
Timed I/O Automata:

A Mathematical Framework for Modeling and Analyzing Real-Time Systems

Dilsun K. Kaynar and Nancy Lynch�

MIT Computer Science and Artificial Intelligence Laboratory

Roberto Segala

Dipartimento di Informatica, Università di Verona

Frits Vaandragery

Nijmegen Institute for Computing and Information Sciences, University of Nijmegen

Abstract

We describe the Timed Input/Output Automata (TIOA)

framework, a general mathematical framework for model-

ing and analyzing real-time systems. It is based on timed

I/O automata, which engage in both discrete transitions and

continuous trajectories. The framework includes a notion

of external behavior, and notions of composition and ab-

straction. We define safety and liveness properties for timed

I/O automata, and a notion of receptiveness, and prove ba-

sic results about all of these notions. The TIOA framework

is defined as a special case of the new Hybrid I/O Automata

(HIOA) modeling framework for hybrid systems. Specifi-

cally, a TIOA is an HIOA with no external variables; thus,

TIOAs communicate via shared discrete actions only, and

do not interact continuously. This restriction is consistent

with previous real-time system models, and gives rise to

some simplifications in the theory (compared to HIOA). The

resulting model is expressive enough to describe complex

timing behavior, and to express the important ideas of pre-

vious timed automata frameworks.

1. Introduction

This paper describes the Timed Input/Output Automata

(TIOA) framework, a general mathematical framework for

modeling and analyzing real-time systems. Designers of

� Corresponding author’s email addres: dilsun@theory.lcs.mit.edu. Re-
search supported by DARPA/AFOSR MURI Contract F49620-02-
1-0325, DARPA SEC contract F33615-01-C-1850, NSF ITR con-
tract CCR-0121277, and Air Force Aerospace Research-OSR Contract
F49620-00-1-0097.

y Supported by EU IST project IST-2001-35304: Advanced Methods for
Timed Systems (AMETIST) and PROGRESS project TES4999: Veri-
fication of Hard and Softly Timed Systems (HaaST).

real-time systems can use this framework to describe com-

plex systems and decompose them into manageable pieces.

In particular, they can use TIOA to describe their systems at

multiple levels of abstraction, and to decompose their sys-

tems into more primitive, interacting components. Design-

ers can use TIOA to prove safety, liveness, and performance

properties of real-time systems. Since TIOA is purely math-

ematical, such proofs are generally done by hand. How-

ever, TIOA is a natural basis for computer support tools,

which will be developed in the future. The TIOA frame-

work is general enough to express previous results from

other frameworks, such as [24, 23, 5, 22, 21, 29].

This paper summarizes a longer monograph [14], which

contains complete definitions and results for the TIOA

framework. Here, we simply provide motivation, present

the most important definitions and results, and illustrate the

ideas with one example—a simple clock synchronization al-

gorithm. More examples, including a simple timeout-based

failure detection algorithm and a timing-based mutual ex-

clusion protocol, appear in [14]. We are informal in this pa-

per, relying on [14] to fill in the gaps.

The Framework. The fundamental object in the TIOA

framework is a timed I/O automaton, a state ma-

chine that engages in both discrete transitions (which

model instantaneous events) and continuous trajecto-

ries (which model evolution of state over time). The

externally visible behavior of each automaton is de-

fined by its set of traces—essentially, sequences of actions

interspersed with time-passage steps. The framework de-

fines what it means for one automaton to implement

another, based on inclusion of their sets of traces, and de-

fines various notion of simulation, which provide sufficient

conditions for demonstrating implementation relation-

ships. TIOAs may be composed to build other TIOAs;

automata that are composed interact by means of shared in-



put and output actions. The trace set of a composed

automaton is determined by the trace sets of its compo-

nent automata.

We define general notions of safety and liveness proper-

ties for TIOAs. We show that standard results about the in-

terplay between safety and liveness properties for untimed

systems [2] carry over to TIOAs.

A TIOA may exhibit Zeno behavior, by performing in-

finitely many discrete actions in a finite amount of time, or

by simply preventing a certain time from being reached. We

define a notion of receptiveness for TIOAs, to capture the

notion that a TIOA does not contribute to producing Zeno

behavior. This notion is defined in terms of the existence

of a “strategy” for scheduling the TIOA’s transitions; such

a strategy is itself formalized as a TIOA. We prove a re-

sult showing that the composition of two receptive TIOAs

is also receptive. This result provides a compositional tech-

nique for verifying the absence of Zeno behavior. We also

generalize the notion of receptiveness to one that says that

a TIOA guarantees a particular liveness property, and prove

a result saying that the composition of two TIOAs that are

receptive for particular liveness properties is receptive for

the “composition” of the two liveness properties. This pro-

vides a compositional technique for verifying certain live-

ness properties.

The monograph [14] contains other material, for ex-

ample, a description of the timed automata of Alur and

Dill [5, 3] and those of Merritt, Modugno, and Tuttle [24]

as specializations of our TIOA model.

Evolution of the framework. The TIOA framework has

evolved from several previous modeling frameworks for

real-time systems [24, 22, 21, 29]. The framework of Mer-

ritt, Modugno, and Tuttle [24] is a modification of the ear-

lier I/O automata model for asynchronous, untimed discrete

systems [20], in which upper and lower time bounds are

associated with certain “tasks”. The framework of Lynch

and Vaandrager [22, 21] simplifies and generalizes that of

Merritt et al. by introducing explicit time-passage transi-

tions and allowing rather arbitrary restrictions on their oc-

currence. Segala et al. [29] added a treatment of liveness to

the framework of [22, 21]. These models have been used

fairly extensively in analyzing the correctness and timing

behavior of protocols; see, for example, [7, 19, 11].

Recently, Lynch, Segala, and Vaandrager presented the

Hybrid Input/Output Automaton (HIOA) modeling frame-

work for hybrid (continuous/discrete) systems [17], which

evolved from the earlier hybrid system model [18]. An

HIOA is a kind of nondeterministic, possibly infinite-state,

state machine. The state of an HIOA is determined by a val-

uation of state variables that are internal to the automaton.

An HIOA may also have external variables, which model

information flowing continuously into and out of the sys-

tem. The state of an HIOA can change in two ways: by dis-

crete transitions, which change the state instantaneously, or

according to trajectories, which describe the evolution of

the internal and external variables over intervals of time.

The HIOA framework includes composition and abstrac-

tion, and a treatment of receptiveness in terms of strate-

gies that are formalized as HIOAs. HIOAs have been used

in analyzing the behavior of automated transportation sys-

tems [30, 16, 26], robotics systems [10], and other hybrid

systems.

Having developed the very general HIOA framework, we

decided to revisit the old timed automata frameworks and

develop a new one that is “upward compatible” with HIOA.

