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ABSTRACT. We are given a set V of autonomous agents (e.g. the computers of a distributed system)
that are connected to each other by a graph G = (V, E) (e.g. by a communication network connecting
the agents). Assume that all agents have a unique ID between 1 and N for a parameter N ≥ |V |
and that each agent knows its ID as well as the IDs of its neighbors in G. Based on this limited
information, every agent v must autonomously compute a set of colors Sv ⊆ C such that the color
sets Su and Sv of adjacent agents u and v are disjoint. We prove that there is a deterministic algorithm
that uses a total of |C| = O(∆2 log(N)/ε2) colors such that for every node v of G (i.e., for every
agent), we have |Sv| ≥ |C|·(1−ε)/(δv+1), where δv is the degree of v and where ∆ is the maximum
degree of G. For N = Ω(∆2 log ∆), Ω(∆2 + log log N) colors are necessary even to assign at least
one color to every node (i.e., to compute a standard vertex coloring). Using randomization, it is
possible to assign an (1 − ε)/(δ + 1)-fraction of all colors to every node of degree δ using only
O(∆ log |V |/ε2) colors w.h.p. We show that this is asymptotically almost optimal. For graphs with
maximum degree ∆ = Ω(log |V |), Ω(∆ log |V |/ log log |V |) colors are needed in expectation, even
to compute a valid coloring.

The described multicoloring problem has direct applications in the context of wireless ad hoc and
sensor networks. In order to coordinate the access to the shared wireless medium, the nodes of such
a network need to employ some medium access control (MAC) protocol. Typical MAC protocols
control the access to the shared channel by time (TDMA), frequency (FDMA), or code division
multiple access (CDMA) schemes. Many channel access schemes assign a fixed set of time slots,
frequencies, or (orthogonal) codes to the nodes of a network such that nodes that interfere with each
other receive disjoint sets of time slots, frequencies, or code sets. Finding a valid assignment of time
slots, frequencies, or codes hence directly corresponds to computing a multicoloring of a graph G.
The scarcity of bandwidth, energy, and computing resources in ad hoc and sensor networks, as well
as the often highly dynamic nature of these networks require that the multicoloring can be computed
based on as little and as local information as possible.

1. Introduction
In this paper, we look at a variant of the standard vertex coloring problem that we name graph

multicoloring. Given an n-node graph G = (V, E), the goal is to assign a set Sv of colors to each
node v ∈ V such that the color sets Su and Sv of two adjacent nodes u ∈ V and v ∈ V are disjoint
while at the same time, the fraction of colors assigned to each node is as large as possible and the
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total number of colors used is as small as possible. In particular, we look at the following distributed
variant of this multicoloring problem. Each node has a unique identifier (ID) between 1 and N for
an integer parameter N ≥ n. The nodes are autonomous agents and we assume that every agent
has only very limited, local information about G. Specifically, we assume that every node v ∈ V
merely knows its own ID as well as the IDs of all its neighbors. Based on this local information,
every node v needs to compute a color set Sv such that the color sets computed by adjacent nodes
are disjoint. Since our locality condition implies that every node is allowed to communicate with
each neighbor only once, we call such a a distributed algorithm a one-shot algorithm.

We prove nearly tight upper and lower bounds for deterministic and randomized algorithms
solving the above distributed multicoloring problem. Let ∆ be the largest degree of G. We show that
for every ε ∈ (0, 1), there is a deterministic multicoloring algorithm that uses O(∆2 log(N)/ε2)
colors and assigns a (1 − ε)/(δ + 1)-fraction of all colors to each node of degree δ. Note that
because a node v of degree δ does not know anything about the topology of G (except that itself has
δ neighbors), no one-shot multicoloring algorithm can assign more than a 1/(δ + 1)-fraction of the
colors to all nodes of degree δ (the nodes could be in a clique of size δ + 1). The upper bound proof
is based on the probabilistic method and thus only establishes the existence of an algorithm. We
describe an algebraic construction yielding an explicit algorithm that achieves the same bounds up
to polylogarithmic factors. Using O(∆2 log2 N) colors, for a value ε > 0, the algorithm assigns a
ε/O(δ1+ε log N)-fraction of all colors to nodes of degree δ. At the cost of using O(∆log∗N log N)
colors, it is even possible to improve the fraction of colors assigned to each node by a factor of
log N . The deterministic upper bound results are complemented by a lower bound showing that
if N = Ω(∆2 log ∆), even for the standard vertex coloring problem, every deterministic one-shot
algorithm needs to use at least Ω(∆2 + log log N) colors.

If we allow the nodes to use randomization (and only require that the claimed bounds are
obtained with high probability), we can do significantly better. In a randomized one-shot algorithm,
we assume that every node can compute a sequence of random bits at the beginning of an algorithm
and that nodes also know their own random bits as well as the random bits of the neighbors when
computing the color set. We show that for ε ∈ (0, 1), with high probability, O(∆ log(n)/ε2) colors
suffice to assign a (1 − ε)/(δ + 1)-fraction of all colors to every node of degree δ. If log n ≤
∆ ≤ n1−ε for a constant ε > 0, we show that every randomized one-shot algorithm needs at
least Ω(∆ log n/ log log n) colors. Again, the lower bound even holds for standard vertex coloring
algorithms where every node only needs to choose a single color.

