

mode

r

:= rcvd

buf

r

:= buf

r

^m

last

r

:= id

good

r

:= good

r

n fid

0

j id

0

� idg

if id = last

s

^ mode

s

= send then

current-ok := false

else if id 6= last

r

then

optionally nack-buf

r

:= nack-buf

r

^ id

else if mode

r

= idle then

mode

r

:= ack
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receive msg(m) : : :

receive pkt

rs

(id ; b) : : : send pkt

rs

(id ; true) : : :

ack (b) : : : send pkt

rs

(id ; false) : : :

crash

s

: : : crash

r

: : :

recover

s

: : : recover

r

: : :

shrink good

s

(ids)

Pre: none

E�: good

s

:= good

s

n ids

shrink good

r

(ids)

Pre: current-ok = false _

((mode

s

= needid =) ids \ good

s

= f g) ^

(mode

s

= send =) last

s

=2 ids))

E�: good

r

:= good

r

n ids

grow good

s

(ids)

Pre: mode

s

6= needid _

((mode

r

6= rec =) ids � issued

r

) ^

(current-ok = true =) ids � good

r

) ^

(ids \ used

s

= f g))

E�: good

s

:= good

s

[ ids

grow good

r

(ids)

Pre: ids \ issued

r

= f g

E�: good

r

:= good

r

[ ids

issued

r

:= issued

r

[ ids

cleanup

r

Pre: mode

r

2 fidle; ackg ^

(mode

s

= send =) last

s

6= last

r

)

E�: mode

r

:= idle

last

r

:= nil

6. CORRECTNESS PROOFS

In this section we sketch the proofs of safe implementation for the di�erent levels of

abstraction in our work. We will not be strictly formal. For such formal treatment and

full proofs we refer to our full report [8].

6.1. Correctness of G

To prove that G is a safe implementation of S, we need a backward simulation. Infor-

mally this is because G (and the lower-level protocols) may postpone the decisions about

which messages to lose because of a crash till after recovery, whereas in S message loss

occurs between crash and recovery. It is due to certain race conditions on the channels

that the decisions are delayed in G, C, and H.

Since a backward simulation directly from G to S is still more complicated than we

would like, we split the task one more time. Our strategy is to try to localize the back-

ward simulation reasoning, because reasoning in this way seems to be inherently di�cult

compared to the more intuitive forward simulation and re�nement mapping techniques.

Thus, we de�ne a new, \delayed-decision" version D of the speci�cation (see Figure 1). D

is just like S except that it delays the point at which the decision about loss of messages

is made. Now, when a crash occurs, messages in the system and status may get marked.
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Later, even after recovery, any marked message is allowed to be lost. Also, a marked

status is allowed to be lost, i.e., changed to false.

Due to space constraints we will not de�ne D formally, nor will we de�ne or prove the

backward simulation from D to S. We only note that such a backward simulation exists,

which allows us to conclude that D safely implements S.

The proof that G safely implements D uses certain invariants. For instance, the fol-

lowing key invariant of G states that when no crashes have occurred since the sender

executed a prepare action (i.e., current-ok = true) and the sender still has not chosen

an identi�er, then the sender can only choose identi�ers that are considered good by the

receiver. The shrink good and grow good actions are explicitly designed to preserve this

invariant (among others).

If current-ok = true ^ mode

s

= needid then good

s

� good

r

.

The proof that G safely implements D is now discharged by exhibiting a re�nement

mapping from G to D. Again, we do not give details, but refer to [8] for the complete

proofs.

Together, the existence of the backward simulation from D to S and the re�nement

mapping from G to D allow us to conclude that G safely implements S.

6.2. Correctness of C and H

To prove that C and H safely implement S we just have to prove some simulations

from C and H to G, since we have already shown that G safely implements S. We only

consider C.

The �rst step, a technical one, in the correctness proof involves adding a history variable

[16] deadline to C to get an equivalent version of the protocol (which we still call C).

The variable deadline is set to the current real time plus a maximum one-way delay when

the current message gets a timestamp, and gets reset (to 1) when either a crash occurs

or the current message gets accepted by the receiver. Below we show an invariant that

states that this deadline is always met in any execution of C. Another history variable

used

s

is a list containing the timestamps used so far.

Next, note that G is formalized as an untimed automaton whereas C is formalized

as a timed automaton. We resolve this model inconsistency by converting G into the

timed model to get G

t

. That is, an untimed automaton can be considered to be a timed

automaton, where time can pass arbitrarily. (Additional liveness restrictions on G will

make sure that time-passage is not the only activity of G

t

). Below we prove that C safely

implements G

t

in the timed setting. Certain embedding results then allow us to conclude

that since G safely implements S, G

t

safely implements the converted speci�cation S

t

,

which furthermore implies that C safely implements S

t

. Thus, the embedding results

allow us to work mostly within the simpler untimed model.

