
Weak Graph Colorings:
Distributed Algorithms and Applications

Fabian Kuhn
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

fkuhn@csail.mit.edu

ABSTRACT
We study deterministic, distributed algorithms for two weak
variants of the standard graph coloring problem. We con-
sider defective colorings, i.e., colorings where nodes of a color
class may induce a graph of maximum degree d for some pa-
rameter d > 0. We also look at colorings where a minimum
number of multi-chromatic edges is required. For an integer
k > 0, we call a coloring k-partially proper if every node v
has at least min{k, deg(v)} neighbors with a different color
We show that for all d ∈ {1, . . . , ∆}, it is possible to compute
a O(∆2/d2)-coloring with defect d in time O(log∗ n) where
∆ is the largest degree of the network graph. Similarly, for
all k ∈ {1, . . . , ∆}, a k-partially proper O(k2)-coloring can
be computed in O(log∗ n) rounds.

As an application of our weak defective coloring algorithm,
we obtain a faster deterministic algorithm for the standard
vertex coloring problem on graphs with moderate degrees.
We show that in time O(∆ + log∗ n), a (∆ + 1)-coloring can
be computed, a task for which the best previous algorithm
required time O(∆ log ∆ + log∗ n). The same result holds
for the problem of computing a maximal independent set.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
distributed algorithms, graph coloring, locality, determinis-
tic symmetry breaking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

1. INTRODUCTION
When devising distributed algorithms to compute network-

wide structures in large decentralized systems, one of the
core problems in most cases is to break symmetries. Even
though various nodes in the network may run the same algo-
rithm and despite possible symmetries in the topology of the
network, different nodes generally need to terminate an algo-
rithm with different outcomes, such as e.g. different colors in
the case of a coloring algorithm. While using randomization
is often a convenient and efficient way to break symmetries,
deterministic symmetry breaking is typically harder. In the
latter case, node identifiers or some other a priori labeling
of the network have to be used to achieve the goal.

Properly coloring the nodes of a graph with a small num-
ber of colors exemplifies the challenges arising in the context
of symmetry breaking. As a consequence of this and because
of the general graph-theoretic interest in vertex colorings,
there is a large history of work on distributed solutions for
the coloring problem (cf. Section 2). Apart from being in-
teresting from a graph-theoretic and distributed complexity
point of view, coloring the network graph also has direct
practical applications. In particular, colorings can be used
to coordinate access to the wireless medium in ad hoc or
sensor networks. Nodes in such networks communicate with
each other via wireless radio and therefore have to use a
medium access scheme to avoid interference. Colorings can
for example be used to establish time schedules in a time
division multiple access (TDMA) scheme or to obtain fre-
quency (FDMA) or code (CDMA) assignments.

In the present paper, we consider distributed algorithms
for two relaxations of the classic vertex coloring problem
which are interesting as a step towards understanding the
complexity of distributed coloring in general, and allow to
parameterize the extent to which symmetries have to be bro-
ken. A t-coloring of a graph G = (V, E) is a partition of the
nodes of G into t color classes V1∪̇ . . . ∪̇Vt = V . A t-coloring
is called proper if no two adjacent nodes are in the same
color class. Specifically, we study the following two weak
coloring variants.

Definition 1.1 (Defective Coloring). The defect d
of a t-coloring is the maximum degree of any graph induced
by one of the t color classes. A coloring with defect d is said
to be d-defective.

Definition 1.2 (Partially Proper Coloring). We
call a t-coloring of a graph G = (V, E) k-partially proper if
every node v ∈ V has at least min{deg(v), k} neighbors with
different colors where deg(v) denotes the degree of v.

138

Defective colorings have been introduced in [1, 7, 13] and
e.g. studied in [8, 11, 25]. As a consequence of a result
from the 1960s, it is known that for every k, every graph G
with maximum degree ∆ has k-coloring with defect at most
b∆/kc [18].

We develop local distributed algorithms with constant or
log-star running times for defective and partially proper col-
orings. In both cases, we establish natural trade-offs be-
tween the number of colors of the final coloring and the
extent to which the standard coloring problem has to be re-
laxed (i.e., the remaining symmetry breaking requirement).
In particular, we show that in log∗ n time1, an O(∆2/d2)-
coloring with defect at most d can be computed. Here, as
well as throughout the remainder of the paper, n denotes
the number of nodes and ∆ denotes the largest degree of
the network graph. Analogously, for k ≥ 1, a k-partially
proper O(k2)-coloring can be computed in time O(log∗ n).
The best known algorithm for the classical vertex coloring
problem with the same time complexity requires O(∆2) col-
ors [17]. In addition, we show that in a single communica-
tion round (if every node just learns the identifiers of all its
neighbors), a d-defective O((∆2/d2) · log n)-coloring and a
k-partially proper O(k2 · log n)-coloring can be computed.

