
Using Simulated Exe
ution in Verifying

Distributed Algorithms

Toh Ne Win, Mi
hael D. Ernst, Stephen J. Garland,

Dilsun K�rl�, and Nan
y A. Lyn
h

MIT Laboratory for Computer S
ien
e

ftohn,mernst,garland,dilsun,lyn
hg�l
s.mit.edu

Abstra
t

This paper presents a methodology for proving properties of distributed sys-

tems in whi
h simulated exe
ution assists and enhan
es formal proofs. It is well

known that te
hniques su
h as testing
an in
rease
on�den
e in an implementa-

tion, but
annot by themselves demonstrate
orre
tness. In addition to dete
ting

simple errors qui
kly and to providing intuition about behavior, exe
ution-based

te
hniques
an also reveal unexpe
ted properties, suggest ne
essary lemmas, and

provide information to stru
ture proofs. This paper also des
ribes the use of these

te
hniques in a ma
hine-
he
ked proof of
orre
tness of the Paxos algorithm for

distributed
onsensus.

1 Introdu
tion

Traditionally, exe
ution serves as a prelude to formal veri�
ation. Testing reveals

departures from desired behavior that are
orre
ted (either in the
ode or in the

spe
i�
ation of its behavior) before attempting to prove
ode
orre
t. Testing

via simulated exe
ution
an do the same even in the absen
e of a
omplete

implementation. This paper dis
usses additional ways exe
ution or simulated

exe
ution
an assist in formal veri�
ation, and des
ribes their use in produ
ing

a ma
hine-
he
ked proof of a distributed algorithm.

First, exe
ution
an serve in a more powerful way as a prelude to formal veri-

�
ation. Tools for dynami
 program analysis
an extra
t des
riptions of program

behavior from exe
utions, and programmers
an mat
h the extra
ted des
rip-

tions against their expe
tations. Unlike the traditional use of exe
ution to test

behavior, this use
an reveal unexpe
ted behaviors, not just departures from

anti
ipated behaviors.

Se
ond, exe
ution
an help produ
e the lemmas required for su

essful proofs

of
orre
tness. Unlike human proofs, whi
h are peppered with phrases like \it is

obvious that," ma
hine-
he
ked proofs often require many expli
it lemmas. To

avoid the tedium of enumerating these lemmas by hand, veri�ers
an dis
over

them by using exe
ution and dynami
 program analysis.

Third, information that dire
ts simulated exe
ution to examine interesting

aspe
ts of a program's behavior
an also be used to dire
t a proof of
orre
tness.

For example, programmers may ensure that exe
utions
over the entire range of

expe
ted behaviors by formulating
ase splits that distinguish between normal

and unusual behaviors; these same
ase splits
an also provide helpful ways of

organizing a proof.

We illustrate these uses of exe
ution in
onstru
ting a formal proof of
orre
t-

ness for Paxos, a distributed algorithm for
onsensus [Lam98,PLL00℄. This paper

is
on
erned primarily with a general methodology for verifying distributed algo-

rithms|and with the role exe
ution and automated tools play in that method-

ology|and not with the details of the Paxos algorithm itself. Our methodology

is based on the input/output (I/O) automaton framework [LT89℄ for modeling

and verifying distributed algorithms, in whi
h ea
h
omponent of a system is

represented as an automaton whose external behavior is de�ned by a simple

mathemati
al obje
t
alled a tra
e.

This paper is organized as follows. Se
tion 2 introdu
es the I/O automaton

model, dis
usses the IOA language and toolkit, whi
h support use of this model,

and
ontrasts the toolkit with related tools that use run-time te
hniques to aid

formal veri�
ation. The remainder of the paper presents our exe
ution-based

methodology in more detail, using a proof of the Paxos algorithm as a running

example. Se
tion 3 formulates spe
i�
ations and implementations as I/O au-

tomata, Se
tion 4 des
ribes how these automata are exe
uted, and Se
tion 5

shows how dynami
ally dete
ted invariants reveal properties of an automaton.

Se
tion 6 des
ribes how two automata, one a spe
i�
ation and one an imple-

mentation,
an be exe
uted in lo
k-step, and Se
tion 7 shows how this paired

exe
ution
an be used to
onstru
t a ma
hine-veri�ed proof.

2 Preliminaries

Our methodology uses the I/O automaton model, the IOA language, and three

tools in the IOA toolkit [GL98℄: the IOA interpreter, the LP theorem-prover,

and the Daikon dynami
 invariant dete
tor.

2.1 I/O automata and the IOA language

An I/O automaton is a simple state ma
hine in whi
h transitions between states

are asso
iated with named a
tions, whi
h are
lassi�ed as either input, output,

or internal. The inputs and outputs are external a
tions used for
ommuni
a-

tion with the automaton's environment; internal a
tions are visible only to the

automaton itself. An automaton
ontrols whi
h output and internal a
tions it

performs, but input a
tions are not under its
ontrol. An I/O automaton
on-

sists of its signature, whi
h lists its a
tions; a set of states, some of whi
h are

distinguished as start states; a state-transition relation, whi
h
ontains triples

of the form (state, a
tion, state); and an optional set of tasks (not
onsidered in

this paper).

A
tion � is enabled in state s if there is a state s

0

su
h that (s; �; s

0

) is

a transition of the automaton. Input a
tions are enabled in every state. The

operation of an I/O automaton is des
ribed by its exe
utions s

0

; �

1

; s

1

; : : :, whi
h

are alternating sequen
es of states and a
tions, and by its tra
es, whi
h are the

externally visible behavior o

urring in exe
utions. One automaton implements

another if all its tra
es are also tra
es of the other.