HIOA has several features that seem useful for modeling

real-time systems. For example, trajectories lead to simpler

mathematical definitions and proofs than time-passage tran-

sitions. Also, structured states are useful in writing real-time

system specifications, and this structure does not compli-

cate mathematical results. Furthermore, the mathematical

notion of a trace, which is used to represent the external be-

havior of an HIOA, can be specialized to a neat representa-

tion of the external behavior of a timed automaton. (Earlier

definitions, such as the one in [22], blurred certain technical

distinctions involving right-open and right-closed time in-

tervals.) Moreover, the HIOA approach to handling recep-

tiveness, by modeling strategies as automata, is simpler than

the approach taken earlier, e.g., in [29].

For these reasons, we have defined a new TIOA frame-

work as a special case of HIOA. In particular, we define

a Timed I/O Automaton to be an HIOA without any exter-

nal variables. Thus, TIOAs may communicate via shared

actions only, not shared variables, that is, they do not inter-

act continuously, but only via discrete actions. Interesting

continuous evolution involves only internal automaton state

components. The TIOA model does not impose any other

restrictions on the expressive power of HIOA.

Limiting communication to discrete interactions is an apt

choice since the previous timed I/O automata frameworks

also use this type of communication. On the other hand,

by avoiding any further restrictions on the general HIOA

model, we obtain an expressive model suitable for spec-

ifying complex timing behavior. For example, we do not

require variables to be either discrete or to evolve at the

same rate as real time as is the case in some other mod-

els [5, 27]. Consequently, algorithms such as clock syn-

chronization algorithms that use local clocks evolving at

different and varying rates can be formalized naturally in

our framework. Our framework is expressive enough to ex-

press the important ideas of previous timed automata frame-

works, including [24, 23, 5, 22, 21, 29].

Having no external variables in the model gives rise to

some simplifications in the theory (compared to HIOA).

For example, proving that the composition of two timed

automata is a well-defined automaton is simpler without



external variables: technical “strong compatibility” condi-

tions that are needed in the general HIOA framework are not

needed to obtain the result for TIOAs. Similarly, the treat-

ment of receptiveness is simpler.

2. Describing Timed System Behavior

In this section, we list the basic notions that are used in

describing the behavior of a timed system, including both

discrete and continuous changes. We simply sketch this ma-

terial, leaving the reader to consult [14] for the details.

The time domains we use is the set R of real numbers

(in [14] also other time domains are considered). States of

automata will consist of valuations of variables. Each vari-

able has both a static type, which defines the set of values

it may assume, and a dynamic type, which gives the set of

trajectories it may follow. We assume that dynamic types

are closed under some simple operations: shifting the time

domain, taking subintervals and pasting together intervals.

We call a variable discrete if its dynamic type equals the

pasting-closure of a set of constant-valued functions (i.e.,

the step-functions), and analog if its dynamic type equals

the pasting-closure of a set of continuous functions (i.e., the

piecewise-continuous functions).

A valuation for a set V of variables is a function that as-

sociates with each variable v 2 V a value in its static type.

We write val (V ) for the set of all valuations for V . A tra-

jectory for a set V of variables describes the evolution of

the variables in V over time; formally, it is a function from

a time interval that starts with 0 to valuations of V , that is,

a trajectory defines a value for each variable at each time in

the interval. A point trajectory is one with the trivial domain

f0g. The limit time of a trajectory � , �:ltime , is the supre-

mum of the times in its domain. �:fval is defined to be the

first valuation of � , and if � is right-closed, �:lval is the last

valuation. Suppose � and �

0 are trajectories for V , with �

closed. The concatenation of � and � 0, denoted by �_ �

0, is

the trajectory obtained by taking the union of the first trajec-

tory and the function obtained by shifting the domain of the

second trajectory until the start time agrees with the limit

time of the first trajectory; the last valuation of the first tra-

jectory, which may not be the same as the first valuation of

the second trajectory, is the one that appears in the concate-

nation.

The notion of a hybrid sequence is used to model a com-

bination of changes that occur instantaneously and changes

that occur over intervals of time. Our definition is parame-

terized by a set A of discrete actions and a set V of vari-

ables. Thus, an (A; V )-sequence is a finite or infinite alter-

nating sequence, �
0

a

1

�

1

a

2

�

2

: : :, of trajectories over V and

actions in A. A hybrid sequence is any (A; V )-sequence.

Since the trajectories in a hybrid sequence can be point tra-

jectories, our notion of hybrid sequence allows a sequence

of discrete actions to occur at the same real time, with corre-

sponding changes of variable values. The limit time of a hy-

brid sequence �, denoted by �:ltime , is defined by adding

the limit times of all its trajectories. The first and last valua-

tions, �:fval and �:lval , are defined in the natural way. Hy-

brid sequence � is defined to be time-bounded if �:ltime

is finite, admissible if �:ltime = 1, closed if � is finite

and ends with a trajectory whose domain is a closed inter-

val, and Zeno if it is neither closed nor admissible. That is,

a Zeno hybrid sequence spans only a finite amount of time,

but either contains an infinite number of actions, or else it

ends with a right-open trajectory. Like trajectories, hybrid

sequences can be concatenated, and one can be a prefix of

another. A hybrid sequence can also be restricted to smaller

sets of actions and variables: the (A0

; V

0

)-restriction of an

(A; V )-sequence � is obtained by first projecting all trajec-

tories of � on the variables in V 0, then removing the actions

not in A0, and finally concatenating all adjacent trajectories.

3. Timed Automata

A timed automaton is a state machine whose states are

divided into variables, and that has a set of discrete actions,

which are classified as internal or external. We postpone the

classification of external actions as input or output until Sec-

tion 5. The reason for this delay is simply that many of the

basic results about timed I/O automata do not depend on the

distinction. The state of a timed automaton may change in

two ways: by discrete transitions, which change the state

atomically, and by trajectories, which describe the evolu-

tion of the state over intervals of time. Discrete transitions

are labeled with actions; these are used to synchronize tran-

sitions of different automata when the automata are com-

posed in parallel.

Timed automata definition. A timed automaton is exactly a

hybrid automaton in the sense of [17] that has no external

variables. Formally, a timed automaton (TA) consists of:

� A set X of internal variables.

� A set Q � val(X) of states.

� A nonempty set � � Q of start states.

� A set E of external actions and a set H of internal ac-

tions. We write A for the set E [H of all actions.

� A set D � Q�A�Q of discrete transitions.

We use x
a

! x

0 as shorthand for (x; a;x0) 2 D. We

say that a is enabled in x if x
a

! x

0 for some x0.

� A set T of trajectories for X such that �(t) 2 Q for

every � 2 T and every t in the domain of � .

We require that the set of trajectories be closed under the

operations of prefix, suffix, and concatenation.