Based on the algorithm for d-defectiveO(∆2/d2)-colorings,
it is possible to obtain a simple recursive deterministic algo-
rithm for the standard vertex coloring algorithm that com-
putes a λ ·(∆+1)-coloring in time O(∆/λ+log∗ n) for every
λ ≥ 1. This improves the best previous (∆ + 1)-coloring al-
gorithm for moderate degrees2 which requires O(∆ log ∆ +
log∗ n) time [16].

Recently, the author of this paper has learned that in-
dependently, Barenboim and Elkin have developed a deter-
ministic distributed algorithm that computes a λ · (∆ + 1)-
coloring in time O(∆/λ) + log∗(n)/2 for 1 ≤ λ ≤ ∆1−ε and
any constant ε > 0 [5]. Similarly to the algorithm described
in the present paper, the algorithm in [5] is based on the
distributed computation of defective colorings. For param-
eters 1 ≤ p ≤ ∆, p2 < q, and q < c∆ for a positive constant
c, the defective coloring algorithm of Barenboim and Elkin
computes an O` log ∆

log(q/p2)
·∆/p

´
-defective p2-coloring in time

O` log ∆
log(q/p2)

· q´+ log∗(n)/2. Rephrased in terms of a similar

parameter p, the defective coloring algorithm of this paper
computes an O(∆/p)-defective p2-coloring in time O(log∗ n)
and is thus strictly stronger for all values of p.3 Having the
stronger defective coloring algorithm of the present paper
allows us to use a significantly simpler algorithm to com-
pute a proper λ · (∆ + 1)-coloring of the network graph for
all λ ≥ 1.

1See Section 3 for a definition of the log-star function.
2There is a deterministic distributed (∆ + 1)-coloring algo-

rithm with time complexity 2O(
√

log n) [21].
3As described, the algorithm of the present paper is only
strictly stronger as long as the O(log ∆

log(q/p2)
· q) term in the

time complexity of [5] dominates the log∗(n)/2 term. There
is a straight-forward way to strengthen all algorithms in this
paper in the same way. Note that none of the algorithm
needs unique identifiers, the bounds all hold if some initial
proper n-coloring is given. As it is known that an O(∆2)-
coloring can be computed in time log∗(n)/2 +O(1) [24], we
can compute such a coloring before executing each of the
algorithms. All log∗ n terms in the time complexities of this
paper then become log∗∆ and we have to add a log∗(n)/2
term (outside of the O(·)) to each time bound.

The remainder of this paper is organized as follows. The
next section discusses existing work on distributed algo-
rithms for coloring and related problems. In Section 3, we
describe the communication and computation model that
we use and introduce some necessary definitions. The basic
algorithms for defective and partially proper colorings are
developed and analyzed in Section 4, our new distributed
vertex coloring algorithm is described in Section 5.

2. PREVIOUS WORK
Not surprisingly, there is a large body of previous work

on distributed coloring algorithms (e.g. [3, 4, 6, 12, 14, 15,
16, 17, 21, 23, 24]). The work on distributed coloring was
started with a seminal paper by Linial [17] where among
other results, it is shown that coloring a ring with a constant
number of colors requires log∗(n)/2 rounds. If one is will-
ing to use a rather large number of colors, this lower bound
is matched by an upper bound that computes an O(∆2)-
coloring in time log∗(n)/2+O(1) on general graphs [17, 24].
In case, one needs a coloring with significantly less colors,
the best algorithms for general graphs are randomized.4 In
[14], an algorithm that allows to compute an O(∆) color-
ing in O(

√
log n) time w.h.p. is given. The best randomized

algorithm to compute a (∆+1)-coloring (generally the ulti-
mate goal in distributed coloring) needs O(log n) time and
is based on an algorithm to compute a maximal independent
set (MIS) by Luby [19] and a simple reduction described by
Linial in [17].

Computing a coloring deterministically turns out to be
significantly harder. For networks with large degrees, the
best algorithm is based on techniques to decompose the
network into clusters of small diameter and requires time

2O(
√

log n) to compute a (∆ + 1)-coloring [3, 21]. For net-
works with a small or moderate maximal degree, the best
known algorithm previous to this paper and the work of
Barenboim and Elkin [5] needed O(∆ log ∆+log∗ n) time to
compute a (∆ + 1)-coloring [16].

Distributed algorithms for relaxations of the standard ver-
tex coloring problem have hardly been studied. Most rele-
vant to our work is a paper by Naor and Stockmeyer [20]. As
a problem with minimal symmetry breaking requirements,
in [20] colorings where every node needs to have at least one
neighbor with a different color (i.e., 1-partially proper color-
ings) are studied. Together with [17], the paper effectively
started the research on local distributed algorithm.