De�nition 1 (Forward simulation). A forward simulation from automaton

A to automaton B is a relation f on states(A) � states(B) with the following

two properties. (1) For every start state a of A, there is a start state b of B su
h

that f(a; b). (2) If a is a rea
hable state of A, b is a rea
hable state of B su
h

that f(a; b), and a

�

! a

0

, then there is a state b

0

of B su
h that f(a

0

; b

0

) and an

exe
ution fragment � of B su
h that b

�

! b

0

and tra
e(�) = tra
e(�).

Theorem 1. If there is a forward simulation relation from A to B, then every

tra
e of A is a tra
e of B [Lyn96℄.

The IOA language provides notations for des
ribing I/O automata and for

stating their properties; it uses Lar
h Shared Language [GHG

+

93℄ spe
i�
ations

to axiomatize the semanti
s of I/O automata and the data types used to des
ribe

algorithms. In IOA, transition relations are de�ned in terms of pre
onditions

and e�e
ts. These
an be written either in an imperative style (as a sequen
e

of assignment,
onditional, and loop statements), or in de
larative style (as a

predi
ate relating state variables in the pre- and post-states, transition param-

eters, and other nondeterministi
ally
hosen parameters). It is also possible to

use a
ombination of these two styles. Nondeterminism appears in IOA in two

ways: expli
itly, in the form of
hoose
onstru
ts in state variable initializations

and the e�e
ts of the transition de�nitions, and impli
itly, in the form of a
tion

s
heduling un
ertainty.

Nondeterminism allows systems to be des
ribed in their most general forms

and to be veri�ed
onsidering all possible behaviors without being tied to a

parti
ular implementation of a system design.

The sample programs in this paper do not exploit the full generality of the

language. They all de�ne primitive (i.e., not
omposite) automata in an imper-

ative style with no expli
it nondeterminism.

2.2 Tools used in the IOA toolkit

The IOA interpreter The IOA interpreter [KCD

+

02a,KCD

+

02b℄ assists users

in formulating and
he
king properties of automata. The interpreter
an simulate

exe
ution either of a single automaton in isolation (
he
king stated assertions

and displaying or logging the automaton's exe
ution) or of two automata running

in lo
kstep. In the latter
ase, a user presents the interpreter with two automata,

a
andidate simulation relation, and a mapping,
alled a step
orresponden
e,

from the a
tions of the lower-level automaton to sequen
es of a
tions of the

higher-level one. The interpreter simulates exe
ution of the low-level automaton,

generates a simulated exe
ution of the high-level automaton indu
ed by the

step
orresponden
e,
he
ks that the two exe
utions have the same tra
e, and

he
ks that the
andidate simulation relation holds throughout the exe
utions.

The IOA interpreter is also known as the \IOA Simulator," but is
alled the

interpreter in this paper to avoid
onfusion with the notions of forward and

ba
kward simulation.

The Lar
h Prover The Lar
h Prover [GG91℄ (LP) is an intera
tive theorem

proving system for multisorted �rst-order logi
. It admits spe
i�
ations of theo-

ries in the Lar
h Shared Language (LSL). The IOA toolkit in
ludes a tool
alled

ioa2lsl [Bog01℄, whi
h translates IOA de�nitions of automata into LSL theories

that des
ribe the operation of the automaton. It also generates proof obligations

for the invariants and simulation relations of the automaton.

The Daikon invariant dete
tor The Daikon invariant dete
tor [ECGN01℄

proposes program properties that are likely to be true. It operates dynami
ally,

by examining values
omputed during exe
ution, postulating and
he
king prop-

erties, and reporting those that pass a battery of statisti
al and other tests. The

te
hnique is unsound, be
ause there is no guarantee that the test suite fully

hara
terizes the exe
ution environment. However, the reported properties are

often true and generally helpful in expli
ating the system under test and/or its

test suite. We a
hieve soundness by using LP to
he
k proofs.

2.3 Related work

Other toolkits, su
h as AsmL [GSV01℄, Mo
ha [AHM

+

98℄, SMV [M
M℄, and

TLC [LY01℄, support exe
ution or veri�
ation of
on
urrent and distributed

systems. The exe
ution is used mainly for debugging and understanding the be-

havior of a system. The IOA toolkit uses exe
ution not only for these purposes,

but also for automati
ally dis
overing program properties that
an be used as

lemmas in formal proofs. Moreover, the fa
ility for exe
uting of pairs of au-

tomata together, mat
hing a
tions of one against those of the other, helps users

in organizing formal proofs of
orre
tness based on simulation relations.

Mo
ha, SMV and TLC use model
he
king as the veri�
ation method. Model

he
king is attra
tive be
ause it requires relatively less expertise than theorem-

proving and it provides
ounter-examples to falsi�ed properties. However, model

he
kers provide no intuition about true properties and
an analyze only a �nite

state spa
e; theorem-provers apply to �nite and in�nite systems alike.

