
Decomposing Verification of Timed I/O Automata

Dilsun Kırlı Kaynar and Nancy Lynch

MIT Computer Science and Artificial Intelligence Laboratory
{dilsun,lynch}@csail.mit.edu

Abstract. This paper presents assume-guarantee style substitutivity results for the recently
published timed I/O automaton modeling framework. These results are useful for decompos-
ing verification of systems where the implementation and the specification are represented
as timed I/O automata. We first present a theorem that is applicable in verification tasks
in which system specifications express safety properties. This theorem has an interesting
corollary that involves the use of auxiliary automata in simplifying the proof obligations.
We then derive a new result that shows how the same technique can be applied to the case
where system specifications express liveness properties.

1 Introduction

The timed I/O automata (TIOA) modeling framework [KLSV03b,KLSV03a] provides a composi-
tion operation, by which TIOAs modeling individual timed system components can be combined
to produce a model for a larger timed system. The model for the composed system can describe
interactions among the components, which involves joint participation in discrete transitions. Com-
position requires certain “compatibility” conditions, namely, that each output action be controlled
by at most one automaton, and that internal actions of one automaton cannot be shared by any
other automaton.

The composition operation for TIOAs satisfies projection and pasting results, which are fun-
damental for compositional design and verification of systems: a trace of a composition of TIOAs
“projects” to give traces of the individual TIOAs, and traces of components are “pastable” to give
behaviors of the composition. This allows one to derive conclusions about the behavior of a large
system by combining the results obtained from the analysis of each individual component.

The composition operation for TIOAs also satisfies a basic substitutivity result that states
that the composition operation respects the implementation relation for TIOAs. An automaton
A1 is said to implement an automaton A2 if the set of traces of A1 is included in the the set of
traces of A2. The implementation relation is a congruence with respect to parallel composition.
That is, given an automaton B, if A1 implements A2 then the composition A1‖B implements
the composition A2‖B. A corollary of this basic substitutivity result is that, if A1 implements a
specification A2 and B1 implements a specification B2 then A1‖B1 implements A2‖B2.

The basic substitutivity property described above is desirable for any formalism for interacting
processes. For design purposes, it enables one to refine individual components without violating
the correctness of the system as a whole. For verification purposes, it enables one to prove that a
composite system satisfies its specification by proving that each component satisfies its specifica-
tion, thereby breaking down the verification task into more manageable pieces. However, it might
not always be possible or easy to show that each component A1 (resp. B1) satisfies its specification



A2 (resp. B2) without using any assumptions about the environment of the component. Assume-
guarantee style results such as those presented in [Jon83,Pnu84,Sta85,AL93,AL95,HQR00,TAKB96]
are special kinds of substitutivity results that state what guarantees are expected from each com-
ponent in an environment constrained by certain assumptions. Since the environment of each
component consists of the other components in the system, assume-guarantee style results need to
break the circular dependencies between the assumptions and guarantees for components.

This paper presents assume-guarantee style theorems for use in verification and analysis of
timed systems within the TIOA framework. The first theorem allows one to conclude that A1‖B1

implements A2‖B2 provided that A1 implements A2 in the context of B2 and B1 implements B2 in
the context of A2, where A2 and B2 express safety constraints and admit arbitrary time-passage.
This theorem has an interesting corollary that involves the use of auxiliary automata A3 and B3

in decomposing the proof that A1‖B1 implements A2‖B2. The main idea behind this corollary is
to capture, by means of A3 and B3, what is essential about the behavior of the contexts A2 and
B2 in proving the implementation relationship. The second theorem extends this corollary to the
case where liveness conditions are added to automaton specifications. This theorem requires one
to find the appropriate auxiliary liveness properties for A3 and B3, in addition to what is already
needed for proving the safety part of the specification. The liveness properties devised for A3 and
B3 are supposed to capture what liveness guarantees of the contexts A2 and B2 are essential in
showing the implementation relationship.

Related work. The results presented in this paper constitute the first assume-guarantee style results
for timed I/O automata. Assume-guarantee reasoning has been previously investigated in various
formal frameworks, most commonly, in frameworks based on temporal logics [Pnu84,Sta85,AL93,AL95]
and reactive modules [HQR00,HQR02]. Although some of these frameworks such as TLA and reac-
tive modules can be extended to support modeling of timing-dependent system behavior [AL94,AH97],
it is hard to understand whether all of the results and reasoning techniques obtained for their
untimed versions generalize to the timed setting. The work presented in [TAKB96] considers a
framework based on timed processes that underlies the language of the tool COSPAN [AK96]. The
focus of that paper is timed simulation relations, how they relate to verification based on language
inclusion and algorithmic aspects of checking for timed simulations. The topic of assume-guarantee
reasoning is visited only for a single theorem, which is akin to the first theorem of this paper. Our
other theorems that involve the use of auxiliary automata and liveness properties appear to incor-
porate novel and simple ideas that have not been investigated before in decomposing verification
of timed systems.

Organization of the paper. Section 2 introduces the basic concepts of the TIOA framework, and
gives the basic definitions and results relevant to what its presented in the rest of the paper.
This section also states the notational conventions used in writing the TIOA specifications that
appear in the examples. Section 3 gives a theorem and its corollary that can be used in decomposing
verification of systems where the TIOAs express safety properties. Section 4 shows how the ideas of
Section 3 can be applied to decomposition of verification where TIOAs express liveness properties
as well as safety properties. Section 5 summarizes the contributions of the paper and discusses
possible directions for future work.