3. MODEL AND PRELIMINARIES
We model the network as an undirected graph G = (V, E).

For convenience, we denote the number of nodes by n = |V |
and the maximum degree of G by ∆. For simplicity, we as-
sume that all nodes know n and ∆. Wherever n appears
in our time bounds, we assume that the nodes of G have a
unique identifier of size at O(log n).5 We assume a standard
synchronous message passing model, i.e., time is divided into

4There is a paper claiming a deterministic O(log∗ n)-time
O(∆)-coloring algorithm [9]. However, the proof in [9] has
a serious flaw. With a correct analysis, the bound on the
number of colors becomes O(∆2) and is thus not better than
existing results [22].
5In fact, whenever n only appears in a log∗ n term, it is
even sufficient to assume that for the size N of the ID space,
log∗N = log∗ n +O(1).

139

Algorithm 1 Computing a coloring with defect at most d

Input: color x ∈ [M], neighbor colors y1, . . . , yδ ∈ [M],
parameter d

Output: a new color
1: search α ∈ A such that

˛̨{i ∈ [δ] : ϕx(α) = ϕyi(α)}˛̨ ≤ d

2: color :=
`
α, ϕx(α)

´

Algorithm 2 Computing a k-partially proper coloring

Input: color x ∈ [M], neighbor colors y1, . . . , yδ ∈ [M],
parameter k

Output: a new color
1: search α ∈ A such that

˛̨
{i ∈ [δ] : ϕx(α) 6= ϕyi(α)}

˛̨
≥

min{k, δ}
2: color :=

`
α, ϕx(α)

´

rounds, in every round, each node can perform some local
computations, send a message to each neighbor, and receive
messages from all neighbors. Note that it is well-known that
it is possible to run a synchronous algorithm in an asyn-
chronous system with the same asymptotic time complexity
but at the cost of a few synchronization messages [2]. We
do not assume that there is a bound on the allowed message
size, however, all our algorithms only need to send messages
of size O(log n). In some cases, it is however necessary to
send different messages to different neighbors. We assume
that all nodes start a computation synchronously. The time
complexity of an algorithm is the number of rounds from
the start until the last node terminates.

Let us conclude this section with a few conventions and
definitions. For an integer k ≥ 1, we will frequently make
use of the following common abbreviation: [k] := {1, . . . , k}.
Further, unless otherwise stated, log(x) denotes the base 2
logarithm of x, whereas ln(x) is the natural logarithm of x.

For an integer i ≥ 0, the iterative log-functions log(i)(x)

and ln(i)(x) are defined recursively as follows. We have

log(0)(x) = ln(0)(x) = x and for all i ≥ 1:

log(i)(x) = log
`
log(i−1)(x)

´
, ln(i)(x) = ln

`
ln(i−1)(x)

´
.

Finally, for x > 0, the log-star function log∗(x) is defined as

log∗(x) := min
˘
i ≥ 0 : log(i)(x) ≤ 2

¯
.

4. WEAK COLORING ALGORITHMS
We first describe an algorithm to reduce the number of

colors in a single round. Assume that we start with an M -
coloring of G (possibly with defect > 0). W.l.o.g., assume
that the M colors of this coloring are 1, . . . , M . Our col-
oring algorithm generalizes techniques described in [17]. It
is based on a mapping from the color set [M] to functions
from a finite set A to a finite set B. The new colors are
chosen from the set A×B. Let v ∈ V be a node with degree
δ ≤ ∆ and color x ∈ [M] and assume that the δ neighbors
of v have colors y1, . . . , yδ ∈ [M]. Further, let ϕx be the
function assigned to a color x ∈ [M]. The basic idea is to
choose a value α ∈ A such that the number of values yi for
which ϕx(α) = ϕyi(α) is sufficiently small. The details for
computing d-defective and k-partially proper colorings are
given by Algorithms 1 and 2, respectively. The following two
lemmas are the basis of the analyzes of the two algorithms.

Lemma 4.1. Assume that we are given an M-coloring of
G with defect at most d′ ≤ d. For a value κ > 0, let the
functions ϕx for x ∈ [M] be chosen such that for any two
distinct colors x, y ∈ [M], there are at most κ values α ∈ A
for which ϕx(α) = ϕy(α) and such that |A| > κ·(∆−d′)/(d−
d′+1). Then, Algorithm 1 computes a |A| · |B|-coloring with
defect at most d.

Proof. We prove the lemma in two steps. We first show
that if all nodes choose a color (α, β) ∈ A× B (i.e., if there
is an α ∈ A that satisfies the condition in line 1), the defect
of the computed coloring is at most d. We then show that
there are functions ϕx such that every node chooses a color.

Consider a node v with color x ∈ [M] and degree δ ≤ ∆
that has neighbors with colors y1, . . . , yδ ∈ [M]. Assume
that v chooses a color

`
α, ϕx(α)

´
. Let u be a neighbor with

a color y ∈ [M] for which ϕy(α) 6= ϕx(α). Assume that u
chooses color (α′, β′). If α = α′, we have ϕy(α) = β′ 6=
β = ϕx(α). Therefore, either α 6= α′ or β 6= β′ and thus, u
chooses a different color than v. Because there are at most d
neighbors u′ with a color y′ ∈ [M] for which ϕy′(α) = ϕx(α),
the defect of the computed coloring is therefore at most d.