The \invisible invariants" method [PRZ01℄ fa
ilitates automated veri�
ation

of parameterized, �nite-state systems. This method uses model-
he
king te
h-

niques for
al
ulating
andidate invariants, for
he
king their indu
tiveness, and

for proving the veri�
ation
onditions generated by the standard invarian
e rule

of dedu
tive veri�
ation. A key
hara
teristi
 of this method is that invariants

an be proved automati
ally and they need not be shown to a human. By
on-

trast, we regard invariants as a means to inform users about interesting pro-

gram properties they might have overlooked. Invariants dete
ted by Daikon are

intended to be simple and easily readable properties. Additionally, our method-

ology is not limited to �nite-state systems or indu
tively provable properties.

type Node = tuple of lo
ation : Int

type Value = tuple of value: Int

automaton Cons

signature

input fail(i: Node), init(i: Node, v: Value)

output de
ide(i: Node, v: Value)

internal
hooseVal(v: Value)

states

initiated: Set[Node℄ := {}, proposed : Set[Value℄ := {},

hosen : Set[Value℄ := {}, de
ided : Set[Node℄ := {},

failed : Set[Node℄ := {}

transitions

input init(i, v)

ef f i f :(i 2 failed) ^ :(i 2 initiated) then

initiated := initiated [{i};

proposed := proposed [{v}

f i

internal
hooseVal(v)

pre v 2 proposed ^
hosen = {}

ef f
hosen := {v};

output de
ide(i, v)

pre i 2 initiated ^ :(i 2 de
ided) ^

:(i 2 failed) ^ v 2
hosen

ef f de
ided := de
ided [{i}

input fail(i)

ef f failed := failed [{i}

Fig. 1. Spe
i�
ation of
onsensus in IOA

3 Spe
ifying automata in IOA

The �rst step in verifying that an implementation is
orre
t with respe
t to a

spe
i�
ation is to de�ne the spe
i�
ation and implementation automata in IOA.

The I/O automaton version of Paxos de�nes a hierar
hy of four automata for

a
hieving
onsensus. The highest-level automaton, Cons, provides a spe
i�
ation

for
onsensus. The lowest-level automaton, Paxos, provides a distributed imple-

mentation. An intermediate-level automaton, Global1, although non-distributed,

aptures how Paxos uses ballots and quorums to a
hieve
onsensus. The
orre
t-

ness proof involves showing the existen
e of a series of forward simulations,

between ea
h pair of su

essive levels in the hierar
hy. Our
ase study examines

the forward simulation between Cons and Global1.

3.1 Spe
i�
ation automaton

Paxos implements distributed
onsensus in an asyn
hronous system in whi
h

individual pro
esses
an fail. Suppose that I is a �nite set of nodes representing

the pro
esses in the system and V is the set of possible
onsensus values. Pro-

esses in I may propose values in V . The
onsensus servi
e is allowed to return

de
isions to pro
esses that have proposed values. It must satisfy two
onditions:

all nodes must re
eive the same value (\agreement") and that value must have

been proposed by some pro
ess (\validity").

The signature of the spe
i�
ation automaton Cons (Figure 1)
ontains an

input a
tion init(i,v), representing the proposal of value v by pro
ess i, an

internal a
tion
hooseVal(v), representing the
hoi
e of a
onsensus value v, an

output a
tion de
ide(i,v), representing the report of the
onsensus value to

pro
ess i, and an input a
tion fail(i), representing the failure of pro
ess i.

The automaton provides the required agreement and validity guarantees: only a

single
onsensus value
an be
hosen, and that value must have been previously

proposed.

3.2 Implementation automaton

The automaton Global1 (Figure 2) spe
i�es an algorithm that implements
on-

sensus in a non-distributed setting. This automaton uses a totally ordered set of

ballots for values, one of whi
h may eventually be
hosen as the
onsensus value

if suÆ
ient approval is
olle
ted from the pro
esses in the system.

In addition to the external a
tions of the automaton Cons, the signature of

Global1 in
ludes internal a
tions for making ballots, assigning them values, and

voting for or abstaining from ballots. The automaton Global1 determines the

fate of a ballot by
onsidering the a
tions of quorums, whi
h are �nite subsets

of I , on that ballot. Global1 allows a ballot to su

eed only if every node in a

quorum has voted for it.

4 Simulating exe
ution of an automaton with the IOA

toolkit

The se
ond step in verifying the
orre
tness of an implementation using the IOA

toolkit is to test its behavior by simulating its exe
ution. The IOA interpreter

simulates exe
ution of an I/O automaton on a single ma
hine, allowing the user

to help sele
t the exe
utions and to propose invariants for the interpreter to

he
k.

The interpreter requires that IOA programs be transformed into a form suit-

able for exe
ution. For example, quorums in Paxos have to be initialized opera-

tionally, whereas they were spe
i�ed de
laratively in the original I/O automaton

model. Aside from su
h bookkeeping issues, the
ru
ial problem in this transfor-

mation is resolving nondeterminism. The IOA interpreter solves this problem by

requiring the user to supply a program,
alled an NDR program, to ea
h sour
e

of nondeterminism in an automaton [KCD

+

02a,KCD

+

02b℄.