Synchronizing the access to a common resource is a typical application of coloring in networks.
If we have a c-coloring of the network graph, we can partition the resource (and/or time) into c parts
and assign a part to each node v depending on v’s color. In such a setting, it seems natural to use a
multicoloring instead of a standard vertex coloring and assign more than one part of the resource to
every node. This allows to use the resource more often and thus more efficiently.

The most prominent specific example of this basic approach occurs in the context of media
access control (MAC) protocols for wireless ad hoc and sensor networks. These networks consist
of autonomous wireless devices that communicate with each other by the use of radio signals. If
two or more close-by nodes transmit radio signals at the same time, a receiving node only hears
the superposition of all transmitted signals. Hence, simultaneous transmissions of close-by nodes
interfere with each other and we thus have to control the access to the wireless channel. A stan-
dard way to avoid interference between close-by transmissions is to use a time (TDMA), frequency
(FDMA), or code division multiple access (CDMA) scheme to divide the channel among the nodes.
A TDMA protocol divides the time into time slots and assigns different time slots to conflicting
nodes. When using FDMA, nodes that can interfere with each other are assigned different frequen-
cies, whereas a CDMA scheme uses different (orthogonal) codes for interfering nodes. Classically,
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TDMA, FDMA, and CDMA protocols are implemented by a standard vertex coloring of the graph
induced by the interference relations. In all three cases, it would be natural to use the more general
multicoloring problem in order to achieve a more effective use of the wireless medium. Efficient
TDMA schedules, FDMA frequency assignments, or CDMA code assignments are all directly ob-
tained from a multicoloring of the interference graph where the fraction of colors assigned to each
nodes is as large as possible. It is also natural to require that the total number of colors is small. This
keeps the length of a TDMA schedule or the total number of frequencies or codes small and thus
helps to improve the efficiency and reduce unnecessary overhead of the resulting MAC protocols.

In contrast to many wired networks, wireless ad hoc and sensor networks typically consist of
small devices that have limited computing and storage capabilities. Because these devices operate
on batteries, wireless nodes also have to keep the amount of computation and especially commu-
nication to a minimum in order to save energy and thus increase their lifetime. As the nodes of
an ad hoc or sensor network need to operate without central control, everything that is computed,
has to be computed by a distributed algorithm by the nodes themselves. Coordination between the
nodes is achieved by exchanging messages. Because of the resource constraints, these distributed
algorithms need to be as simple and efficient as possible. The messages transmitted and received
by each node should be as few and as short as possible. Note that because of interference, the
bandwidth of each local region is extremely limited. Typically, for a node v, the time needed to
even receive a single message from all neighbors is proportional to the degree of v (see e.g. [19]).
As long as the information provided to each node is symmetric, it is clear that every node needs to
know the IDs of all adjacent nodes in G in order to compute a reasonably good multicoloring of G.
Hence, the one-shot multicoloring algorithms considered in this paper base their computations on
the minimum information needed to compute a non-trivial solution to the problem. Based on the
above observations, even learning the IDs of all neighbors requires quite a bit of time and resources.
Hence, acquiring significantly more information might already render an algorithm inapplicable in
practice.1

As a result of the scarcity of resources, the size and simplicity of the wireless devices used in
sensor networks, and the dependency of the characteristic of radio transmissions on environmental
conditions, ad hoc and sensor networks are much less stable than usual wired networks. As a con-
sequence, the topology of these networks (and of their interference graph) can be highly dynamic.
This is especially true for ad hoc networks, where it is often even assumed that the nodes are mobile
and thus can move in space. In order to adapt to such dynamic conditions, a multicoloring needs
to be recomputed periodically. This makes the resource and time efficiency of the used algorithms
even more important. This is particularly true for the locality of the algorithms. If the computation
of every node only depends on the topology of a close-by neighborhood, dynamic changes also only
affect near-by nodes.

The remainder of the paper is organized as follows. In Section 2, we discuss related work.
The problem is formally defined in Section 3. We present the deterministic and randomized upper
bounds in Section 4 and the lower bounds in Section 5.

2. Related Work
There is a rich literature on distributed algorithms to compute classical vertex colorings (see

e.g. [1, 4, 11, 15, 16, 21]). The paper most related to the present one is [15]. In [15], deterministic
algorithms for the standard coloring problem in the same distributed setting are studied (i.e., every

1It seems that in order to achieve a significant improvement on the multicolorings computed by the algorithms pre-
sented in this paper, every node would need much more information. Even if every node knows its complete O(log ∆)-
neighborhood, the best deterministic coloring algorithm that we are aware of needs Θ(∆2) colors.



