
The Complexity of Data Aggregation in Directed
Networks

Fabian Kuhn1 and Rotem Oshman2⋆

1 University of Lugano, Switzerland
2 Massachusetts Institute of Technology, USA

Abstract. We study problems of data aggregation, such as approximate counting
and computing the minimum input value, in synchronous directed networkswith
bounded message bandwidthB = Ω(log n). In undirected networks of diameter
D, many such problems can easily be solved inO(D) rounds, usingO(log n)-
size messages. We show that for directed networks this is not the case: when the
bandwidthB is small, several classical data aggregation problems have a time
complexity that depends polynomially on the size of the network, even whenthe
diameter of the network is constant. We show that computing anǫ-approximation
to the sizen of the network requiresΩ(min

{

n, 1/ǫ2
}

/B) rounds, even in net-
works of diameter 2. We also show that computing a sensitive function (e.g.,
minimum and maximum) requiresΩ(

√

n/B) rounds in networks of diameter
2, provided that the diameter isnot known in advance to be o(

√

n/B). Our
lower bounds are established by reduction from several well-known problems
in communication complexity. On the positive side, we give a nearly optimal
Õ(D+

√

n/B)-round algorithm for computing simple sensitive functions using
messages of sizeB = Ω(logN), whereN is a loose upper bound on the size of
the network andD is the diameter.

1 Introduction

Consider a wireless network comprising two base stations, transmitting at high power,
and an unknown number of client devices which communicate only with the base sta-
tions. The base stations are received at all devices, and each client device is received by
at least one base station. However, due to power constraints, the clients are not necessar-
ily received at both stations. The bandwidth of each base station is limited, allowing it to
send only a certain numberB of bits per timeslot. How many timeslots are required for
the base stations to determine the approximate number of clients? We study this prob-
lem and other data aggregation problems indirected networks, where communication
is not necessarily bidirectional.

Data aggregation tasks are central to many distributed systems; for example, a peer-
to-peer network might require information about the numberof clients that have a local
copy of a file, and a sensor network might need to verify that ananomalous reading
was detected by a certain percentage of sensors before reporting it. With the increasing

⋆ Rotem Oshman was supported by the Center for Science of Information (CSoI), an NSF Sci-
ence and Technology Center, under grant agreement CCF-0939370.

availability of dynamic, large-scale distributed systems, efficient data aggregation has
become a particularly interesting challenge.

Classically, data aggregation has been studied in networkswith bidirectional com-
munication links. In this setting the method of choice is to first construct a spanning
tree of the network graph, and then perform distributed dataaggregation “up the tree”.
In a synchronous undirected network, if computation is initiated by some node, a global
broadcast starting at the initiating node induces a breadth-first search spanning tree of
the network. Basic aggregation functions, such as the minimum, maximum, sum, or
average of values distributed across the nodes of the system, can then efficiently be
computed by a simple convergecast on the tree. Even when the message bandwidth is
quite restricted (e.g., if only a constant number of data items can be sent in a single mes-
sage), this method allows any of the functions above to be computed inO(D) rounds
in networks of diameterD. Network properties such as the size of the network and the
diameterD itself can also be determined inO(D) time using small messages. In fact,
in [1] Awerbuch observes that computing certain aggregation functions and computing
a spanning tree are intimately related problems, whose timeand message complexities
are within constant factors of each other. This makes the spanning-tree/convergecast
approach a canonical solution of sorts.

The situation changes significantly when communication is not necessarily bidirec-
tional. Constructing a rooted directed spanning tree becomes much more challenging,
as it is much harder for the sender of a message to obtain feedback from the recipients,
or even to determine who are the recipients. In this paper we show that in contrast to
undirected networks, in directed networks with restrictedbandwidth it is not always de-
sirable to aggregate data by first computing a rooted spanning tree; for some functions,
such as minimum and maximum, it is faster to compute the aggregate by other means.
Moreover, we show that the time complexity of computing an aggregate with restricted
bandwidth is not governed by the diameter of the network alone; for small-diameter
networks, the time complexity of computing certain aggregates is dominated by a fac-
tor polynomial inn, the size of the network. We are particularly interested in the effect
of initial knowledge, i.e., whether or not the problem becomes easier if parameters such
as the size or diameter of the network are known in advance.

The paper is organized as follows. In Section 2 we discuss related work. In Section 3
we introduce the model and problems studied in the paper, andreview several results
in communication complexity that form the basis for our lower bounds. In Section 4
we consider the problems of exact and approximate counting,when the diameter of
the network is known to be 2; we show that computing anǫ-approximate count with
constant probability requiresΩ(min

{

n, 1/ǫ2
}

/B) rounds whereB is the message
bandwidth. Our lower bound implies that computing a rooted spanning tree in networks
of diameter 2 requiresΩ(n/B) rounds.

In Section 5 we turn our attention to computing sensitive functions in networks of
unknown diameter. Informally, a function isglobally sensitive if its value depends on
all the inputs, andǫ-sensitive if its value depends on anǫ-fraction of inputs. In undi-
rected networks, or even in directed networks of known diameter D, some globally-
sensitive functions can be computed inO(D) time with only single-bit messages. We
show that for directed networks ofunknown diameter the picture is quite different:
Ω(

√

n/B) rounds are required, even when the diameter of the network is2 (but this

fact is not known in advance). This lower bounds holds for randomized computation
of any globally-sensitive function and for deterministic computation of anyǫ-sensitive
function whereǫ ∈ (0, 1/2). The lower bound holds even when the sizen of the net-
work is known in advance and the UID space is1, . . . , n.

Finally, in Section 5.2 we give a randomized algorithm for the problem of determin-
ing when a node has been causally influenced by all nodes in thegraph. This condition
is necessary to compute a globally-sensitive function, andsufficient to compute sim-
ple functions such as minimum or maximum. The algorithm requiresD + Õ(

√

n/B)
rounds w.h.p., nearly matching our lower bound. For lack of space, some of the proofs
are omitted here, and appear in the full version of this paper.

