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Abstract

From March 15th to August 31st 200, I attended a research internship
within the Comuter Science and Artificial Intelligence Laboratory at the
Massachusetts Institute of Technology1 under the supervision of Nancy
Lynch.

Within her group, the Theory of Distributed Systems Group, I worked
on the Tempo Toolset develloped by Veromod Inc.2 and on six examples
for the Tempo Toolset User Guide and Reference Manual.
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1 Introduction

1.1 Introducing Tempo

Tempo is a simple formal language for modeling distributed systems as col-
lections of interacting asynchronous state machines. It is based on the Timed
Input/Output Automata Framework [5] which was developped as an extenstion
of the I/O Automata framework [9, 10, 7]. It gives a formal mathematical
framework for the study of distributed algorithms and provides a rich set of
capabilities for system modeling and analysis : invariant assertions, composi-
tional reasoning and correspondences between levels of abstaction with support
of timing features.

TIOA can be used to model practically any type of distributed system, from
communication systems to automated process controls and even, to some extent,
biological systems. TIOA allows for both discrete state changes, called actions
or transitions , and continuous evolutions, called trajectories.

The Tempo language was designed to offer computer support to researchers
to describe and analyze distributed systems. It provides a formal language to
describe Timed I:O automata, based on pseudocode notations used in many
research paper and allows the specification of properties such as invariants,
relationships between automata at different level of abstaction.

The Tempo toolkit contains tools to support analysis of systems described
using Tempo. These include lightweight tools, which check syntax and perform
static semantic analysis; medium-weight tools, which simulate the action of an
automaton and support model-checking using the Uppaal model-checker [6]; and
heavyweight tools, which provide support for proving properties of automata
using the PVS interactive theorem-prover [12].

1.2 Internship Organization

The purpose of my internship with Nancy A. Lynch was to help her in writing
part of the Tempo Toolset User Guide and Reference Manual. During the first
few weeks, this meant getting familiar with the Tempo Toolset and help write
and correct the code for six toy examples she wanted to use in the User Guide to
illustrate both the code syntax and the modeling possibilities of the Framework.
Changes were made all along to the language to make it more intuitive and to
keep it as close to the TIOA framework as possible and I helped keep the said
examples’ code up to date.

After that, I kept working around those examples, writing proofs of different
properties of the algorithms, especially handproofs destined to be a reference
and basis for the automated proofs run through the PVS theorem prover. This
required me to discover the PVS theorem prover, although I did not actually
run any of the proofs on it.

1.3 Acknowledgements

I would like to thank C.S.A.I.L, M.I.T and Veromodo Inc. for giving me the
opportunity of this internship and the great environment provided.

I am most deeply thankful to Professor Nancy A. Lynch for all the time and
effort she put into making this internship a very interesting experience.
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welcoming me and helping me around. I would especially like to thank Shinya
Umeno and Sayan Mitra – or should it be Dr. Sayan Mitra ? – for both their
help and friendly chatter throughout my stay.
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2 Fischer Timed Mutual Exclusion Algorithm

The Fischer Timed Mutual Exclusion Algorithm is a simple and standard test
example for formal methods for modeling and analyzing distributed and timed
systems. In this algorithm, a collection of processes are competing to enter a
critical region by means of a shared variable called turn. This variable can take
on a value that is either nil or the name of a process whose turn it is to enter
the critical region.

The idea is that a process i that wants to enter the critical region should test
if the turn variable is already owned by someone else. If such is the case then
it waits and keeps retesting. If the variable is not currently owned by anyone,
it proceeds to write its name in the variable to “reserve” the critical region.
Testing and writing the variable are two different and separate actions meaning
that between the times where i tested and wrote, another process j may have
written the variable to reserve the critical region, leaving us with two processes
believing that it is their turn to enter the critical region.

Thus a key step to avoid collisions in the critical region is to have a process
that set the turn variable to its own name wait and check for any other process
that might have written in the variable before entering the critical zone. Even
though it may not be trivial, simply imposing a lower bound first check on the
time beetween setting the turn variable to a process name and checking to see
if it has not been changed since before entering the critical zone and an upper
bound last set between testing for availability and writing the process name such
that last set is strictly less than first check is enough to avoid collisions.

2.1 Fischer Automaton

There are two ways in TIOA and Tempo to model shared variables : you can
either make the shared variables an automaton of their own, where the read-
/write actions of the process automata are input/output actions of the shared
variable automaton or you can model the entire system as a single automaton
which has state variables for every single process and for the shared variables.
The latter solution was adopted here. In the code found in figures 2.1 and 2.2,
the actions are parametrized by the name of the process that takes them.

Most state variables are Arrays of variables indexed by process names mod-
eling the corresponding variables of the different processes. This also creates an
interesting configuration with the trajectories’ stopping condtion which tests on
the existence of a process for which the upper bound has been reached.

5



vocabulary fischer types
types process,
PcValue : Enumeration [pc rem, pc test, pc set, pc check, pc leavetry, pc crit, pc reset, pc leaveexit]

end

automaton fischer(l check, u set: Real) where u set < l check ∧u set ≥0 ∧
l check ≥0

imports fischer types

signature
output try(i: process)
output crit(i: process)
output exit(i: process)
output rem(i: process)
internal test(i: process)
internal set(i: process)
internal check(i: process)
internal reset(i: process)

states
turn: Null[process] : = nil;
pc: Array[process, PcValue] : = constant(pc rem);
now: Real : = 0;
last set: Array[process, AugmentedReal] : = constant(infty);
first check: Array[process, discrete Real] : = constant(0);

transitions
output try(i)

pre pc[i] =pc rem;
eff pc[i] : = pc test;

internal test(i)
pre pc[i] =pc test;
eff if turn =nil then

pc[i] : = pc set;
last set[i] : = (now + u set);

fi;

internal set(i)
pre pc[i] =pc set;
eff turn : = embed(i);

pc[i] : = pc check;
last set[i] : = ∞;
first check[i] : = now + l check;

Code Sample 2.1: Tempo description of the Fischer Timed Mutual Exclusion
algorithm
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internal check(i)
pre pc[i] =pc check ∧first check[i] ≤now;
eff if turn =embed(i) then

pc[i] : = pc leavetry;
else

pc[i] : = pc test;
fi;
first check[i] : = 0;

output crit(i)
pre pc[i] =pc leavetry;
eff pc[i] : = pc crit;

output exit(i)
pre pc[i] =pc crit;
eff pc[i] : = pc reset;

internal reset(i)
pre pc[i] =pc reset;
eff pc[i] : = pc leaveexit;

turn : = nil;

output rem(i)
pre pc[i] =pc leaveexit;
eff pc[i] : = pc rem;

trajectories
trajdef traj

stop when
∃i: process (now =last set[i])

evolve
d(now) =1;

Code Sample 2.2: Tempo description of the Fischer Timed Mutual Exclusion
algorithm, continued
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3 Two Task Race System

3.1 The Two Task Race Automaton

The Two Task Race System is a simple automaton used primarily to illustrate
the concept of simulation relations and how they can be used to prove properties
of certain algorithms. It this system we have two tasks set, which simply raises
a boolean flag (once), and main which increments a counter while the flag is
not set and then decrements it until it reaches 0 and reports when that is done.
Both tasks come with both lower and upper bounds on their execution times
and we wonder when the final report might happen.

The code for this Automaton can be found in Figure 3.3. Although it is not
apparent in the code, the increment, decrement and report actions are all part of
the main task, and thus refer to the same time bound as a precondition, while
set constitutes the other task.

The parameters are simply the uper and lower time bounds on the different
actions :

• a1 and a2 are respectively the lower and upper bound on the time passing
between two consecutive actions of the main task.

• b1 and b2 are respectively the lower and upper bound on the time at which
the set task will raise the flag.

Proving an upper and a lower bound on the algorithm, that an interval of
time in which the report action will happen, is complicated if using an invariant
based proof. This is why we will use another proof technique here : we will
produce another automaton, called a Specification for which it will be easier to
give upper and lower bounds as well as a mapping which will map any valid
execution of the Two Task Race automaton to an execution of its Specification
which has the same trace (that is, the same external actions occuring at the
same time) thus proving that any execution of the Two Task Race automaton
has the same timing properties as executions of the Specifications automaton.
Such a mapping then defines a Simulation Relation between the two automata.

3.2 Specification and Simulation Relation

The specification automaton we use here is very simple and straightforward. The
code for it can be found in Figure 3.4. The automaton has only one action, report

which occurs once between times c1 and c2. A clever choice of the parameters
c1 and c2 is obviously needed for the existence of an apropriate mapping to be
possible. Intuitively, the longest time for report to occur in TTR is when the
flag is raised as late as possible, as many increases as possible have been made
before that and the decreasing and reporting are done as slowly as possible. This
suggests that c2 =b2+a2∗(b2/a1) + a2. The same type of reasoning suggests that
c1 =b1+a1∗(b1 − a2)/a2.