The definition above differs from previous definitions of

timed automata [22, 21, 29] in two major respects. First,



Automaton Channel(b;M) where b 2 R+

Variables X : discrete queue 2 (M � R)

� initially empty
analog now 2 R initially 0

States Q : val(X) where 8(m;u) 2 queue: (now � u)

Actions A : external send(m); re
eive(m) where m 2M

Transitions D : external send(m)

effect
add (m; now + b) to queue

external re
eive(m)

precondition
9u: (m;u) is first element of queue

effect
remove first element of queue

Trajectories T : satisfies
constant(queue)
d(now) = 1

Figure 1. Time-bounded channel

the states are structured through the presence of typed vari-

ables. And second, the set of trajectories appears explicitly

as a component of the automaton. In the previous defini-

tions, time-passage is represented by special time-passage

actions and trajectories are defined only as as auxiliary func-

tions used in describing the effects of the time passage ac-

tions on states. Also note that we allow the set Q of states to

be a subset of all possible valuations for the state variables

(rather than all such valuations). This is because when mod-

eling actual systems one often encounters valuations which

are not reachable from any initial state, and which in fact

one prefers not to consider as states. Typical examples are

the valuations that do not satisfy the “location invariants” of

Uppaal style timed automata [3, 15].

Example 3.1 (Time-bounded channel) The automaton

in Figure 1 is the specification of a reliable FIFO channel

that delivers its messages within a certain time bound, rep-

resented by the automaton parameter b, which is a positive

real number. The other automaton parameter M represents

the type of messages communicated by the channel.

The states of the automaton are valuations of the state

variables queue and now. The discrete variable queue

holds a finite sequence of pairs consisting of a message that

has been sent and its delivery deadline. The analog vari-

able now records the current real time. The restriction on

states that the value of now is less than the delivery dead-

line of any message in queue implies that, within a trajec-

tory, time cannot pass beyond the point where now becomes

equal to the delivery deadline of some message in the queue.

Automaton Syn
(u; �)

i

where u 2 R+, 0 � � < 1, i 2 I

Variables X : analog phys
lo
k 2 R initially 0

discrete nextsend 2 R initially 0

discrete maxother 2 R initially 0

Derived variables: log
lo
k = max(maxother; phys
lo
k)

States Q : val(X)

Actions A : external send(m)

i

; re
eive(m)

j;i

where m 2 R, j 2 I , j 6= i

TransitionsD : external send(m)

i

precondition
m = phys
lo
k

phys
lo
k = nextsend

effect
nextsend := nextsend+ u

external re
eive(m)

j;i

effect
maxother := max(maxother;m)

Trajectories T : satisfies
constant(nextsend)
constant(maxother)

1� � � d(phys
lo
k) � 1 + �

stops when phys
lo
k = nextsend

Figure 2. Clock synchronization

Every send(m) transition adds to the queue a new pair

whose first component is m and whose second component

is the deadline now+ b. A re
eive(m) transition can occur

only when m is the first message in the queue and it results

in the removal of the first message from the queue.

The trajectory specification shows that the discrete vari-

able queue is kept constant by trajectories and that the vari-

able now increases with rate 1, that is, at the same rate as

real time.

Example 3.2 (Clock synchronization algorithm) The

code in Figure 2 describes a timed automaton, Syn
(u; �)
i

,

representing a single process participating in a clock syn-

chronization algorithm. Each process has a physical clock,

represented by the variable phys
lo
k, and generates a log-

ical clock, log
lo
k. The physical clocks may drift from the

real time with a drift rate bounded by �. The goal of the

algorithm is to achieve “agreement” and “validity” among

the logical clock values. Agreement means that the logical

clocks are close to one another. Validity means that the log-

ical clocks are within the range of the physical clocks.

The algorithm is based on the exchange of physical clock

values between processes in the system. The parameter u

determines the frequency of sending messages. The vari-

able nextsend records the next time at which the process is

supposed to send its physical clock to the other processes.



The process uses the variable maxother to keep track

of the largest physical clock value of the other processes in

the system. The logical clock, log
lo
k, is defined to be the

maximum of maxother and phys
lo
k. Formally log
lo
k

is a derived variable, which is a function whose value is de-

fined in terms of the state variables.

A send transition is enabled when nextsend =

phys
lo
k. The message sent is the current phys
lo
k.

This transition updates the value of nextsend so that the

next send can occur when phys
lo
k has advanced by u

time units. The transition definition for re
eive(m)

j;i

spec-

ifies the effect of receiving a message from another pro-

cess j in the system. Upon receiving a message m from

j, i sets maxother to the maximum of m and the cur-

rent value of maxother, thereby updating its knowledge of

the largest physical clock value of other processes.

The trajectory specification expresses the fact that the

discrete variables do not change, and phys
lo
k drifts with

a rate bounded by �. Periodic sending is enforced through a

stops when clause: if the predicate phys
lo
k = nextsend

in this clause becomes true at a point t in time, then t must

be the limit time of the trajectory. An alternative way to en-

force periodic sending would have been to restrict the set of

states to those that satisfy phys
lo
k � nextsend.

Executions and traces. An execution fragment of a TA

A is an (A; V )-sequence � = �

0

a

1

�

1

a

2

�

2

: : :, where

A and V are all the actions and variables of A, respec-

tively, where each �

i

is a trajectory of A, and for every i,

�

i

:lval

a

i+1

! �

i+1

:fval . An execution fragment records what

happens during a particular run of a system, including all the

discrete state changes and all the changes that occur while

time advances. We write �:fstate for the first state of �, and

if � is a closed hybrid sequence then we write �:lstate for

the last state of �. An execution is an execution fragment

whose first state is a start state of A.

The external behavior of a TA is captured by the set of

“traces” of its execution fragments, which record external

actions and the intervening passage of time. Formally, the

trace of an execution fragment � is the (E; ;)-restriction of

�. Thus, a trace is a hybrid sequence consisting of exter-

nal actions of A and trajectories over the empty set of vari-

ables. The only interesting information contained in these

trajectories is the amount of time that elapses. A trace frag-

ment of A is the trace of an execution fragment of A, and a

trace of A is the trace of an execution of A. In some earlier

timed automaton models [22, 29], an execution fragment is

defined in a similar style to the one presented here, that is,

as an alternating sequence of trajectories and actions. How-

ever, a trace is defined differently—as a sequence of actions

paired with their times of occurrence. We do not see any ad-

vantages of this style of definition, whereas the new defini-

tion clearly increases uniformity.

Implementation relationships. Timed automata A and B

are comparable if they have the same external actions. If

A and B are comparable then A implements B, denoted by

A � B, if the traces of A are a subset of the traces of B.

Simulation relations provide sufficient conditions for

showing that one automaton implements another. In [14],

we define several types of simulation relations for timed

automata, including forward simulations, backward simula-

tions, history and prophecy relations. Here, we define only

the most important type, a forward simulation relation.

Let A and B be comparable TAs. A forward simulation

from A to B is a relation R from states of A to states of B

satisfying the following conditions, for all states x
A

and x
B

of A and B:

1. If x
A

2 �

A

then there exists a state x
B

2 �

B

such

that x
A

R x

B

.

2. If x
A

R x

B

and � is an execution fragment of A con-

sisting of one action surrounded by two point trajec-

tories, with �:fstate = x

A

, then B has a closed ex-

ecution fragment � with �:fstate = x

B

, tra
e(�) =

tra
e(�), and �:lstate R �:lstate.

