
The IOA Simulator 1Dilsun K�rl� Kaynar, Anna Chefter, Laura Dean,Stephen Garland, Nan
y Lyn
h, Toh Ne Win, Antonio Ram��rez-RobredoMIT Laboratory for Computer S
ien
e 2July 16, 2002

1Available at URL http://theory.l
s.mit.edu/tds/ioa.html.2Corresponding address: 200 Te
hnology Square, Cambridge, MA 02139, USA, dilsun�theory.l
s.mit.edu.Currently, Chefter is employed by Merill Lyn
h, Dean is employed by Oryxa, and Ram��rez is in the PhDprogram in mathemati
s at Stanford University.

Abstra
tIOA is a high-level distributed programming language based on the formal I/O automatonmodel for asyn
hronous
on
urrent systems. A suite of software tools,
alled the IOA toolkit, hasbeen designed and partially implemented to fa
ilitate the analysis and veri�
ation of systems usingte
hniques supported by the formal model. This paper introdu
es the IOA simulator 1 whi
h is apart of the IOA toolkit.The IOA simulator runs sele
ted exe
utions of an I/O automaton on a single ma
hine, generateslogs of exe
ution tra
es and displays information about the sele
ted exe
utions. The simulator alsohas the
apability to simulate pairs of I/O automata, allowing users to
he
k purported simulationrelations between automata des
ribed at di�erent levels of abstra
tion.This paper is a primary sour
e of referen
e for both the users and the developers of the IOAsimulator. It des
ribes the design of the simulator fo
using on the me
hanism for resolving nondeter-minism in IOA programs. It in
ludes a
olle
tion of small examples to illustrate the basi

on
eptsregarding the simulation of IOA programs, and a larger tutorial example that demonstrates howto use the simulator. The �nal se
tion of the paper gives information about the implementation ofthe simulator.A
knowledgements This work was funded by A
er In
., Delta Ele
troni
s In
., HP Corp., NTTIn
., Nokia Resear
h Center, and Philips Resear
h under the MIT Proje
t Oxygen partnership, byDARPA through the OÆ
e of Naval Resear
h under
ontra
t number N66001-99-2-891702, byNTT under
ontra
t number MIT9904-12, by NSF under
ontra
t number ACI-9876931 and byAFOSR-ONR under
ontra
t number F49620-94-1-0199.

1The instru
tions for obtaining the related software
an be found at http://theory.l
s.mit.edu/tds/ioa.html.

Contents1 Introdu
tion 11.1 Overview . 11.2 Purpose of simulation . 21.3 Design goals . 21.4 How to use this do
ument . 32 I/O automata and the IOA language 32.1 Theoreti
al ba
kground . 32.2 The IOA language . 52.3 Future resear
h ideas . 53 Simulation of I/O automata 53.1 Simulation and nondeterminism . 63.2 Resolution of nondeterminism . 63.3 The simulator algorithm . 103.4 Invariant
he
king . 133.5 Dynami
 dete
tion of invariants . 133.6 Future resear
h ideas . 144 Paired simulation 164.1 Simulation relations . 164.2 En
oding step
orresponden
es . 174.3 The paired simulator algorithm . 204.4 Future resear
h ideas . 205 Mutual ex
lusion: A Tutorial example 235.1 The Mutual ex
lusion problem . 235.2 Spe
i�
ation of mutual ex
lusion for three pro
esses 245.3 Levels of abstra
tion and simulation . 276 Simulator-related extensions to the IOA language 356.1 Resolution of nondeterminism . 356.2 Labeling transition de�nitions . 366.3 Labeling invariants . 376.4 Paired simulation . 377 Implementation of the simulator 387.1 The IOA toolkit ar
hite
ture . 387.2 The Intermediate language and IL parser . 397.3 Implementation of the IL . 417.4 Simulator data types . 417.5 Testing and implementation . 42A Simulator outputs 43A.1 Simulator output for Chooser . 43A.2 Simulator output for Fibona

i . 44A.3 Forward simulation from FiniteGreeter to GreeterSpe
 45

A.4 Simulator output for DijkstraInt . 46A.5 Forward simulation from DijkstraInt to MutexEnv . 49B Trait NonDet 51

ii

iii

1 Introdu
tion1.1 OverviewThe development of formal methods for modeling and reasoning about distributed systems is oneof the major resear
h a
tivities within the Theory of Distributed Systems Group at MIT. Theinput/output automaton (I/O automaton) model [LT89, Lyn96℄
onstitutes the basis of the workon formal methods. It is a labeled transition system model suitable for des
ribing asyn
hronous
on
urrent systems [Lyn96℄.The I/O automaton model in
orporates the notion of abstra
tion to enable viewing systemsat multiple levels of abstra
tion. A system
an be �rst des
ribed at a high level of abstra
tion,
apturing only the essential requirements about its behavior, and then be su