In our
ase study, we wrote several NDR programs to exe
ute Global1 with

di�erent interleavings of a
tions,
ausing some nodes to fail and some to abstain

from a ballot. For example, the NDR program statement

f i re output de
ide ([4℄, [1℄);

auses the IOA interpreter to exe
ute the de
ide a
tion with the given argu-

ments. We did not use stru
tured test generation methods (e.g.,
ode
overage)

to produ
e the NDR programs; instead, we simply sele
ted exe
utions that exhib-

ited what we felt was the normal behavior of the automaton (and that exer
ised

every a
tion). In our experien
e, su
h an intuitive s
heduling is adequate for

the purpose of dynami
 invariant dete
tion. However, as noted in Se
tion 5.2, a

type Ballot = tuple of ordering : Int

automaton Global1

signature

input fail(i: Node), init(i: Node, v: Value)

output de
ide(i: Node, v: Value)

internal start(theNodes : Set[Node℄), makeBallot(b: Ballot),

abstain (i: Node, B: Set[Ballot ℄), assignVal(b: Ballot , v:Value),

vote(i: Node, b: Ballot), internalDe
ide(b: Ballot)

states

initiated: Set[Node℄ := {}, proposed : Set[Value℄ := {},

de
ided : Set[Node℄ := {}, failed : Set[Node℄ := {},

ballots : Set[Ballot ℄ := {}, su

eeded: Set[Ballot ℄ := {},

val: Array[Ballot , Null[Value ℄℄ :=
onstant (nil),

voted : Array[Node, Set[Ballot ℄℄ :=
onstant ({}),

abstained: Array[Node, Set[Ballot ℄℄ :=
onstant ({})

quorums : Set[Node℄,

dead: Set[Ballot ℄ := {}

transitions

internal start(theNodes)

ef f quorums := delete ([1℄, theNodes);

for i: Node in theNodes do voted[i℄ := {};

abstained[i℄ := {} od;

input init(i, v)

ef f % As in Cons (Figure 1)

input fail (i)

ef f failed := failed [{i}

internal makeBallot(b)

pre : (b 2 ballots);

ef f ballots := ballots [{b};

internal assignVal(b, v)

pre b 2 ballots ^ val[b℄ = nil ^ v 2 proposed

^ 8 b

0

:Ballot (b

0

.ordering < b.ordering)

val[b

0

℄ = embed(v) _ b

0

2 dead)

ef f val[b℄ := embed(v)

internal vote(i, b)

pre i 2 initiated ^ :(i 2 failed) ^ b 2 ballots ^ :(b 2 abstained[i℄)

ef f voted[i℄ := voted[i℄ [{b}

internal abstain (i, B)

pre i 2 initiated ^ :(i 2 failed) ^ voted[i℄ \ B = {}

ef f abstained[i℄ := abstained[i℄ [B;

for aBallot :Ballot in B do

i f 8 aNode:Node (aNode 2 quorums) aBallot 2 abstained[aNode℄)

then dead := insert (aBallot , dead);

f i ;

od;

internal internalDe
ide(b)

pre b 2 ballots ^ 8 j:Node (j 2 quorums) b 2 voted[j℄)

ef f su

eeded := su

eeded [{b}

output de
ide(i, v)

pre i 2 initiated ^ :(i 2 de
ided) ^ :(i 2 failed)

^ 9 b:Ballot (b 2 su

eeded ^ embed(v) = val[b℄)

ef f de
ided := de
ided [{i}

Fig. 2. A ballot-based implementation of
onsensus in IOA

preliminary test run reported an unexpe
ted invariant, whi
h indi
ated a (sub-

sequently
orre
ted) de�
ien
y in the test data. In another
ase study, involving

the Peterson mutual ex
lusion algorithm, use of the IOA simulator un
overed a

bug in the IOA trans
ription of the implementation.

5 Dynami
ally dete
ting likely invariants

A proof of a simulation relation often depends on invariants and on auxiliary

lemmas; ma
hine veri�
ation requires that su
h bookkeeping details be made

expli
it. These parts of the proof are usually not the most interesting parts

and also tend to be relatively simple; thus, automating them holds promise. We

attempt to automati
ally generate invariants and lemmas by use of dynami

invariant dete
tion.

The Daikon invariant dete
tor is a run-time tool that proposes invariants

based on program exe
utions [ECGN01℄. It examines the values that a program

omputes, generalizes over them, and reports the generalizations in the form of

IOA invariants. Daikon's heuristi
s and analyses result in output in the form

of a formal spe
i�
ation that often mat
hes what a human would have writ-

ten [NE02℄. Three potential problems with the te
hnique are that it is unsound,

that it is in
omplete, and that the reported properties are not guaranteed to be

useful. We dis
uss Daikon's output and how to
ope with the potential problems.

5.1 Daikon results for the
ase study

For Paxos, Daikon analysis produ
ed 23 invariants, four of whi
h were helpful

in the simulation relation proof in Se
tion 7. The four were:

Inv1: 8 anIndex :Node (size(voted[anIndex ℄ \ abstained[anIndex ℄) = 0)

Inv2: val.values.val(nonNull) � proposed

Inv3: size(su

eeded \ dead) = 0

Inv5: su

eeded � ballots

We have added the names Invi for
onvenien
e in this presentation.

A full proof of the Paxos simulation relation required six invariants: �ve for

the simulation relation proper, and one more for one of the invariants. The two

missing invariants were:

Inv4: 8 b:Ballot 8 b

0

:Ballot

(val[b℄ 6= nil ^ b

0

< b) val[b

0

℄ = val[b℄ _ b

0

2 dead(abstained))

Inv6: 8 b_Inv6:Ballot

(b_Inv6 2 su

eeded) 9 q_Inv6:Set[Node℄ 8 n_Inv6:Node

(q_Inv6 2 wquorums ^ (n_Inv6 2 q_Inv6) b_Inv6 2 voted[n_Inv6 ℄)))

These two invariants are outside Daikon's grammar, so it neither
he
ked nor

reported them. (Daikon does not report invariants with existential quanti�ers,

nor does it report those with more than a given number of subterms.)