2 Timed I/O Automata

In this section, we present briefly the basic definitions and results from the timed I/O modeling
framework that are necessary to understand the material in this paper. The reader is referred
to [KLSV03a] for the details.

2.1 Describing Timed System Behavior

We use the set R of real numbers as the domain (in [KLSV03a] other time domains are also
considered). A time interval is a nonempty, convex subset of R. An interval is left-closed (right-
closed) if it has a minimum (resp., maximum) element, and left-open (right-open) otherwise. It is
closed if it is both left-closed and right-closed.

States of automata will consist of valuations of variables . Each variable has both a static type,
which defines the set of values it may assume, and a dynamic type, which gives the set of trajectories
it may follow. We assume that dynamic types are closed under some simple operations: shifting
the time domain, taking subintervals and pasting together intervals. We call a variable discrete if
its dynamic type equals the pasting-closure of a set of constant-valued functions (i.e., the step-
functions), and analog if its dynamic type equals the pasting-closure of a set of continuous functions
(i.e., the piecewise-continuous functions).

A valuation for a set V of variables is a function that associates with each variable v ∈ V a
value in its static type. We write val(V ) for the set of all valuations for V . A trajectory for a set
V of variables describes the evolution of the variables in V over time; formally, it is a function
from a time interval that starts with 0 to valuations of V , that is, a trajectory defines a value for
each variable at each time in the interval. We write trajs(V ) for the set of all trajectories for V .
A point trajectory is one with the trivial domain {0}. The limit time of a trajectory τ , τ.ltime,
is the supremum of the times in its domain. We say that a trajectory is closed if its domain is a
closed interval. τ.fval is defined to be the first valuation of τ , and if τ is closed, τ.lval is the last
valuation. Suppose τ and τ ′ are trajectories for V , with τ closed. The concatenation of τ and τ ′,
denoted by τ ⌢ τ ′, is the trajectory obtained by taking the union of the first trajectory and the
function obtained by shifting the domain of the second trajectory until the start time agrees with
the limit time of the first trajectory; the last valuation of the first trajectory, which may not be the
same as the first valuation of the second trajectory, is the one that appears in the concatenation.

The notion of a hybrid sequence is used to model a combination of changes that occur instan-
taneously and changes that occur over intervals of time. Our definition is parameterized by a set
A of discrete actions and a set V of variables. Thus, an (A, V )-sequence is a finite or infinite alter-
nating sequence, τ0 a1 τ1 a2 τ2 . . ., of trajectories over V and actions in A. A hybrid sequence is any
(A, V )-sequence. The limit time of a hybrid sequence α, denoted by α.ltime, is defined by adding
the limit times of all its trajectories. Hybrid sequence α is defined to be admissible if α.ltime = ∞,
and closed if it is a finite sequence and the domain of its final trajectory is a closed interval. Like
trajectories, hybrid sequences can be concatenated, and one can be a prefix of another. If α is a
closed (A, V )-sequence, where V = ∅ and β ∈ trajs(∅), we call α⌢β a time-extension of α. A hybrid
sequence can also be restricted to smaller sets of actions and variables: the (A′, V ′)-restriction of
an (A, V )-sequence α is obtained by first projecting all trajectories of α on the variables in V ′,
then removing the actions not in A′, and finally concatenating all adjacent trajectories.

A set S of hybrid sequences is said to be closed under limits if each chain (with respect to prefix
ordering) of closed hybrid sequences in S has a limit in S.



2.2 Timed I/O Automata Definition

Formally, a timed I/O automaton (TIOA) consists of:

– A set X of internal variables.
– A set Q ⊆ val(X) of states.
– A nonempty set Θ ⊆ Q of start states .
– A set H of internal actions , a set I of input actions and a set O of output actions . We write

E
∆

= I ∪ O for the set of external actions and A
∆

= E ∪ H for the set of all actions. Actions in
L

∆

= H ∪ O are called locally controlled .
– A set D ⊆ Q × A × Q of discrete transitions.

We use x
a
→ x′ as shorthand for (x, a,x′) ∈ D. We say that a is enabled in x if (x, a,x′) ∈ D

for some x′.
– A set T of trajectories for X such that τ(t) ∈ Q for every τ ∈ T and every t in the domain of

τ . Given a trajectory τ ∈ T we denote τ.fval by τ.fstate and, if τ is closed, we denote τ.lval by
τ.lstate.

We require that the set of trajectories be closed under the operations of prefix, suffix, and con-
catenation and that there is a point trajectory for every state of the automaton. Moreover, the
following axioms are satisfied:

E1 (Input action enabling)

For every x ∈ Q and every a ∈ I, there exists x′ ∈ Q such that x
a
→ x′.

E2 (Time-passage enabling)
For every x ∈ Q, there exists τ ∈ T such that τ.fstate = x and either τ.ltime = ∞, or τ is
closed and some l ∈ L is enabled in τ.lstate.

Executions and traces. An execution fragment of a TIOAA is an (A, V )-sequence α = τ0a1τ1a2τ2 . . .,
where A and V are all the actions and variables of A, respectively, where each τi is a trajectory

of A, and for every i, τi.lval
ai+1

→ τi+1.fval . An execution fragment records what happens during a
particular run of a system, including all the discrete state changes and all the changes that occur
while time advances. An execution is an execution fragment whose first state is a start state of A.
We write fragsA for the set of all execution fragments of A and execsA for the set of all executions
of A.