essively re�ned untilthe desired level of detail is rea
hed. The model de�nes what it means for an automaton toimplement another and introdu
es the notion of a simulation relation as a suÆ
ient
ondition toprove an implementation relation between two automata.The notion of parallel
omposition, also in
luded in the I/O automaton model, fa
ilitates mod-ular design and analysis of distributed systems. The parallel
omposition operator in the modelallows one to
onstru
t large and
omplex systems from smaller and simpler subsystems and studytheir behavior in terms of the behaviors of its
omponents.Work on the I/O automaton model in
ludes the de�nition of a formal language|the IOAlanguage [GL00, GL98℄|for des
ribing I/O automata. The IOA language
an be regarded as a high-level distributed programming language. Its design has been driven by the motivation to supportboth simulation and veri�
ation. A suite of software tools|the IOA toolkit|is being developed tofa
ilitate the design, analysis, and development of systems within the I/O automaton framework.The toolkit
onsists of a front-end that
he
ks whether system des
riptions (IOA programs)
omplywith the IOA syntax and stati
 semanti
s, and produ
es an intermediate representation of the
odeto be used by the ba
k-end tools. The ba
k-end tools in
lude the IOA simulator, a
ode generatorand translators to a range of representations suitable for use with some theorem provers and model-
he
king tools. The state of the tool development proje
t is reported on our WWW pages [TDS℄.This do
ument is
on
erned with the IOA simulator in parti
ular. We des
ribe the design ofthe simulator, the major issues regarding its implementation and also provide a set of examplesto demonstrate how to use the simulator. The IOA simulator has been developed over a periodof four years by a number of people
ontributing to its design and implementation [TDS℄. It hasbeen the subje
t of the MEng theses of the authors Anna Chefter [Che98℄, Antonio Ramirez [RR00℄and Laura Dean [Dea01℄. This do
ument is intended to be a stand-alone referen
e for the IOAsimulator and refers to the
urrent implementation of the tools unless expli
itly stated otherwise.The idea behind the simulation of a single automaton is rather
onventional. The IOA simulatorruns sele
ted exe
utions of an I/O automaton on a single ma
hine, generates logs of exe
utiontra
es and displays information upon the user's request. The IOA Language allows users to expressinvariants for an automaton. The simulator
he
ks whether these invariants proposed by users aretrue in the sele
ted exe
utions. The IOA simulator also has the
apability to simulate pairs ofI/O automata, allowing users to reason about the behavioral
orresponden
e between automata atdi�erent levels of abstra
tion. The need for this style of reasoning typi
ally arises when a systemis designed by moving through the highest level to the lowest level in the abstra
tion hierar
hy. Inthis
ase, users de�ne a simulation relation whi
h relates the two automata at two di�erent levelsand the IOA simulator
he
ks whether this relation holds in the sele
ted exe
utions. The
apabilityto perform paired simulation in this sense is a very useful feature in distributed system design andanalysis.