4 F. KUHN

node has to compute its color based on its ID and the IDs of its neighbors). The main result is a
Ω(∆2/ log2 ∆) lower bound on the number of colors. The first paper to study distributed coloring
is a seminal paper by Linial [16]. The main result of [16] is an Ω(log∗ n)-time lower bound for
coloring a ring with a constant number of colors. As a corollary of this lower bound, one obtains an
Ω(log log N) lower bound on the number of colors for deterministic one-shot coloring algorithms as
studied in this paper. Linial also looks at distributed coloring algorithms for general graph and shows
that one can compute an O(∆2)-coloring in time O(log∗ n). In order to color a general graph with
less colors, the best known distributed algorithms are significantly slower.2 Using randomization,
anO(∆)-coloring can be obtained in timeO(

√
log n) [14]. Further, the fastest algorithm to obtain a

(∆ + 1)-coloring is based on an algorithm to compute a maximal independent set by Luby [17] and
on a reduction described in [16] and has time complexity O(log n). The best known deterministic
algorithms to compute a (∆ + 1)-coloring have time complexities 2O(

√
log n) and O(∆ log ∆ +

log∗ n) and are described in [21] and [15], respectively. For special graph classes, there are more
efficient deterministic algorithms. It has long been known that in rings [4] and bounded degree
graphs [11, 16], a (∆ + 1)-coloring can be computed in time O(log∗ n). Very recently, it has
been shown that this also holds for the much larger class of graphs with bounded local independent
sets [26]. In particular, this graph class contains all graph classes that are typically used to model
wireless ad hoc and sensor networks. Another recent result shows that graphs of bounded arboricity
can be colored with a constant number of colors in time O(log n) [3].

Closely related to vertex coloring algorithms are distributed algorithms to compute edge col-
orings [5, 12, 22]. In a seminal paper, Naor and Stockmeyer were the first to look at distributed
algorithms where all nodes have to base their decisions on constant neighborhoods [20]. It is shown
that a weak coloring with f(∆) colors (every node needs to have a neighbor with a different color)
can be computed in time 2 if every vertex has an odd degree. Another interesting approach is taken
in [9] where the complexity of distributed coloring is studied in case there is an oracle that gives
some nodes a few bits of extra information.

There are many papers that propose to use some graph coloring variant in order to compute
TDMA schedules and FDMA frequency or CDMA code assignments (see e.g. [2, 10, 13, 18, 24,
25, 27]). Many of these papers compute a vertex coloring of the network graph such that nodes
at distance at most 2 have different colors. This guarantees that no two neighbors of a node use
the same time slot, frequency, or code. Some of the papers also propose to construct a TDMA
schedule by computing an edge coloring and using different time slots for different edges. Clearly,
it is straight-forward to use our algorithms for edge colorings, i.e., to compute a multicoloring of
the line graph. With the exception of [13] all these papers compute a coloring and assign only one
time slot, frequency, or code to every node or edge. In [13], first, a standard coloring is computed.
Based on this coloring, an improved slot assignment is constructed such that in the end, the number
of slots assigned to a node is inversely proportional to the number of colors in its neighborhood.

3. Formal Problem Description
3.1. Mathematical Preliminaries

Throughout the paper, we use log(·) to denote logarithms to base 2 and ln(·) to denote nat-
ural logarithms, respectively. By log(i) x and by ln(i) x, we denote the i-fold applications of the
logarithm functions log and ln to x, respectively3. The log star function is defined as log∗ n :=

2In [6], it is claimed that an O(∆) coloring can be computed in time O(log∗(n/∆)). However, the argumentation in
[6] has a fundamental flaw that cannot be fixed [23].

3We have log(0) x = ln(0) x = x, log(i+1) x = log(log(i) x), and ln(i+1) x = ln(ln(i) x). Note that we also use
logi x = (log x)i and lni x = (ln x)i
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mini{log(i) n ≤ 1}. We also use the following standard notations. For an integer n ≥ 1, [n] =
{1, . . . , n}. For a finite set Ω and an integer k ∈ {0, . . . , |Ω|},

(
Ω
k

)
= {S ∈ 2Ω : |S| = k}. The

term with high probability (w.h.p.) means with probability at least 1− 1/nc for a constant c ≥ 1.

3.2. Multicoloring

The multicoloring problem that was introduced in Section 1 can be formally defined as follows.

Definition 3.1 (Multicoloring). An (ρ(δ), k)-multicoloring γ of a graph G = (V,E) is a mapping
γ : V → 2[k] that assigns a set γ(v) ⊂ [k] of colors to each node v of G such that ∀{u, v} ∈ E :
γ(u) ∩ γ(v) = ∅ and such that for every node v ∈ V of degree δ, |γ(v)|/k ≥ ρ(δ)/(δ + 1).

We call ρ(δ) the approximation ratio of a (ρ(δ), k)-multicoloring. Because in a one-shot al-
gorithm (cf. the next section for a formal definition), a node of degree δ cannot distinguish G from
Kδ+1, the approximation ratio of every one-shot algorithm needs to be at most 1.

The multicoloring problem is related to the fractional coloring problem in the following way.
Assume that every node is assigned the same number c of colors and that the total number of colors
is k. Taking every color with fraction 1/c then leads to a fractional (k/c)-coloring of G. Hence, in
this case, k/c is lower bounded by the fractional chromatic number χf (G) of G.