The tempo code for the forward simulation can be found in Figure 3.5.
It requires six formal parameters, one for every parameter of each automaton
involved and includes a where clause defining conditions on said parameters.
Note that some of those conditions on the parameters are the same as those
imposed by the automata themselves. Then the mapping itself is defined by
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automaton TTR(a1, a2, b1, b2: Real) where
a1 > 0 ∧a2 > 0 ∧b1 ≥0 ∧b2 ≥0 ∧a2 ≥a1 ∧b2 ≥b1

signature
internal increment
internal decrement
output report
internal set

states
count: Int : = 0;
flag: Bool : = false;
reported: Bool : = false;
now: Real : = 0;
first main: discrete Real : = a1;
last main: AugmentedReal : = a2;
first set: discrete Real : = b1;
last set: AugmentedReal : = b2;

transitions

internal increment
pre ¬flag ∧now ≥first main;
eff count : = count + 1;

first main : = now + a1;
last main : = now + a2;

internal set
pre ¬flag ∧now ≥first set;
eff flag : = true;

first set : = 0;
last set : = ∞;

internal decrement
pre flag ∧count > 0 ∧now ≥first main;
eff count : = count − 1;

first main : = now + a1;
last main : = now + a2;

output report
pre flag ∧count =0 ∧¬reported ∧now ≥first main;
eff reported : = true;

first main : = 0;
last main : = ∞;

trajectories
trajdef traj

stop when now =last main ∨now =last set;
evolve

d(now) =1;

Code Sample 3.3: Tempo description of the Two-Task-Race algorithm
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automaton TTRSpec(c1, c2: Real) where c2 ≥0 ∧c2 ≥c1

signature
output report

states
reported: Bool : = false;
now: Real : = 0;
first report: discrete Real : = c1;
last report: AugmentedReal : = c2;

transitions

output report
pre ¬reported ∧now ≥first report;
eff reported : = true;

first report : = 0;
last report : = ∞;

trajectories

trajdef pre report
invariant ¬reported;
stop when now =last report;
evolve d(now) =1;

trajdef post report
invariant reported;
evolve d(now) =1;

Code Sample 3.4: Tempo description of the Two-Task-Race behavior specifica-
tion
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forward simulation F(a1,a2,b1,b2,c1,c2: Real)
from TTR(a1,a2,b1,b2)
to TTRSpec(c1,c2)
where a1 > 0 ∧a2 > 0 ∧b1 ≥0 ∧b2 ≥0 ∧c2 ≥0 ∧a2 ≥a1
∧b2 ≥b1 ∧c2 ≥c1
∧c1 =b1 + (b1 − a2) ∗ a1/a2
∧c2 =b2 + (b2 ∗ a2/a1) + a2

mapping

TTR.reported =TTRSpec.reported
∧TTR.now =TTRSpec.now

∧((¬TTR.flag ∧TTR.first main ≤TTR.last set) ⇒
TTRSpec.last report ≥

(Real)TTR.last set +
(TTR.count + 2 + ((Real)TTR.last set − (Real)TTR.first main) / a1) ∗ a2)

∧((¬TTR.reported ∧(TTR.flag ∨TTR.first main > TTR.last set)) ⇒
TTRSpec.last report ≥(Real)TTR.last main + TTR.count ∗ a2);

∧((¬TTR.flag ∧TTR.last main < TTR.first set) ⇒
TTRSpec.first report ≤

(Real)TTR.first set +
(TTR.count + ((Real)TTR.first set − (Real)(TTR.last main)) / a2) ∗ a1)

∧((TTR.flag ∨TTR.last main ≥TTR.first set) ⇒
TTRSpec.first report ≤

max((Real)TTR.first main, (Real)TTR.first set, TTR.now) + TTR.count ∗ a1)

end

Code Sample 3.5: Forward simulation from Two Task Race algorithm to its
specification
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a predicate which link the variables of the two automata, each variable being
preceded by the name of the automaton it belongs to for disambiguation.

The first two conjuncts of the predicate simply force that we consider iden-
tical traces of the two automata while the remaining four conjuncts express
relationships between values of the earliest-time and deadline variables of the
two automata.

To prove the correctness of the forward relation, one simply has to prove that
it relates initial states of the two automata, and is preserved by every discrete
transition and every trajectory of the lower-level automaton.

I wrote this handproof of the forward relation so that it could serve as a
reference and basis for an automated proof using the PVS theorem prover and
the Tempo2PVS translator as well as the predefined TIAO environment for
PVS. As such it is especially detailed and a somewhat tiresome read. The proof
can be found in Appendix A
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4 Timeout-Based Failure Detector

In this problem, we have two processes, the sender and the receiver (or detector)
and a one-way communication channel between the two. The sender process may
be subject to crashes and our objective is for the detector to find out when the
sender crashed. We want to be able to prove both that the detector has both
accuracy, meaning that it does not signal the sender as failed when it has not in
fact failed, and completeness, meaning that if the sender fails, then the receiver
will actually soon time it out.

4.1 The Sender

vocabulary Message(M: Type)
types

Packet : Tuple[message: M, deadline: Real]
end

automaton PeriodicSend(u: Real, M: Type) where u ≥0
imports Message(M)
signature

output send(m:M)
input fail

states
failed: Bool : = false;
clock: Real : = 0;

transitions

output send(m)
pre ¬failed ∧clock =u;
eff clock : = 0;

input fail
eff failed : = true;

trajectories

trajdef traj
stop when ¬failed ∧clock =u;
evolve d(clock) =1;

Code Sample 4.6: Tempo description of a sending process

The sender process is a simple automaton that can do two things : it can fail

and Send messages. The fail action is an input action since the failure is supposed
to be due to some external factors. The automaton has one parameter u which
is the period at which messages are to be sent: every time it sends a message,
the sender resets its internal clock to 0 and it sends a new message whenever
the clock reaches u again. Note that the clock keeps increasing if the sender
fails thus making the exact time since the last message was sent available in any
configuration.
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4.2 The Timed Channel

vocabulary Message(M: Type)
types

Packet : Tuple[message: M, deadline: Real]
end

automaton TimedChannel(b: Real, M: Type) where b ≥0
imports Message(M)

signature
input send(m:M)
output receive(m:M)

states
queue: Seq[Packet] : = ∅;
now: Real : = 0;

transitions

input send(m)
eff queue : = queue `[m,now+b];

output receive(m)
pre queue 6=∅∧head(queue).message =m;
eff queue : = tail(queue);

trajectories
trajdef traj

stop when ∃p: Packet (p ∈ queue ∧now =p.deadline);
evolve d(now) =1;

Code Sample 4.7: Tempo description of a sending process

The communication channel between sender and receiver is modeled by the
TimedChannel automaton found in Figure 4.7. It consists of a time variable
called now and a queue which is a FIFO queue which holds type Packet objects
which are a message and its deadline. When a message is sent, its deadline is
set to now+b, and a message has to be delivered (by the receive action) before
its deadline is reached. Messages are thus delivered by the channel with a delay
less than b. The channel is supposed to be failure-safe.

4.3 The Detector

On the receiving end of the communication channel is the detector (see Fig-
ure 4.8) which can do two things : receive a message in which case it resets its
internal clock to 0 and timeout if its internal cock is greater than its parameter
u

14



automaton Timeout(u2:Real, M: Type) where u ≥0
imports Message(M)

signature
input receive(m:M)
output timeout

states
suspected: Bool : = false;
clock: Real : = 0;

transitions

input receive(m)
eff clock : = 0;

suspected : = false;

output timeout
pre clock =u ∧¬suspected;
eff suspected : = true;

trajectories
trajdef traj

stop when clock =u ∧¬suspected;
evolve d(clock) =1;

Code Sample 4.8: Tempo description of a receiver process for the timeout system

automaton TimeoutSystem(u1,u2,b: Real, M: Type) where u1 ≥0 ∧u2 ≥0 ∧b ≥
0 ∧u2 > (u1 + b)

components
Sender: PeriodicSend(u1,M);
Detector: Timeout(u2,M);
Channel: TimedChannel(b,M);

Code Sample 4.9: Tempo description of a complete Timeout System
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4.4 The Composed System and invariants

Here is illustrated how different automata can be composed to form a composed
automaton. Note that the send(m) output action for the PeriodicSend component
is the same action for the TimedChannel component but as an input.