1.2 Purpose of simulationFormal
orre
tness proofs for distributed systems
an be long, hard or tedious to
onstru
t. Simula-tion
an be used as a way of testing automata before delving into
orre
tness proofs. The exe
utionof an IOA automaton either reveals bugs or in
reases the
on�den
e that an automaton works asexpe
ted.The simulator
an also assist users in
onstru
ting
orre
tness proofs. By des
ribing a systemor an algorithm as an IOA program and simulating it, a user gains a better understanding of how itworks. This
an guide the strategy to be followed in proving
orre
tness. Moreover, the invariantswhi
h are observed to be true for the simulated exe
utions
onstitute
andidates for useful lemmasin a full
orre
tness proof.The
urrent implementation of the IOA simulator does not aim at providing quantitative in-formation of the kind that would be useful for evaluating the performan
e of an algorithm undervarious
onditions. However, it is
on
eivable that the IOA simulator be used for this purpose bymeans of some extensions to its design and implementation.Simulation in general is an eÆ
a
ious method for exposing possible de�
ien
ies in the design ofsystems and algorithms whi
h
an lead to the
orre
tion of dis
overed errors, revision of proofs ortuning for better performan
e.1.3 Design goalsA key
hallenge in the design of the IOA language has been to provide support for both simulationand veri�
ation in a uni�ed framework. Nondeterminism is favorable in IOA be
ause it allowssystems to be des
ribed in their most general forms and to be veri�ed
onsidering all possiblebehaviors without being tied to a parti
ular implementation of a system design. On the other hand,nondeterminism
ompli
ates simulation, whi
h must
hoose parti
ular exe
utions. The design ofa satisfa
tory me
hanism for resolving nondeterminism is an essential issue
on
erning the designof the simulator. The approa
h adopted by the IOA simulator is des
ribed in greater detail in thefollowing se
tions. We note here the properties that have been identi�ed as desirable properties forthe nondeterminism resolution me
hanism:� Broadness. It should provide several ways to resolve nondeterminism, ea
h suited to di�er-ent situations and appli
ations. For instan
e, it should allow
hoi
es and transitions to beresolved as deterministi
 fun
tions of the automaton's state, or using a pseudorandom numbergenerator, or by querying the user, or any
ombination of these.� Extensibility. It should be suÆ
iently open-ended that future developers and advan
ed users
an tailor it to spe
i�
 needs without too mu
h e�ort. For instan
e, if a new datatypeimplementation is added to the simulator, it should be possible to add useful nondeterminismresolution me
hanisms to go with it.� Usability. It should be reasonably easy to use, and it should not pla
e
umbersome demandsupon the user. The resolution of nondeterminism is an absolute ne
essity for nontrivial uses ofthe simulator, and it would be unfortunate that a la
k of attention to usability
onsiderationsshould dis
ourage its use.1.4 How to use this do
umentThe intended audien
e for this do
ument is both users and developers of the IOA toolkit. Thematerial has been organized so that it should be suÆ
ient to read the �rst 5 se
tions to be able to2

use the IOA simulator and to understand the fundamental ideas behind its design. Se
tion 6 is forreaders who are familiar with the
ore IOA language and are interested in a formal presentation ofthe synta
ti
 extensions made to support simulation. Se
tion 7 is intended for tool developers; itgives an overview of the IOA simulator implementation.2 I/O automata and the IOA languageThis se
tion in
ludes a brief introdu
tion to the I/O automaton model and the IOA Language.See [Lyn96, GLV01℄ for an in-depth introdu
tion. We fo
us only on those notions and language
onstru
ts that are
ru
ial for understanding the material in this do
ument.2.1 Theoreti
al ba
kgroundAn I/O automaton is a simple type of state ma
hine in whi
h the transitions are asso
iated withnamed a
tions. The a
tions are
lassi�ed as either input,output, or internal. The inputs and outputsare used for
ommuni
ation with the automaton's environment, whereas internal a
tions are visibleonly to automaton itself. The input a
tions are assumed not be under the automaton's
ontrol,whereas the automaton itself
ontrols whi
h output and internal a
tions should be performed.An I/O automaton A
onsists of �ve
omponents:� a signature, whi
h lists the disjoint sets of input, output, and internal a
tions of A;� a (not ne
essarily �nite) set of states, usually des
ribed by a
olle
tion of state variables;� a set of start states, whi
h is a non-empty subset of the set of all states;� a state-transition relation, whi
h
ontains triples (known as steps or transitions) of the form(state, a
tion,state); and� an optional set of tasks, whi
h partition the internal and output a
tions of A.An a
tion � is said to be enabled in a state s if there is another state s0 su
h that (s; �; s0) isa transition of the automaton. Input a
tions are enabled in every state. That is to say automataare not able to blo
k input a
tions from o

urring. The external a
tions of an automaton
onsistof its input and output a
tions.2.1.1 Exe
utions and tra
esAn exe
ution fragment of an I/O automaton is either a �nite sequen
e s0; �1; s1; �2; : : : ; �n; sn, oran in�nite sequen
e s0; �1; s1; �2; : : : ; of alternating states si and a
tions �i su
h that si; �i+1; si+1is a transition of the automaton for every 0 � i. An exe
ution is an exe
ution fragment that beginswith a start state. A state is rea
hable if it o

urs in some exe
ution. The tra
e of an exe
ution isthe sequen
e of external a
tions in that exe
ution.2.1.2 Properties and proof methodsInvariant assertions An invariant property of an automaton is any property that is true in allrea
hable states of the automaton. Invariants are typi
ally proved by indu
tion on the number ofsteps in an exe
ution leading to the state in question.
3