3. If x
A

R x

B

and � is an execution fragment of A con-

sisting of a single closed trajectory, with �:fstate =

x

A

, then B has a closed execution fragment � with

�:fstate = x

B

, tra
e(�) = tra
e(�), and �:lstate R

�:lstate.

Theorem 3.3 If A and B are comparable TAs and there is

a forward simulation from A to B, then A implements B.

Example 3.4 (A simulation relation) In this example, we

define a forward simulation from Syn
(u; �)

i

of Figure 2 to

an automaton SendV al(u; �)

i

that simply sends multiples

of u. Code for this automaton is given in Figure 3.

The natural number typed variable 
ounter keeps track

of the multiple u to be sent next, and variable now contains

the current time. The automaton parameter � is used in the

precondition of the send and in the stopping condition to

enforce bounds on the times of occurrence of send.

We now define a forward simulation R from the automa-

ton Syn
(u; �)

i

to SendV al(u; �)

i

where u and � are ac-

tual parameters. If x is a state of Syn
(u; �)
i

and y is a

state of SendV al(u; �)
i

, then x R y provided that the fol-

lowing conditions are satisfied:

1. y(now )(1� �) � x(phys
lo
k) � y(now )(1 + �).

2. y(
ounter) = x(nextsend)=u.

Composition. The composition operation for timed au-

tomata allows an automaton representing a complex

system to be constructed by composing automata rep-

resenting individual system components. Our composi-

tion operation identifies external actions with the same



Automaton SendV al(u; �)

i

where u 2 R+, 0 � � < 1, i 2 I

Variables X : discrete 
ounter 2 N initially 0

analog now 2 R initially 0

States Q : val(X)

Actions A : external send(m)

i

; re
eive(m)

j;i

where m 2 R, j 2 I , j 6= i

Transitions D : external send(m)

i

precondition
m = 
ounter � u


ounter � u=(1 + �) � now

effect

ounter := 
ounter + 1

external re
eive(m)

j;i

Trajectories T : satisfies
constant(
ounter)
d(now) = 1

stops when now = 
ounter � u=(1� �)

Figure 3. Automaton SendV al

name in different component automata. When any com-

ponent performs a discrete transition involving an action

a, so do all components that have a as an external ac-

tion. All the components perform trajectories together,

allowing the same amount of time to pass. The compo-

sition operator for timed automata is simpler than the

one for general hybrid automata [17] since all the vari-

ables in a timed automaton are internal.1

We say that timed automata A
1

and A
2

are compatible

if they have no state variables in common, and if neither au-

tomaton has an internal action that is an action of the other

automaton. If A
1

and A
2

are compatible then their compo-

sitionA
1

kA

2

is defined formally to be the timed automaton

A = (X;Q;�; E;H;D; T ) where:

� X = X

1

[X

2

.

� Q = fx 2 val (X) j x dX

1

2 Q

1

^ x dX

2

2 Q

2

g.

� � = fx 2 Q j x dX

1

2 �

1

^ x dX

2

2 �

2

g.

� E = E

1

[ E

2

and H = H

1

[H

2

.

� For each x;x0 2 Q and each a 2 A, x
a

!

A

x

0 iff for

i 2 f1; 2g, either (1) a 2 A

i

and x dX
i

a

!

i

x

0

dX

i

, or

(2) a 62 A

i

and x dX
i

= x

0

dX

i

.

� T = f� 2 trajs(X ) j � # X

1

2 T

1

^ � # X

2

2 T

2

g.

The following fundamental theorem relates the set of

traces of a composed automaton to the sets of traces of

1 The composition operation for general hybrid automata requires ex-
ternal variables to be identified as well as external actions. When any
component automaton follows a particular trajectory for an external
variable v, then so do all component automata of which v is an exter-
nal variable.

S

2

send(m)

2

send(m)

3

send(m)

3

re
eive(m)

3;2

re
eive(m)

3;1

re
eive(m)

2;1

send(m)

1

send(m)

1

re
eive(m)

1;2

send(m)

2

re
eive(m)

1;3

re
eive(m)

2;3

C

1;3

C

3;1

C

2;3

S

3

C

3;2

S

1

C

1;2

C

2;1

Figure 4. Clock synchronization network

its components. Set inclusion in one direction expresses the

idea that a trace of a composition “projects” to yield traces

of the components. Set inclusion in the other direction ex-

presses the idea that traces of components can be “pasted”

to yield a trace of the composition.

Theorem 3.5 Let A = A

1

kA

2

. Then the set of traces of A

is exactly the set of (E; ;)-sequences whose restrictions to

A

1

and A
2

are traces of A
1

and A
2

, resp.

The following theorem is a standard kind of “substitutiv-

ity” result:

Theorem 3.6 Suppose A
1

, A
2

, and B are TAs, A
1

and A
2

have the same external actions, and each of A
1

and A
2

is

compatible with B. If A
1

� A

2

then A
1

kB � A

2

kB.

Example 3.7 (Clock synchronization) We consider a sys-

tem defined as the composition of a finite set of clock

synchronization automata, one for each i 2 I , plus time-

bounded channel automata connecting all the pairs of clock

synchronization automata. We assume that the channel au-

tomata are defined as in Example 3.1 where re
eive and

send actions in each instance are renamed so that they can

be shared with the right clock synchronization automata.

Figure 4 illustrates the composed system in the case of

three clock synchronization automata. Here S
i

abbreviates

Syn
h(u; �)

i

, and C abbreviates Channel(b;R+).

In [14], we state and prove several invariants expressing

interesting properties for the composed system. For exam-

ple, the difference between any physical clock and the real

time at time t is no more than t�, and consequently, the dif-

ference between any two physical clocks is at most 2t�:

Invariant 1 : In any reachable state x, at any time t, for all

i; j:



1. jx(S
i

:phys
lo
k)� tj � t�.

2. jx(S
i

:phys
lo
k)� x(S

j

:phys
lo
k)j � 2t�.

The following invariant expresses the main validity prop-

erty for the algorithm: that the logical clock values of all the

processes are always between the minimum and maximum

physical clock values in the system.

Invariant 2 : In any reachable state x there exist j; k such

that for all i:

x(S

j

:phys
lo
k) � x(S

i

:log
lo
k)

� x(S

k

:phys
lo
k):

It follows that all the logical clocks differ from real time at

time t by at most t�:

Invariant 3 : In any reachable state x, at any time t, for any

i: jx(S
i

:log
lo
k)� tj � t�.

Finally, we show an agreement property for logi-

cal clocks. It says that the difference between two logical

clocks is always bounded by a constant (which de-

pends on the message-sending interval and the bounds on

clock drift and message delay).

Invariant 4 : In any reachable state x, for any i; j:

jx(S

i

:log
lo
k)� x(S

j

:log
lo
k)j � u+ b(1 + �).

4. Properties for Timed Automata

A property P for a TA A is defined to be any subset

of the execution fragments of A. In this section, we define

what it means for a property to be a safety or a liveness

property and present some basic results that relate these spe-

cial classes of properties. The classification of properties as

safety or liveness properties is important because such prop-

erties are proved using different techniques.