Now, to prove both accuracy and completeness, we can prove a set of in-
vrariants. Those invariants can be implemented in Tempo, especially to be
translated to PVS. The Tempo code for the invariants for the Timeout System
can be found in Figure 4.10. A handproof of theses invariants I wrote as a base
and reference for an automated PVS proof can be found in Appendix B

invariant of TimeoutSystem:
Channel.now ≥0;

invariant of TimeoutSystem:
∀i: Nat ∀j: Nat (
(1 ≤i ∧i < j ∧j ≤len(Channel.queue)) ⇒
Channel.queue[i].deadline ≤Channel.queue[j].deadline);

invariant of TimeoutSystem:
∀p: Packet (
p ∈ Channel.queue ⇒

(Channel.now ≤p.deadline ∧p.deadline ≤(Channel.now + b)));

invariant of TimeoutSystem:
¬Sender.failed ⇒(Sender.clock ≤u1);

invariant of TimeoutSystem:
¬Detector.suspected ⇒(Detector.clock ≤u2);

invariant of TimeoutSystem:
¬Sender.failed ⇒

((Channel.queue 6=∅⇒(head(Channel.queue).deadline <
Channel.now + u2 − Detector.clock))

∧
(Channel.queue =∅⇒Channel.now + u1 − Sender.clock + b <

Channel.now + u2 − Detector.clock));

invariant of TimeoutSystem:
Detector.suspected ⇒Sender.failed;

invariant of TimeoutSystem:
Sender.clock ≤Detector.clock+b

invariant of TimeoutSystem
Sender.clock > u2 + b ⇒Detector.suspect

Code Sample 4.10: Tempo description of the invariants of the Timeout System

16



5 Leader Election Algorithm

The Leader Election Algorithm is a distributed algorithm in which a collection of
processes coordinates in order to distinguish one of them as a “leader” and avoid
that two different processes ever claim being the “leader”. As a complication, the
different processes can fail and recover. A failure detection system is included
but as a separate automaton, like a black box, that keeps track of all live
processes at any given time and periodically informs other processes. Such
a system could be designed thanks to a Timeout based failure detector such as
found in section ?? but we have left that out for the moment and use the code
found in Figure 5.11 to model the failure detecting system.

automaton FailureDetector(delta: Real) where delta > 0
imports Process

signature
input fail(j: J), recover(j: J)
output status(L: Set[J], j: J)

states
live: Set[J] : = {j:J where true};
clock: Real : = 0;
next status: Array[J,Real] : = constant(0);

transitions

input fail(j)
eff live : = live − {j};

input recover(j)
eff live : = live ∪{j};

output status(L, j)
pre L =live;
eff next status[j] : = clock + delta;

trajectories
trajdef normal

stop when ∃j:J (next status[j] =clock);
evolve d(clock) =1;

Code Sample 5.11: Tempo description of the failure-detection service

Whenever a process fails through the fail(j) action, which is an input action
for both the failure detecting system and the actual process, the FailureDetector

removes it from its list of living process and whenever a process recovers, it is
added back to that list. For every process, at least every period of time delta the
system sends an update to said process with the list of currently living processes.
Note that these updates are asyncronous between the different processes, but
that all share the same upper bound on the period of those updates.
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5.1 The Leader Election process

The actual processes are modeled through the Tempo code found in Figure 5.12.
Each process keeps a list of processes it believes to be alive. To elect itself as
leader, it must be the process with minimal index in that list. But that simple
condition is not enough : indeed initially and after every recovery the process
has no knowledge of the other processes and only knows itself as alive. To
avoid newly recovered processes wrongly declaring themselves “leader” all the
time, processes have to wait at least a period of time d after a recovery to elect
themselves. Choosing d high enough to make sure that processes have heard
of each-other when they elect themselves. In fact having d be greater than the
delta parameter of the failure-detection system is enough to guarantee that no
two processes ever claim to be the leader at the same time.

If a process is the leader, it broadcasts a message identifying itself through
the output leader(j) action which it will then repeat periodically as long as it is
the leader. Note that all actions for a process are parametrized by the index
of the process itself (which is marked by the const j in the action declaration,
signifying that not any process index may parametrize an action but only this
very one).

Whenever a process receives an update on which processes are alive, it un-
elects itself if it was leader and goes through the whole process again.

5.2 The Complete Leader-Election System

Figure 5.13 presents us with the code for the entire system. Note that the
formal parameter d of the Elect processes is the same as the delta parameter
of the Failue detector which means that a process will have to wait at least
until it received an update on who is alive after a recovery before electing itself.
Another interesting point is the hidden Status(L,j) actions. Indeed those actions
are external actions for the components of the composed system, but are hidden

which means they become internal actions of the global system.
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vocabulary Processes
types J
operators min: Set[J] →J

end

automaton Elect(j:J, d, e, u: Real) where d > 0 ∧e > 0 ∧u > 0
imports Processes

signature
input status(L: Set[J], const j), fail(const j), recover(const j)
internal elect(const j)
output leader(const j)

states
live:Set[J] : = {j};
elected: Bool : = false;
clock: Real : = 0;
last rectime: Real : = 0;
next announce: AugmentedReal : = ∞;

transitions
input status(L,j)

eff if j ∈ live then
live : = L;
if (j 6=min(live)) then

elected : = false;
fi;

fi;

input fail(j)
eff live : = ∅;

elected : = false;
last rectime : = 0;
next announce : = ∞;

input recover(j)
eff live : = {j};

last rectime : = clock;

internal elect(j)
pre j ∈ live ∧j =min(live) ∧clock > last rectime + d ∧¬elected;
eff elected : = true;

next announce : = clock;

output leader(j)
pre elected =true;
eff next announce : = clock + u;

trajectories
trajdef normal

stop when j ∈ live ∧
((j =min(live) ∧clock ≥last rectime + d + e ∧¬elected) ∨
clock =next announce);

evolve d(clock) =1;

Code Sample 5.12: Tempo description of a leader-election process19



automaton LeaderSystem(delta,e,u: Real) where delta > 0 ∧e > 0 ∧u > 0
components

E[j:J]: Elect(j, delta, e, u);
FD: FailureDetector(delta);

hidden
status(L,j);

Code Sample 5.13: Tempo description of the leader-election system
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6 A Dynamic Bellman-Ford Routing Algorithm.

The next example is a dynamic version of the distributed Bellman-Ford routing
algorithm. The tradionnal distributed Bellmand-Ford algorithm is a routing
algorithm computing a minimum-weight path from a source to other vertices
in a weighted directed graph. Here, we add failure and restart mecanisms to
the processes involved and try to evaluate how long it takes the automaton to
correct its behavior to process failures and restarts.

6.1 Informal presentation

The principle of the algorithm is as follows.

• Unless it has failed, the source s sends periodic messages holding a distance
of 0 with a period u starting immediatly. That is, unless it fails, the source
will send messages at times 0, u, 2u,...

• If it has failed and not been restarted, the source does not do anything.

• When it is restarted the source immediately sends a message to its neigh-
bours and resumes its periodical sending every u from that time on.

• a message sent from a node i to a node j is delivered with delay no greater
than b. That is, if i sends a message at time t, j will have received the
message by time t + b.

• A non-source node keeps track of a parent information and a distance
information both of which can be empty and are so initially.

• A (non-source) node that has non-empty distance and parent information
periodically sends out its distance information to its outgoing neighbours
with period u.

• When a (non-source) node i receives a message containing a distance c
from another node j, it compares its own distance information with c+wi,j

(which is the total weight of a path from the source through j).

– If the new weight is stricly less than the old weight, it updates its
parent and distance information to the new path (that is the parent
becomes j and the distance c + wi,j) and immediately sends out its
new weight information to its outgoing neighbours. Any distance is
considered better than empty distance information.

– If the new weight is not better than the old one, it discards it.

• A non-source node with non-empty parent (and distance) information ex-
pects to hear from its parent at least every u+b. If it does not, it will time
its parent out and discard its distant and parent information. If a node
last heard from its parent at time t, it will time its parent out between
times u + b and u + b + e if it doesn’t hear from it by then.