5.2 Dis
ussion of dynami
ally dete
ted invariants

We now dis
uss how to
ope with potential problems in the invariant dete
tor

output.

First, dynami
 invariant dete
tion is unsound: reported properties are true

over the test suite, but, as with all exe
ution-based te
hniques, there is no guar-

antee that the test suite fully
hara
terizes the exe
ution environment of the

program. This does not hinder us for two reasons. First, we use Daikon's out-

put to help in proposing, understanding, and verifying program properties, but

soundness is provided by the theorem prover. Se
ond, most of the output in our

ase study was
orre
t. Most false fa
ts Daikon produ
ed were easily-
orre
ted

artifa
ts of the test suite (exe
ution s
heduling). For example, in one set of exe-

utions, Daikon reported that the size of the failed variable was a
onstant. We

orre
ted this by randomizing failures in our NDR program, thereby improving

the quality of the test suite for its use in Se
tion 6. In the general, however,

simply
overing every a
tion seems to be adequate.

Se
ond, dynami
 invariant dete
tion is in
omplete: the proposed invariants

may be insuÆ
ient for veri�
ation, be
ause some true invariants are not reported.

Daikon restri
ts the set of invariants it
he
ks for two reasons: to
onserve run-

time and to redu
e the number of false positives that it reports (the more prop-

erties it
he
ks, the larger the number of false properties it will report). In our

ase study, we had to add Inv4 and Inv6 to the set proposed by Daikon. We did

not �nd this a hindran
e be
ause our methodology does not aim for
ompletely

automati
 veri�
ation. Rather, we aim to redu
e human e�ort|parti
ularly

non-imaginative e�ort. Qualitatively, we believe the output did so, by providing

four of the six required invariants. Some assistan
e was better than none, even

though work remained.

It is notable that Inv3, while true and ne
essary for the proof, was not prov-

able in isolation: establishing it required use of Inv6. In other words, Daikon

was able to postulate a simple property with a
ompli
ated proof, prompting a

user to �nd that proof. In addition to ni
ely de
omposing the proof into parts,

this demonstrates a strength of our te
hnique: it is easy to dynami
ally
he
k

properties that may have quite
ompli
ated stati
 proofs and thus are likely to

be beyond the
apabilities of stati
 tools.

Third, some reported properties may be true but not useful. As an example,

Daikon reported de
ided � initiated (and a number of other properties), but

we did not use that fa
t in the proof. Daikon uses heuristi
s to prune useless fa
ts,

for instan
e, by limiting output based on variable types. However, it is impossible

for a tool to know what a human will �nd desirable in a given situation. We found

that although there were over a dozen true but irrelevant invariants, it was easy

to pass over the uninteresting ones|and examining them helped us solidify

our understanding of the algorithm and the implementation. Thus, a moderate

amount of extra information does not distra
t or disable users.

Finally, the reported properties may be more than are needed for a proof: a

proof a

epted by a theorem-prover may use more invariants than are stri
tly

ne
essary, thus obs
uring the essential argument. We believe it is better to �rst

obtain a working, ma
hine-veri�ed proof, and then to redu
e it after the fa
t.

Automating this task (possibly following Rintanen [Rin00℄) is future work. We

did not have to perform su
h a redu
tion in our
ase study.

forward simulation from Global1 to Cons:

Cons.initiated = Global1 .initiated ^

Cons.proposed = Global1 .proposed ^

Cons.de
ided = Global1 .de
ided ^

Cons.failed = Global1 .failed ^

8 v:Value (v 2 Cons.
hosen ,

9 b:Ballot (b 2 Global1 .su

eeded ^ Global1 .val[b℄ = embed(v)))

proof

init ia l ly Cons = [{}, {}, {}, {}, {}℄

for internal start(S: Set[Node℄, B: Set[Ballot ℄) ignore

for input init(i: Node, v: Value) do f ire input init(i, v) od

for input fail(i: Node) do f ire input fail(i) od

for output de
ide(i: Node, v: Value) do f ire output de
ide(i, v) od

for internal makeBallot(b: Ballot) ignore

for internal abstain (i: Node, B: Set[Ballot ℄) ignore

for internal vote(i: Node, b: Ballot) ignore

for internal assignVal(b: Ballot , v: Value) do

i f :(b 2 Global1 .su

eeded) then ignore

else i f 9 b:Ballot (b 2 Global1 .su

eeded ^ Global1 .val[b℄ 6= nil) then ignore

else f ire internal
hooseVal(v)

f i od

for internal internalDe
ide(b: Ballot) do

i f (b 2 Global1 .su

eeded) then ignore

else i f (Global1 .val[b℄ = nil) then ignore

else i f 9 b:Ballot (b 2 Global1 .su

eeded ^ Global1 .val[b℄ 6= nil) then ignore

else f ire internal
hooseVal(Global1 .val[b℄.val)

f i od

Fig. 3. Forward simulation relation and step
orresponden
e (proof blo
k) from

Global1 to Cons

6 Paired exe
ution

As noted in Se
tion 2.2, users
an also exploit the IOA interpreter in formu-

lating and
he
king the validity of a forward simulation relation, as they work

toward the goal of proving the
orre
tness of an implementation with respe
t to

a spe
i�
ation.