Safety and liveness properties. A property P for a TA A is

said to be a safety property if it is closed under prefix and

limits of execution fragments. In other words, if an execu-

tion fragment satisfies a safety property P , then so do all

its prefixes, and if all the executions in a “chain” of suc-

cessive extensions satisfy P , then so does the “limit” of the

chain.

A property P for A is defined to be a liveness property

provided that for any closed execution fragment � of A,

there exists an execution fragment � such that � _

� 2 P .

In other words, no matter how A behaves for a finite pe-

riod of time, it is still possible for it to continue in some

way and satisfy P .

These definitions of safety and liveness are considered

to be standard for untimed systems [2, 6, 8], and they have

also been adopted in some models for timed systems (e.g.,

[29, 13, 1]). The following results show standard facts about

safety and liveness: that no property of a TA is both a safety

property and a liveness property, and that every property

can be expressed as the intersection of a safety and a live-

ness property. The proofs are given in [14].

Theorem 4.1 Let A be a TA. If P is both a safety property

and a liveness property for A, then P is the set of all execu-

tion fragments of A.

Theorem 4.2 Let A be a TA. If P is a property for A, then

there exists a safety property S and a liveness property L

for A such that P = S \ L.

Fairness properties. Proving interesting liveness proper-

ties requires some assumptions saying that certain activ-

ities in the system get “enough” chances to try to make

progress [20, 1, 28]. Fairness properties are special kinds of

liveness properties that express this informal idea. Two im-

portant notions of fairness can be formulated for TAs as fol-

lows.

Let A be a TA and let C be a subset of the actions of A.

Let � be an execution fragment of A. Then:

1. � is weakly fair for C if (at least) one of the following

conditions holds:

(a) � contains infinitely many events from C.

(b) There is no suffix � of � such that C is enabled

in all states of �.

2. � is strongly fair forC if (at least) one of the following

conditions holds:

(a) � contains infinitely many events from C.

(b) There is some suffix � of � such that C is dis-

abled in all states of �.

History-independent properties. A property P of a TA A

is said to be history-independent provided that the follow-

ing holds: If �0 is a suffix of an execution fragment �, then

� satisfies P if and only if �0 does. In other words, whether

or not � satisfies P is determined only by what happens in

its suffixes—it is not affected by what happens in any ini-

tial portion of �. If a property P is known to be history-

independent, then one can prove that an execution fragment

� satisfies P by considering the portion of � from some

point onward. Weak fairness and strong fairness (as defined

just above) and admissibility (as defined in Section 2) are

all history-independent properties:

Theorem 4.3 For any TA A, and a subset C of its ac-

tions, the sets of weakly fair execution fragments for C

and strongly fair execution fragments for C are history-

independent.



Theorem 4.4 For any TA A, the set of admissible execu-

tion fragments is history-independent.

5. Timed I/O Automata

In this section we refine the timed automaton model of

Section 3 by distinguishing input and output actions. We

extend the results on simulation relations and composition

from Section 3 to this new setting. We also introduce spe-

cial kinds of timed I/O automata: I/O feasible, progressive,

and receptive TIOAs.

Timed I/O automata definition. A timed I/O automaton is a

timed automaton in the sense of Section 3, where the set of

actions is partitioned into a set of input actions, which are

used to model the actions performed by the environment,

and a set of output actions, which are under the control of

the automaton. Formally, a timed I/O automaton (TIOA) A

is a tuple (B; I; O) where

� B = (X;Q;�; E;H;D; T ) is a timed automaton.

� I and O partition E into input and output actions, re-

spectively. Actions in L

�

= H [ O are called locally

controlled; as before we write A
�

= E [H .

We require two additional axioms, which express input-

enabling conditions for actions and for time-passage, re-

spectively:

E1 Input action enabling: For every x 2 Q and every a 2

I , there exists x0 2 Q such that x
a

! x

0.

E2 Time-passage enabling: For every x 2 Q, there exists

� 2 T such that �:fstate = x and either

1. �:ltime =1, or

2. � is closed and some l 2 L is enabled in �:lstate.

E1 is the usual input enabling condition of ordinary I/O au-

tomata [20]; it says that a TIOA is able to accomodate an in-

put action whenever it arrives. E2 says that a TIOA either

allows time to advance forever, or it allows time to advance

for a while, up to a point where it is prepared to react with

some locally controlled action. Because TIOAs have no ex-

ternal variables, E1 and E2 are slightly simpler than the cor-

responding axioms for HIOAs.

Example 5.1 The time-bounded channel described in Ex-

ample 3.1 can be turned into a TIOA by classifying the

send actions as inputs, and the re
eive actions as outputs.

Since there is no precondition for send actions, they are en-

abled in each state, so clearly the input enabling condition

E1 holds. It is also easy to see that axiom E2 holds: in each

state either queue is nonempty, in which case a re
eive out-

put action is enabled after a point trajectory, or queue is

empty, in which case time can advance forever.

The clock synchronization automaton of Example 3.2

can be turned into a TIOA by classifying the send ac-

tions as outputs, and the re
eive actions as inputs. Axiom

E1 then holds trivially. Axiom E2 holds since from each

state either time can advance forever, or we have an out-

going trajectory (possibly of length 0) to a state in which

phys
lo
k = nextsend, and from there a send output ac-

tion is enabled.

Execution and traces. An execution fragment, execution,

trace fragment, or trace of a TIOAA is defined to be an ex-

ecution fragment, execution, trace fragment, or trace of its

underlying timed automaton, respectively.

We introduce one new definition here, to capture the idea

that, in a particular execution fragment, the automaton itself

produces Zeno behavior. Namely, we say that an execution

fragment of a TIOA is locally-Zeno if it is Zeno and con-

tains infinitely many locally controlled actions, or equiva-

lently, if it has finite limit time and contains infinitely many

locally controlled actions.

Implementation relationships. TIOAs A and B are compa-

rable if they have the same input actions and the same out-

put actions. If A and B are comparable then we say that A

implements B, denoted by A � B, if the traces of A are a

subset of the traces of B. The definition of forward simula-

tion for TIOAs is the same as for TAs.

Theorem 5.2 If A and B are comparable TIOAs and there

is a forward simulation from A to B, then A implements B.

Composition. The definition of composition for TIOAs is

based on the corresponding definition for TAs, but also

takes the input/output structure into account. Namely, we

say that TIOAs A
1

and A
2

are compatible if they satisfy

the compatible conditions for TAs, and also they have no

output actions in common. A consequence of these condi-

tions is that each action is controlled by at most one com-

ponent.

If A
1

and A
2

are compatible TIOAs then their composi-

tionA
1

kA

2

is defined to be the TIOAA = (B; I; O) where

B is the parallel composition B
1

kB

2

, I = (I

1

[ I

2

)� (O

1

[

O

2

), and O = O

1

[ O

2

. That is, an external action of the

composition is classified as an output if it is an output of

one of the component automata, and otherwise it is classi-

fied as an input.