3.3. One-Shot Algorithms

As outlined in the introduction, we are interested in local algorithms to compute multicolorings
of an n-node graph G = (V,E). For a parameter N ≥ n, we assume that every node v has a unique
ID xv ∈ [N ]. In deterministic algorithms, every node has to compute a color set based on its own
ID as well as the IDs of its neighbors. For randomized algorithms, we assume that nodes also know
the random bits of their neighbors. Formally, a one-shot algorithm can be defined as follows.

Definition 3.2 (One-Shot Algorithm). We call a distributed algorithm a one-shot algorithm if every
node v performs (a subset of) the following three steps:

1. Generate sequence Rv of random bits (deterministic algorithms: Rv = ∅)
2. Send xv, Rv to all neighbors
3. Compute solution based on xv, Rv, and the received information

Assume that G is a network graph such that two nodes u and v can directly communicate with
each other iff they are connected by an edge in G. In the standard synchronous message passing
model, time is divided into rounds and in every round, every node of G can send a message to each
of its neighbors. One-shot algorithms then exactly correspond to computations that can be carried
out in a single communication round.

For deterministic one-shot algorithms, the output of every node v is a function of v’s ID xv and
the IDs of v’s neighbors. We call this information on which v bases its decisions, the one-hop view
of v.

Definition 3.3 (One-Hop View). Consider a node v with ID xv and let Γv be the set of IDs of the
neighbors of v. We call the pair (xv,Γv) the one-hop view of v.

Let (xu,Γu) and (xv, Γv) be the one-hop views of two adjacent nodes. Because u and v are
neighbors, we have xu ∈ Γv and that xv ∈ Γu. It is also not hard to see that

∀xu, xv ∈ [N ] and ∀Γu,Γv ∈ 2[N ] such that xu 6= xv, xu ∈ Γv \ Γu, xv ∈ Γu \ Γv, (3.1)

there is a labeled graph that has two adjacent nodes u and v with one-hop views (xu, Γu) and
(xv,Γv), respectively. Assume that we are given a graph with maximum degree ∆ (i.e., for all
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one-hop views (xv, Γv), we have |Γv| ≤ ∆). A one-shot vertex coloring algorithm maps every
possible one-hop view to a color. A correct coloring algorithm must assign different colors to two
one-hop views (xu,Γu) and (xv,Γv) iff they satisfy Condition (3.1). This leads to the definition
of the neighborhood graph N1(N,∆) [15] (the general notion of neighborhood graphs has been
introduced in [16]). The nodes of N1(N,∆) are all one-hop views (xv, Γv) with |Γv| ≤ ∆. There
is an edge between (xu, Γu) and (xv, Γv) iff the one-hop views satisfy Condition (3.1). Hence, a
one-shot coloring algorithm must assign different colors to two one-hop views iff they are neighbors
inN1(N, ∆). The number of colors that are needed to properly color graphs with maximum degree
∆ by a one-shot algorithm therefore exactly equals the chromatic number χ

(N1(N,∆)
)

of the
neighborhood graph (see [15, 16] for more details). Similarly, a one-shot (ρ(δ), k)-multicoloring
algorithm corresponds to a (ρ(δ), k)-multicoloring of the neighborhood graph.

4. Upper Bounds
In this section, we prove all the upper bounds claimed in Section 1. We first prove that an

efficient deterministic one-shot multicoloring algorithm exists in Section 4.1. Based on similar
ideas, we derive an almost optimal randomized algorithm in Section 4.2. Finally, in Section 4.3, we
introduce constructive methods to obtain one-shot multicoloring algorithms. For all algorithms, we
assume that the nodes know the size of the ID space N as well as ∆, an upper bound on the largest
degree in the network. It certainly makes sense that nodes are aware of the used ID space. Note that
it is straight-forward to see that there cannot be a non-trivial solution to the one-shot multicoloring
problem if the nodes do not have an upper bound on the maximum degree in the network.

4.1. Existence of an Efficient Deterministic Algorithm

The existence of an efficient, deterministic one-shot multicoloring algorithm is established by
the following theorem.

Theorem 4.1. Assume that we are given a graph with maximum degree ∆ and node IDs in [N ].
Then, for all 0 < ε ≤ 1, there is a deterministic, one-shot

(
1− ε,O(∆2 log(N)/ε2)

)
-multicoloring

algorithm.

Proof. We use permutations to construct colors as described in [15]. For i = 1, . . . , k, let ≺i be
a global order on the ID set [N ]. A node v with 1-hop view (xv, Γv) includes color i in its color
set iff ∀y ∈ Γv : xv ≺i y. It is clear that with this approach the color sets of adjacent nodes
are disjoint. In order to show that nodes of degree δ obtain a ρ/(δ + 1)-fraction of all colors, we
need to show that for all δ ∈ [∆], all x ∈ [N ], and all Γ ∈ ([N ]\{x}

δ

)
, for all y ∈ Γ, x ≺i y for

at least kρ/(δ + 1) global orders ≺i. We use the probabilistic method to show that a set of size
k = 2(∆ + 1)2 ln(N)/ε2 of global orders ≺i exists such that every node of degree δ ∈ [∆] gets at
least an (1 − ε)/(δ + 1)-fraction of the k colors. Such a set implies that there exists an algorithm
that satisfies the claimed bounds for all graphs with maximum degree ∆ and IDs in [N ].