De�nition 1 (Re�nement from C to G

t

) If s is a state of C then R

CG

(s) is the state

u of G

t

such that
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u:good

s

= fs:time

s

g � fs:last

s

g

u:good

r

= (s:lower

r

; s:upper

r

]

u:issued

r

= (0; s:upper

r

]

u:current-ok = (s:deadline 6=1)

All remaining variables (including the channels) have the same contents in C and G

t

.

The timestamp that the sender in C might associate with a message, corresponding to

good

s

in G, is taken from the local clock time

s

, but only if the local clock has advanced

since the last timestamp (last

s

). This explains the line for good

s

. The lines for good

r

and

issued

r

can be explained similarly.

A key invariant we need in the re�nement proof is that the history variable deadline of

C is always at least as big as real time, i.e., now � deadline . This can then be used to

prove the following invariant: for all timestamps t on the channel from sender to receiver,

deadline 6= 1 =) upper

r

� t. This invariant states that upper

r

is always su�ciently

large when the current message is being transmitted on the channel and no crashes have

occurred.

Lemma 2 R

CG

is a re�nement mapping from C to G

t

.

Proof The proof of a re�nement mapping in the timed setting has three points, which

we sketch here:

� For any state s of C, R

CG

(s) has the same real time (now ) as s. This is satis�ed

immediately by the de�nition of R

CG

.

� For any start state s of C, R

CG

(s) is a start state of G

t

. This is easy to check.

� For each step (s; a; s

0

) of C, where s and s

0

satisfy the invariants of C, we must

show the existence of a sequence of steps (R

CG

(s); a

1

; : : : ; a

n

; R

CG

(s

0

)) of G

t

with

the same trace (see Figure 2). We conduct such a proof by doing a case analysis

based on the di�erent actions a of C. For instance, if a = increase-lower

r

(t), we

show that (R

CG

(s); shrink good

r

((0; t]); R

CG

(s

0

)) is a step of G

t

.

The correctness of H can also be proved using the re�nement mapping technique.

7. CONCLUSION

In this paper, we have used a simple automaton model to present the at-most-once mes-

sage delivery problem and two interesting solutions, and have used simulation techniques

to prove that the two algorithms meet the speci�cation. We have only given arguments

for safety and timing properties here, and have left liveness for a longer report. We be-

lieve that this work yields important insights into the protocols, and also serves to show

the adequacy of the model and proof techniques. Similar protocols have been veri�ed

formally, using di�erent techniques. LOTOS has, for instance, been used in [14].

There is a considerable amount of further work remaining. First, if the timing assump-

tions on C are weakened or removed, the resulting algorithm still will not deliver any

message more than once; however, it may lose messages even in the absence of a crash.
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It remains to formulate the weaker speci�cation and prove that the weaker version of C

satis�es it.

Second, there are other algorithms that solve the at-most-once message delivery prob-

lem, for example, using bounded identi�er spaces or cryptographic assumptions. We

would like also to verify these, again reusing as much of our proofs as possible. In [17]

bounded identi�er spaces are dealt with for similar protocols.

Third, we would like to automate our simulation proofs using a mechanical theorem

prover. We have already begun this work, by proving the equivalence of versions of S and

D using the Larch Prover [18, 4]. We have been pleased with the preliminary results: the

prover has not only been able to check our hand proofs, but in fact has been able to �ll

in many of the details. We can draw several conclusions:

� Automata, invariants, and simulations are all excellent tools for verifying timed and

untimed communication protocols. The methods scale well, yield insight, and are

not too di�cult to use.

� A general model such as timed automata is needed in order to model and verify most

communication protocols in a single coherent framework. However, for reasoning

about particular protocols, it is often better to work in a simpli�ed special case of

the general model. (For instance, for untimed protocols such as H, it is best to

avoid details of timing.) What is needed is a collection of special models, each of

which can be easily \embedded" in the general model.

� Safety proofs are challenging. They require insight to obtain the right invariants and

simulations, and a lot of detailed work to verify these choices. Computer assistance

can help with the details; however, the insight will always be required.

� Backward simulations are much harder to do than re�nements and forward simula-

tions but are necessary in certain situations.

� Many algorithms can be treated as implementations of a common abstract algo-

rithm.

� Verifying a coordinated collection of protocols, rather than just a single isolated

protocol, is extremely valuable. It leads to the discovery of useful abstractions, and

tends to make the proofs more elegant and reusable.

� Doing proofs for realistic communication protocols is feasible now. We predict that

it will become more so, and will be of considerable practical importance.
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