In the TIOA setting, it is straightforward to show that the

composition of compatible TIOAs is in fact a TIOA. This is

less straightforward in the more general HIOA setting. The-

orem 6.12 of [17], which asserts the corresponding fact for

HIOAs, requires an additional hypothesis: that HIOAs A
1

and A
2

be “strongly compatible”. This extra condition is

needed to rule out dependencies between external variables

that may prevent the component automata from evolving to-

gether. The absence of external variables in TIOA elimi-



nates this kind of problematic behavior and gives rise to a

simpler theory of composition.

The projection and pasting theorem and the substitutiv-

ity theorem for timed automata, Theorems 3.5 and 3.6, ap-

ply to TIOAs as well.

I/O feasibility. We define I/O feasibility, which is a basic

requirement that reasonable TIOAs should satisfy. It says

that the automaton is capable of providing some response

from any state, for any sequence of input actions and any

amount of intervening time-passage. In particular, it should

allow time to pass to infinity if the environment does not

submit any input actions. Formally, we define a TIOA to be

I/O feasible provided that, for each state x and each (I; ;)-

sequence �, there is some execution fragment� fromx such

that � d(I; ;) = �. That is, an I/O feasible TIOA accom-

modates arbitrary input actions occurring at arbitrary times.

The given (I; ;)-sequence � describes the inputs and the

amounts of intervening times.

Unfortunately, it turns out that I/O feasibility is not pre-

served by composition of TIOAs:

Example 5.3 (I/O feasible TIOAs whose composition is

not I/O feasible) Consider two I/O feasible TIOAs A and

B, where O
A

= I

B

= fag and O

B

= I

A

= fbg. Suppose

that A performs its output a at time 0 and then waits, al-

lowing time to pass, until it receives input b. If and when it

receives b, it responds with output a without allowing any

time to pass, and ignoring any inputs that occur before it

has a chance to perform its output. On the other hand, B

starts out waiting, allowing time to pass, until it receives in-

put a. If and when it receives a, it responds with output b

without allowing time to pass.

It is not difficult to see that each of A and B is I/O feasi-

ble. However, the composition AkB is not I/O feasible. To

see this, consider the start state of AkB and the unique in-

put hybrid sequence � with �:ltime =1; � contains no ac-

tions, but simply allows time to pass to infinity. The compo-

sition AkB has no way of accommodating this input, since

it will never allow time to pass beyond 0.

The fact that the set of I/O feasible TIOAs is not pre-

served by composition is inconvenient; it means that we

cannot verify this important property in a compositional

manner. This motivated us to define the more restrictive no-

tion of receptiveness for TIOAs. Receptiveness is a natural

condition that implies I/O feasibility, and that also is pre-

served by composition.

We build our definition of receptiveness on a preliminary

definition of progressiveness for TIOAs. Namely, we define

a strategy for resolving nondeterministic choices, and de-

fine receptiveness in terms of the existence of a progressive

strategy. The approach follows that in [17].

Progressiveness. A progressive TIOA is simply one that

never generates infinitely many locally controlled actions

in finite time. Formally, a TIOA is progressive if it has no

locally-Zeno execution fragments. The following theorem

says that a progressive TIOA is capable of allowing arbi-

trary input actions at arbitrary times.

Theorem 5.4 Every progressive TIOA is I/O feasible.

The idea behind the proof is the following. Given a state

x and an (I; ;)-sequence �, we construct the needed execu-

tion fragment� recursively, spanning one input trajectory at

a time. To span each trajectory, we apply axiom E2 repeat-

edly; the progressiveness assumption implies that we do not

“get stuck” in a trajectory, performing infinitely many lo-

cally controlled actions. To process the input actions in be-

tween the trajectories, we use axiom E1.

The following theorem says that progressiveness is pre-

served by composition:

Theorem 5.5 If A
1

and A

2

are compatible progressive

TIOAs, then their composition is also progressive.

The idea behind the proof is that a Zeno execution of

A

1

kA

2

with infinitely many locally controlled actions con-

tains infinitely many locally controlled actions of either A
1

orA
2

. But this would violate progressiveness for one of the

component automata.

Receptiveness. Finally, we can define receptiveness, a more

general condition than progressiveness that implies I/O fea-

sibility and is also preserved by composition. We define a

strategy for a TIOA A to be a TIOA A

0 that differs from A

only in that D0

� D and T 0

� T . That is, a strategy se-

lects a subset of the discrete transitions and trajectories of

the original automaton. Our strategies are nondeterminis-

tic and memoryless. They provide a way of choosing some

of the evolutions that are possible from each state x of A.

The fact that the state set Q0 of A0 is the same as the state

set Q of A implies that A0 chooses evolutions from every

state of A. We define a TIOA to be receptive if it has a pro-

gressive strategy.

In previous studies of receptiveness for timed automata

[9, 1, 29], strategies are defined in terms of two-player

games, and receptiveness is defined in terms of the outcome

of a strategy. Our new definitions of strategies and recep-

tiveness capture similar ideas in a simpler way.

The following theorem says that a receptive TIOA pro-

vides some response from any state, for any sequence of

discrete input actions at any times.

Theorem 5.6 Every receptive TIOA is I/O feasible.

This result follows easily from Theorem 5.4. The follow-

ing theorem follows from the definition of composition and

strategies.

Theorem 5.7 Let A
1

and A

2

be compatible TIOAs with

strategies A0

1

and A0

2

, resp. Then A0

1

kA

0

2

is a strategy for

A

1

kA

2

.



Finally, we can state the main result of this section,

which follows from the previous two theorems. It says that

the receptiveness is preserved by composition.

Theorem 5.8 Let A

1

and A

2

be compatible recep-

tive TIOAs with progressive strategies A0

1

and A

0

2

, resp.

Then A

1

kA

2

is a receptive TIOA with progressive strat-

egy A0

1

kA

0

2

.

Thus, the TIOA model has simpler and stronger compo-

sition theorems than the general HIOA model. In particular,

the main compositionality result for receptive HIOAs has

a more complicated statement and proof than ours. The re-

sult for HIOAs makes an assumption about the existence of

strongly compatible strategies and uses an additional tech-

nical lemma about strongly compatible strategies.

Example 5.9 The time-bounded channel automaton de-

scribed in Example 3.1 is not progressive since it allows

for an infinite execution in which send and re
eive ac-

tions alternate without any passage of time in between. The

time-bounded channel automaton is receptive, however, as

we may construct a progressive strategy for it by adding a

condition u = now to the precondition of the re
eive ac-

tion. In this way we enforce that the channel operates max-

imally slow and messages are only delivered at their deliv-

ery deadline. The clock synchronization automaton of Ex-

ample 3.2 is progressive (and therefore receptive) since it

can only generate a locally controlled action once every u

time units. Theorem 5.8 now implies that the network of

clock synchronization automata described in Example 3.7

is also receptive, and hence (Theorem 5.6) I/O feasible.