Let ≺1, . . . ,≺k be k global orders chosen independently and uniformly at random. The prob-
ability that a node v with degree δ and 1-hop view (xv,Γv) gets color i is 1/(δ + 1) (note that
|Γv| = δ). Let Xv be the number of colors that v gets. We have E[Xv] = k/(δ + 1) ≥ k/(∆ + 1).
Using a Chernoff bound, we then obtain

P
[
Xv < (1− ε) · k

δ + 1

]
= P [Xv < (1− ε) · E[Xv]] < e−ε2E[Xv ]/2 ≤ 1

N∆+1
. (4.1)
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Algorithm 1 Explicit Deterministic Multicoloring Algorithm: Basic Construction

Input: one-hop view (x,Γ), parameter ` ≥ 0
Output: set S of colors, initially S = ∅

1: for all (α0, α1, . . . , α`) ∈ Fq0 × Fq1 × · · · × Fq`
do

2: β0,x := ϕ0,x(α0); ∀y ∈ Γ : β0,y := ϕ0,y(α0)
3: for i := 1 to ` do
4: βi,x := ϕi,βi−1,x(αi); ∀y ∈ Γ : βi,y := ϕi,βi−1,y(αi)
5: if ∀y ∈ Γ : β`,x 6= β`,y then
6: S := S ∪ (α0, α1, . . . , α`, β`,x)

The total number of different possible one-hop views can be bounded as |N1(N, ∆)| = N ·∑∆
δ=1

(
N−1

δ

)
< N∆+1. By a union bound argument, we therefore get that with positive probability,

for all δ ∈ [∆], all possible one-hop views (xv, Γv) with |Γv| = δ get at least (1 − ε) · k/(δ + 1)
colors. Hence, there exists a set of k global orders on the ID set [N ] such that all one-hop views
obtain at least the required number of colors.

Remark: Note that if we increase the number of permutations (i.e., the number of colors) by a
constant factor, all possible one-hop views (x,Γ) with |Γ| = δ get a (1− ε)/(δ + 1)-fraction of all
colors w.h.p.

4.2. Randomized Algorithms

We will now show that with the use of randomization, the upper bound of Section 4.1 can be
significantly improved if the algorithm only needs to be correct w.h.p. We will again use random
permutations. The problem of the deterministic algorithm is that the algorithm needs to assign a
large set of colors to all roughly N∆ possible one-hop views. With the use of randomization, we
essentially only have to assign colors to n randomly chosen one-hop views.

For simplicity, we assume that every node knows the number of nodes n (knowing an upper
bound on n is sufficient). For an integer parameter k > 0, every v ∈ V chooses k independent
random numbers xv,1, . . . , xv,k ∈ [kn4] and sends these random numbers to all neighbors. We
use these random numbers to induce k random permutations on the nodes. Let Γ(v) be the set of
neighbors of a node v. A node v selects all colors i for which xv,i < xu,i for all u ∈ Γ(v).

Theorem 4.2. Choosing k = 6(∆ + 1) ln(n)/ε2 leads to a randomized one-shot algorithm that
computes a (1− ε, k)-multicoloring w.h.p.

Remark: In the above algorithm, every node has to generate O(∆ log2(n)/ε2) random bits and
send these bits to the neighbors. Using a (non-trivial) probabilistic argument, it is possible to show
that the same result can be achieved using only O(log n) random bits per node.

4.3. Explicit Algorithms

We have shown in Section 4.1 that there is a deterministic one-shot algorithm that almost
matches the lower bound (cf. Theorem 5.2). Unfortunately, the techniques of Section 4.1 do not
yield an explicit algorithm. In this section, we will present constructive methods to obtain a one-
shot multicoloring algorithm.

We develop the algorithm in two steps. First, we construct a multicoloring where in the worst
case, every node v obtains the same fraction of colors independent of v’s degree. We then show
how to increase the fraction of colors assigned to low-degree nodes. For an integer parameter ` ≥ 0,
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let q0, . . . , q` be prime powers and let d0, . . . , d` be positive integers such that qd0+1
0 ≥ N and

qdi+1
i ≥ qi−1 for i ≥ 1. For a prime power q and a positive integer d, let P(q, d) be the set of all

qd+1 polynomials of degree at most d in Fq[z], where Fq is the finite field of order q. We assume
that that we are given an injection ϕ0 from the ID set [N ] to the polynomials in P(q0, d0) and
injections ϕi from Fqi−1 to P(qi, di) for i ≥ 1. For a value x in the respective domain, let ϕi,x be
the polynomial assigned to x by injection ϕi. The first part of the algorithm is an adaptation of a
technique used in a coloring algorithm described in [16] that is based on an algebraic construction
of [7]. There, a node v with one-hop view (x,Γ) selects a color

(
α, ϕ0,x(α)

)
, where α ∈ Fq0 is a

value for which ϕ0,x(α) 6= ϕ0,y(α) for all y ∈ Γ (we have to set q0 and d0 such that this is always
possible). We make two modifications to this basic algorithm. Instead of only selecting one value
α ∈ Fq0 such that ∀y ∈ Γ : ϕ0,x(α) 6= ϕ0,y(α), we select all values α for which this is true. We
then use these values recursively (as if ϕi,x(αi) was the ID of v) ` times to reduce the dependence
of the approximation ratio of the coloring on N . The details of the first step of the algorithm are
given by Algorithm 1.