2 Background and Related Work

Distributed data aggregation and spanning tree computation. Early work on these
problems was concerned with theirmessage complexity, that is, the total number of
messages sent by all processes, as well as their time complexity. Awerbuch observed
in [1] that in undirected networks, the message and time complexity of leader election,
computing a distributive sensitive function (e.g., minimum or maximum) and count-
ing are all within a constant factor of the complexity of finding a spanning tree in the
network. It is also shown in, e.g., [1, 3] that the time complexity of these problems in
undirected networks isΘ(n) and the message complexity isΘ(m + n log n) in net-
works of sizen with m edges. However, theΩ(n) lower bound is obtained in networks
of diameterΩ(n), and the message complexity lower bound does not yield a non-trivial
bound in our model. In a synchronous undirected network of diameterD edges, it is
possible to construct a breadth-first search spanning tree in O(D) rounds, even if the
diameter and size of the network are not known in advance. Using such a tree, functions
such as minimum, maximum, sum, or average can all be computedin timeO(D). Based
on a pre-computed spanning tree, researchers have also considered the computation of
more complicated functions such as the median or the mode [7,8, 12, 13, 15–17].

Communication complexity. A two-player communication game involves two players,
Alice and Bob, which are given private inputsx, y and must compute some joint func-
tion of their inputs,f(x, y). In order to computef the players communicate over sev-
eral rounds, and are charged for the total number of bits exchanged. Thedeterministic
communication complexity of f is the worst-case number of bits exchanged in any de-
terministic protocol for computingf . The randomized communication complexity is
defined similarly; in the current paper we are interested in randomized algorithms that
err with constant probability.

Communication complexity lower bounds have often been usedto obtain lower
bounds in distributed computing. The classical reduction technique (see, e.g., [10]) par-
titions the network into two parts, with each player simulating the nodes on one side of
the cut. The input to each player is reflected in the structureof its part of the network
or in the input to the network nodes it simulates, and the output or behavior of the dis-
tributed algorithm is used , and the communication-complexity lower bound then shows
that a certain amount of information must cross the cut. For example, this technique is
used in [13] to obtain a lower bound on the complexity of computing the number of
distinct elements in the input.

The reductions we give here are quite different in nature. Instead of partitioning the
network, the players simulate non-disjoint sets of nodes. Care must be taken to ensure
that information about one player’s private input does not “leak” to the other player
through nodes that both players simulate; this aspect of ourreductions strongly relies
on the fact that the network is directed.

3 Preliminaries

Network model. We model a synchronous directed network as a strongly connected di-
rected graphG = (V,E), whereE ⊆ V 2. We useNd(v) = {u ∈ V | dist(u, v) ≤ d}
to denote thed-in-neighborhood of v, that is, the set of nodes whose distance tov is at
mostd. Nodes communicate by local broadcast: in each round, everynodeu sends a
single message of size at mostB, whereB = Ω(log n), and this message is delivered
to all nodesv such that(u, v) ∈ E. (Each node does not know which nodes receive
its message, i.e., it does not know its set of out-neighbors.) We assume that nodes and
communication links are reliable and do not fail during an execution.

In the sequel we often refer to algorithms whose correctnessis only guaranteed
in networks that satisfy some fixed bound on the size or diameter of the network. In
this case we say that the bound isknown a priori (or known in advance). Our lower
bounds assume that each node has a unique identifier (UID) drawn from some UID
space1, . . . , N , whereN is an upper bound on the size of the network that is known in
advance. For convenience, we assume the existence of two distinguished UIDsa, b 6∈
[N]; our reductions “embed” the two players in the graph as nodesa andb respectively.
Some of our lower bounds allow for the case whereN = n, i.e., the exact size of the
network is known to all nodes and the UID space is1, . . . , n. In contrast, the algorithm
in Section 5.2 requires only a loose upper boundN ≥ n and does not use UIDs at all.

Problem statements. We are interested in the following distributed problems.
– ǫ-approximate counting: nodes are initially provided with some loose upper bound
N on the sizen of the network, and each nodev must eventually output an approx-
imate count̃nv satisfying|ñv − n| ≤ ǫ · n.

– Computingglobally-sensitive functions of the input: a function is said to beglob-
ally sensitive if there exists an input assignmentx such that changing any single
coordinate ofx yields a different function value. For example, the all-oneinput
assignment witnesses the global sensitivity of computing aminimum.

– Computingǫ-sensitive functions of the input: a function isǫ-sensitive if there is an
input assignmentx such that changing any⌈ǫn⌉ coordinates ofx yields a different
function value. For example, the function that returns 1 iffat least 25% of the inputs
are 1 is(1/4)-sensitive, as witnessed by the all-zero input assignment.

Communication complexity lower bounds. Our results rely on several celebrated lower
bounds in communication complexity. Perhaps the best knownlower bound concerns
the Set Disjointness problem, DISJn, in which the players are given setsX,Y ⊆ [n]
(respectively) and must determine whetherX ∩ Y = ∅.

Theorem 1 ([5, 14]).The randomized communication complexity of DISJn is Ω(n).

We are also interested in a relaxed variant called Gap Set Disjointness, GAP-DISJn,g:
here the players are given setsX,Y ⊆ [n], with thepromise that eitherX ∩ Y = ∅ or
|X ∩ Y | ≥ g. The players must determine which of these cases holds. When the gap
g is large with respect ton, GAP-DISJn,g is quite easy for randomized algorithms (one
can use random sampling to find an element of the intersectionif it is large). However,
for deterministic protocols the problem remains hard even with a linear gap. (This fact
appears to be folklore in the communication complexity community; we include a proof
in the full version of this paper.)

Theorem 2. For any constant ǫ ∈ (0, 1/2), the deterministic communication complex-
ity of GAP-DISJn,(1/2−ǫ)n is Ω(n).