• A failing non-source node loses all distance and parent information and
any message received by such a node is lost : it is neither processed nor
stored. Thus if it restarts, its parent and distance information will be
empty as initially.
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This algorithm is formalized into a proper Tempo automaton using the non-
predefined data types presented in Figure 6.14. Index is used to represent the
Vertices in the automaton. In addition to self-explanatory type definitions, we
need a few user-defined operators : createedge which converts a pair of indices to
the appropriate edge ; root which maps a weighted-graph to one of its vertices
(which shall be the source, or root, for the automaton) ; innbrs and outnbs

mapping a vertice to the set its incoming or outcoming neighbours.

vocabulary Nodes
types Index,

Edge : Tuple[source: Index, target: Index],
Graph : Set[Edge],
WeightedGraph: Tuple[G: Graph, weight: Map[Edge, Nat]],
Message : Tuple[weight : Nat, destination: Index]

operators
createedge: Index, Index →Edge,
root: Graph →Index,
innbrs, outnbrs: Graph, Index →Set[Index]

end

Code Sample 6.14: Vocabulary for dynamic Bellman-Ford

6.2 The Automaton

The automaton uses combines automata of three different types to model the
root process, the other processes and the communication channels (the edges of
the the graph). The composed automaton appears in Figure 6.15.

automaton BFSystem(W: WeightedGraph, u, b, e: Real)
where u > 0 ∧b ≥0 ∧e > 0
components

BRoot: BellmanFordRoot(W, u, root(W.G));
BNR[j: Index]: BellmanFordNonRoot(W, u, b, e, j) where j 6=root(W.G);
TC[i,j: Index]: TimedChannel2(b,i,j,Nat) where createedge(i,j) ∈ W.G;

vocabulary TimedChannel2Types(M: Type)
types

Index,
Packet : Tuple[message: M, deadline: Real]

end

Code Sample 6.15: The Bellman-Ford system

The TimedChannel2 automaton , found in figure 6.16 along with its specific
vocabulary, is simmilar to the TimedChannel from example 3 with the simple
addition of the indexes of the sender and receiver (i and j).

Figure 6.17 contains the automaton for the root process. The parameter
u represents the interval between successive times when the automaton sends
information to all of its neighbors.
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vocabulary TimedChannel2Types(M: Type)
types

Index,
Packet : Tuple[message: M, deadline: Real]

end

automaton TimedChannel2(b: Real, i,j: Index, M: Type) where b ≥0
imports TimedChannel2Types(M)

signature
input send(m:M, i,j: Index)
output receive(m:M, i,j: Index)

states
queue: Seq[Packet] : = ∅;
now: Real : = 0;

transitions
input send(m,i,j)

eff queue : = queue `[m,now+b];
output receive(m,i,j)

pre queue 6=∅∧head(queue).message =m;
eff queue : = tail(queue);

trajectories
trajdef traj

stop when ∃p: Packet (p ∈ queue ∧now =p.deadline);
evolve d(now) =1;

Code Sample 6.16: Communication channels for dynamic Bellman-Ford
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automaton BellmanFordRoot(W: WeightedGraph, u: Real, i: Index) where u > 0 ∧
i =root(W.G)
imports Nodes

signature
input fail, restart
output send(m: Nat, const i, j: Index) where m =0 ∧j ∈ outnbrs(W.G,i)
input receive(m: Nat, j: Index, const i) where j ∈ innbrs(W.G,i)
internal sendupdate

states
failed: Bool : = false;
sendbuffer: Set[Message] : = ∅;
clock: Real : = 0;
next send: AugmentedReal : = 0;

transitions

internal sendupdate
pre clock =next send;
eff sendbuffer : = sendbuffer ∪{m:Message where m.weight =0 ∧

m.destination ∈ outnbrs(W.G,i)};
next send : = clock + u;

output send(m, i, j)
pre [m,j] ∈ sendbuffer;
eff sendbuffer : = sendbuffer − {[m,j]};

input receive(m, i, j)
eff

input fail
eff failed : = true;

sendbuffer : = ∅;
next send : = ∞;

input restart
eff failed : = false;

next send : = clock;

trajectories

trajdef traj
stop when

clock =next send ∨sendbuffer 6=∅;
evolve

d(clock) =1;

Code Sample 6.17: Root process for dynamic Bellman-Ford
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The sendbuffer state variable models a messages buffer which will be emptied
by send actions whenever it is not empty. clock mesures the time passed since the
execution began while nextsend is the deadline at which a new set of messages
has to be filed into the buffer by the sendupdate action. Incoming messages are
possible, but they will be ignored. Hence the effectless receive action.

Finally, the failed variable indicates the status of the automaton and is af-
fected by the fail and restart actions. Note that a failed root (this will also be
true for other automatons) still keeps track of passing time and that an update
is send right away after a restart action.

Trajectory stopping condtions induce that when sendbuffer contains any mes-
sages those are send immediately and that time cannot pass beyond a scheduled
update-sending.

The other processes are all modelled by NonRoot automata found in Fig-
ures 6.18 and 6.19. These automata work the same way as the root automaton,
but have some additional actions and state variables.

The parent and dist variable store the node’s current path information and
timeout deadline stores the time by which the node should hear from its parent.

The receive action actually processes incoming messages, updating parent,
dist and timeout deadline if appropriate. Note that if dist is improved, an update
is immediately filed into sendbuffer to be sent to outgoing neighbors.

Thanks to the trajectories’ stopping condition and the action’s precondtion,
a timeout occurs between timeout deadline and timeout deadline+e. That means
that the parent has not sent updates it was supposed to and all information
about the supposed path is no longer accurate and thus discarded. No more
updates are to be sent unless new information is received.

The fail action not only raises the flag but also loses all stored path infor-
mations and cancels all scheduled updates and timeouts.

6.3 Proving self-stabilization for the Bellman-Ford algo-
rithm

This formal model of the Bellman-Ford algorithm allows us to prove in a fairly
clear way a self-stability property. We will now prove in Theorem 1 that if at
some point we can guarantee that no failures or recovery will happen for any
process then after a certain time all nodes that are still connected to the source
will have a correct minimal-weight path from the source to the node.

Let us consider an execution α with l(α) = ∞ and a finite prefix α′ of α
such that no fail or restart actions occur in α after α′ is complete. Let us define
t0 = l(α′). In the following, we will only consider configurations that occur in
the suffixe of α after α′ is done.

Let V ′ = {i ∈ V, i.fail = false in αafter α′ is done} and G′ be the
restriction of graph G to V ′. Let V ′′ be the connex component of G′ containing
s and N = |V ′′|.

Let us define for all i ∈ V ′, d(i) the weight of a minimal-weight path if it
exists and d(i) = ∞ else. V ′′ = {i ∈ V ′, d(i) ∈ N}.

Our objective is to prove that in α all nodes for which d(i) is finite will,
within a given time after the α′, have the correct

Definition 1. Unrealistic Information
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automaton BellmanFordNonRoot(W: WeightedGraph, u:Real, b:Real, e: Real, i: Index)
where u > 0 ∧b ≥0 ∧e > 0 ∧i 6=root(W.G)

imports Nodes

signature
input fail, restart
output send(m: Nat, const i, j: Index) where j ∈ outnbrs(W.G,i)
input receive(m: Nat, j: Index, const i) where j ∈ innbrs(W.G,i)
internal sendupdate, timeout

states
failed: Bool : = false;
sendbuffer: Set[Message] : = ∅;
dist: Null[Nat] : = nil;
parent: Null[Index] : = nil;
clock: Real : = 0;
next send: AugmentedReal : = ∞;
timeout deadline: AugmentedReal : = ∞;

transitions

input receive(m, j, i)
locals

w:Nat : = W.weight[createedge(j,i)];
eff

if ¬failed then
if dist =nil ∨(dist 6=nil ∧(m + w < (Nat)dist)) then

dist : = embed(m + w);
parent : = embed(j);
timeout deadline : = clock + u + b;
sendbuffer : = sendbuffer ∪{m:Message where m.weight = (Nat)dist ∧

m.destination ∈ outnbrs(W.G,i)};
next send : = clock + u;

else
if (parent =embed(j) ∧dist =embed(m+w)) then

timeout deadline : = clock + u + b;
fi;

fi;
fi;

internal timeout
pre timeout deadline 6=∞∧clock > timeout deadline;
eff dist : = nil;

parent : = nil;
next send : = ∞;
timeout deadline : = ∞;

Code Sample 6.18: Non-root process for dynamic Bellman-Ford
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internal sendupdate
pre clock =next send ∧dist 6=nil;
eff sendbuffer : = sendbuffer ∪{m:Message where m.weight =(Nat)dist ∧

m.destination ∈ outnbrs(W.G,i)};
next send : = clock + u;

output send(m, i, j)
pre [m,j] ∈ sendbuffer;
eff sendbuffer : = sendbuffer − {[m,j]};

input fail
eff failed : = true;

sendbuffer : = ∅;
dist : = nil;
parent : = nil;
next send : = ∞;
timeout deadline : = ∞;

input restart
eff failed : = false;

trajectories

trajdef traj
stop when

clock =next send ∨clock =timeout deadline + e ∨sendbuffer 6=∅;
evolve

d(clock) =1;

Code Sample 6.19: Non-root process for dynamic Bellman-Ford, continued
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A node i ∈ V ′ is said to have unrealistic distance d if and only if

d 6= nil ∧ (BF [i].dist = d) ∧ (d < d(i)).

A message containing distance information d sent from node i to node j is said
to be an unrealistic message if and only if j ∈ V ′ ∧ (d + wi,j < d(j)).