The external behavior of a TIOA is captured by the set of “traces” of its execution fragments,
which record external actions and the intervening passage of time. Formally, the trace of an exe-
cution fragment α is the (E, ∅)-restriction of α. Thus, a trace is a hybrid sequence consisting of
external actions of A and trajectories over the empty set of variables. The only interesting infor-
mation contained in these trajectories is the amount of time that elapses. A trace fragment of A
is the trace of an execution fragment of A, and a trace of A is the trace of an execution of A. We
write tracefragsA(x) for the set of trace fragments of A from x and tracesA for the set of traces of
A.

Implementation relationships. Timed I/O automata A and B are comparable if they have the
same external actions. If A and B are comparable then A implements B, denoted by A ≤ B, if
tracesA ⊆ tracesB.



Composition. We say that TIOAs A1 and A2 are compatible if, for i 6= j, Xi ∩ Xj = Hi ∩ Aj =
Oi ∩ Oj = ∅. If A1 and A2 are compatible TIOAs then their composition A1‖A2 is defined to be
the tuple A = (X, Q, Θ, H, I, O,D, T ) where

– X = X1 ∪ X2.
– Q = {x ∈ val(X) | x ⌈X1 ∈ Q1 ∧ x ⌈X2 ∈ Q2}. 1

– Θ = {x ∈ Q | x ⌈X1 ∈ Θ1 ∧ x ⌈X2 ∈ Θ2}.
– H = H1 ∪ H2.
– I = (I1 ∪ I2) − (O1 ∪ O2)
– O = O1 ∪ O2.
– For each x,x′ ∈ Q and each a ∈ A, x

a
→A x′ iff for i ∈ {1, 2}, either (1) a ∈ Ai and

x ⌈Xi
a
→i x′ ⌈Xi, or (2) a 6∈ Ai and x ⌈Xi = x′ ⌈Xi.

– T = {τ ∈ trajs(X ) | τ ↓ X1 ∈ T1 ∧ τ ↓ X2 ∈ T2}. 2

The following theorem is a fundamental theorem that relates the set of traces of a composed
automaton to the sets of traces of its components. Set inclusion in one direction expresses the idea
that a trace of a composition “projects” to yield traces of the components. Set inclusion in the
other direction expresses the idea that traces of components can be “pasted” to yield a trace of
the composition.

Theorem 1. Let A1 and A2 be comparable TIOAs, and let A = A1‖A2. Then tracesA is exactly
the set of (E, ∅)-sequences whose restrictions to A1 and A2 are traces of A1 and A2, respectively.
That is, tracesA = {β | β is an (E, ∅)-sequence and β ⌈(Ei, ∅) ∈ tracesAi

, i = {1, 2}}.

2.3 Properties

A property P for a timed I/O automaton A is defined to be any subset of the execution fragments
of A. We write execs(A,P ) for the set of executions of A in P and traces(A,P ) for the set of traces
of executions of A in P .

A property P for a TIOA A is said to be a safety property if it is closed under prefix and limits
of execution fragments. A property P for A is defined to be a liveness property provided that for
any closed execution fragment α of A, there exists an execution fragment β such that α ⌢ β ∈ P .

In the TIOA modeling framework safety properties are typically specified as all of the execution
fragments of a TIOA. That is, no extra machinery other than the automaton specification itself is
necessary to specify a safety property. The set of execution fragments of a TIOA is closed under
prefix and limits. When the external behavior sets (trace sets), rather than execution fragments
are taken as a basis for specification, an automaton is said to specify a safety property only if its
trace set is closed under limits (trace sets are closed under prefixes by definition).

Liveness properties are typically specified by coupling a TIOA A with a property P where P

is a liveness property. A pair (A, P ) can be viewed as a two-part specification: a safety condition
expressed by the automaton A and a liveness condition expressed by P . It is in general desirable
that P does not itself impose safety constraints, beyond those already imposed by the execution

1 If f is a function and S is a set, then we write f ⌈S for the restriction of f to S, that is, the function g

with dom(g) = dom(f) ∩ S such that g(c) = f(c) for each c ∈ dom(g).
2 If f is a function whose range is a set of functions and S is a set, then we write f ↓ S for the function g

with dom(g) = dom(f) such that g(c) = f(c) ⌈S for each c ∈ dom(g).



fragments of A. To achieve this, P should be defined so that every closed execution in P can be
extended to some execution that is in both execsA and P . The notion of machine-closure is used
to formalize this condition. A detailed discussion can be found in [KLSV03a].

Implementation relationships. In analogy with basic TIOAs, we define another preorder for au-
tomata with properties: (A1, P1) ≤ (A2, P2) provided that traces(A1,P1) ⊆ traces(A2,P2).

Composition. If A1 and A2 are two compatible timed I/O automata and P1 and P2 are prop-
erties for A1 and A2, respectively, then we define P1‖P2 to be {α ∈ fragsA1‖A2

| α ⌈(Ai, Xi) ∈
Pi, i ∈ {1, 2}}. Using this, we define composition of automata with properties (A1, P1)‖(A2, P2) as
(A1‖A2, P1‖P2).

Theorem 2. Let A1 and A2 be two compatible TIOAs and P1 and P2 be properties for A1 and
A2, respectively. Then traces(A1‖A2,P1‖P2) is exactly the set of (E, ∅)-sequences whose restrictions
to A1 and A2 are traces(A1,P1) and traces(A2,P2), respectively. That is,
traces(A1‖A2,P1‖P2) = {β | β is an (E, ∅)-sequence and β ⌈(Ei, ∅) ∈ traces(Ai,Pi), i ∈ {1, 2}}.