The final problem is GAP-HAMMING -DISTANCE, denoted GHDn,g, where the
players receive vectorsx, y ∈ {0, 1}n and must determine whether the Hamming dis-
tance∆(x, y) satisfies∆(x, y) > n/2 + g or whether∆(x, y) ≤ n/2 − g. (If neither
holds, any answer is allowed.) Characterizing the randomized communication complex-
ity of GHD remained an open problem for a long time after its introduction in [4] (for
the caseg =

√
n, which is in some sense the most interesting setting), untilin [2],

Chakrabarti and Regev proved the following lower bound.

Theorem 3 ([2]).For any g ≤ n, the randomized communication complexity of GHDn,g

is Ω(min
{

n, n2/g2
}

).

The reductions in this paper arepublic-coin protocols: they assume that Alice and
Bob have access to a shared random string (of unbounded length). The lower bounds
above are stated forprivate-coin protocols, where each player has its own private ran-
domness. However, any public-coin protocol can be transformed into a private-coin
protocol at the cost ofO(log n) additional bits [10], so the distinction is mostly imma-
terial for our purposes.

4 Approximate and Exact Counting

We begin by describing a lower bound forǫ-approximate counting or exact counting. In
this setting we assume that nodes know some loose upper boundN ≥ n on the size of
the network, and must determine the exact or approximate size. Since exact counting is
a special case of approximate counting, we describe the lower bound for approximate
counting, and later discuss exact counting.

The lower bound is obtained by reduction from GHDN,ǫN . Suppose we are given
an ǫ-approximate counting algorithmA. Given an instance(x, y) of GHDN,ǫN , we
construct a networkGx,y, in which Alice and Bob jointly simulate the execution ofA.
WhenA terminates, Alice and Bob use the output ofA to determine the correct answer
to GHD on the instance(x, y). Since Alice knows only her inputx and Bob knows only
y, neither player knows the complete topology of the networkGx,y, which depends on
bothx andy. The players therefore cooperate to simulate the executionof A in Gx,y.

Let X,Y ⊆ [N] be the sets whose characteristic vectors arex andy, respectively.
The networkGx,y is given byGx,y = (Vx,y, Ex,y), whereVx,y = X ∪ Y ∪ {a, b} (for
a, b 6∈ [N]), andEx,y = ({a} × Vx,y) ∪ ({b} × Vx,y) ∪ (X × {a}) ∪ (Y × {b}) (see
Fig. 1).

1 2 4 7 9

a b

Fig. 1. The networkGx,y for x = 110000100, y = 010100101 (i.e., X = {1, 2, 7} , Y =
{2, 4, 7, 9})

The Hamming distance∆(x, y) is closely related to the size ofGx,y:

Lemma 1. For all (x, y) ∈ ({0, 1}N)2, the graph Gx,y is strongly connected, its diam-
eter is 2, and its size is |Vx,y| = (‖x‖1 + ‖y‖1 +∆(x, y))/2 + 2.

Next we show that an efficient algorithm for approximating the size of diameter 2 net-
works leads to an efficient protocol for GHDN,ǫN .

Lemma 2. Given an ǫ-approximate counting algorithm A which outputs a correct an-
swer after t rounds with probability at least 1 − δ, one can construct a public-coin
protocol for GHDN,ǫN which exchanges a total of O(Bt + logN) bits and succeeds
with probability 1− δ.

Proof. Given an instance(x, y), Alice and Bob simulate the execution ofA in Gx,y

as follows. Alice locally simulates the nodes inX ∪ {a}, and Bob locally simulates
the nodes inY ∪ {b}. The shared random string is used to provide the randomness
of all nodes in the network. (Since Alice and Bob do not initially know which of the
nodes{1, . . . , N} are present, we interpret the shared random string as containing the
randomness of each node1, . . . , N regardless of whether or not the node is inX ∪ Y .)
Notice that there can be some overlap,X ∩ Y , which is simulated by both players
independently.

The initial states of all nodes inX∪{a} and inY ∪{b} are known to Alice and Bob,
respectively, because they depend only on the UIDs of these nodes and on the shared
randomness. Each round ofA is simulated as follows:

– Based on the states of their local simulations, Alice and Bobcompute the messages
sent by the nodes inX ∪ {a} and inY ∪ {b}, respectively.

– Alice sends to Bob the message sent by nodea, and Bob sends to Alice the message
sent byb. Following this exchange, Alice and Bob have all the messages received
by each node they need to simulate.

– The players update the states of their local simulations by feeding to each node the
messages it receives inGx,y: the nodes ofX ∪ Y receive the messages sent bya
andb; nodea receives the messages sent by nodes inX ∪ {b}; and nodeb receives
the messages sent by nodes inY ∪ {a}. (Note that Alice knowsX and Bob knows
Y , so the two players know which messages are supposed to be received by nodes
a, b, respectively.)

Although Alice and Bob do not directly exchange informationabout the states of nodes
in X∩Y — indeed, they do notknow which nodes are inX∩Y , and this is what makes
the problem difficult — still their local simulations agree on the states of these nodes.

With probability at least1 − δ, after t rounds of the simulation nodea halts and
outputs an approximate countñ which satisfies|ñ − n| ≤ ǫn. When nodea halts,
Alice sends̃n to Bob, and in addition Alice and Bob send each other|X| = ‖x‖1 and
|Y | = ‖y‖1 (respectively). Let∆̃ = 2(ñ− 2)− ‖x‖1 − ‖y‖1. Both players output 0 if
∆̃ < N/2, and 1 if∆̃ ≥ N/2. (If nodea fails to halt aftert rounds, the players output
an arbitrary answer.)

If |ñ − n| ≤ ǫn then Lemma 1 shows that|∆̃ − ∆(x, y)| = 2|ñ − n| ≤ 2ǫn ≤
2ǫN . Hence, with probability at least1 − δ, the players output the correct answer: if
∆(x, y) ≥ N/2 + 2ǫN then∆̃ ≥ N/2, and if∆(x, y) < N/2− 2ǫN then∆̃ < N/2.