An unrealistic information is either an unrealistic message (with the weight
of the edge added) or an unrealistic distance.

Lemma 1. In the suffix of α, once α′ is done, if an unrealistic message with con-
tend d is received by node j from node i then either i ∈ V \V ′ or i ∈ V ′ ∧ d < d(i).

Proof. Let us suppose that i is still alive and that d ≥ d(i). This means that
there exists a path from the source s to i with total weight w less or equal
to d. Such a path naturally gives us a path from the source to j with cost
w + wi,j ≤ d + wi,j and thus d(j) ≤ wi,j .

By contraposition, if d is an unrealistic message, then either i has failed (and
thus i ∈ V \ V ′) or d < d(i).

This means that after α is complete, any unrealistic message has either been
sent by a now failed node or by a node which had an unrealistic distance.

If C is a configuration of the automaton occuring in α after α′ is complete,
we shall use the following notations, where all state variables are considered as
their value in C :

m(C) = min({n ∈ N,∃i ∈ V ′, ((BF [i].dist = n) ∧ (n < c(i)))}∪
{n ∈ N,∃(i, j) ∈ E, (j ∈ V ′ ∧ (n− wi,j) ∈ TC[i, j].queue)})

I(C) = {i ∈ E′, ((BF [i].dist = m(C)) ∧ (BF [i].dist < c.(i)))}
P (C) = {(d, i, j) ∈ N× V × V ′,

((i, j) ∈ E) ∧ (d + wi,j = m(C)) ∧ (d ∈ TC[i, j].queue)}

m is the minimal unrealistic information in the configuration, I is the set
of nodes having unrealistic distance m and P is the set of messages carrying
unrealistic information m.

Lemma 2. For any configurations C and C ′ reached in α after time t0, such
that C ′ is reached in α after C we have m(C ′) ≥ m(C).

That is to say, the minimal unrealistic information cannot decrease after α′

is complete.

Proof. Such a decrease could only happen if unrealistic information is added to
the system.

Transitions do not affect unrealistic informations.
Fail and Restart actions cannot occur since we are after α′.
Sendbuffer actions do not affect the unrealistic information in the system.
A timeout sets the dist variable of a node to nil which is always a realistic

information so that can only increase the minimal unrealistic information.
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Sending a realistic message has no effect on the unrealistic information in
the system and if an unrealistic message is sent, it is sent by a node with
unrealistic information which is already accounted for in the minimal unrealistic
information.

Receiving a realistic message cannot add unrealistic information to the sys-
tem. If a node j receives an unrealistic message with content d from node i that
is better that its current information, then it sets its distance information to
d + wi,j ≥ m(C) (where C is the configuration where the action is taken) since
the message was accounted for in the computation of m(C).

Thus, m can only increase in α after α′.

Let us define for all k ∈ N, Ck as the configuration reached by the automaton
in α at time tk = t0 + k(2b + u + e) after all actions occuring at that time are
executed.

Lemma 3. ∀k ∈ N,m(Ck) ≥ m(C0) + k.

Proof. This is proven by induction on k.

• It is trivial for k = 0 that m(Ck) ≥ m(C0) + k.

• Let us assume that k ≥ 0 and m(Ck) ≥ m(C0) + k.

Let C be the configuration reached once the last message in P (Ck) has
been received (which happens between times tk and tk + b). Now thanks
to lemma 2 and the induction hypothesis, we are sure that m(C) ≥
m(C0) + k. Furthermore, we can assure that any unrealistic message
d ∈ TC[i, j].queue in transit in C between two nodes i and j is such
that d + wi,j > m(C0) + k. Indeed, either one such unrealistic message
has been sent after Ck was reached in which case d ≥ m(Ck) and wi,j ≥ 1
or it was already in TC[i, j].queue in Ck and since it was not in P (Ck),
d + wi,j > m(C0) + k.

Necessarily, in any configuration C ′ reached after C in α, for all nodes
i ∈ V ′ having unrealistic distance information, BF [i].dist ≥ m(C). This
means that, because any unrealistic message sent after C has to be sent
by a node having unrealistic information (since there are no more faili-
ures), any unrealistic message received after C with content d is such that
d ≥ m(C0) + k.

Now let us consider the configuration Ck+1. Let j be a node with unre-
alistic distance BF [j].dist < d(j). Necessarily, it has received a message
from i = BF [j].parent after time tk + b (or it would have timed out by
time tk+1 = tk + b + (b + u + e)) and such a message is by definition an
unrealistic message which has been sent after Ck. Let d be the content of
said message. Necessarily, d ≥ m(Ck) and thus, BF [j] ≥ m(Ck) + 1.

We are now sure that in Ck+1, any unrealistic message d ∈ TC[i, j].queue
is such that d + wi,j ≥ m(Ck) + 1 because it was sent after Ck and any
node i ∈ V ′ with unrealistic distance is such that BF [i].dist ≥ m(Ck) + 1
so, according to the induction hypothesis, m(Ck+1) ≥ m(C0) + k + 1.
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Finally, by induction, we have proven that ∀k ∈ N,m(Ck) ≥ m(C0) + k.

Let M = max{n ∈ N,∃i ∈ V ′, d(i) = n} be the maximal finite minimal
distance of a node from the source in the restricted graph. Thanks to lemma 3,
we can be sure that when CM is reached (and any configuration thereafter
reached in α), the only nodes with unrealistic distances are those that are cut
off from the source.

Definition 2. If C is a configuration of the automaton let HeadC be the func-
tion defined on V as follows :

HeadC(i) =


s when i = s
i when BF [i].parent = nil
i when BF [i].dist 6= d(i)
i when (BF [i].parent = j) ∧ (BF [j].dist + wj,i 6= BF [i])
HeadC(BF [i].parent) else

We also define S(C) = Head−1
C ({s}) and C ′

k, k ∈ N as the configuration
reached at time t′k = t0 + M(2b + u + e) + k(3b + 2u + e) after all actions
occuring at that time have been taken.

Lemma 4. Let C be a configuration reached after CM in α.

∀i ∈ V ′, (HeadC(i) = s) ⇒
(∃n ∈ N,∃(ik)0≤k≤n, (i0 = i) ∧ (in = s)∧

(∀k ∈ {0, ..., n− 1}, (BF [ik].parent = ik + 1)∧
(HeadC(ik) = s) ∧ (BF [ik].dist = d(ik))))

Proof. Let C be such a configuration and i a non-source node in V ′ such that
HeadC(i) = s. Unfolding the pile of recursive calls in the computation of
HeadC(i) trivially creates such a finite set (ik)0≤k≤n such that BF [ik].parent = ik + 1
and i0 = i and in = s and furthermore, for all k < n, HeadC(ik) = s and thus
BF [ik].dist = d(i).

This means that in the Parent Graph, that is the subgraph of G where there
is an edgre from i to j if and only if BF [j].parent = i, S(C) is a tree rooted
on s where all nodes have their best possible estimate on the distance to the
source. Furthermore, S(C) is included in V ′′.

Lemma 5. If C is a configuration of the automaton reached in α after CM then
for all configuration C ′ reached in α after C, S(C) ⊆ S(C ′).

Proof. Thanks to Lemma 3, we know that for any configuration C reached after
CM , m(C) ≥ M + 1. This means that no node i ∈ V ′ that is connected to s
in G′ can ever receive any unrealistic distance information which implies that
as long as a node i has distance information equal to d(i), the only change that
may happen is a timeout (since receiving a “better” message would be receiving
unrealistic information).

Now, let C be a configuraion reached after CM in α and C ′ a configuration
reached after C. Let i be a node in S(C). According to lemma 4, there exists
n ∈ N and a chain (ik)0≤k≤n of nodes such that for all k ∈ {0...n}, ik ∈ S(C).
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in being the source will keep sending out update to the other nodes every b so
at least in−1 will not timeout (since it will always receive the message from the
source). Thus in−1 will also keep sending updates to its outgoing neighbours,
among which is in−2. And from neighbour to neighbour, no node in (ik)0≤k≤n

will time out.
This means that all those nodes will keep the exact same distance informa-

tion in every state C ′ reached after C and thus i will be in S(C ′) for any such
state C ′.

Lemma 6. ∀k ∈ N, (S(C ′
k) 6= V ′′) ⇒ (S(C ′

k+1) \ S(C ′
k) 6= ∅).

Proof. Let k ∈ N be such that S(C ′
k) is strictly smaller than V ′′. We already

know that S(C ′
k) ⊆ S(C ′

k + 1) thanks to Lemma 5.
Let j0 be a node in V ′′ \S(C ′

k) such that d(j0) = min{d(j), j ∈ V ′′ \S(C ′
k).

for any node i ∈ V ′ such that there is a minimal-weight path from the source
to j0 in which i is the parent of j0. Then d(j0) = d(i)− wi,j0 and by definition
of j0, necessarily, i ∈ S(Ck).