2.4 Conventions for Writing TIOA Specifications

We typically specify sets of trajectories using differential and algebraic equations and inclusions.
Suppose the time domain T is R, τ is a (fixed) trajectory over some set of variables V , and v ∈ V .
With some abuse of notation, we use the variable name v to denote the function that gives the
value of v at all times during trajectory τ . Similarly, we view any expression e containing variables
from V as a function with dom(τ) (the domain of τ). Suppose that v is a variable and e is a
real-valued expression containing variables from V . We say that τ satisfies the algebraic equation
v = e which means that, for every t ∈ dom(τ), v(t) = e(t), that is, the constraint on the variables
expressed by the equation v = e holds for each state on trajectory τ . Suppose also that e, when
viewed as a function, is integrable. Then we say that τ satisfies d(v) = e if, for every t ∈ dom(τ),

v(t) = v(0) +
∫ t

0 e(t′)dt′. This way of specifying trajectories generalizes to differential inclusions as
explained in [KLSV03a].

In the rest of the paper, we use examples to illustrate our theorems. These examples are based on
TIOA specifications written using certain notational conventions (see Appendix A). The transitions
are specified in precondition-effect style. A precondition clause specifies the enabling condition for
an action. The effect clause contains a list of statements that specify the effect of performing that
action on the state. All the statements in an effect clause are assumed to be executed sequentially
in a single indivisible step. The absence of a specified precondition for an action means that the
action is always enabled and the absence of a specified effect means that performing the action
does not change the state.

The trajectories are specified by using a variation of the language presented in [MWLF03].
A satisfies clause contains a list of predicates that must be satisfied by all the trajectories. This
clause is followed by a stops when clause. If the predicate in this clause becomes true at a point t

in time, then t must be the limit time of the trajectory. When there is no stopping condition for
trajectories we omit the stops when clause. In our examples, we write d(v) = e for d(v) = e. If
the value of a variable is constant throughout a trajectory then we write constant(v).



3 Decomposition Theorem for TIOAs

In this section we present two assume/guarantee style results, Theorem 3 and Corollary 1, which
can used for proving that a system specified as a composite automaton A1‖B1 implements a
specification represented by a composite automaton A2‖B2 .

The main idea behind Theorem 3 is to assume that A1 implements A2 in a context represented
by B2, and symmetrically that B1 implements B2 in a context represented by A2 where A2 and
B2 are automata whose trace sets are closed under limits. The requirement about limit-closure
implies that A2 and B2 specify trace safety properties. Moreover, we assume that A2 and B2 allow
arbitrary time-passage. This is the most general assumption one could make to ensure that A2‖B2

does not impose stronger constraints on time-passage than A1‖B1.

Theorem 3. Suppose A1, A2, B1, B2 are TIOAs such that A1 and A2 are comparable, B1 and
B2 are comparable, and Ai is compatible with Bi for i ∈ {1, 2}. Suppose further that:

1. The sets tracesA2
and tracesB2

are closed under limits.
2. The sets tracesA2

and tracesB2
are closed under time-extension.

3. A1‖B2 ≤ A2‖B2 and A2‖B1 ≤ A2‖B2.

Then A1‖B1 ≤ A2‖B2.

Theorem 3 has a corollary, Corollary 1 below, which can be used in the decomposition of proofs
even when A2 and B2 neither admit arbitrary time-passage nor have limit-closed trace sets. The
main idea behind this corollary is to assume that A1 implements A2 in a context B3 that is a
variant of B2, and symmetrically that B1 implements B2 in a context that is a variant of A2. That
is, the correctness of implementation relationship between A1 and A2 does not depend on all the
environment constraints, just on those expressed by B3 (symmetrically for B1,B2, and A3). In order
to use this corollary to prove A1‖B1 ≤ A2‖B2 one needs to be able to find appropriate variants
of A2 and B2 that meet the required closure properties. This corollary prompts one to pin down
what is essential about the behavior of the environment in proving the intended implementation
relationship, and also allows one to avoid the unnecessary details of the environment in proofs.

Corollary 1. Suppose A1, A2, A3, B1, B2, B3 are TIOAs such that A1, A2, and A3 are compara-
ble, B1, B2, and B3 are comparable, and Ai is compatible with Bi for i ∈ {1, 2, 3}. Suppose further
that:

1. The sets tracesA3
and tracesB3

are closed under limits.
2. The sets tracesA3

and tracesB3
are closed under time-extension.

3. A2‖B3 ≤ A3‖B3 and A3‖B2 ≤ A3‖B3.
4. A1‖B3 ≤ A2‖B3 and A3‖B1 ≤ A3‖B2.

Then A1‖B1 ≤ A2‖B2.

The proofs for Theorem 3 and Corollary 1 can be found in [KLSV03a].

Example 1. This example illustrates that, in cases where specifications A2 and B2 satisfy certain
closure properties, it is possible to decompose the proof of A1‖B1 ≤ A2‖B2 by using Theorem 3,
even if it is not the case that A1 ≤ A2 or B1 ≤ B2.