The total number of bits sent during the protocol is2Bt+ 2 log(N). In addition, to
transform the protocol into a private-coin protocol we requireO(logN) additional bits.
The communication complexity is thereforeO(Bt+ logN). ⊓⊔

Although our reduction is stated in terms of the upper boundN (we reduce from
GHDN,ǫN), the “hard” instances are the ones wheren is roughly linear inN ; it is
always possible to solve GHD by exchanging the coordinates of indices i such that
xi = 1 or yi = 1, and hence when|X ∪ Y | = n the problem can easily be solved in
O(n logN) bits. It is therefore more informative to state our lower bound in terms of
the actual sizen of the network. From Theorem 3 and the reduction above, we obtain
the following lower bound.

Theorem 4. If B = Ω(logN), a randomized algorithm for computing an ǫ-approximate
count requires Ω((min

{

n, 1/ǫ2
}

/B) rounds to succeed with probability 2/3 in net-
works of diameter 2.

Remarks. The deterministic communication complexity of GHDN,g is Ω(N) even
when g = c · N for a sufficiently small constantc [2]; therefore deterministically
computing anǫ-approximate count forǫ a sufficiently small constant requiresΩ(n/B)
rounds. As forexact counting (deterministic or randomized), computing the exact count
is as hard as computing a(1/n)-approximate count, soΩ(n/B) rounds are required.

The lower bound of Theorem 4 is nearly tight if the diameter ofthe network is
known. An algorithm forǫ-approximate counting is given in [11]; the algorithm of [11]
sends messages containing real numbers, but using a rounding scheme to bound the size
of messages (see [9]), one obtains anÕ(D + min

{

n, 1/ǫ2
}

/B)-round algorithm for
networks of known diameterD. For the case where the diameter is unknown, we obtain
a stronger lower bound in the next section.

Finally, the reduction from Lemma 2 also shows that finding a rooted spanning tree
in directed networks is hard even when the diameter of the network is knowna priori to
be 2. In the networkGx,y, the nodes ofX∪Y are not connected to each other; therefore
any rooted spanning tree ofGx,y has diameter at most 3, as each node ofX ∪ Y except
possibly the root must have eithera or b as its parent in the tree. If one can find a
rooted spanning tree ofGx,y in t rounds, then an exact count can be computed int+ 3
rounds by finding such a tree and then “summing up the tree” (convergecast). Since
exact counting requiresΩ(n/B) rounds, so does computing a rooted spanning tree. In
the full version of this paper we show that this lower bound continues to hold when the
size of the network is knowna priori, provided that the UID space is of size at least
(1 + ǫ)n for some arbitrarily small constantǫ.

5 Computing Sensitive Functions

In this section we study the complexity of computing sensitive functions, such as the
minimum or maximum input value. In contrast to the previous section, here we are
interested in instances where the diameter of the network isnot knowna priori to be
small, but the algorithm is deployed in a network thatdoes in practice have a small
diameter. We will show that in such cases it is not possible toexploit the small diameter
of the network; the worst-case running time of the algorithmmust beΩ(D +

√

n/B).
We also give a nearly-matching algorithm for computing simple sensitive functions.

Let f be a globally-sensitive function, and letx̄ be an input assignment under which
changing any node’s input changes the value off (i.e., for all ȳ 6= x̄ we havef(x̄) 6=
f(ȳ)). In any execution where the input is̄x, at timet, a nodev can only know the value
of f if N t(v) = V , that is, if t rounds are sufficient for a message from any node in
the network to reach nodev; otherwise there is some node whose input nodev cannot
know at timet, and this node’s input may determine the value off . Similarly, if f is
ǫ-sensitive, there exists an input assignment under which nonode can know the value
of f at time t unless|N t(v)| > (1 − ǫ)n. This motivates us to study the following
problem:

Definition 1 (Hearing from m nodes).In the Hear-from-m-nodesproblem, denoted
HFm, each node v in the network must halt at some time t such that |N t(v)| ≥ m.

The worst-case time complexity of computing a globally-sensitive function is at least
the worst-case time complexity of solving HFn, and similarly forǫ-sensitive functions
and HF(1−ǫ)n. (In fact, computing anǫ-sensitive function can require hearing from
strictly more than(1 − ǫ)n nodes.) Of course, HFn can easily be solved by having all
nodes wait until timen−1; however, we are interested here in efficient solutions, which
terminate faster in networks with smaller diameter (recall, however, that the diameter is
not known in advance).

5.1 Lower Bounds on Computing a Sensitive Function

In this section we show that even when the diameter of the network is 2, learning that
the diameter is 2 requiresΩ(

√

n/B) rounds in the worst case. More formally, we show
that when the size of the network is known, the UID space is1, . . . , n, and noa priori
bound on the diameter is known,

(a) Any randomized algorithm for HFn requiresΩ(
√

n/B) rounds to succeed with
constant probability, even when executed in a network of diameter 2; and

(b) For anyǫ ∈ (0, 1/2), any deterministic algorithm for HF(1−ǫ)n requiresΩ(
√

n/B)
rounds, again when executed in networks of diameter 2.

(Of course, in networks of diameter 2 we have|N2(v)| = n for all nodesv, sot = 2 is
sufficient; however, this fact is not known to the algorithm in advance.)

Fix an algorithmA for HFm and a network sizen ≥ m. We describe a reduction
from Set Disjointness or Gap Set Disjointness, which we willuse to show both the hard-
ness of HFn for randomized algorithms and the hardness of HF(1−ǫ)n for deterministic
algorithms.

As in Section 4, in the reduction we construct a networkG based on the instance of
Set Disjointness given to Alice and Bob. The two players thensimulate the execution
of A in G, and output an answer to Set Disjointness (or Gap Set Disjointness) based on
the behavior ofA in G — in this case, based on the time whenA terminates. We now
describe the construction of the network and the simulationused by Alice and Bob.