6. Properties for Timed I/O Automata

A property for a TIOA A = (B; I; O) is defined to

be a property of its underlying TA, that is, it is a subset

of the execution fragments of B. The most comprehensive

study to date of properties for I/O automaton models can

be found in [29]. In that work, as in similar works for other

models [9, 1, 29, 18], receptive strategies are used to de-

scribe how a system interacts with its environment to guar-

antee that the outcome of the interaction satisfies a live-

ness property. Although the HIOA modeling framework in-

cludes simpler definitions for strategies and receptiveness,

it does not address general liveness properties. In this sec-

tion, we present new definitions and results about receptive-

ness for properties, which we think are simpler than those

found in prior work [29, 18]. We show that receptiveness

implies liveness and that it is compositional. We refer the

reader to [14] for the proofs.

I/O liveness properties. In Section 4, we defined general

liveness properties for timed automata. We now refine our

notion of a liveness property to take the input/output distinc-

tion into account. A property P for a TIOA A is defined to

be an I/O liveness property provided that for each closed ex-

ecution fragment � of A and each (I; ;)-sequence �, there

is some execution fragment �0 such that �0 d(I; ;) = � and

�

_

�

0

2 P . In other words, no matter howA behaves for a

finite period of time, and no matter what inputs arrive, it is

still possible for A to continue in some way and satisfy P .

The following theorem relates I/O feasibility and I/O live-

ness.

Theorem 6.1 A TIOA is I/O feasible if and only if its set of

execution fragments is an I/O liveness property.

Receptiveness for properties. If we would define a live

TIOA to be a pair (A; L) of a TIOA A coupled with an

I/O liveness property L then the resulting class of systems

would not be closed under composition. The problem, and

this was noted already in previous studies of liveness prop-

erties for timed I/O automata such as [29], is that this defi-

nition allows a system to choose its relative speed with re-

spect to the environment, and to base its decisions on the

future behavior of the environment. As a result, the live pre-

order is not substitutive for parallel composition. To solve

these problems, previous studies have introduced notions of

receptive strategies to guarantee that a system does not con-

strain its environment. The TIOA framework incorporates a

simpler (although less general) notion of strategy than those

considered in previous work on timed I/O automata [29].

We begin with a definition of receptiveness for a prop-

erty. Let A be a TIOA and let P be a property for A, that

is, a subset of the execution fragments of A. Then we say

that A is receptive for P provided that there exists a strat-

egyA0 for A such that every execution fragment of A0 is in

P . That is, A has a strategy that can always ensure that P is

satisfied (regardless of the behavior of the environment).

Theorem 6.2 below says that if A is receptive for P and

P is history-independent, then P must be a liveness prop-

erty for A. Theorem 6.3 strengthens this result: if we also

know that P consists of non-locally-Zeno execution frag-

ments, then P must be an I/O liveness property.

Theorem 6.2 If A is receptive for P and P is history-

independent, then P is a liveness property for A.

Theorem 6.3 If A is receptive for P , P is history-

independent, and P consists only of non-locally-Zeno

execution fragments, then P is an I/O liveness prop-

erty for A.

The need for the history-independence assumption for

the two theorems above stems from the fact that our strate-

gies are memoryless whereas liveness properties are defined

in terms of extending closed execution fragments. It might

be possible to avoid the history-independence assumption

by allowing strategies to have memory, or by modifying the



definition of a liveness property; we leave this for future

work.

Finally, we consider composition of TIOAs with prop-

erties. If A
1

and A

2

are two compatible timed automata

and P

1

and P

2

are properties for A
1

and A
2

, respectively,

then we define P
1

kP

2

to be the set of execution fragments

� of A
1

kA

2

such that � d(A
i

; X

i

) 2 P

i

; i 2 f1; 2gg. The

following is a simple composition theorem for TIOAs and

properties for which they are receptive.

Theorem 6.4 If A
1

is receptive for P
1

and A
2

is receptive

for P
2

then A
1

kA

2

is receptive for P
1

kP

2

.

7. Related Work

One of the widely-used formal frameworks for timed

systems is that of Alur-Dill timed automata [5, 3]. An Alur-

Dill automaton is a finite directed multigraph augmented

with a finite set of clock variables. The semantics of such

a timed automaton are defined as a state transition sys-

tem in which each state consists of a location and a clock

valuation. Clocks are assumed to change at the same time

as real-time. The aim of facilitating automated verification

based on reachability analysis seems to be the main moti-

vation for the restrictions on the expressive power of the

model. The timed automaton model presented in this paper

is more expressive than the model of Alur-Dill automata.

In our model, there are no finiteness assumptions and no

restrictions imposed on the dynamic type of variables. In

[14], we give a semantics for Alur-Dill automata by using a

restricted class of our timed automata. Alur-Dill timed au-

tomata have been extensively studied from the perspective

of model checking. Our focus, on the other hand, has been

to develop a general formal framework with a well-defined

notion of external behavior, parallel composition and ab-

straction that supports assertional reasoning with state in-

variants and simulation relations.

Uppaal [27, 15] is a widely-used modeling and verifi-

cation tool for timed systems. It supports the description of

systems as a network of Alur-Dill timed automata that com-

municate using CCS-style synchronization [25] and shared

variables. In addition it supports other notions such as com-

mitted and urgent locations. Uppaal has a sophisticated

model-checker that (symbolically) explores the state space

of the modeled system to verify timing properties. Finite-

ness assumptions are built into the model to make such ver-

ification possible and the operations on clocks are restricted.

For example, it is not possible to add the current value of a

clock to messages as a timestamp when they are placed in

a buffer. One of our plans for the near future is to work on

translations between Uppaal and some variation of our re-

stricted timed I/O automaton model. There are several small

mismatches due to the style of communication and notions

such as committed locations but we intend to investigate to

what extent we can use the communication mechanisms of

our automata to model these formally. We could, for ex-

ample, allow a non-empty set of external variables with re-

stricted dynamic types and seek restrictions on the use of

shared variables in Uppaal which would allow us to view

these variables as external variables in the HIOA sense.

A slight generalization of Alur-Dill timed automata are

the linear hybrid automata of [4]. In this model, apart from

clocks that progress with rate 1 one can also use continu-

ous variables whose derivatives are contained in some ar-

bitrary interval. A well-known model checking tool for lin-

eae hybrid automata is HyTech [12]. The input language of

HyTech can easily be translated into our TIOA model.

The TIOA framework presented in this paper can be used

to express models that use lower and upper time bounds

on tasks or actions [24, 23]. Our manuscript [14] presents

an operation for adding time bounds on a subset of the ac-

tions of a timed automaton. As a result of this operation,

lower bounds are transformed to appropriate preconditions

for transitions and upper bounds are transformed to restric-

tions on the set of states.