The automata AlternateA and AlternateB in Figure 1 are timing-independent automata in which
no consecutive outputs occur without inputs happening in between. AlternateA and AlternateB per-
form a handshake, outputting an alternating sequence of a and b actions when they are composed.
The automata CatchUpA and CatchUpB in Figure 2 are timing-dependent automata that do not
necessarily alternate inputs and outputs as AlternateA and AlternateB . CatchUpA can perform an ar-
bitrary number of b actions, and can perform an a provided that counta ≤ countb. It allows counta

to increase to one more than countb. CatchUpB can perform an arbitrary number of a actions, and
can perform a b provided that counta ≥ countb + 1. It allows countb to reach counta. Timing
constraints require each output to occur exactly one time unit after the last action. CatchUpA and
CatchUpB perform an alternating sequence of a actions and b actions when they are composed.

Suppose that we want to prove that CatchUpA ‖ CatchUpB ≤ AlternateA ‖ AlternateB . We cannot
apply the basic substitutivity theorem since the assertions CatchUpA ≤ AlternateA and CatchUpB

≤ AlternateB are not true. Consider the trace τ0 b τ1 a τ2 a τ3 of CatchUpA where τ0, τ1, τ2 and τ3

are trajectories with limit time 1. After having performed one b and one a, CatchUpA can perform
another a. But, this is impossible for AlternateA which needs an input to enable the second a.
AlternateA and CatchUpA behave similarly only when put in a context that imposes alternation.

It is easy to check that AlternateA and AlternateB satisfy the closure properties required by
Assumptions 1 and 2 of Theorem 3 and, hence can be substituted for A2 and B2 respectively.
Similarly, we can easily check that Assumption 3 is satisfied if we substitute CatchUpA for A1 and
CatchUpB for B1.

Example 2. This example illustrates that it may be possible to decompose verification, using Corol-
lary 1, in cases where Theorem 3 is not applicable. If the aim is to show A1‖B1 ≤ A2‖B2 where
A2 and B2 do not satisfy the assumptions of Theorem 3, then we find appropriate context au-
tomata A3 and B3 that abstract from those details of A2 and B2 that are not essential in proving
A1‖B1 ≤ A2‖B2.

Consider the automata UseOldInputA and UseOldInputB in Figure 3. The automaton UseOldInputA

keeps track of whether or not it is UseOldInputA’s turn, and when it is UseOldInputA’s turn, it
keeps track of the next time it is supposed to perform an output. The number of outputs that
UseOldInputA can perform is bounded by a natural number. In the case of repeated b inputs, it is the
oldest input that determines when the next output will occur. The automaton UseOldInputB is the
same as UseOldInputA (inputs and outputs reversed) except that the turn variable of UseOldInputB

is set to false initially. Note that UseOldInputA and UseOldInputA are not timing-independent and
their trace sets are not limit-closed. For each automaton, there are infinitely many start states,
one for each natural number. We can build an infinite chain of traces, where each element in
the chain corresponds to an execution starting from a distinct start state. The limit of such a
chain, which contains infinitely many outputs, cannot be a trace of UseOldInputA or UseOldInputA

since the number of outputs they can perform is bounded by a natural number. The automaton
UseNewInputA in Figure 4 behaves similarly to UseOldInputA except for the handling of inputs. In
the case of repeated b inputs, it is the most recent input that determines when the next output will
occur. The automaton UseNewInputB in Figure 4 is the same as UseNewInputA (inputs and outputs
reversed) except that the turn variable of UseNewInputB is set to false initially.

Suppose that we want to prove that UseNewInputA ‖ UseNewInputB ≤ UseOldInputA ‖ UseOldInputB .
Theorem 3 is not applicable here because the high-level automata UseOldInputA and UseOldInputB

do not satisfy the required closure properties. However, we can use Corollary 1 to decompose ver-
ification. It requires us to find auxiliary automata that are less restrictive than UseOldInputA and



UseOldInputB but that are restrictive enough to express the constaints that should be satisfied by
the environment, for UseNewInputA to implement UseOldInputA and for UseNewInputB to implement
UseOldInputB .

The automata AlternateA and AlternateB in Figure 1 can be used as auxiliary automata in this
example. They satisfy the closure properties required by Corollary 1 and impose alternation, which
is the only additional condition to ensure the needed trace inclusion.

We can define a forward simulation relation (see [KLSV03a]) R from UseNewInputA ‖ UseNewInputB

to UseOldInputA ‖ UseOldInputB , which is based on the equality of the turn variables of the im-
plementation and the specification automata. The fact that this simulation relation only uses the
equality of turn variables reinforces the idea that the auxiliary contexts, which only keep track
of their turn, capture exactly what is needed for the proof of UseNewInputA ‖ UseNewInputB ≤
UseOldInputA ‖ UseOldInputB . We can observe that a direct proof of this assertion would require
one to deal with state variables such as maxout and next of both UseOldInputA and UseOldInputB ,
which do not play any essential role in the proof. On the other hand, by decomposing the proof
along the lines of Corollary 1 some of the unnecessary details can be avoided. Even though, this is
a toy example with an easy proof it should not be hard to observe how this simplification would
scale to large proofs.

4 Decomposition Theorem with TIOAs with Properties

Theorem 3 and its corollary presented in Section 3 assume specification automata whose trace sets
are closed under limits, and hence express safety constraints. In this section we present a theorem
that can be used in the decomposition of verification where the specification automata may also
express liveness properties.