Let us prove that j0 ∈ S(C ′
k+1. There are two cases to consider :

1. if BF [j0].dist > d(j0). Then by time tk + u + b, j0 will have received
a message with global cost d(j0) from a node i (and no smaller-cost
messages since those would be unrealistic). Let i0 be the sender of the
first such message sent. Then d(i0) = d(j0) − wi0,j0 , i0 ∈ S(Ck) and
d(i0) + wi0,j0 < BF [j0].dist when j0 receives the message, thus, by tk + u + b,
BF [j0].dist = d(i0) + wi0,j0 = d(j0) and BF [j0].parent = i0 and thus j0 ∈
S(C) and consequently, j0 ∈ S(C ′

k+1).

2. if BF [j0].dist = d(j0) then necessarily, BF [j0].parent 6= i0 (or else, we
would have i0 ∈ S(C ′

k)). Let i = BF [j0].parent. BF [i].dist+wi,j0 ≥ d(j0)
or i would necessarily have some unrealistic distance that is less than M
(which would be impossible according to lemma 3, since we are past CM ).
Now BF [i].dist+wi,j0 6= d(j0) or we would have HeadCk

(j0) = HeadCk
(i),

thus i 6∈ S(Ck) and BF [i].dist < BF [j0].dist which contradicts the defi-
nition of i0. So necessarily, i0 cannot have its information refreshed after
tk + b and it cannot receive better (thus unrealistic) information, so it is
bound to time i out before time tk + u + 2b + e. Then as above, by time
tk + u + 2b + e + u + b it will have received a message with global cost
d(j0) guaranteeing that j0 ∈ S(C ′

k+1).

Theorem 1. In any configuration C reached in α after time
t0 + M(2b + u + e) + N(3b + 2u + e) we have :

∀i ∈ V ′′, (i 6= s) ⇒ (BF [i].dist = d(i) ∧HeadC(i) = s)

Proof. According to lemma 6, for k ∈ N as long as S(C ′
k) is smaller than V ′′,

S(C ′
k+1) is strictly larger. V ′′ being finite, there exists k0 ∈ N such that

S(C ′
k0

) = V ′′ and k0 ≤ N . Thus in any configuration C reached in α after
C ′

N , we have S(C) = V ′′ which proves our theorem.
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7 One-Shot Vehicle Controller

The final automaton is used to illustrate the modelling of hybrid (i.e. both
discrete and contiunous) automata like robots of vehicles. This example models
a Train-Controler system. The system (Figure 7.20) has six parameters : the
train’s initial speed v0, a target position xt, a minimal and maximal speed desired
when the train reaches its target position vtmin and vtmax and finaly a minimal
and maximal braking acceleration for the train.

automaton OneshotSys(v0, xt, vtmin, vtmax, amin, amax: Real)
where v0 > 0 ∧amin ≤amax ∧amax < 0 ∧0 ≤xt ∧

0 ≤vtmin ∧vtmin ≤vtmax ∧vtmax ≤v0 ∧
xt ≥(vtmax ∗ vtmax − v0 ∗ v0) / (2 ∗ amax)

components
Train: Train(v0, amin, amax);
Controller: Oneshot(1/v0 ∗ (xt − (vtmax ∗ vtmax − v0 ∗ v0) / (2 ∗ amax)),

(vtmax − v0)/amax,
(vtmin − v0)/amin);

Code Sample 7.20: The controlled system

The Train (Figure 7.21 is a very simple vehicle which moves in a straight
line. It has two possible moving modes which are “normal” and “braking”. In
normal mode, the train’s acceleration is 0. When it switches into braking mode,
through the brakeOn input action, it randomly chooses an acceleration value
within an interval given as a parameter. This interval is an interval of negative
numbers to insure that the train does actually brake.

The interesting behavior of the Train automaton comes from its trajectories
: In previous automata, the only evolution happening in trajectories was for
time or clock variables that evolved at a constant rate. Here, we have three
parameters evolving : velocity v, position x and time now. The evolution of
now is as usual and v also has a fixed, though parametrized, evolution. But for
position, the evolution of x is linked to the velocity v.

The Oneshot controler automaton (Figure 7.22 is a more classical discrete
Timed automaton which will give the Train brakeOn and brakeOff orders once
each. There are three possible phases : idle, braking or done.

The controller is idle until it gives the brakeOn order at which point it switches
to the braking phase. One in braking, the controller can give the brakeOff order
which will switch it to done where it does not do anything anymore. The three
parameters A,B and C respectively determin a deadline for the brakeOn action,
a lower and an upper bound on the time between brakeOn and brakeOff.

Looking back at Figure 7.20, we see the instatiations of those three parame-
ters A, B and C which are calculated specifically to ensure that the train’s speed
is within the desired interval when the train reaches its desired position which
can be written as the following invariant :

x = xt ⇒ vtmin ≤ v ∧ v ≤ vtmax
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automaton Train(v0, amin, amax: Real) where v0 > 0 ∧amin ≤amax ∧amax < 0

signature
input brakeOn, brakeOff

states
x: Real : = 0;
v: Real : = v0;
a: Real : = 0;
b: Bool : = false;
now: Real : = 0;

transitions
input brakeOn

eff b : = true;
a : = choose k where amin ≤k ∧k ≤amax;

input brakeOff
eff b : = false;

a : = 0;

trajectories
trajdef On

invariant
b ∧amin ≤a ∧a ≤amax;

evolve d(v) =a;
d(x) =v;
d(now) =1;

trajdef Off
invariant ¬b ∧a =0;
evolve d(v) =a;

d(x) =v;
d(now) =1;

Code Sample 7.21: The train
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vocabulary Oneshot types
types Phase: Enumeration [idle, braking, done]

end

automaton Oneshot(A, B, C: Real)
imports Oneshot types

signature
output brakeOn, brakeOff

states
phase: Phase : = idle;
now: Real : = 0;
last on: Real : = A;
first off: discrete Real : = 0;
last off: AugmentedReal : = ∞;

transitions
output brakeOn

pre phase =idle;
eff phase : = braking;

first off : = now + B;
last off : = now + C;

output brakeOff
pre phase =braking ∧first off ≤now;
eff phase : = done;

trajectories
trajdef idle

invariant phase =idle;
stop when now =last on;
evolve d(now) =1;

trajdef braking
invariant phase =braking;
stop when now =last off;
evolve d(now) =1;

trajdef done
invariant phase =done;
evolve d(now) =1;

Code Sample 7.22: The controller
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A Proving the Forward Relation for the Two
Task Race Automaton

We want to prove that the following predicate defines a forward simulation
relation between TTR and TTRSpec.

TTR.reported = TTRSpec.reported ∧ TTR.now = TTRSpec.now

∧
((∼ TTR.flag ∧ TTR.first main ≤ TTR.last set) ⇒
TTRSpec.last report ≥
TTR.last set + (TTR.count + 2 + (TTR.last set− TTR.first mains)/a1) ∗ a2)

(A.1)

∧
((∼ TTR.reported ∧ (TTR.flag ∪ TTR.first main > TTR.last set)) ⇒
TTRSpec.last report ≥ TTR.last main + TTR.count ∗ a2

(A.2)

∧
((∼ TTR.flag ∧ TTR.last main < TTR.fist set) ⇒
TTRSpec.first report ≤ TTR.first set+
(TTR.Count + (TTR.first set− TTR.last main)/a2) ∗ a1)

(A.3)

∧
((TTR.flag ∪ TTR.last main ≥ TTR.first set ⇒
(TTRSpec.first report ≤ max(TTR.first main, TTR.first set, TTR.now)
+ TTR.count ∗ a1)

(A.4)

In the proof, if x is a state variable and α is an execution fragment consisting
of a discrete action surrounded by twopoint trajectories, then x+ will be used
for the value of x after α is over, while x refers to the first value of x in α. If
an action leaves x unchanged, x may be used instead of x+.

Initialization
Initially, TTR.reported = TTRSpec.reported = false and

TTR.now = TTRSpec.now = 0. Furthermore, TTR.flag = false.
For (1) and (2), there are two cases to consider :

• Case 1: if a1 ≤ b2. then initially, TTR.first main ≤ TTR.last set and
thus (2) is trivially true.
Furthermore, we then have TTRSpec.last report = b2+b2∗ a2

a1 +a2 which
is exactly the value of the right hand side of the inequality in (1) and thus
(1) is true.

• Case 2: if a1 > b2 then initially, TTR.first main > TTR.last set and
thus (1) is trivially true.
Furthermore, we have TTR.last main = a2 < a2 + b2 ∗ a2

a1 + b2 and (2) is
true.
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For (3) and (4) there are also two cases to consider :

• Case 1: if a2 < b1, then initially TTR.last main < TTR.first set and
(4) is trivially true.