8. Conclusions

In this paper, we have defined a new timed I/O automa-

ton modeling framework for describing and analyzing the

behavior of timed systems. This model is a special case

of the recently presented hybrid I/O automaton modeling

framework [17]. We used what we have learned in develop-

ing the HIOA framework to revise the earlier timed I/O au-

tomaton models. Our main motivation was to have a timed

I/O automaton model that is compatible with the new HIOA

model. We sought to benefit from the new style used in de-

scribing hybrid behavior in simplifying the prior definitions

and results on timed automata. Moreover, we extended the

work on the HIOA model by investigating safety and live-

ness properties and receptiveness for general liveness, not

only for feasibility as in the HIOA framework.

Our paper [14] has a larger scope than we were able to

cover in this paper. For example, we have definitions and

soundness results for a wide range of simulation relations

for timed automata, which we believe apply also to hybrid

automata. These include liveness-preserving simulation re-

lations for special kinds of liveness properties. Likewise,

we have obtained “assume-guarantee” style composition-

ality results for our timed automata and are interested in

showing that they also hold for hybrid automata. All these

suggest that we are not that far from having a unified frame-

work for timed and hybrid systems in which we can col-

lect and summarize previous results of our own work. We

are also establishing formal relationships with other mod-

els that are comparable to ours. The details of our work in

progress can be found in the longer manuscript [14].



References

[1] M. Abadi and L. Lamport. Composing specifications.

ACM Transactions on Programming Languages and Sys-

tems, 1(15):73–132, 1993.

[2] B. Alpern and F.B. Schneider. Defining liveness. Informa-

tion Processing Letters, 21:181–185, 1985.

[3] R. Alur. Timed automata. In Proc. of 11th International Con-

ference on Computer-Aided Verification (CAV), volume 1633

of LNCS, pages 8–22. Springer-Verlag, 1999. An earlier

and longer version appears in NATO-ASI Summer School

on Verification of Digital and Hybrid Systems.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-

H. Ho, X. Nicollin, A. Olivero, J.Sifakis, and S. Yovine. The

algorithmic analysis of hybrid systems. Theoretical Com-

puter Science, 138:3–34, 1995.

[5] R. Alur and D.L. Dill. A theory of timed automata. Theoret-

ical Computer Science, 126:183–235, 1994.

[6] K.R. Apt, N. Francez, and S. Katz. Appraising fairness in

languages for distributed programming. Distributed Com-

puting, 2:226–241, 1988.

[7] H. Attiya and N.A. Lynch. Time bounds for real-time pro-

cess control in the presence of timing uncertainty. In Pro-

ceedings of the 10th IEEE Real-Time Systems Symposium,

pages 268–284, 1989.

[8] F. Dederichs and R. Weber. Safety and liveness from a

methodological point of view. Information Processing Let-

ters, 36(1):25–30, 1990.

[9] D. Dill. Trace Theory for Automatic Hierarchical Verifi-

cation of Speed-Independent Circuits. ACM Distinguished

Dissertations. MIT Press, 1988.

[10] A. Fehnker, F.W. Vaandrager, and M. Zhang. Modeling and

verifying a Lego car using hybrid I/O automata. In M. Broy

and M. Pizka, editors, Models, Algebras, and Logic of Engi-

neering Software, volume 191 of NATO ASI Series III, pages

385–402. IOS Press, 2003.

[11] C. Heitmeyer and N.A. Lynch. The generalized railroad

crossing: A case study in formal verification of a real-time

system. In Proceedings of the 15th IEEE Real-Time Systems

Symposium, pages 120–131, 1994.

[12] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A

Model Checker for Hybrid Systems. In O. Grumberg, editor,

Proceedings of the 9th International Conference on Com-

puter Aided Verification, volume 1254 of LNCS, pages 460–

463. Springer-Verlag, 1997.

[13] T.A. Henzinger. Sooner is safer than later. Information Pro-

cessing Letters, 43:135–141, 1992.

[14] D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager.

Timed I/O automata. Technical Report MIT/LCS/TR-917,

MIT Laboraty for Computer Science, 2003. Available

at http://groups.csail.mit.edu/tds/reflist.

html.

[15] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell.

Journal of Software Tools for Technology Transfer, 1–2:134–

152, 1997.

[16] C. Livadas, J. Lygeros, and N.A. Lynch. High-level model-

ing and analysis of TCAS. In Proceedings of the 20th IEEE

Real-Time Systems Symposium, pages 115–125, 1999.

[17] N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O

automata. Information and Computation, 185(1):105–157,

2003.

[18] N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg.

Hybrid I/O automata. In R. Alur, T.A. Henzinger, and E.D.

Sontag, editors, Hybrid Systems III, volume 1066 of LNCS,

pages 496–510. Springer-Verlag, 1996.

[19] N.A. Lynch and N. Shavit. Timing-based mutual exclusion.

In Proceedings of the Real-Time Systems Symposium, pages

2–11, 1992.

[20] N.A. Lynch and M.R. Tuttle. An introduction to input/output

automata. CWI Quarterly, 2(3):219–246, September 1989.

[21] N.A. Lynch and F.W. Vaandrager. Action transducers and

timed automata. Formal Aspects of Computing, 8(5):499–

538, 1996.

[22] N.A. Lynch and F.W. Vaandrager. Forward and backward

simulations — Part II: Timing-based systems. Information

and Computation, 128(1):1–25, July 1996.

[23] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid

systems. In J.W. de Bakker, C. Huizing, W.P. de Roever,

and G. Rozenberg, editors, Proceedings REX Workshop on

Real-Time: Theory in Practice, Mook, The Netherlands,

June 1991, volume 600 of LNCS, pages 447–484. Springer-

Verlag, 1992.

[24] M. Merritt, F. Modugno, and M. Tuttle. Time constrained au-

tomata. In J.C.M. Baeten and J.F. Groote, editors, Proceed-

ings CONCUR 91, Amsterdam, volume 527 of LNCS, pages

408–423. Springer-Verlag, 1991.

[25] R. Milner. A Calculus of Communicating Systems, volume 92

of LNCS. Springer-Verlag, 1980.

[26] S. Mitra, Y. Wang, N.A. Lynch, and E. Feron. Safety verifica-

tion of model helicopter controller using hybrid input/output

automata. In Hybrid Systems: Computation and Control

(HSCC’03), Prague, the Czech Republic, pages 259–273.

Lecture Notes in Computer Science, Springer-Verlag, 2003.

[27] P. Petterson. Modelling and Verification of Real-Time Sys-

tems Using Timed Automata:Theory and Practice. PhD the-

sis, Department of Computer Systems, Uppsala University,

1999. Technical Report DoCs 99/101.

[28] J.M.T. Romijn and F.W. Vaandrager. A note on fairness in

I/O automata. Information Processing Letters, 59(5):245–

250, 1996.

[29] R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N.A.

Lynch. Liveness in timed and untimed systems. Informa-

tion and Computation, 141(2):119–171, March 1998.

[30] H. B. Weinberg and N.A. Lynch. Correctness of vehicle con-

trol systems - a case study. In Proceedings of the 17th IEEE

Real-Time Systems, pages 62–72, 1996.