The decomposition of a proof of the assertion (A1, P1)‖(B1, Q1) ≤ (A2, P2)‖(B2, Q2) can be
viewed as consisting of two parts. The first part involves the decomposition of the proof that
(A1, P1) and (B1, Q1) satisfy their safety properties and the second part involves the decomposition
of the proof that (A1, P1) and (B1, Q1) satisfy their liveness properties. Theorem 4 uses Corollary 1
for the safety part of proofs; the first four hypotheses of Theorem 4 imply those of Corollary 1.
The remaining two hypotheses involve the liveness part of proofs. It requires one to find auxiliary
automata with properties, (A3, P3) and (B3, Q3), such that (A1, P1) implements (A3, P3) in the
context of B3 without relying on the liveness property of B3, and (B1, Q1) implements (B3, Q3) in the
context of A3 without relying on the liveness property of A3. Moreover, (A1, P1) must implement
(A2, P2) in the context of (B3, Q3) and (B1, Q1) must implement (B2, Q2) in the context of (A3, P3).
That is, the implementation relation between (A1, P1) and (A2, P2) depend on the liveness property
Q3 of the auxiliary context, and the implementation relation between (B1, Q1) and (B2, Q2) depend
on the liveness property P3 of the auxiliary context.

Theorem 4. Suppose A1, A2, A3, B1, B2, B3 are TIOAs such that A1, A2, and A3 are compa-
rable, B1, B2, and B3 are comparable, and Ai is compatible with Bi for i ∈ {1, 2, 3}. Suppose that
Pi is a property for Ai and Qi is a property for Bi for i ∈ {1, 2, 3}. Suppose further that:

1. The sets tracesA3
and tracesB3

are closed under limits.
2. The sets tracesA3

and tracesB3
are closed under time-extension.

3. A2 ≤ A3 and B2 ≤ B3.
4. A1‖B3 ≤ A2‖B3 and A3‖B1 ≤ A3‖B2.



5. (A1, P1)‖(B3, fragsB3
) ≤ (A3, P3)‖(B3, fragsB3

) and
(A3, fragsA3

)‖(B1, Q1) ≤ (A3, fragsA3
)‖(B3, Q3).

6. (A1, P1)‖(B3, Q3) ≤ (A2, P2)‖(B3, Q3) and
(A3, P3)‖(B1, Q1) ≤ (A3, P3)‖(B2, Q2).

Then (A1, P1)‖(B1, Q1) ≤ (A2, P2)‖(B2, Q2).

The proof sketch for Theorem 4 is given in Appendix B.

Example 3. This example illustrates the use of Theorem 4 in decomposing the proof of an imple-
mentation relationship where the implementation and specification are not merely composition of
automata but composition of automata that satisfy some liveness property.

Let UseOldInputA′, UseOldInputB ′, UseNewInputA′, and UseNewInputB ′ be automata which are
defined exactly as automata UseOldInputA, UseOldInputB , UseNewInputA, and UseNewInputB from
Example 2 except that there is no bound on the number of outputs that the automata can perform.
That is, maxout is removed from their sets of state variables. Let P1, P2, Q1 and Q2 be proper-
ties for, respectively, UseNewInputA′, UseOldInputA′, UseNewInputB ′ and UseOldInputB ′ defined as
follows:

– P1 consists of the admissible execution fragments of UseNewInputA′.
– Q1 consists of the admissible execution fragments of UseNewInputB ′.
– P2 consists of the execution fragments of UseOldInputA′ that contain infinitely many a actions.
– Q2 consists of the execution fragments of UseOldInputB ′ that contain infinitely many b actions.

Suppose that we want to prove that:
(UseNewInputA′,P1) ‖ (UseNewInputB ′,Q1) ≤ (UseOldInputA′,P2) ‖ (UseOldInputB ′,Q2).
The automata UseNewInputA′ ‖ UseNewInputB ′ and UseOldInputA′ ‖ UseOldInputB ′ perform an

alternating sequence of a and b actions. The properties express the additional condition that as
time goes to infinity the composite automaton UseNewInputA′ ‖ UseNewInputB ′ performs infinitely
many a and infinitely many b actions where a and b actions alternate.

As in Example 2 automata AlternateA and AlternateB from Figure 1 satisfy the required closure
properties for auxiliary automata and capture what is essential about the safety part of the proof,
namely that the environments of UseNewInputA′ and UseNewInputB ′ impose alternation. The essen-
tial point in the proof of the liveness part is that each automaton responds to each input it receives
from its environment. Therefore, we need to pair AlternateA and AlternateB with properties that
eliminate non-responding behavior. The properties P3 and Q3 defined below satisfy this condition:

– P3 consists of execution fragments α of AlternateA that satisfy the following condition: if α has
finitely many actions then the last action in α is a.

– Q3 consists of execution fragments α of AlternateB that satisfy the following condition: if α has
finitely many actions and contains at least one a then the last action in α is b.

In order to see why the first part of Assumption 5 is satisfied we can inspect the definition of
UseNewInputA and observe that UseNewInputA performs an output a one time unit after each input
b, when it is composed with AlternateB . This implies that in any admissible execution fragment of
UseNewInputA ‖ AlternateB with finitely many actions the last action must be a. This is exactly the
liveness constraint expressed by P3. The second part of Assumption 5 can be seen to hold using a
symmetric argument.



In order to see why the first part of Assumption 6 holds consider any execution execution
fragment β of UseNewInputA ‖ AlternateB . For β to satisfy P1 and Q3 at the same time, it must
consist of an infinite sequence in which a and b actions alternate. It is not possible for UseNewInputA

‖ AlternateB to have an admissible execution fragment with finitely many actions because the
definition of UseNewInputA requires such a sequence to end in a while this is ruled out by Q3,
which requires AlternateB to respond to a. The second part of Assumption 6 can be seen to hold
using a symmetric argument.