Furthermore, we then have TTRSpec.first report = b1+(b1−a2)/a2∗a1
which is exactly the value of the right side of the inequality in (3). And
(3) is true.

• Case 2: a2 > b1, then (3) is trivially true and TTR.now = 0, TTR.count =
0. Thus the value of the right side of the inequality in (4) is max(a1, b1).
But TTRSpec.first report = b1+(b1−a2)/a2∗a1 < b1 since b1−a2 < 0.
Thus (4) is true.

Induction

• increment As a precondition to increment, TTR.flag = false and TTR.first main ≤
TTR.now.

TTR.reported, TTRSpec.reported, TTRSpeclast report, TTR.last set,
TTRSpec.first report, TTR.now and TTR.first set are left unchanged.

For (1) and (2), there are two cases to be considered :

– Case 1 : When TTR.now + a1 ≤ TTR.last set, (2) is trivially true
since TTR.first main+ ≤ TTR.last set and TTR.flag = false as
a precondition.

Let us prove that (1) is also true.
By induction, we have necessarily

TTRSpec.last report ≥
TTR.last set+(TTR.count+2+(TTR.last set−TTR.first main)/a1)∗a2

TTR.count+ = TTR.count+1 and TTR.first main+ = TTR.now + a1,
so that TTR.first main+ ≥ TTR.first main− a1.

TTR.last set−TTR.last main+ ≤ TTR.last set−TTR.first main−a1

Thus

count+
last set+ − first main+

a1
≤ count +

last set− first main

a1

And since last set is unchanged,

TTRSpec.last report+ ≥
TTR.last set++(TTR.count++2+(TTR.last set+−TTR.first main+)/a1)∗a2.

Thus (1) is true.
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– Case 2 : When TTR.last set < TTR.now + a1
Since TTR.fist main+ = TTR.now + a1 > TTR.last set+, (1) is
trivially true after increment.
Let us prove that (2) is true too.
We know that TTR.now ≤ TTR.last set for it is an invariant of the
automaton and since TTR.first main ≤ TTR.now (which implies
that TTR.frist main < TTR.last set), by induction hypothesis (us-
ing (1)) we have

TTRSpec.last report ≥
TTR.last set+(TTR.count+2+(TTR.last set−TTR.first main)/a1)∗a2.

but TTR.last set− TTR.first main > 0, thus

TTR.last set + a2 + (TTR.last set− TTR.first main)/a1 ∗ a2 > TTR.last set + a2
> TTR.now + a2

> TTR.last main+

and count+ ∗ a2 = count ∗ a2 + a2
Thus TTRSpec.last report ≥ TTR.last main+ + TTR.count+ ∗ a2
and (2) is true.

For (3) and (4) : as an invariant of the system, TTR.last main ≤ TTR.now+
a2, thus, TTR.last main ≤ TTR.last main+

So there are are three cases to be considered here, depending on how
first set compares to those two :

– Case 1: When TTR.last main+ ≤ TTR.first set.
(4) is trivially true.
Since TTR.last main+ = TTR.now+a2 and TTR.last main ≤ now + a2,
necessarily, TTR.last main < TTR.first set.
The induction hypotheses, thus guaranties from (3) that

TTRSpec.first report ≤
TTR.first set+(TTR.Count+(TTR.first set−TTR.last main)/a2)∗a1).

Now, TTR.Count+ = TTR.Count + 1 and
(TTR.first set+ − TTR.last main+)/a2 = (TTR.first set+ − now)/a2− 1.

Since TTR.now < TTR.last main, we have TTR.first set+−TTR.now >
TTR.first set− TTR.last main.
Thus,
TTR.first set++(TTR.Count++(TTR.first set+−TTR.last main+)/a2)∗
a1) is greater than
TTR.first set+(TTR.Count+(TTR.first set−TTR.last main)/a2)∗
a1) and (3) is true.
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– When TTR.last main > TTR.first set

Then, necessarily, TTR.last main+ > TTR.first set, and (3) is
trivially true.
The induction hypotheses, guaranties from (4) that

(TTRSpec.first report ≤ max(TTR.first main, TTR.first set,

TTR.now) + TTR.count ∗ a1)

Since TTR.first main and TTR.count increase and the rest is left
unchanged, this inequality trivially remains true and so does (4).

– When TTR.last main ≤ TTR.fist set < TTR.last main+.
(3) is trivially true in the post state.

max(TTR.first main, TTR.first set, TTR.now) ≥ TTR.first set.
Furhtermore, TTR.last main+ = TTR.now = a2 ≤ TTR.last main+
a2 and TTR.first set− TTR.last main+ ≤ 0
Thus, TTR.first set− TTR.last main ≤ a2 and, consequently,
TTR.count+ > TTR.count + (TTR.first set− tTR.last main)/a2
All of this insures that

max(TTR.first main, TTR.first set, TTR.now)+TTR.count∗a1 ≥
TTR.first set+(TTR.Count+(TTR.first set−TTR.last main)/a2)∗a1)

And from that, (4) is true.

• decrement

As a precondition to this action, TTR.flag = true and TTR.reported =
false, thus (1) and (3) are trivially true.

Proving (2):

TTR.flag = true, first set = 0 (because of an invariant that states
that flag = true ⇒ first set = 0 and TTR.now ≥ TTR.first main.
TTR.now, TTR.first set and TTRSpec.first report are left unchanged.

TTR.last main+1 = TTR.now+a2 ≤ TTR.last main+a2 and TTR.count+ =
TTR.count−1, thus TTR.last main+ + TTR.count+ ∗ a2 ≤ TTR.last main + TTR.count ∗ a2.
and TTR.Spec.last report+ ≥ TTR.last main+ + TTR.count+ ∗ a2.

(2) is true.

Proving (4) :

max(TTR.now, TTR.first main, TTR.first set) = TTR.now.

Since TTR.first main+ = TTR.now+a1 and TTR.count+ = TTR.count−
1, we have

max(TTR.now+, TTR.first main+, TTR.first set+)+a1∗TTR.count+ ≥
TTR.now + a1 ∗ TTR.count

And thus (4) is true in the poststate.
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• set

As a precondition TTR.now ≥ TTR.first set and since TTR.now <
TTR.last main, TTR.last main > TTR.first set.

TTR.flag+ = true, thus (1) and (3) are trivially true.

Proving (4)

TTR.now, TTR.count, TTR.last main, TTR.first main and TTRSpec.firstreport
are left unchanged. Thus, we know that max(TTR.now, TTR.first set, TTR.first main) =
max(TTR.now+, TTR.first set+, TTR.first main+).

And since TTR.last main ≥ TTR.first set, the induction hypothesis,
assures us that

(TTRSpec.first report ≤ max(TTR.first main, TTR.first set,

TTR.now) + TTR.count ∗ a1)

Since both sides of this inequation are left unchanged, it remains true, and
so does (4).

Proving (2) :

There are 2 cases :

First case : TTR.first main ≤ TTR.last set

TTR.last main is left unchanged and TTR.last main ≤ TTR.now+a2 ≤
TTR.last set + a2 and TTR.last set− TR.first main ≥0.

Thus

TTR.last main+ +TTR.count ∗a2 ≤ TTR.now +a2+TTR.count ∗a2
≤ TTR.last set + TTR.count ∗ a2

≤ TTR.last set+(TTR.cout+2+(TTR.last set−TTR.first main)/a1)∗a2
≤ TTRSpec.last report

and (2) is true.

second case : TTR.last set ≤ TTR.first main

Then we can directly use (2) since none of the appropriate state variables
have changed.

• report

First we prove that report is enabled in Spec whenever it is enabled in
TTR :

As a precondition to report in TTR, TTR.count = 0 and TTR.flag =
true. Furthermore, TTR.now ≥ TTR.first main and TTR.first set =
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0. Thus, by induction hypothesis, since (4) is true, TTRSpec.firstreport ≤
TTR.now = TTRSpec.now, thus report is also enabled in TTRSpec.

Now we prove that all conditions are preserved :

Both TTR.count and TTR.flag are left unchanged by the action, thus
(1) and (3) are trivially true.

TTR.reported+ = true, thus (2) is also trivially true.

TTRSpec.first report+ = 0 and TTR.now ≥ 0 thus, TTRSpec.first report+ <
TTR.now + TTR.count which guarantees that (4) is true.

• Trajectories :

All state variables appearing in (1), (2) and(3) are constant with the
trajectories, so (1), (2) and (3) is preserved by trajectories.

The only state variable in (4) that evolves non-trivially with trajectories
is TTR.now which is growing. This assures that (4) is also preserved by
trajectories.

In trajectories, TTR.now and TTRSpec.now have the same differential
equation, thus the equality is preserved.