It remains to prove that every node can choose a color.
Because additional neighbors can certainly not increase the
number of available colors, we can w.l.o.g. assume that the
degree of v is δ = ∆. We definitely have ϕx(α) = ϕyi(α) for
all α if x = yi. Let ` ≤ d′ be the number of values i ∈ [δ]
for which this is the case. Let S = {i ∈ [δ] : yi 6= x} be the
indices of the neighbors with a different initial color. We
need to show that there is an α ∈ A such that |{i ∈ S :
ϕx(α) = ϕyi(α)}| ≤ d − `. For the sake of contradiction,
assume that for every α ∈ A, there are at least d − ` + 1
values i ∈ S for which ϕx(α) = ϕyi(α). Because for every
i ∈ S, ϕx(α) = ϕyi(α) for at most κ values α ∈ A, we then
have

(∆− `) · κ ≥
X
i∈S

˛̨
{α ∈ A : ϕx(α) = ϕyi(α)}

˛̨

=
X
α∈A

˛̨
{i ∈ S : ϕx(α) = ϕyi(α)}

˛̨

≥ |A| · (d− ` + 1). (1)

Because computing a ∆-defective coloring is trivial, we can
certainly assume that d < ∆. Inequality (1) then implies
that

|A| ≤ ∆− `

d + 1− `
≤ ∆− d′

d− d′ + 1
.

This is a contradiction to the assumption |A| > κ · (∆ −
d′)/(d + 1− d′) and thus proves the lemma.

Lemma 4.2. Assume that we are given a k′-partially proper
M-coloring of G for k′ ≥ k. For a value κ > 0, let the func-
tions ϕx for x ∈ [M] be chosen such that for any two distinct
colors x, y ∈ [M], there are at most κ values α ∈ A for which
ϕx(α) = ϕy(α) and such that |A| > κ · k. Then, Algorithm
2 computes a k-partially proper |A| · |B|-coloring.

Proof. Similarly to the last lemma, we first prove that
the computed coloring is k-partially proper and we then
prove that all nodes can choose a color. The proof that Algo-
rithm 2 computes a k-partially proper coloring is analogous
to the proof that the defect of the coloring computed by Al-
gorithm 1 is at most d. Let (α, β) be the color chosen by v.
Neighbors with an initial color y for which ϕx(α) 6= ϕy(α)

140

choose a different color. By the condition according to which
α is chosen in line 1 of Algorithm 2, there are thus at least
k neighbors that choose a different color.

It remains to show that each node can choose a color. The
set S = {i ∈ [δ] : yi 6= x} has cardinality at least min{k′, δ}.
Let S′ be a subset of S of size |S′| = min{k, δ}. We want
to prove that there is an α ∈ A such that ϕx(α) 6= ϕyi(α)
for all i ∈ S′. Let C be the set of α’s for which this is not
the case, i.e., C = {α ∈ A : ∃i ∈ S′ : ϕx(α) = ϕyi(α)}.
Because for every two distinct x, y ∈ [M], ϕx(α) = ϕy(α)
for at most κ values α ∈ A, we have |C| ≤ κ · |S′| ≤ κ · k.
The assumption |A| > κ · k hence implies that C does not
contain all α ∈ A and that therefore there is an α ∈ A
such that ϕx(α) 6= ϕyi(α) for all i ∈ S′. This completes the
proof.

In order to apply Lemmas 4.1 and 4.2, we need a function
ϕx : A → B for every x ∈ [M] such that for any two distinct
colors x, y ∈ [M], there are at most κ values α ∈ A for which
ϕx(α) = ϕy(α). To obtain efficient algorithms, we want the
values |B| and κ to be as small as possible. The following
lemma proves the existence of efficient functions.

Lemma 4.3. Let the set A be fixed, let B be a set of car-
dinality |B| ≥ |A|/(2 ln M), and let κ = b2e ln Mc. For
x ∈ [M], there are functions ϕx such that for any two dis-
tinct x, y ∈ [M] ϕx(α) = ϕy(α) for at most κ values α ∈ A.

Proof. We prove the lemma by using the probabilistic
method. We show that choosing the functions independently
and uniformly at random from all functions from A to at
set sufficiently large B leads to functions that satisfy the re-
quired conditions with positive probability. This then proves
that there exist functions ϕx for x ∈ [M] as claimed by the
lemma.

Let us therefore assume that the functions ϕx for x ∈ [M]
are chosen independently and uniformly at random. Let p
be the probability that for two distinct colors x, y ∈ [M]
and a value α ∈ A, we have ϕx(α) = ϕy(α). Because ϕx(α)
and ϕy(α) are independent, random elements of B, we have
p = 1/|B|. Let Z be the number of values α ∈ A for which
ϕx(α) = ϕy(α) for two distinct values x, y ∈ [M]. We have
E[Z] = |A| · p = |A|/|B| ≤ 2 ln M . Applying a Chernoff
bound gives

P[Z > 2e ln M] <

„
ee−1

ee

«2 ln M

=
1

e2 ln M
=

1

M2
.