Note that in our explanations we refer to execution fragments rather than traces of execution
fragments. This is because our examples do not include any internal actions and our arguments
for execution fragments extend to trace fragments in a straightforward way.

5 Conclusions and future work

In this paper we have focused on compositionality for timed I/O automata. In particular, we have
presented three assume-guarantee style substitutivity results for the composition operation of timed
I/O automata. We believe that these results are simple and easy to understand; they build upon
the basic concepts about TIOAs and the fundamental results for the composition operation. Unlike
many of the related results obtained for other formal frameworks, no complex logical operators or
induction principles are needed for our theorem statements and their proofs.

Theorem 4 suggests a useful way of separating out proof obligations for safety and liveness in
decomposing verification tasks that involve TIOAs paired with liveness properties. A proof based
on Theorem 1 that shows that an implementation satisfies a safety specification can in large part
be reused when liveness conditions are added to the specification.

Our main goal in this line of work was to obtain simple and general compositionality results.
As future work we intend to explore the implications on our results of considering special kinds of
automata and properties that we have defined in [KLSV03a]. For example, it would be interesting
to know if any of the assumptions of our theorems would be implied if we considered receptive
TIOAs, I/O feasible TIOAs or I/O liveness properties.

Our current results apply to trace inclusion preorder. Another interesting direction for future
work would be to extend these results to other preorders based on various notions of simulations
relations defined in [KLSV03a].

Acknowledgements. This research is supported by DARPA/AFOSR MURI Contract F49620-02-1-
0325.

References

[AH97] R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In Proceedings of the
8th International Conference on Concurrency Theory (CONCUR), volume 1243 of LNCS, pages 74–88.
Springer-Verlag, 1997.

[AK96] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III: Verification and
Control. Springer-Verlag, 1996.

[AL93] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming Lan-
guages and Systems, 1(15):73–132, 1993.

[AL94] Martin Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM Transactions on
Programming Languages and Systems, 16(5):1543–1571, 1994.



[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming Lan-
guages and Systems, 17(3):507–534, 1995.

[HQR00] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decomposing refinement proofs using assume-
guarantee reasoning. In Proceedings of the International Conference on Computer-Aided Design (IC-
CAD), pages 245–252. IEEE Computer Society Press, 2000.

[HQR02] T. Henzinger, S. Qadeer, and S. K. Rajamani. An assume-guarantee rule for checking simulation.
ACM Transactions on Programming Languages and Systems, 24:51–64, 2002.

[Jon83] C. B. Jones. Specification and design of parallel programs. In R. E. A. Mason, editor, Information
Processing 83: Proceedings of the IFIP 9th World Congress, pages 321–332. North-Holland, 1983.

[KLSV03a] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory of timed I/O automata.
Technical Report MIT/LCS/TR-917, MIT Laboratory for Computer Science, 2003. Available at http:

//theory.lcs.mit.edu/tds/reflist.html.

[KLSV03b] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. Timed I/O automata: A mathematical
framework for modeling and analyzing real-time systems. In Proceedings of the 24th IEEE International
Real-Time Systems Symposium, pages 166–177, Cancun, Mexico, 2003. IEEE Computer Society. Full
version available as Technical Report MIT/LCS/TR-917.

[MWLF03] S. Mitra, Y. Wang, N. Lynch, and E. Feron. Safety verification of pitch controller for model
helicopter. In O. Maler and A. Pnueli, editors, Proc. of Hybrid Systems: Computation and Control,
volume 2623 of Lecture Notes in Computer Science, pages 343–358, Prague, the Czech Republic April
3-5, 2003.

[Pnu84] A. Pnueli. In transition from global to modular temporal reasoning about programs. In K. R.
Apt, editor, Logis and Models of Concurret Systems, NATO ASI, pages 123–144. Springer-Verlag, 1984.

[Sta85] E. W. Stark. A proof technique for rely/guarantee properties. In S. N. Maheshwari, editor,
Foundations of Software Technology and Theoretical Computer Science, volume 206 of LNCS, pages
369–391. Springer-Verlag, 1985.

[TAKB96] S. Tasiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstractions of timed systems.
In Proceedings of the Seventh Conference on Concurrency Theory (CONCUR), volume 1119 of LNCS,
1996.

A Proofs

Proof of Theorem 4: Let β ∈ traces(A1,P1)‖(B1,Q1). By definition of composition for automata
with properties, β ∈ traces(A1‖B1). By Assumptions 1, 2, 3 and 4 and Theorem 1, we have β ∈
traces(A2‖B2). By projection using Theorem 1, β ⌈(EA2

, ∅) ∈ tracesA2
and β ⌈(EB2

, ∅) ∈ tracesB2
.

By Assumption 3, β ⌈(EA2
, ∅) ∈ tracesA3

and β ⌈(EB2
, ∅) ∈ tracesB3

. Since A2 and A3 are com-
parable, β ⌈(EA2

, ∅) = β ⌈(EA3
, ∅) and β ⌈(EB2

, ∅) = β ⌈(EB3
, ∅). Therefore, β ⌈(EA3

, ∅) ∈ tracesA3

and β ⌈(EB3
, ∅) ∈ tracesB3

.

By projection using Theorem 2, we have β ⌈(EA1
, ∅) ∈ traces(A1,P1) and β ⌈(EB1

, ∅) ∈ traces(B1,Q1).
By pasting using Theorem 2, we have β ∈ traces(A1,P1)‖(B3,fragsB3

) and β ∈ traces(B1,Q1)‖(A3,fragsA3
).