Lemma 4.3. Assume that for 0 ≤ i ≤ `, qi ≥ fi∆di where fi > 1. Then, Algorithm 1 constructs
a multicoloring with q` ·

∏`
i=0 qi colors where every node at least receives a λ/q`-fraction of all

colors where λ =
∏`

i=0(1− 1/fi).

Proof. All colors that are added to the color set in line 6 are from Fq0 × Fq1 × · · · × Fq`
× Fq`

. It is
therefore clear that the number of different colors is q` ·

∏`
i=0 qi as claimed. From the condition in

line 5, it also follows that the color sets of adjacent nodes are disjoint.
To determine the approximation ratio, we count the number of colors, a node v with one-hop

view (x,Γ) gets. First note that the condition in line 5 of the algorithm implies that (and is therefore
equivalent to demand that) βi,x 6= βi,y for all y ∈ Γ and for all i ∈ {0, . . . , `} because βi,x = βi,y

implies βj,x = βj,y for all j ≥ i. We therefore need to count the number of (α0, . . . , α`) ∈
Fq0 × · · · × Fq`

for which βi,x 6= βi,y for all i ∈ {0, . . . , `} and all y ∈ Γ. We prove by induction
on i that for i < `, there are at least

∏i
j=0 qj · (1− 1/fj) tuples (α0, . . . , αi) ∈ Fq0 × · · ·Fqi with

βj,x 6= βj,y for all j ≤ i. Let us first prove the statement for i = 0. Because the IDs of adjacent
nodes are different, we know that ϕ0,x 6= ϕ0,y for all y ∈ Γ. Two different degree d0 polynomials
can be equal at at most d0 values. Hence, for every y ∈ Γ, ϕ0,x(α) = ϕ0,y(α) for at most d0 values
α. Thus, since |Γ| ≤ ∆, there are at least q0−∆d0 ≥ q0 ·(1−1/f0) values α for which ϕ0,x 6= ϕ0,y

for all y ∈ Γ. This establishes the statement for i = 0. For i > 0, the argument is analogous. Let
(α0, . . . , αi−1) ∈ Fq0 × · · · × Fqi−1 be such that βj,x 6= βj,y for all y ∈ Γ and all j < i. Because
βi−1,x 6= βi−1,y, we have ϕi,x 6= ϕi,y. Thus, with the same argument as for i = 0, there are at least
qi · (1− 1/fi) values αi such that βi,x 6= βi,y for all y ∈ Γ. Therefore, the number of colors in the
color set of every node is at least

∏`
i=0 qi ·

(
1− 1/fi

)
= λ ·∏`

i=0 qi. This is a (λ/q`)-fraction of all
colors.

The next lemma specifies how the values of qi, di, and fi can be chosen to obtain an efficient
algorithm.

Lemma 4.4. Let ` be such that ln(`) N > max{e, ∆}. For 0 ≤ i ≤ `, we can then choose qi,
di, and fi such that Algorithm 1 computes a multicoloring with O(`∆)`+2 · log∆ N · log∆ ln(`) N

colors and such that every node gets at least a 1/
(
4e9/4∆

⌈
log∆ ln(`) N

⌉)
-fraction of all colors.

The number of colors that Algorithm 1 assigns to nodes with degree almost ∆ is close to
optimal even for small values of `. If we choose ` = Θ(log∗N − log∗∆), nodes of degree Θ(∆)
even receive at least a (d/∆)-fraction of all colors for some constant d. Because the number of
colors assigned to a node v is independent of v’s degree, however, the coloring of Algorithm 1 is far
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Algorithm 2 Explicit Deterministic Multicoloring Algorithm: Small Number of Colors

Input: one-hop view (x,Γ), instancesA2i,N for i ∈ [dlog ∆e] of Algorithm 1, parameter ε ∈ [0, 1]
Output: set S of colors, initially S = ∅

1: for all i ∈ [dlog ∆e] do
2: ωi :=

⌈(
∆/2i−1

)ε · ∣∣C2dlog ∆e,N
∣∣/∣∣C2i,N

∣∣
⌉

3: for all i ∈ {dlog |Γ|e, . . . , dlog ∆e} do
4: for all c ∈ C2i,N [x,Γ] do
5: for all j ∈ [ωi] do S := S ∪ (c, i, j)

from optimal for low-degree nodes. In the following, we show how to improve the algorithm in this
respect.

Let A∆,N be an instance of Algorithm 1 for nodes with degree at most ∆ and let C∆,N be the
color set ofA∆,N . Further, for a one-hop view (x,Γ), let C∆,N [x,Γ] be the colors assigned to (x,Γ)
by AlgorithmA∆,N . We run instancesA2i,N for all i ∈ [dlog ∆e]. A node v with degree δ chooses
the colors of all instances for which 2i ≥ δ. In order to achieve the desired trade-offs, we introduce
an integer weight ω for each color c, i.e., instead of adding color c, we add colors (1, c), . . . , (ω, c).
The details are given by Algorithm 2. The properties of Algorithm 2 are summarized by the next
theorem. The straight-forward proof is omitted.