By a union bound, we therefore obtain that

P
»

max
x 6=y∈[M]

˛̨
{α ∈ A : ϕx(α) = ϕy(α)}

˛̨
> κ

–
=

P
»

max
x6=y∈[M]

˛̨{α ∈ A : ϕx(α) = ϕy(α)}˛̨ > 2e ln M

–
< 1.

Combining Lemmas 4.1 and 4.2 with 4.3 allows to quantify
the progress that can be achieved in a single communication
round.

Theorem 4.4. Assume that we are given an M-coloring
of G with defect at most d′ ≤ d < ∆. There is a constant
CD > 0 such that a CD · (∆ − d′)2/(d + 1 − d′)2 · ln M-
coloring with defect at most d can be computed in a single
communication round.

Proof. By Lemmas 4.1 and 4.3, we can choose κ =
b2e ln Mc, and A and B such that

|A| =
—

(∆− d′)2e ln M

d + 1− d′
+ 1

�
>

κ(∆− d′)
d + 1− d′

,

|B| =
‰ |A|

2 ln M

ı
.

The resulting number of colors then is

|A| · |B| = O
„ |A|2

ln M

«
= O

 „
∆− d′

d + 1− d′

«2

· ln M

!
.

Theorem 4.5. Assume that we are given a k-partially
proper M-coloring of G. There is a constant CI > 0 such
that a k-partially proper CI · k2 · ln M-coloring can be com-
puted in a single communication round.

Proof. Analogously to above, by Lemmas 4.2 and 4.3,
we can choose κ = b2e ln Mc, and A and B such that

|A| = b1 + 2e · k · ln Mc > κ · k and |B| =
‰ |A|

2 ln M

ı
.

We then obtain |A| · |B| = O `|A|2/ ln M
´

= O `k2 · ln M
´

as the resulting number of colors.

Unfortunately, Lemma 4.3 only proves the existence of
functions ϕx for x ∈ [M] with the given guarantees. The
lemma does not give an explicit way to construct such func-
tions. In the following, we show an explicit algebraic con-
struction that achieves similar guarantees. The same con-
struction has been described as an explicit way to construct
families of sets such that no set is contained in the union
of k other sets for some parameter k in [10]. Such set sys-
tems have been used to obtain distributed algorithms for the
standard coloring problem in [17]. For a prime power q, let
P(q, κ) be the set of all qκ+1 polynomials of degree at most
κ in the polynomial ring Fq[z], where Fq is the finite field or
order q. It is well known that two polynomials of degree at
most κ can be equal at at most κ positions. We can there-
fore choose the functions ϕx from P(q, κ). The details are
given by the following two theorems.

Theorem 4.6. Assume that we are given an M-coloring
of G with defect at most d′ ≤ d < ∆. There are explicit
functions ϕx for x ∈ [M] and a constant CD > 0 such that
Algorithm 1 computes a CD · (Υ logΥ M)2-coloring with de-
fect at most d where Υ = (∆− d′)/(d + 1− d′).

Proof. Choosing the functions ϕx from P(q, κ) givesA =
B = Fq. By Lemma 4.1, we therefore need q > κ·Υ. Because
we need to assign different polynomials to every x ∈ [M],
we also need |P(q, κ)| = qκ+1 ≥ M . We choose

κ = dlogΥ Me and bκΥ + 1c < q ≤ 2bκΥ + 1c.
Note that there must be a prime power q in the given inter-
val. Choosing the parameters like this definitely guarantees
that q > κΥ. We can certainly assume that M ≥ Υ as
otherwise, the theorem becomes trivial. This implies

|P(q, κ)| = qκ+1 > (Υ logΥ M)logΥ M

= eln(M)/ ln(Υ)·(ln Υ+ln(logΥ M)) ≥ eln M = M

and thus concludes the proof.

141

Theorem 4.7. Assume that we are given a k-partially
proper M-coloring of G. There are explicit functions ϕx

for x ∈ [M] and a constant CI > 0 such that Algorithm 2
computes a k-partially proper CD · (k logk M)2-coloring.

Proof. The proof is analogous to the proof of Theorem
4.6 where all occurrences of Υ are replaced by k.

Algorithms 1 and 2 reduce the number of colors in a single
round. One can obtain better defective and partially proper
colorings by iterative applications of the two algorithms. Be-
cause the analysis is significantly simpler, we start with an
algorithm to compute partially proper colorings.

Theorem 4.8. Assume that we are given a k-partially
proper M-coloring of G. By iteratively applying Algorithm
2, a k-partially proper O(k2)-coloring can be computed in
O(log∗M) rounds.

Proof. The theorem is a direct consequence of Theorem
4.7.

Theorem 4.9. Assume that we are given an M-coloring
of G with defect at most d′ ≤ d < ∆. Iteratively applying
Algorithm 1, an O((∆ − d′)2/(d + 1 − d′)2)-coloring with
defect at most d can be computed in O(log∗M) rounds.