By Assumption 5, we have β ∈ traces(A3,P3)‖(B3,fragsB3
) and β ∈ traces(B3,Q3)‖(A3,fragsA3

). By pro-

jection using Theorem 2, we get β ⌈(EA3
, ∅) ∈ traces(A3,P3) and β ⌈(EB3

, ∅) ∈ traces(B3,Q3). Since
β ⌈(EA1

, ∅) ∈ traces(A1,P1), by pasting using Theorem 2, we have β ∈ traces(A1,P1)‖(B3,Q3), sim-
ilarly since β ⌈(EB1

, ∅) ∈ traces(B1,Q1), we have β ∈ traces(B1,Q1)‖(A3,P3). By Assumption 6, we
have β ∈ (A2, P2)‖(B3, Q3) and β ∈ (A3, P3)‖(B2, Q2). By projection pasting using Theorem 2,
β ⌈(EA2

, ∅) ∈ traces(A2,P2) and β ⌈(EB2
, ∅) ∈ traces(B2,Q2). By pasting using Theorem 2, it follows

that β ∈ (A2, P2)‖(B2, Q2), as needed.



B Specifications of Automata Used in Examples

Automaton AlternateA

Variables X : discrete myturn ∈ Bool initially true

States Q : val(X)

Actions A : input b, output a

Transitions D : input b output a

effect precondition

myturn := true myturn

effect

myturn := false

Trajectories T : satisfies

constant(myturn)

Automaton AlternateB

Variables X : discrete myturn ∈ Bool initially false

States Q : val(X)

Actions A : input a, output b

Transitions D : input a output b

effect precondition

myturn := true myturn

effect

myturn := false

Trajectories T : satisfies

constant(myturn)

Fig. 1. Example automata for A2 and B2 in Theorem 3



Automaton CatchUpA

Variables X : discrete counta, countb ∈ N initially 0

analog now ∈ R
≥0 initially 0

analog next ∈ R
≥0 ∪ {∞} initially 0

States Q : val(X)

Actions A : input b, output a

Transitions D : input b output a

effect precondition

countb := countb + 1 counta ≤ countb ∧ now = next

next := now + 1 effect

counta := counta + 1
next := now + 1

Trajectories T : satisfies

constant(counta,countb)
stops when

now = next

Automaton CatchUpB

Variables X : discrete counta, countb ∈ N initially 0

analog now ∈ R
≥0 initially 0

analog next ∈ R
≥0 ∪ {∞} initially 0

States Q : val(X)

Actions A : input a, output b, internal c

Transitions D : input a output b

effect precondition

counta := counta + 1 countb + 1 ≤ counta ∧ now = next

next := now + 1 effect

countb := countb + 1
next = now + 1

Trajectories T : satisfies

constant(counta,countb)
stops when

now = next

Fig. 2. Example automata A1 and B1 for Theorem 3



Automaton UseOldInputA

Variables X : discrete myturn ∈ Bool initially true
discrete maxout ∈ N initially arbitrary

analog now ∈ R
≥0 initially 0

analog next ∈ R
≥0 ∪ {∞} initially 0

States Q : val(X)

Actions A : input b, output a

Transitions D : input b output a

effect precondition

myturn := true myturn ∧ (maxout > 0) ∧ (now = next)
if next = ∞ then next := now + 1 effect

myturn := false

maxout := maxout − 1
next := ∞

Trajectories T : satisfies

constant(myturn, maxout, next)
d(now) = 1

stops when

now = next

Automaton UseOldInputB

Variables X : discrete myturn ∈ Bool initially false
discrete maxout ∈ N initially arbitrary

analog now ∈ R
≥0 initially 0

analog next ∈ R
≥0 ∪ {∞} initially 0

States Q : val(X)

Actions A : input a, output b

Transitions D : input a output b

effect precondition

myturn := true myturn ∧ (maxout > 0) ∧ (now = next)
if next = ∞ then next := now + 1 effect

myturn := false

maxout := maxout − 1
next := ∞

Trajectories T : satisfies

constant(myturn, maxout, next)
d(now) = 1

stops when

now = next

Fig. 3. Example automata for A2 and B2 in Theorem 1



Automaton UseNewInputA

Variables X : discrete myturn ∈ Bool initially true
discrete maxout ∈ N initially arbitrary

analog now ∈ R
≥0 initially 0

analog next ∈ R
≥0 ∪ {∞} initially 0

States Q : val(X)

Actions A : input b, output a

Transitions D : input b output a

effect precondition

myturn := true myturn ∧ (maxout > 0) ∧ (now = next)
next := now + 1 effect

myturn := false

maxout := maxout − 1
next := ∞

Trajectories T : satisfies

constant(myturn, maxout, next)
d(now) = 1

stops when

now = next

Automaton UseNewInputA

Variables X : discrete myturn ∈ Bool initially false
discrete maxout ∈ N initially arbitrary

analog now ∈ R
≥0 initially 0

analog next ∈ R
≥0 ∪ {∞} initially 0

States Q : val(X)

Actions A : input a, output b

Transitions D : input a output b

effect precondition

myturn := true myturn ∧ (count > 0) ∧ (now = next)
next := now + 1 effect

myturn := false

maxout := maxout − 1
next := ∞

Trajectories T : satisfies

constant(myturn, maxout, next)
d(now) = 1

stops when

now = next

Fig. 4. Example automata for A1 and B1 in Theorem 1