Theorem 4.5. Assume that in the instances of Algorithm 1, the parameter ` is chosen such that for
all ∆, A∆,N assigns at least a f(N)/∆-fraction of the colors to every node. Then, for a parameter
ε ∈ [0, 1], Algorithm 2 computes a

(
Ω(f(N)ε/δε),O(|C2∆,N | ·∆ε/ε)

)
-multicoloring.

Corollary 4.6. Let ε ∈ [0, 1] and ` ≥ 0 be a fixed constant in all used instances of Algorithm
1. Then, Algorithm 2 computes an

(
ε/O(δε log∆ ln(`) N),O(∆`+2 · log∆ N · log∆ ln(`) N)

)
-

multicoloring. In particular, choosing ` = 0 leads to an
(
ε/O(δε log∆ N),O(∆2 log2

∆ N)
)
-

multicoloring. Taking the maximum possible value for ` in all used instances of Algorithm 1 yields
an

(
ε/O(δε), ∆O(log∗N−log∗∆) · log∆ N

)
-multicoloring.

5. Lower Bounds
In this section, we give lower bounds on the number of colors required for one-shot multicol-

oring algorithms. In fact, we even derive the lower bounds for algorithms that need to assign only
one color to every node, i.e., the results even hold for standard coloring algorithms.

It has been shown in [15] that every deterministic one-shot c-coloring algorithm A can be
interpreted as a set of c antisymmetric relations on the ID set [N ]. Assume that A assigns a color
from a set C with |C| = c to every one-hop view (x,Γ). For every color α ∈ C, there is a relation
Cα such that for all x, y ∈ [N ] x 6Cα y∨y 6Cα x. AlgorithmA can assign color α ∈ C to a one-hop
view (x,Γ) iff ∀y ∈ Γ : x Cα y.

For α ∈ C, let Badα(x) := {y ∈ [N ] : x 6Cα y} be the set of IDs that must not be adjacent to
an α-colored node with ID x. To show that there is no deterministic, one-shot c-coloring algorithm,
we need to show that for every c antisymmetric relations Cα1 , . . . , Cαc on [N ], there is a one-hop
view (x,Γ) such that ∀i ∈ [c] : Γ ∩ Badαi(x) 6= ∅. The following lemma is a generalization of
Lemma 4.5 in [15] and key for the deterministic and the randomized lower bounds. As the proof is
along the same lines as the proof of Lemma 4.5 in [15], it is omitted here.
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Lemma 5.1. Let X ⊆ [N ] be a set of IDs and let t1, . . . , t` and k1, . . . , k` be positive integers such
that

ti ·
(
λ(|X| − c)ti − c

)
> 2c(ki − 1) for 1 ≤ i ≤ ` and a parameter λ ∈ [0, 1].

Then there exists an ID set X ′ ⊆ X with |X ′| > (1− ` · λ) · (|X| − c) such that for all i ∈ [`],

∀x ∈ X ′, ∀α1, . . . , αti ∈ C :
ti∑

j=1

∣∣Badαj (x) ∩X
∣∣ ≥ ki, ∀x ∈ X ′,∀α ∈ C : Badα(x) ∩X 6= ∅.

Based on several applications of Lemma 5.1 (and based on an Ω(log log N) lower bound in
[16]), it is possible to derive an almost tight lower bound for deterministic one-shot coloring algo-
rithms. Due to lack of space, we only state the result here.

Theorem 5.2. If N = Ω(∆2 log ∆), every deterministic one-shot coloring algorithm needs at least
Ω(∆2 + log log N) colors.

5.1. Randomized Lower Bound

To obtain a lower bound for randomized multicoloring algorithms, we can again use the tools
derived for the deterministic lower bound by applying Yao’s principle. On a worst-case input, the
best randomized algorithm cannot perform better than the best deterministic algorithm for a given
random input distribution. Choosing the node labeling at random allows to again only consider
deterministic algorithms.

We assume that the n nodes are assigned a random permutation of the labels 1, . . . , n (i.e.,
every label occurs exactly once). Note that because we want to prove a lower bound, assuming the
most restricted possible ID space makes the bound stronger. For an ID x ∈ [n], we sort all colors
α ∈ C by increasing values of |Badα(x)| and let αx,i be the ith color in this sorted order. Further,
for x ∈ [n], we define bx,i :=

∣∣Badαx,i(x)
∣∣. In the following, we assume that

c = κ · ∆bln nc
dln lnne+ 2

and n ≥ 12 and n ≥ ∆ · lnn (5.1)

for a constant 0 < κ ≤ 1 that will be determined later. By applying Lemma 5.1 in different ways,
the next lemma gives lower bounds on the values of bx,i for n/2 IDs x ∈ [n].