Proof. The case is more involved than the iterative ap-
plication of Algorithm 2 because we cannot choose the same
value for d throughout the algorithm. If we always use the
same value for d in each iterative application of Algorithm
1, we can compute an O((∆ − d′)2)-coloring with defect at
most d (always choosing the same value d only gives an
O((∆− d′)2)-coloring even for large values of d− d′). Note
that anO((∆−d′)2)-coloring is good enough if d−d′ = O(1).
We can therefore w.l.o.g. assume that d − d′ is sufficiently
large.

We iteratively apply the algorithm T times for an integer
T ≥ 1 that will be determined below. W.l.o.g., we can as-
sume that d = d′+2h for some integer h ≥ 0. For i ≥ 1, let di

be the value for i that is used in the ith iterative application.
We choose di = d′ + b(d − d′)/2T−ic and use Algorithm 1
with polynomial functions as analyzed in Theorem 4.6. For
convenience, we also define d0 := d′. Further, let Mi be the
number of colors after the ith iterative application of Algo-
rithm 1. We choose T to be the smallest positive integer
such that

ln(T−1) M < 16 ·
p

CD · ∆− d′

d− d′
.

For i ∈ {2, . . . , T − 1}, this implies that

4
p

CD · ∆− d′

di + 1− di−1
= 4
p

CD · ∆− d′

1 + b d−d′
2T−i c − b d−d′

2·2T−i c

≤ 4
p

CD · ∆− d′

1 + d−d′
2T−i − 1− d−d′

2·2T−i

= 16
p

CD · 2T−1−i · ∆− d′

d− d′

≤ 2T−1−i · ln(T−2) M

≤ ln(i−1) M. (2)

The first inequality on the second line follows from the choice
of T . The last inequality because 2 ln x < x for all x > 0
and from the definition of T . W.l.o.g., we can assume that

CD ≥ e. We use induction to show that for all i ≤ T − 1,
we then have

Mi ≤ 16 · CD ·
„

∆− d′

di + 1− di−1
· ln(i) M

«2

(3)

For i = 1, Inequality (3) is true by Theorem 4.6. For 1 <
i ≤ T − 1, we get

Mi ≤ CD ·
0
@ ∆− di−1

di + 1− di−1
· ln Mi−1

ln
“
CD

∆−di
di+1−di−1

”
1
A

2

≤ CD ·
„

∆− d′

di + 1− di−1
· ln Mi−1

«2

≤ CD ·

∆− d′

di + 1− di−1
·

ln

"
16 · CD ·

„
∆− d′

di + 1− di−1
· ln(i−1) M

«2
#!2

≤ 16 · CD ·
„

∆− d′

di + 1− di−1
· ln(i) M

«2

.

The first inequality follows because of the assumption that
CD ≥ e. The last inequality follows from Inequality (2).
Applying Inequality (3) for i = T − 1 yields

MT−1 ≤ 16 · CD ·
„

∆− d′

dT−1 + 1− dT−2
· ln(T−1) M

«2

≤ 16 · CD ·
„

4 · ∆− d′

d− d′
· 16
p

CD · ∆− d′

d− d′

«2

=

„
16 ·

p
CD · ∆− d′

d− d′

«4

.

The theorem now follows by applying Algorithm 1 (and thus
Theorem 4.6) one more time.

Note that Theorem 4.9 in particular implies that when
starting with unique identifiers as initial coloring, for every
d ≤ ∆, a d-defective O(∆2/d2)-coloring can be computed in
O(log∗ n) rounds.

4.1 Defective Edge Colorings
We conclude this section by presenting a simple but inter-

esting one-round algorithm to compute defective edge col-
orings. Assume that there is an integer parameter i ≥ 1.
Every node numbers its adjacent edges with numbers from
{1, . . . , d∆/ie} such that no number is assigned to more than
i edges. Note that because the degree of each node is at
most ∆, this is always possible. Then, each node, notifies
all neighbors of the number assigned to the respective edge.
Each edge e = {u, v} gets assigned two numbers ue, ve in
this way. Let the set {ue, ve} be the computed color of the
edge. The following theorem states the properties of this
simple algorithm.

Theorem 4.10. For all integers i ≥ 1, the above algo-
rithm computes an edge coloring with defect at most 4i − 2
in one round. The number of colors of the coloring is at
most

`d∆/ie+1
2

´
.

Proof. As every node only needs to send a single mes-
sage to each neighbor, the algorithm can be executed in a

142

Algorithm 3 (∆ + 1)-coloring algorithm

Input: M -coloring of the graph
Output: Call to Color(∆) returns (∆ + 1)-coloring
1: procedure Color(max deg):
2: if deg = 1 then
3: compute 2-coloring in 1 round.
4: else
5: d := bdeg/2c
6: compute d-defective C-coloring in time O(log∗M)
7: for all colors c ∈ [C] in parallel do
8: Call Color(d) on sub-graph induced by color c
9: Combine colors to get C · (d + 1)-coloring

10: Reduce to (deg + 1)-coloring in time O(deg · log C)
11: return computed coloring

single round. The number of possible colors is

d∆/ie

2

!
+ d∆/ie =

d∆/ie+ 1

2

!
.