The construction has several parameters. First, lettA be the number of rounds such
that whenA is executed in a network of sizen with node UIDs1, . . . , n, a, b (as before
we add UIDsa, b for convenience), with probability at least2/3 all nodes halt by time
tA. Based ontA and onm, we choose asegment length s ≥ tA +1 which will be fixed
later. Informally, in the reduction nodes must distinguishdiameter 2 networks from
diameters+ 2, and we will show that this requiresΩ(n/s) rounds in the worst-case.

Assume for simplicity thats dividesn. We divide the nodes1, . . . , n into segments
S1, . . . , Sn/s, each of sizes, whereSi := {(i− 1) · s+ 1, (i− 1) · s+ 2, . . . , i · s}.
Each segmentSi is further subdivided into two parts: aback end SB

i containing nodes
(i − 1) · · · + 1, . . . , i · s − tA, and afront-end SF

i containing the remaining nodes,
i · s − tA + 1, . . . , i · s. In the sequel we implicitly use wrap-around (i.e.,mod n
arithmetic) for node indices, so that−1 ≡ n, −2 ≡ n− 1, and so on.

We are now ready to describe the reduction itself. The reduction is from DISJn/s,
that is, Set Disjointness (or Gap Set Disjointness) with a universe ofn/s elements;
each segmentSi represents a single element of the universe. Given an instance(x, y) of
DISJn/s, we define a networkGs,x,y := ({1, . . . , n, a, b} , Es,x,y) (see Fig. 2), where

– Nodesa, b have edges to all nodes of the graph.
– Nodes1, . . . , n are connected in a directed cycle: for eachi ∈ [n] we have(i, i +
1) ∈ Es,x,y.

– In each segmentSi, the last node (nodei · s) is connected to nodea. (This is to
ensure strong connectivity and a bound ofs+ 2 on the diameter.)

– For all i 6∈ X and for allv ∈ Si we have(v, a) ∈ Es,x,y; similarly, for all i 6∈ Y
and for allv ∈ Si we have(v, b) ∈ Es,x,y.

Here,X andY are the sets whose characteristic vectors arex, y respectively.

1 4 7 10

2 5 8 11

3 6 9 12

a b

S1 S2 S3 S4

Fig. 2.The networkGs,x,y from Thm. 5, withn = 12, tA = 2, s = tA+1 = 3. Edges froma, b
to nodes1, . . . , 12 are omitted for clarity. The DISJ4 instance shown here isX = {2, 4} , Y =
{1, 2, 3}. Since2 ∈ X ∩ Y , all S2 nodes except the last (node 6) are not connected toa or to b.
Therefore4 6∈ N tA(a), i.e., two rounds are not sufficient for nodea to hear from node 4.

With the exception of the last node in each segment (which is always connected to
nodea), the nodes in segmentSi are connected to nodea iff Alice did not receivei
in her input, and connected to nodeb iff Bob did not receivei in his input. Therefore,

if there exists an elementi in the intersectionX ∩ Y = X ∪ Y , the nodes of the
corresponding segmentSi, with the exception of the last node, will not be connected to
either nodea or nodeb. These nodes are only connected to the rest of the graph by the
cycle edges(i− 1) · s+ 1 → (i− 1) · s+ 2 → . . . → i · s. Consequently the diameter
of the graph iss+ 2 > tA in this case. IntA rounds, nodesa andb can only hear from
the lasttA nodes of segmentSi, i.e., only from the front-endSF

i ; for each segmentSi

such thati ∈ X ∩ Y , |SB
i | = s− tA nodes are missing fromN tA(a).

On the other hand, ifX∩Y = ∅ (or equivalently,X∪Y = {1, . . . , n/s}), all nodes
in all segments are connected to either nodea or nodeb, and the diameter of the graph
is 2.

Lemma 3. For any x, y ∈ {0, 1}n,
(a) The graph Gs,x,y is strongly connected,
(b) For all i ∈ X ∩ Y and for all v ∈ SB

i we have v 6∈ N tA(a) and v 6∈ N tA(b),
(c) If X ∩ Y = ∅, the diameter of Gs,x,y is 2, and
(d) |N tA(a)| ≤ n− |X ∩ Y | · (s− tA) (and similarly for b).

Alice and Bob simulate the execution ofA in Gs,x,y in a slightly different manner
than in Lemma 2; here both players simulate nodes1, . . . , n regardless of the input in-
stance, and in addition Alice simulates nodea and Bob simulates nodeb. The remainder
of the simulation is the same as in Lemma 2, and we omit the details here.

Proposition 1. Given inputs x and y respectively, and a shared string representing
the randomness of all nodes, Alice and Bob can each simulate nodes {a, 1, . . . , n} and
{b, 1, . . . , n} (respectively) throughout rounds 1, . . . , tA of the execution of A in Gs,x,y .

It remains only to put the pieces together to obtain the following lower bounds.

Theorem 5. If the diameter of the network is not known initially, any randomized al-
gorithm for computing a globally-sensitive function requires Ω(

√

n/B) rounds with
probability at least 2/3 when executed in networks of diameter 2.

Proof. As explained above, it is sufficient to show the corresponding bound for HFn.
Fix an algorithmA, and lettA be defined as above. Fix a segment length ofs :=

tA + 1 (so that the back-end of each segment contains exactly one node).
Given an instance(x, y) of DISJn/s, Alice and Bob jointly simulate the firsttA

rounds in the execution ofA in Gs,x,y as in Proposition 1. AftertA rounds, Alice
informs Bob whether or not nodea has halted in the simulation. If nodea has halted,
the players output “X ∩ Y = ∅”; otherwise they output “X ∩ Y 6= ∅”.