A forward simulation relation is a predi
ate that relates the states of two

automata (see De�nition 1). Figure 3
ontains a
andidate forward simulation

relation from Global1 to Cons. The simulation relation is just a predi
ate relat-

ing the states of the two automata. It does not spe
ify how ea
h step in the

implementation Global1
orresponds to a sequen
e of steps in the spe
i�
ation

Cons. In general, there might be multiple step
orresponden
es that preserve the

simulation relation; even if there is only one, it
an be diÆ
ult to �nd it. Hen
e

Figure 3 also
ontains a \proof blo
k," whi
h des
ribes a step
orresponden
e for

use as an \attempted proof" of the simulation relation. With this proof blo
k,

the paired interpreter
an exe
ute the spe
i�
ation automaton in lo
kstep with

the implementation automaton.

The proof blo
k
ontains two sub-blo
ks,
orresponding to the two properties

needed to show a simulation relation (De�nition 1). The �rst sub-blo
k, started

by initially, shows how to start the spe
i�
ation automaton

1

. The se
ond sub-

1

The set of legal start states of the spe
i�
ation automaton is determined by the

states blo
k in its
ode as usual; the initially blo
k pi
ks a parti
ular start state,

whi
h may depend on the start state of the implementing automaton.

blo
k
ontains an entry for ea
h a
tion of the low-level automaton; this entry

provides an algorithm for produ
ing a high-level exe
ution fragment. A proof

se
tion may also
ontain a third sub-blo
k that de
lares auxiliary variables used

by the step
orresponden
e.

In Figure 3, the proposed simulation relation is the identity on all state

variables of Cons ex
ept
hosen, whi
h is not a state variable of Global1. The

simulation relation de�nes
hosen in Cons to
ontain a value v if and only if

there is a su

essful ballot in Global1 with value v. The proof blo
k is straight-

forward for the start state and for the external a
tions: ea
h external a
tion

in the low-level exe
ution is mat
hed by the a
tion with the same name in the

high-level automaton. The internal a
tions start, makeBallot, abstain, and vote

are mat
hed by an empty exe
ution sequen
e of the automaton Cons.

The IOA interpreter reveals the need for the
areful treatment of the internal

a
tions assignVal and internalDe
ide in Figure 3. Given a naive treatment

for internal assignVal(b: Ballot , v: Value) ignore

for internal internalDe
ide(b: Ballot)

do f ire internal
hooseVal(Global1 .val[b℄.val) od

for these a
tions in the proof blo
k, the interpreter
at
hes two problems with

the purported step
orresponden
e. First, given a (legal) s
hedule that exe
utes

internalDe
ide twi
e in Global1, the interpreter dis
overs that the pre
ondition

for
hooseVal fails the se
ond time it is exe
uted in the lo
kstep exe
ution of

Cons. Se
ond, assignVal needs to �re
hooseVal if a ballot has been de
ided

internally but does not yet have a value assigned; hen
e we must �re
hooseVal

when �ring assignVal, but only if no other ballot in Global1.su

eeded has a

non-nil value.

Most of the above
ase analysis is ne
essary be
ause Global1 allows ballots

to be voted on (and to su

eed) before they are assigned values. This nondeter-

minism makes the algorithm more
exible, but the proof a bit longer.

7 Verifying a simulation relation in LP

Sin
e a paired exe
ution provides only empiri
al eviden
e for the
orre
tness of

a simulation relation, it is desirable to supplement this eviden
e with a proof|

ideally, a proof
he
ked by an automated tool su
h as LP. The uses of simulated

exe
utions des
ribed in Se
tions 5 and 6 assist the LP user in
onstru
ting su
h a

proof that the purported forward simulation relation in Figure 3 has the required

properties. First, the proof blo
k of the paired exe
ution provides an outline for

the proof. Se
ond, invariants suggested by Daikon provide insight and
an save

the user time in �nding auxiliary invariants needed for veri�
ation.

The LP proof that the purported simulation relation satis�es property (1) of

De�nition 1 is straightforward. The only intera
tion required from the user is to

supply the start state of Cons spe
i�ed in the initially se
tion of Figure 3 as a

\witness" for an existential quanti�er:

prove start(a:States[Global1 ℄)) 9 b:States[Cons℄ (start(b) ^ F(a, b)) by)

resume by spe
ializing b to [{}, {}, {}, {}, {}℄

Given this witness, LP automati
ally rewrites the
onje
ture and �nds that

start(b) and F(a, b) are both true, thereby
ompleting the proof.

The LP proof that the purported simulation relation satis�es property (2)

of De�nition 1, being lengthier, bene�ts to a greater extent from the results in

earlier se
tions. This proof pro
eeds by
ases, one for ea
h a
tion of the imple-

mentation automaton Global1. In ea
h
ase, the user must supply an exe
ution

fragment � of Cons, whi
h is readily available from the for statements in the

proof blo
k in Figure 3: ea
h a
tion referred to in a �re statement is just an

element of the witness exe
ution, while the ignore statement represents the null

exe
ution. For the init, fail, makeBallot, abstain, and vote a
tions, the user

need supply nothing more: LP �nishes the proof automati
ally. For example, to

guide the proof for the init a
tion, it suÆ
es to type

resume by spe
ializing beta to init(n, v) * {}

Only a trivial amount of additional guidan
e (telling LP to work harder) is

needed for the de
ide a
tion.

The
ases for the assignVal and internalDe
ide a
tions are themselves fur-

ther divided into sub
ases, in a

ordan
e with the for statements for those a
-

tions in the proof blo
k. In addition, the proof in these
ases uses invariants Inv1

through Inv5. Invariant Inv2 is used when ChooseVal is the witness exe
ution for

InternalDe
ide to show that the value being
hosen belongs to Cons.proposed.