It therefore remains to prove that the defect of the coloring
is at most 4i − 2. Consider an edge e = {u, v} and let ue

and ve be the numbers assigned to edge e by nodes u and v,
respectively. A different edge e′ adjacent to node u can only
obtain the same color if u assigns one of the colors ue or ve

to the edge e′. There are at most i+(i−1) edges (in addition
to edge e) to which u assigns one of the two colors. Hence, u
and v can both have at most 2i−1 additional adjacent edges
with the same assigned color. This concludes the proof.

5. IMPROVED COLORING ALGORITHM
We will now discuss how to use our defective coloring al-

gorithm (Theorem 4.9) to obtain an algorithm for the stan-
dard graph coloring problem. In addition to Theorem 4.9,
we require the following two results.

Lemma 5.1 ([17, 24]). An O(∆2)-coloring can be com-
puted in log∗(n)/2 +O(1) rounds.

Lemma 5.2 ([16]). Let A and B be integers such that
B > A ≥ ∆ + 1. When starting with a B-coloring, an A-
coloring can be computed in O(∆ · log(B/A)) rounds.

The details of our (∆ + 1)-coloring algorithm are given
by Algorithm 3. The core of the algorithm is the procedure
Color(deg) which is used on a sub-graph with maximum de-
gree at most deg and computes a (max deg + 1)-coloring of
the sub-graph. The procedure first partitions the graph into
sub-graphs of maximum degree at most d ≤ deg/2 by com-
puting a d-defective coloring C-coloring and by using the
C colors to partition the graph. The procedure Color(·) is
then called recursively for each of the C sub-graphs. Note
that these C recursive calls can be done in parallel. Every
node then has a color between 1 and C from the defective
coloring and a color between 1 and d + 1 from the recursive
call to Color(·). Combining the two colors gives a proper
C · (d + 1)-coloring of the graph on which Color(deg) was
called. Using Lemma 5.2, a (deg + 1)-coloring can then be
computed in O(deg · log C) rounds. The following lemma
bounds the time needed to execute procedure Color(deg).

Lemma 5.3. Let T (deg) be the number of rounds needed
to execute procedure Color(deg). For all deg ≥ 0, we have

T (deg) = O(deg + log(deg) · log∗M).

Proof. For deg = 1, a 2-coloring can be computed in
one round, as the sub-graph consists of at most 2 nodes. We
therefore have T (1) = 1. For deg ≥ 2, we first show that
T (deg) can be computed recursively as follows. There is a
positive constant α such that for all deg > 0,

T (deg) ≤ T (bdeg/2c) + α · deg + log∗M. (4)

By Theorem 4.9, the number of colors C computed in line
6 is O(deg/d) = O(1). As a consequence, the number of
rounds needed to reduce the colors in line 10 is O(deg).
Inequality (4) now directly follows because all the recursive
calls in lines 8 can be executed in parallel. T (deg) ≤ 2α ·
deg + log(deg) · log∗M and therefore also the lemma now
follows by induction on deg.

As a consequence of Lemma 5.3, we can state the main
theorem of this section.

Theorem 5.4. For every λ ≥ 1, a proper λ · (∆ + 1)-
coloring can be computed in O(∆/λ + log∗ n) rounds.

Proof. We prove the theorem by constructing an algo-
rithm that achieves this result. We start by applying Lemma
5.1 and compute an O(∆2)-coloring in log∗(n)/2 + O(1)
rounds. It now remains to show that based on an O(∆2)-
coloring, a λ · (∆ + 1)-coloring can be computed in time
O(∆/λ). We first show how to obtain a (∆ + 1)-coloring in
time O(∆). Because we already have an O(∆2)-coloring, we
can apply procedure Color(∆) to the whole graph with this
initial coloring and can thus compute a (∆ + 1)-coloring in
time O(∆ + log(∆) · log∗∆) = O(∆) by Lemma 5.3.

Let us now look at the general case. Because we can
compute a (∆ + 1)-coloring in time O(∆) and because we
already start with anO(∆2)-coloring, we can w.l.o.g. assume
that α ≤ λ ≤ ∆/α for a sufficiently large constant α. By
Theorem 4.9 and the assumption that we already have an
O(∆2)-coloring, there is a positive constant β such that for
every integer d ≥ 1, a d-defective bβ ·∆2/(d + 1)2c-coloring
can be computed in time O(log∗∆). Let deg < ∆ be the
smallest integer such that

β · ∆2

(deg + 1)2
· (deg + 1) = β · ∆2

deg + 1
≤ λ · (∆ + 1). (5)

We define c = bβ ·∆2/(deg+1)2c. If the constant α is chosen
sufficiently large, we have deg ≥ 1 and deg < ∆. Further, by
Inequality (5), we have deg = Θ(∆/λ). The algorithm first
computes a deg-defective c-coloring in time O(log∗∆). For
each of the c color classes, in parallel a (deg + 1)-coloring is
computed in time O(deg + log∗∆) = O(∆/λ + log∗∆). In
combination with the c colors from the defective coloring,
this allows to compute a c · (deg + 1) ≤ λ · (∆ + 1)-coloring
of the network graph.