As we saw in Lemma 3, ifX ∩ Y = ∅ then the diameter ofGtA+1,x,y is 2, so
with probability at least2/3 all nodes halt aftertA rounds and Alice and Bob output
“X ∩ Y = ∅”. On the other hand, ifX ∩ Y 6= ∅, then by timetA nodea has not heard
from all nodes, as Lemma 3 shows that at least(s− tA) · |X ∩Y | = |X ∩Y | > 0 nodes
are missing fromN tA(a). Consequently, with probability at least2/3, nodea does not
halt by timetA and the players output “X ∩ Y 6= ∅”.

The total number of bits exchanged by the players in the protocol above is2B ·
tA + 1, because Alice and Bob only send each other the messages output by nodes
a andb, plus one bit needed for Alice to inform Bob whether nodea has halted. An
additionalO(log(n/tA)) bits are required to obtain a private-coin protocol. Since the
randomized communication complexity of DISJ⌊n/(tA+1)⌋ is Ω(n/tA), we must have
2B · tA + 1 = Ω(n/tA), or in other words,tA = Ω(

√

n/B). ⊓⊔

Theorem 6. If the diameter of the network is initially unknown, any deterministic al-
gorithm for computing an ǫ-sensitive function, where ǫ ∈ (0, 1/2) is constant, requires
Ω(

√

n/B) rounds when executed in networks of diameter 2.

Proof (sketch). We prove thatΩ(
√

n/B) rounds are required to solve HF(1−ǫ)n deter-
ministically for anyǫ ∈ (0, 1/2), even in networks of diameter 2. The proof is similar to
that of Thm. 5, except that we now reduce from GAP-DISJ⌊n/s⌋,ǫ′⌊n/s⌋ for an appropri-
ately chosen constantǫ′ ∈ (0, 1/2), and the segment lengths is also chosen differently.

Fix a deterministic algorithmA for HF(1−ǫ)n, and lettA be the maximal time at
which the algorithm halts in any network of diameter 2. We must now choose a segment
lengths = Θ(tA) so that the following conditions hold:
(a) If X ∩Y = ∅, then the diameter ofGs,x,y is 2. This ensures that in “yes” instances,

all nodes halt by timetA.
(b) If |X ∩ Y | ≥ ǫ′⌊n/s⌋ then we have|N tA(a)| < (1− ǫ)(n+ 2). This ensures that

in “no” instances, nodea cannot halt by timetA.
These conditions suffice for the protocol from Thm. 5 to solveGAP-DISJ⌊n/s⌋,ǫ′⌊n/s⌋
as well. From Lemma 3 we see that condition (a) holds regardless of our choice ofs.
As for condition (b), from part (d) of Lemma 3, it is sufficientto chooses := αtA, ǫ

′

so that

n− ǫ′
⌊

n

αtA

⌋

· (α− 1)tA < (1− ǫ)(n+ 2).

There exist constantsα > 1, ǫ′ ∈ (0, 1/2) satisfying this constraint (we omit the details
for lack of space). For this choice ofs, ǫ′, the reduction from Thm. 5 yields a protocol
with communication complexity2BtA + 1 for GAP-DISJn′,ǫ′n′ , wheren′ = ⌊n/s⌋ =
O(n/tA). Because GAP-DISJ is linearly hard for deterministic protocols even when the
gap is linear in the universe size (Theorem 2), we must have2BtA + 1 = Ω(n/tA),
i.e., tA = Ω(

√

n/B). ⊓⊔

Remarks. The construction in this section can be modified to show a few related results.
In Theorems 5 and 6 we assumed that no upper bound on the diameter of the

network is known in advance. Suppose now that some upper bound D̄ on the diam-
eter is known in advance. We can show that any randomized algorithm for comput-
ing a globally-sensitive function, and any deterministic algorithm for computing an

ǫ-sensitive function forǫ ∈ (0, 1/2), requiresΩ(min
{

D̄,
√

n/B
}

) rounds when exe-

cuted in networks of diameter 2.
To see this, observe that the diameter ofGs,x,y never exceedss + 2. Suppose that

D̄ = o(
√

n/B) and we are given an HFn-algorithm (or similarly, a deterministic
HF(1−ǫ)n-algorithm)A with tA < D̄− 2. If we use a segment length ofs = tA + 1 ≤
D̄−2, as in Thm. 5, the diameter upper bound is not violated inGs,x,y. For this choice of

s, the reduction from Thm. 5 allows us to solve DISJ⌊n/s⌋, where⌊n/s⌋ ≥ ⌊n/(D̄−2)⌋,
using less than2(D̄− 2)B + 1 bits. We must have2(D̄− 2)B + 1 = Ω(n/D̄), that is,
D̄ = Ω(

√

n/B), contradicting our assumption thatD̄ = o(
√

n/B).
Next, consider the problem of finding an approximate count when the diameter is

not known in advance. (Our lower bound from Section 4 allows the diameter to be
known in advance, but the following requires it to be unknown.) Let N be the best
upper bound known in advance on the count. We will show that inorder to distinguish
a network of sizen from a network of sizeN , nodesa, b must solve a Set Disjointness
instance of sizeO(n/tA), so that againtA = Ω(

√

n/B) rounds are required.
Recall that inGs,x,y, the distance from any node(i − 1) · s + 1 wherei ∈ X ∩ Y

to nodesa and b is s > tA. Thus, whenX ∩ Y 6= ∅, we can choose a nodev :=
(i−1) · s+1 wherei ∈ X ∩Y , and “hide” nodesn+1, . . . , N behind it, adding edges
from nodesn + 1, . . . , N to v and from nodesa, b to nodesn + 1, . . . , N . Let G′

s,x,y

be the resulting network. Since the distance from nodev to nodesa, b exceedstA, and
the new nodesn + 1, . . . , N are connected only to nodev, tA rounds are insufficient
for nodesa, b to distinguishGs,x,y fromG′

s,x,y. Therefore, ifX ∩ Y 6= ∅, an algorithm
for distinguishing networks of sizen + 2 from networks of sizeN cannot terminate
by time tA in Gs,x,y (except with small probability). This is sufficient to carryout the
reduction from Thm. 5 exactly as before, obtaining anΩ(

√

n/B) lower bound on any
non-trivial approximation of the count.