The other four, whi
h show that all ballots not in Global1.dead have identi-

al or nil values, help show that
hanges to Global1.su

eeded and Global1.val

preserve the simulation relation.

Of
ourse, the invariants used to establish the simulation relation must be

veri�ed themselves. Here too, the interpreter and Daikon provide help. First,

invariants sometimes require other invariants in their proofs. In the
ase study,

only Inv3 required auxiliary invariants: Inv1 and Inv6. Daikon dete
ted one of

these. Se
ond, the statement of
ompli
ated invariants su
h as Inv6
an be tested

via simulated exe
ution; on
e stated properly, the proof of this invariant was

rather simple.

Our te
hniques do not
ompletely eliminate the need for human guidan
e

in proving invariants and simulation relations. They
an automati
ally dis
over,

and prove with little human assistan
e, invariants su
h as Inv1, Inv2, and Inv5.

They
annot yet dis
over invariants su
h as Inv4 and Inv6, even though their

proofs are simple. And although they dis
over invariant Inv3, whi
h is simple,

the proof of this invariant using LP requires moderate human guidan
e.

8 Con
lusion

Theorem provers are the only tools that
an soundly reason about general in-

�nite state systems, leading to guarantees of
orre
tness or other properties. A

ma
hine-
he
ked proof provides more assuran
e than a hand proof, but it also

arries a
ost in terms of human intera
tion. We propose a methodology that

redu
es but does not eliminate the human e�ort required for formally proving

properties of programs. In parti
ular, the methodology partially automates some

of the tedious, low-level aspe
ts of using a theorem prover, freeing the user to

fo
us on the proof itself.

The methodology integrates simulated exe
ution|running a distributed al-

gorithm over a test suite on a unipro
essor|with theorem proving. Exploratory

analysis by experimenting with a system is a well-known te
hnique for building

intuition and performing inexpensive sanity
he
ks. We extend the use of run-

time te
hniques in two ways.

First, we use a dynami
 invariant dete
tor to generalize over observed ex-

e
utions, reporting logi
al properties that are likely to be true of the imple-

mentation. This te
hnique rei�es properties that would otherwise have to be

synthesized by a person. These properties
an reveal unexpe
ted properties of

the implementation,
an buttress understanding more e�e
tively than merely ex-

amining exe
ution tra
es, and
an provide invariants and lemmas that simplify

proofs and redu
e theorem-proving e�ort.

Se
ond, we observe that the e�ort to build good test suites
an be re-used in

theorem-prover s
ripts: the proof s
ripts often mirror the form of the s
ripts for

driving paired exe
utions, and it pays to get these s
ripts right before investing

e�ort in attempting a formal proof.

We have illustrated the use of the methodology, and of a toolset that supports

the methodology, by means of a
ase study that formally proves the
orre
tness

of an implementation of
onsensus based on Lamport's Paxos proto
ol.

Referen
es

[AHM

+

98℄ Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer, Sriram K.

Rajamani, and Serdar Tasiran. Mo
ha: Exploiting modularity in model
he
king. In

Pro
eedings of the Tenth International Conferen
e on Computer-aided Veri�
ation,

volume 1427 of Le
ture Notes in Computer S
ien
e 1427, pages 521{525, 1998.

[Bog01℄ Andrej Bogdanov. Formal veri�
ation of simulations between I/O automata.

Master's thesis, Department of Ele
tri
al Engineering and Computer S
ien
e, Mas-

sa
husetts Institute of Te
hnology, Cambridge, MA, 2001.

[ECGN01℄ Mi
hael Ernst, Jake Cokrell, William G. Grisworld, and David Notkin.

Dynami
ally dis
overing likely program invariants to support program evolution.

IEEE Transa
tions on Software Engineering, 27(2):1{25, 2001.

[GG91℄ Stephen Garland and John Guttag. A guide to LP, the Lar
h Prover. Te
hni
al

report, DEC Systems Resear
h Center, 1991. Updated version avaliable at URL

http://nms.l
s.mit.edu/Lar
h/LP.

[GHG

+

93℄ John V. Guttag, James J. Horning, S. J. Garland, K. D. Jones, A. Modet,

and J. M. Wing. Lar
h: Languages and Tools for Formal Spe
i�
ation. Texts and

Monographs in Computer S
ien
e. Springer-Verlag, New York, 1993.

[GL98℄ Stephen J. Garland and Nan
y A. Lyn
h. The IOA language and toolset:

Support for designing, analyzing, and building distributed systems. Te
hni
al Report

MIT/LCS/TR-762, Laboratory for Computer S
ien
e, Massa
husetts Institute of

Te
hnology, Cambridge, MA, August 1998. URL http://groups.
sail.mit.edu/tds/

papers/Lyn
h/IOA-TR-762.ps.

[GSV01℄ Yuri Gurevi
h, Wolfram S
hulte, and Margus Veanes. Toward indus-

trial strength abstra
t state ma
hines. Te
hni
al Report MSR-TR-2001-98, Mi-

rosoft Resear
h, 2001. URL for software http://www.resear
h.mi
rosoft.
om/

foundations/asml/.

[KCD

+

02a℄ Dilsun K�rl�, Anna Chefter, Laura Dean, Stephen J. Garland, Nan
y A.

Lyn
h, Toh Ne Win, and Antonio Ramirez-Robredo. The IOA simulator. Te
hni
al

Report MIT-LCS-TR-843, MIT Laboratory for Computer S
ien
e, July 2002.