Furthermore, if a trajectory is valid for TTR, necessary, during the whole
trajectory, TTR.now ≤ TTR.last set and TTR.now ≤ TTR.last main
and, thanks to (1) and (2), the two imply that TTR.now < TTRSpec.last report,
thus the trajectory is valid for TTRSpec too.
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B Proof of the Invariants for the Timeout Based
Failure Detector

1. Channel.now ≥ 0

2. ∀p : Paquet(p ∈ Channel.queue ⇒
Channel.now ≤ p.deadline∧p.deadline+Sender.clock ≤ Channel.now+
b)

I changed this one a little so I can use it to prove a time bound on failure
detection. It basically states that the difference between the deadline of a
waiting message and the current time, is less than b minus the time since
the last message was sent.

3. ∀i, j : Nat, (1 ≤ i ∧ i < j ∧ j ≤ len(Channel.queue)) ⇒
Channel.queue[i].deadline ≤ Channel.queue[j].deadline

4. D̃etector.suspected ⇒ Detector.clock <= u2

5. S̃ender.failed ⇒ Sender.clock ≤ u1

6. S̃ender.failed ⇒
(Channel.queue = {} ⇒ (head(Channel.queue).deadline < Channel.now+
u2−Detector.clock)

∧
(Channel.queue 6= {} ⇒ Channel.now+u1−Sender.clock+b < Channel.now+
u2−Detector.clock)

7. Detector.suspected ⇒ Sender.failed.

8. Sender.clock ≤ Detector.clock + b

9. Sender.clock > u2 + b ⇒ Detector.suspect

Proofs : (The invariants will be enumerated as I1, ..., I9) I didn’t do any
initialisations since they are trivial.

Invariant I7 proves the accuracy of the system, while I9 proves the complete-
ness.

I call x+ the value of state variable x after a given action (while simply x
will be used to refer to the value before the action).

I1 : Channel.now ≥ 0

• actions have no impact on channel.now

• trajectories : d(Channel.now) > 0

I2 : ∀p : Paquet(p ∈ Channel.queue ⇒
Channel.now ≤ p.deadline∧p.deadline+Sender.clock ≤ Channel.now+b)

• trajectories : d(Sender.clock) = d(Channel.now). Channel.now ≤ p.deadline
because of the stopping condition.
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• fail, timeout : no changes

• receive(m) : Sender.clock, Channel.now are not changed.

∀p : Paquet, (p ∈ Channel.queue+ ⇒ p ∈ Channel.queue)

thus ∀p : Paquet(p ∈ Channel.queue ⇒
Channel.now ≤ p.deadline∧p.deadline+Sender.clock ≤ Channel.now+
b)

• send(m) : Sender.clock+ = 0 ≤ Sender.clock, Channel.now is not changed.

1. Case 1 : p 6= m ∀p : Paquet((p ∈ Channel.queue+ ∧ p 6= m) ⇒ p ∈
Channel.queue)
thus ∀p : Paquet((p ∈ Channel.queue+ ∧ p 6= m) ⇒
Channel.now+ ≤ p.deadline∧p.deadline+Sender.clock+ ≤ Channel.now++
b)

2. Case 2 : p = m (p is the new packet added by the send(m) action).
if p = m, then
p.deadline = Channel.now + b = Channel.now+ + b and thus
Channel.now+ ≤ p.deadline∧p.deadline+Sender.clock+ ≤ Channel.now++
b)

I3 : ∀i, j : Nat, (1 ≤ i ∧ i < j ∧ j ≤ len(Channel.queue)) ⇒
Channel.queue[i].deadline ≤ Channel.queue[j].deadline

• send(m) : does nothing on the first few examples and let j = len(Channel.queue+)
then for all 1 ≤ i < j, thanks to I2, we can assure that Channel.queue[i].deadline ≤
Channel.now + b and thus

Channel.queue[i].deadline ≤ Channel.queue[j].deadline.

• receive(m) : ∀1 ≤ i ≤ len(Channel.queue+),

Channel.queue+[i] = channel.queue[i + 1].

Thus ∀i, j : Nat, (1 ≤ i/ i < j/ j ≤ len(Channel.queue+)) ⇒
Channel.queue+[i].deadline ≤ Channel.queue+[j].deadline

• fail, timeout : no effect.

• trajectories have no effect.

I4 : D̃etector.suspected ⇒ Detector.clock <= u2

• trajectories : d(Detector.clock) > 0 iff Detector.clock 6= u2) (stopping
condition).

• timeout : Detector.suspected+ = true, thus the statement is trivially
true.

• receive(m) : Detector.clock+ = 0 < u2, thus the statement is trivially
true.
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• send, fail : no effect on either Detector.clock or Detector.suspected

I5 : S̃ender.failed ⇒ Sender.clock ≤ u1

• trajectores : d(Sender.clock) > 0 iff Sender.clock) 6= u1 (stopping condi-
tion).

• timeout, receive(m) : no effect on either Sender.clock or Detector.suspected

• fail: Sender.failed+ = true, and thus the statmeent becomes trivially
true.

• send(m): Detector.clock+ = 0 < u1

I6 : S̃ender.failed ⇒
(Channel.queue = {} ⇒ (head(Channel.queue).deadline < Channel.now+

u2−Detector.clock)
∧
(Channel.queue 6= {} ⇒ Channel.now+u1−Sender.clock+b < Channel.now+

u2−Detector.clock)

• trajectories : d(Channel.now) = d(Detector.clock) = d(Sender.clock)

• fail : Sender.fail+ = true, and thus the condition becomes trivially true.

• timeout: no change brought to any relevant parameter.

• send(m) : let us assume that Sender.failed is false. The value of sender.failed
is unchanged by the action.

As a result of send(m), (Channel.queue+ 6= {}
Channel.now and Detector.clock are untouched, thus

– if we previously had (Channel.queue 6= {} then
head(Channel.queue+).deadline = head(Channel.queue).deadline

and
head(Channel.queue).deadline < Channel.now+u2−Detector.clock+.
These imply head(Channel.queue+).deadline < Channel.now+ +
u2−Detector.clock+

– else head(Channel.queue+).deadline = Channel.now+ + b

and Channel.now+ + b+u1−Sender.clock+ < Channel.now+u2−
Detector.clock.
Since Sender.clock+ = 0, Channel.now++b < Channnel.now+u2−
Detectorclock,
head(Channel.queue+).deadline < Channel.now+u2−Detector.clock

• receive(m) : Detector.clock+ = 0, Channel.now and Sender.clock are
unchanged.

Because of the precondition for the receive(m) action, len(Channel.queue) >
0 and Channel.queue 6= {}.
Thus we always have the following :

Channel.now+ + u1 − Sender.clock+ + b < Channel.now+ + u1 + b <
Channel.now+ + u2−Detector.clock+
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1. Case 1 : len(Channel.queue) = 1. Then Channel.queue+ = {} and

Channel.now++u1−Sender.clock++b < Channel.now++u2−Detector.clock+

2. Case 2 : len(Channel.queue) > 1. Then Channel.queue+ 6= {} and
(I4) head(queue+).deadline ≤ Channel.now+ + b

thus head(queue+).deadline < Channel.now++u2 = Channel.now++
u2Detector.clock+.

I7 : Detector.suspected ⇒ Sender.failed.

• trajectories, send, receive have no impact on the states variables at hand.

• fail : Sender.failed+ = true.

• timeout: Detector.clock = u2, the only state variable changed is Detector.suspect.
Thus head(Channel.queue+).deadline > Channel.now+ + u2 (by apply-
ing I2 with p = head(Channel.queue+))

and since (I5) u1− Sender.clock+ ≥ 0,

Channel.now++u1−Sender.clock++b > Channel.now++u2−Detector.clock+

thus, necessarily, by (I6), Sender.fail = true.

Finally, there are two small invariants left that will lead to proving that a
failure is detected within a time bound of u2 + b.

I8 : Sender.clock ≤ Detector.clock + b

• trajectories : d(Sender.clock) = d(Detector.clock)

• fail, timeout : no impact on eiter Sender.clock and Detector.clock.

• send(m) : sender.clock+ = 0 < Detector.clock+ + b

• receive(m): necessarily, enQqn(queue) = true thus, by (I3) we have :

earliest deadline(Channel.queue) + Sender.clock ≤ Channel.now + b

thus Sender.clock ≤ b+channel.now−earliest deadline(Channel.queue)

and finally, thanks to (I2), Sender.clock+ = Sender.clock ≤ b+Detector.clock+

I9 : Sender.clock > u2 + b ⇒ Detector.suspect is a simple collorary of I8

and I4 :
Sender.clock > u2 + b ⇒ Detector.clock > u2 ⇒ Detector.suspect
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