5.2 A (D + Õ(
√

n/B))-Round Algorithm for HF n

We now give an algorithm that solves HFn in nearly-optimal time. If, for example, the
minimum input value heard so far is forwarded alongside the messages of our algorithm,
this allows nodes to compute the global minimum. The algorithm does not use UIDs,
and it only requires an polynomially loose upper boundN ≥ n on the count.

High-level overview of the algorithm. Initially, each node computes a sequence of in-
dependent Bernoulli variables, and stores the indices of the variables that turned up one.
These indices are calledtokens. The tokens are then forwarded throughout the network
by all nodes. If a node does not receive any new tokens for a sufficiently long period of
time, it concludes that it has heard from all nodes, and halts. The waiting period is long
enough so that if at the endt of the period we do not haveN t(v) = V , then during the
waiting period the tokens of many new nodes are received byv, and the probability that
none of these nodes generated a token that was not previouslyknown is very small.

Detailed description. Since nodes do not know the exact sizen, we use exponentially-
increasing guesses2k for k = ⌈log logN⌉, . . . , ⌈logN⌉. We refer to each value ofk
as alevel. On levelk, each node computesℓk independent Bernoulli variablesXi

k with
Pr[Xi = 1] = 1/2k+2, whereℓk = Θ̃(

√
2kB) (the exact value will be fixed later). We

denote byLk :=
∑k

i=1 ℓi the total number of variables computed on levelsk′ ≤ k.
At the beginning of the algorithm, the indices of the variables that turned up one on

each level are collected in a setTokens =
{

(k, i) |Xi
k = 1

}

. The tokens are ordered
lexicographically — first by level and then by index. Each token can be represented
using log n + log logN bits; for simplicity we assume that each message can fitβ

for k = ⌈log logN⌉, ⌈log logN⌉+ 1, . . . , ⌈logN⌉ do
Compute independentX1

k , . . . , X
ℓk
k ∼ Bernoulli(2−(k+2))

last updatek ← 0

Tokens ←
{

(k, i) ∈ N
2 |Xi

k = 1
}

, Sent ← ∅
for r = 1, 2, . . . do

X ← select theβ smallest tokens inTokens \ Sent
broadcastX and setSent ← Sent ∪X
receive tokensY from neighbors
for all y = (k, i) ∈ Y \ Tokens do ∀k′ ≥ k : last updatek′ ← r
Tokens ← Tokens ∪ Y
if ∃k : (| {(k, i) ∈ Tokens} | ≤ 2ℓk/3) ∧ (r − last updatek ≥ 2τk) then halt

Algorithm 1: A (D + Õ(
√

n/B))-round algorithm for HFn

tokens, that is,B = β(log n + log logN) whereβ is an integer. Pseudocode for the
algorithm is given by Algorithm 1. In the sequel, letτk := ⌈Lk/β⌉.

After generating an initial set of tokens, the tokens are disseminated in batches ofβ
tokens each, with lower-level tokens taking precedence over higher-level tokens. Each
node halts as soon as on some levelk, fewer than2ℓk/3 tokens have been received in
total, and in the past2τk = 2⌈Lk/β⌉ rounds no new token was received.

The algorithm relies onpipelining [18] to quickly disseminate small tokens through-
out the network. Because we forward small tokens before large ones, the progress of a
token(k, i) can only be impeded by tokens on its own level (k) or lower levels (k′ < k);
there are at mostLk =

∑k
i=1 ℓi such tokens, andβ of them can be sent per message.

Thus the “latency” of token(k, i) is at most⌈Lk/β⌉ = τk. More formally, for a set
S ⊆ V of nodes, letAk(S) :=

⋃

v∈S {(k, i) | (k, i) ∈ Tokensv(0)} be the level-k
tokens generated by the nodes ofS. Let Tokensv(t) stand for the value of the local
variableTokens at nodev and timet. The latency of level-k tokens is bounded by the
following lemma.

Lemma 4. For all v ∈ V and t ≥ τk, Ak(N
t−τk(v)) ⊆ Tokensv(t) ⊆ A(N t(v)).

We can now bound the round complexity of the algorithm in terms of the “correct”
value ofk, which is roughlylog(n).

Lemma 5. Let k̂ := min {⌈log logN⌉, ⌈log n⌉}. In graphs of diameter D, the algo-
rithm terminates in D + 3⌈Lk̂/β⌉ rounds with probability at least 1− e−ℓ

k̂
/9.

Proof (sketch). It is not difficult to show that the expected number of level-k tokens
generated by all the nodes together is at mostℓk̂/3. A Chernoff bound shows that w.h.p.,
the total number of level-k tokens does not exceed(2/3)ℓk̂, so the second part of the
termination condition is satisfied fork = k̂. For the first part of the condition we rely on
pipelining: Lemma 4 shows thatAk̂(N

D(v)) ⊆ Tokensv(D+τk) for all nodesv; since
ND(v) = V , at timeD + τk, each nodev has already received all tokens generated
anywhere in the network. After this time no node can receive any new tokens, so all
nodes halt no later than timeD + 3τk. ⊓⊔

Next we show that w.h.p., nodes do not halt before they have heard from alln nodes.

Lemma 6. If the level-k termination condition holds at node v at time t, then with
probability at least 1− e−ℓ2

k
/(3·2k+3β) we have N t(v) = V .

Proof (sketch). The level-k termination condition asserts that no new level-k tokens
are received during the time interval[t − 2τk, t]. Assume thatN t(v) 6= V , and set
S := N t−2τk(v), S′ := N t−τk(v). From Lemma 4 we see that
(a) Ak(S

′) ⊆ Tokensv(t), that is, all tokens generated by the nodes ofS′ are known
to v at timet; and

(b) Tokensv(t−2τk) ⊆ Ak(S), i.e., at timet−2τk nodev only knows tokens generated
by the nodes ofS.