Lemma 5.3. Assume that c and n are as given by Equation (5.1) and let 0 < ρ < 1/3 be a
positive constant. Further, let t̃ =

⌈
ρ lnn/ ln lnn

⌉
and ti = 2i−1 · blnnc for 1 ≤ i ≤ ` where

` = dln lnne+ 2. Then, for at least n/2 of all IDs x ∈ [n], we have

bx,1 ≥ ln lnn

44κ · lnn
· n

∆
−1, bx,t̃ ≥

ρ

48κ
· n

∆
− 1

2
, bx,ti ≥ 2i−1 ·

(
1
8κ

· n

∆
− 1

2

)
for 1 ≤ i ≤ `.

In order to prove the lower bound, we want to show that for a randomly chosen one-hop view
(x,Γ) with |Γ| = ∆, the probability that there is a color α ∈ C for which Γ ∩ Badα(x) = ∅ is
sufficiently small. Instead of directly looking at random one-hop views (x,Γ) with |Γ| = ∆, we
first look at one-hop views with |Γ| ≈ ∆/e that are constructed as follows. Let X ⊆ [n] be the set
of IDs x of size |X| ≥ n/2 for which the bounds of Lemma 5.3 hold. We choose xR uniformly
at random from X . The remaining n− 1 IDs are independently added to a set ΓR with probability
p = ∆

en . For a color α ∈ C, let Eα be the event that ΓR ∩ Badα(xR) 6= ∅, i.e., Eα is the event that
color α cannot be assigend to the randomly chosen one-hop view (xR, ΓR).
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Lemma 5.4. The probability that the randomly chosen one-hop view cannot be assigned one of the
c colors in C is bounded by

P

[ ⋂

α∈C

Eα

]
≥

∏

α∈C

P
[Eα

] ≥
∏

α∈C

(
1− e−

∆
en
·|Badα(xR)|

)
=

c∏

i=1

(
1− e−

∆·bxR,i

en

)
.

Proof. Note first that for α ∈ C, we have

P
[Eα

]
= P

[
ΓR ∩ Badα(xR) = ∅] = (1− p)|Badα(xR)| ≤ e−p|Badα(xR)| = e−

∆
en
·|Badα(xR)|.

It therefore remains to prove that the probability that all events Eα occur can be lower bounded by
the probability that would result for independent events. Let us denote the colors in C by α1, . . . , αc.
We then have

P

[ ⋂

α∈C

Eα

]
=

c∏

i=1

P


Eαi

∣∣∣∣∣
i−1⋂

j=1

Eαj


 ≥

c∏

i=1

P
[Eαi

]
. (5.2)

The inequality holds because the events Eα are positively correlated. Knowing that an element from
a set Badα(xR) is in ΓR cannot decrease the probability that an element from a set Badα′(xR) is
in ΓR. Note that this is only true because the IDs are independently added to ΓR. More formally,
Inequality (5.2) can also directly be followed from the FKG inequality [8].

For space reasons, the following two lemmas are given without proof.

Lemma 5.5. Assume that c and n are given as in (5.1) where the constant κ is chosen sufficiently
small and let ρ > 0 be a constant as in Lemma 5.3. There is a constant n0 > 0 such that for n ≥ n0,
P

[⋂
α∈C Eα

]
> 1

2n3ρ .

Lemma 5.6. Let (x,Γ) be a one-hop view chosen uniformly at random from all one-hop views with
|Γ| = ∆. If ∆ ≥ e(lnn + 2) and n, c, and ρ are as before, the probability that none of the c colors
can be assigned to (x,Γ) is at least 1/(8n3ρ).

In the following, we call a node u together with ∆ neighbors v1, . . . , v∆, a ∆-star.

Theorem 5.7. Let G be a graph with n nodes and 2nε disjoint ∆-stars for a constant ε > 0. On
G, every randomized one-shot coloring algorithm needs at least Ω(∆ log n/ log log n) colors in
expectation and with high probability.

Proof. W.l.o.g., we can certainly assume that n ≥ n0 for a sufficiently large constant n0. We choose
ρ ≤ ε/4 and consider nε of the 2nε disjoint ∆-stars. Let us call these nε ∆-stars S1, . . . , Snε .
Assume that the ID assignment of the n nodes of G is chosen uniformly at random from all ID
assignments with IDs 1, . . . , n. The IDs of the star S1 are perfectly random. We can therefore
directly apply Lemma 5.6 and obtain that the probability that the center node of S1 gets no color
is at least 1/(8n3ρ). Consider star S2. The IDs of the nodes of S2 are chosen at random among
the n − ∆ − 1 IDs that are not assigned to the nodes of S1. Applying Lemma 5.6 we get that the
probability that S2 does not get a color is at least 1/(8(n −∆ − 1)3ρ) ≥ 1/(8n3ρ) independently
of whether S1 does get a color. The probability that the starts S1, . . . , Snε all get a color therefore
is at most

nε−1∏

i=0

(
1− 1

8(n− i(∆ + 1))3ρ

)
≤

(
1− 1

8n3ρ

)nε

≤ e−
nε

8n3ρ ≤ e−nρ/8.

Hence, there is a constant η > 0 such that η∆lnn/ ln lnn colors do not suffice with probability at
least 1− e−nρ/8 for a positive constant ρ. The lemma thus follows.
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