[KCD

+

02b℄ Dilsun K�rl�, Anna Chefter, Laura Dean, Stephen J. Garland, Nan
y A.

Lyn
h, Toh Ne Win, and Antonio Ramirez-Robredo. Simulating nondeterministi

systems at multiple levels of abstra
tion. In Pro
eedings of Tools Day 2002, pages

44{59, Brno, Cze
h Republi
, August 2002. Also available as Masaryk University

Te
hni
al Report FI MU-RS-2002-05.

[Lam98℄ Leslie Lamport. The part-time parliament. ACM Transa
tions on Computer

Systems, 16(2):133{169, May 1998.

[LT89℄ Nan
y A. Lyn
h and Mark R. Tuttle. An introdu
tion to Input/Output au-

tomata. CWI-Quarterly, 2(3):219{246, September 1989.

[LY01℄ Leslie Lamport and Yuan Yu. TLC { The TLA+ Model Che
ker. Compaq

Systems Resear
h Center, Palo Alto, California, 2001. URL http://resear
h.

mi
rosoft.
om/users/lamport/tla/tl
.html.

[Lyn96℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, In
.,

San Mateo, CA, Mar
h 1996.

[M
M℄ Kenneth L. M
Millan. The SMV Language. Caden
e Berkeley Labs, 2001

Addison Street, Berkeley, CA 94 704, USA. URL http://www.
is.ksu.edu/santos/

smv-do
/.

[NE02℄ Jeremy W. Nimmer and Mi
hael D. Ernst. Automati
 generation of program

spe
i�
ations. In Pro
eedings of the 2002 International Symposium on Software Test-

ing and Analysis (ISSTA), pages 232{242, Rome, Italy, July 22{24, 2002.

[PLL00℄ Roberto De Pris
o, Butler Lampson, and Nan
y Lyn
h. Fundamental study:

Revisiting the Paxos algorithm. Theoreti
al Computer S
ien
e, 243:35{91, 2000.

[PRZ01℄ Amir Pnueli, Sitvanit Ruah, and Lenore Zu
k. Automati
 dedu
tive veri�-

ation with invisible invariants. In Tools and Algorithms for the Analysis and Con-

stru
tion of Systems (TACAS), volume 2031 of LNCS, pages 82{97, Genova, Italy,

April 2{6, 2001.

[Rin00℄ Jussi Rintanen. An iterative algorithm for synthesizing invariants. In Pro
eed-

ings of the Seventeenth National Conferen
e on Arti�
ial Intelligen
e and Twelfth

Conferen
e on Innovative Appli
ations of Arti�
ial Intelligen
e, pages 806{811,

Austin, TX, July 30{August 3, 2000.

A A s
hedule blo
k for exe
uting Global1

Following is a sample s
hedule blo
k for Global1, whi
h produ
es the output

in Appendix B. The full test suite, used for our runtime analysis with Daikon,

employs more sophisti
ated
onstru
ts, su
h as loops and
onditionals, along

with randomized ballot
reation. We omit it here to
onserve spa
e.

s
hedule

states

theNodes : Set[Node℄ := insert ([0℄, insert ([1℄, insert ([2℄, {}))) [

insert ([3℄, insert ([4℄, insert ([5℄, {})))

do

f ire internal start(theNodes);

f i re input init ([0℄, [1℄);

f i re input init ([1℄, [2℄);

f i re input fail([5℄);

f i re internal makeBallot([0℄);

f i re input init ([2℄, [1℄);

f i re input init ([4℄, [3℄);

f i re internal assignVal([0℄, [1℄);

f i re internal vote ([0℄, [0℄);

f i re internal vote ([1℄, [0℄);

f i re internal vote ([2℄, [0℄);

f i re internal vote ([4℄, [0℄);

f i re input init ([3℄, [2℄);

f i re internal makeBallot([1℄);

f i re internal abstain ([3℄, {[0℄});

f i re internal assignVal([1℄, [1℄);

f i re internal makeBallot([2℄);

f i re internal abstain ([0℄, {[1℄});

f i re internal abstain ([1℄, {[1℄});

f i re internal abstain ([2℄, {[1℄});

f i re internal abstain ([3℄, {[1℄});

f i re internal assignVal([2℄, [1℄);

f i re internal vote ([0℄, [2℄);

f i re internal vote ([1℄, [2℄);

f i re internal vote ([2℄, [2℄);

f i re internal vote ([3℄, [2℄);

f i re input fail([0℄);

f i re internal internalDe
ide([2℄);

f i re output de
ide ([1℄, [1℄);

f i re output de
ide ([4℄, [1℄);

od

B Paired interpreter output for Global1

Following is the beginning of the output of a paired exe
ution of Global1 and

Cons, in whi
h exe
ution of Global1 is driven by the s
hedule blo
k shown in

Exhibit A and exe
ution of Cons is driven by the proof blo
k of the forward

simulation relation.

1: internal start(([0℄ [1℄ [2℄ [3℄ [4℄ [5℄)) in automaton Global1

2: input init([0℄, [1℄) in automaton Global1

2: input init([0℄, [1℄) in automaton Cons

3: input init([1℄, [2℄) in automaton Global1

3: input init([1℄, [2℄) in automaton Cons

4: input fail([5℄) in automaton Global1

4: input fail([5℄) in automaton Cons

5: internal makeBallot([0℄) in automaton Global1

6: input init([2℄, [1℄) in automaton Global1

6: input init([2℄, [1℄) in automaton Cons