Remark: Besides coloring, computing a maximal inde-
pendent set (MIS) also is a fundamental problem that is
often used to model the algorithmic challenges arising in
the context of symmetry breaking. As there is a simple and
well-known reduction to convert a proper χ-coloring into
an MIS in χ rounds, Theorem 5.4 also directly implies an
O(∆ + log∗ n) time deterministic algorithm for computing
an MIS.

143

6. REFERENCES
[1] J. Andrews and M. Jacobson. On a generalization of

chromatic number. Congressus Numerantium,
47:33–48, 1985.

[2] B. Awerbuch. Complexity of network synchronization.
Journal of the ACM, 32(4):804–823, 1985.

[3] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A.
Plotkin. Network decomposition and locality in
distributed computation. In Proc. of 30th Symposium
on Foundations of Computer Science (FOCS), pages
364–369, 1989.

[4] L. Barenboim and M. Elkin. Sublogarithmic
distributed mis algorithm for sparse graphs using
nash-williams decomposition. In Proc. of 27th ACM
Symposium on Principles of Distributed Computing
(PODC), 2008.

[5] L. Barenboim and M. Elkin. Distributed
(∆ + 1)-coloring in linear (in ∆) time. In Proc. of the
41st ACM Symposium on Theory of Computing
(STOC), 2009.

[6] R. Cole and U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking.
Information and Control, 70(1):32–53, 1986.

[7] L. Cowen, R. Cowen, and D. Woodall. Defective
colorings of graphs in surfaces: Partitions into
subgraphs of bounded valence. Journal of Graph
Theory, 10:187–195, 1986.

[8] L. Cowen, W. Goddard, and C. Jesurum. Defective
coloring revisitied. Journal of Graph Theory,
24(3):205–219, 1997.

[9] G. De Marco and A. Pelc. Fast distributed graph
coloring with O(∆) colors. In Proc. of 12th
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 630–635, 2001.

[10] P. Erdős, P. Frankl, and Z. Füredi. Families of finite
sets in which no set is covered by the union of r
others. Israel Journal of Mathematics, 51:79–89, 1985.

[11] M. Frick. A survery of (m, k)-colorings. Annals of
Discrete Mathematics, 55:45–58, 1993.

[12] A. Goldberg, S. Plotkin, and G. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal
on Discrete Mathematics, 1(4):434–446, 1988.

[13] F. Harary and K. Jones. Conditional colorability II:
Bipartite variations. Congressus Numerantium,
50:205–218, 1985.

[14] K. Kothapalli, M. Onus, C. Scheideler, and
C. Schindelhauer. Distributed coloring in o(

√
log n) bit

rounds. In Proc. of 20th IEEE Int. Parallel and
Distributed Processing Symposium (IPDPS), 2006.

[15] F. Kuhn. Local multicoloring algorithms: Computing
a nearly-optimal TDMA schedule in constant time. In
Proc. of 26th Symp. on Theoretical Aspects of
Computer Science (STACS), 2009.

[16] F. Kuhn and R. Wattenhofer. On the complexity of
distributed graph coloring. In Proc. of 25th ACM
Symposium on Principles of Distributed Computing
(PODC), pages 7–15, 2006.

[17] N. Linial. Locality in distributed graph algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[18] L. Lovász. On decompositions of graphs. Studia Sci.
Math. Hungar., 1:237–238, 1966.

[19] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on
Computing, 15:1036–1053, 1986.

[20] M. Naor and L. Stockmeyer. What can be computed
locally? In Proc. of 25th ACM Symposium on Theory
of Computing (STOC), pages 184–193, 1993.

[21] A. Panconesi and A. Srinivasan. On the complexity of
distributed network decomposition. Journal of
Algorithms, 20(2):581–592, 1995.

[22] A. Pelc. Personal communication.

[23] J. Schneider and R. Wattenhofer. A log-star
distributed maximal independent set algorithm for
growth-bounded graphs. In Proc. of 27th ACM
Symposium on Principles of Distributed Computing
(PODC), 2008.

[24] M. Szegedy and S. Vishwanathan. Locality based
graph coloring. In Proc. of the 25th ACM Symposium
on Theory of Computing (STOC), pages 201–207,
1993.

[25] D. Woodall. Improper colourings of graphs. In
R. Nelson and R. Wilson, editors, Graph Colourings.
Longman Scientific and Technical, 1990.

144