Since no new tokens were added toTokensv between timet− 2τk and timet, we must
haveAk(S

′) = Ak(S); in other words, the nodes ofS′ \ S did not generate any tokens
that were not already generated by the nodes ofS. We will show that this is unlikely.

From the level-k termination criterion, at leastℓk/3 tokens were not generated
by the nodes ofS. Each of these tokens is generated by each node ofS′ \ S with
probability 1/2k+2. Because we assumed thatN t(v) 6= V and the graph is strongly
connected,|S′ \ S| ≥ τk. Hence, for each token(k, i) 6∈ Ak(S), we can show that
Pr [(k, i) ∈ Ak(S

′ \ S)] ≥ τk/2
k+3 independently of the other tokens. It follows that

Pr [Ak(S
′) = Ak(S)] ≤

(

1− τk/2
k−3

)ℓk/3 ≤ e−ℓ2
k
/(3·2k+3β). ⊓⊔

Combining the two lemmas, we see that choosingℓk asΘ(
√

2kβ lnN) yields a
polynomially small probability of any node not halting at timeD + O(Lk̂/β) = D +

Õ(
√

n/B), or halting before it has heard from alln nodes.

Theorem 7. For any constant c, if ℓk ≥
√

3(c+ 2)β · 2k+3 lnN , then with probability
at least 1 − 1/N c each node v halts at a time t = D + O(Lk/β) = Õ(D +

√

n/B)
such that N t(v) = V .

6 Conclusion

Data aggregation problems are traditionally studied in models that feature symmetric
point-to-point communication. However, wireless networks can haveasymmetric com-
munication topologies, due to the effects of local interference and heterogeneous power
assignments. This motivates our interest in directed networks with communication by
local broadcast.

Our results show that the traditional strategy of first computing a spanning tree,
and then solving various distributed tasks using the tree, is not always optimal for
directed networks; for example, while computing a rooted spanning tree can require
Ω(D + n/B) rounds (as we saw in Section 4), certain data aggregates can be com-
puted or approximated iñO(D +

√

n/B) rounds. Our lower bounds also imply that
it is not possible to quickly compute a small-diameter symmetric spanning subgraph
of a directed network with diameter 2. In general it seems that “topology-oblivious”
algorithms, such as the algorithm in Section 5.2 and gossip algorithms [6, 11], may be
better suited for directed networks.

We leave open the question of finding a tight bound on the deterministic time com-
plexity of computing a sensitive function; is there adeterministic algorithm that matches
theΩ(D+

√

n/B) lower bound, or can the lower bound be strengthened? For technical
reasons, it seems unlikely that a two-party reduction of thestyle we used in this paper
will yield a stronger lower bound, but perhaps multi-party communication complexity
lower bounds could be used.

References

1. B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election and related problems (detailed summary). InProc. 19th ACM Symp. on
Theory of Computing (STOC), pages 230–240, 1987.

2. A. Chakrabarti and O. Regev. An optimal lower bound on the communication complexity of
gap-hamming-distance. InProc. 43rd ACM Symp. on Theory of Computing (STOC), pages
51–60, 2011.

3. G. N. Frederickson and N. A. Lynch. The impact of synchronouscommunication on the
problem of electing a leader in a ring. InProc. 16th ACM Symp. on Theory of Computing
(STOC), pages 493–503, 1984.

4. P. Indyk and D. Woodruff. Tight lower bounds for the distinct elements problem. InProc.
44th IEEE Symp. on Foundations of Computer Science (FOCS), pages 283 – 288, oct. 2003.

5. B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set
intersection.SIAM J. Discrete Math., 5(4):545–557, 1992.

6. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation ofaggregate information.
In Proc. 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
482–491, 2003.

7. F. Kuhn, T. Locher, and S. Schmid. Distributed computation of the mode. InProc. 27th ACM
Symp. on Principles of Distributed Computing (PODC), pages 15–24, 2008.

8. F. Kuhn, T. Locher, and R. Wattenhofer. Tight bounds for distributed selection. InProc. 19th
ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 145–153, 2007.

9. F. Kuhn, N. A. Lynch, and R. Oshman. Distributed computation in dynamic networks. In
Proc. 42nd ACM Symp. on Theory of Computing (STOC), pages 513–522, 2010.

10. E. Kushilevitz and N. Nisan.Communication complexity. Cambridge University Press, 1997.
11. D. Mosk-Aoyama and D. Shah. Fast distributed algorithms for computing separable func-

tions. IEEE Transactions on Information Theory, 54(7):2997–3007, 2008.
12. A. Negro, N. Santoro, and J. Urrutia. Efficient distributed selectionwith bounded messages.

IEEE Trans. Parallel and Distributed Systems, 8(4):397–401, 1997.
13. B. Patt-Shamir. A note on efficient aggregate queries in sensor networks. InProc. 23rd ACM

Symp. on Principles of Distributed Computing (PODC), pages 283–289, 2004.
14. A. A. Razborov. On the distributional complexity of disjointness.Theor. Comput. Sci.,

106:385–390, December 1992.
15. N. Santoro, M. Scheutzow, and J. B. Sidney. On the expected complexity of distributed

selection.J. Parallel and Distributed Computing, 5(2):194–203, 1988.
16. N. Santoro, J. B. Sidney, and S. J. Sidney. A distributed selection algorithm and its expected

communication complexity.Theoretical Computer Science, 100(1):185–204, 1992.
17. L. Shrira, N. Francez, and M. Rodeh. Distributed k-selection: From a sequential to a

distributed algorithm. InProc. 2nd ACM Symp. on Principles of Distributed Computing
(PODC), pages 143–153, 1983.

18. D. M. Topkis. Concurrent broadcast for information dissemination. IEEE Trans. Softw. Eng.,
11:1107–1112, October 1985.