Simulation proofs The I/O automaton model aims at providing support for system des
riptionsat multiple levels of abstra
tion. The pro
ess of moving through the series of abstra
tions, fromhighest level to the lowest level is
alled su

essive re�nement. The top level may be a problemspe
i�
ation written in the form of an automaton. The next level des
ribes the system in moredetail with respe
t to the top level. However, the a
tions typi
ally have large granularity, andsimple data stru
tures are used. Lower levels in the abstra
tion hierar
hy
orrespond more dire
tlyto the most optimized implementation of the system. To prove that one automaton implementsanother one higher in the hierar
hy, one needs to show that for any exe
ution of the lower levelautomaton there is a
orresponding exe
ution of the higher level automaton. The notion of asimulation relation fa
ilitates this style of reasoning.De�nition 2.1 (Forward simulation). A forward simulation from automaton A to automatonB is a relation f on states(A)� states(B) with the following properties:1. For every start state a of A, there exists a start state b of B so that f(a; b) holds.2. If a is a rea
hable state of A, b is a rea
hable state of B, f(a; b) holds and a �! a0, then thereexists a state b0 of B and an exe
ution fragment � of B so that b �! b0; f(a0; b0) holds andtra
e(�) = tra
e(�).Theorem 2.1. If there is a forward simulation relation from A to B, then every tra
e of A is atra
e of B.Remark on terminology There is an unfortunate
lash of terminology, due to the dual use ofthe term \simulation". Depending on the
ontext, this term
an refer either to the a
tion of asimulator or to simulation relations as in De�nition 2.1.2.1.3 CompositionThe
omposition operation allows an automaton representing a
omplex system to be
onstru
tedby
omposing automata representing individual system
omponents. The
omposition identi�esa
tions with the same name in di�erent
omponent automata. When any
omponent automatonperforms a step involving a
tion �, so do all
omponent automata that have � in their signatures.A
ountable
olle
tion fSig of signatures is said to be
ompatible if for all i; j 2 I; i 6= j all ofthe following hold:� int(Si) \ a
ts(Sj) = ; where int(Si)) denote the set of internal a
tions in Si, and a
ts(Sj)denotes the set of a
tions in Sj.� out(Si) \ out(Sj) = ; where out(Si) and out(Sj denote the set of output a
tions in (Si) and(Sj) respe
tively.� No a
tion is
ontained in in�nitely many sets a
ts(Si).We say that a
olle
tion of automata is
ompatible if their signatures are
ompatible. The
om-position S = Qi2ISi of a
ountable
ompatible
olle
tion of signatures fSig is de�ned to be thesignature with� out(S) = [i2Iout(Si)� int(S) = [i2Iint(Si) 4

� in(S) = [i2Iin(Si) n [i2Iout(Si)Now, the
omposition A = Qi2IAi of a
ountable,
ompatible
olle
tion of I/O automata fAigi2I
an be de�ned as follows:� sig(A) =Qi2Isig(Ai)� states(A) =Qi2Istates(Ai)� start(A) =Qi2Istart(Ai)� trans(A) is the set of triples (s; �; s0) su
h that, for all i 2 I, if � 2 a
ts(Ai), then (si; �; si0) 2trans(Ai); otherwise si = si0� tasks(A) =Qi2Itasks(Ai)2.2 The IOA languageIn the IOA language, the des
ription of an I/O automaton has four main parts: the a
tion signature,the states, the transitions, and the tasks of the automaton. States are represented by
olle
tions oftyped variables. The transition relation is usually given in pre
ondition-e�e
t style, whi
h groupstogether all transitions that involve a parti
ular a
tion into a single pie
e of
ode. Ea
h de�nitionhas a pre
ondition (indi
ated by the keyword pre), whi
h des
ribes a
ondition on the state thatshould be true before the transition
an be exe
uted, and an e�e
t (indi
ated by the keyword e�)whi
h des
ribes how the state
hanges when the transition is exe
uted. If pre is not spe
i�ed,then it is assumed to always hold. State
hanges are spe
i�ed in terms of the initial state, thetransition parameters, and optional additional parameters, whi
h are
hosen nondeterministi
ally.The
ode may be written either in an imperative style, as a sequen
e of assignment,
onditional,and looping instru
tions, or in de
larative style, as a predi
ate relating state variables in the pre-and post-states, transition parameters, and nondeterministi
 parameters. It is also possible to usea
ombination of these two styles.The IOA language supports des
riptions of systems
omposed from several intera
ting
ompo-nents based on the notion of
omposition in the theory of I/O automata.The sample programs in this paper do not exploit the full generality of the language. We assumethat the automata are pre-
omposed, and restri
t ourselves to a subset of the language that
onsistsof imperative features and nondeterministi

hoi
e statements
onstrained by where predi
ates.2.3 Future resear
h ideasThe
urrent IOA language allows des
ription of distributed systems without any timing-dependen
e.We are interested in extending the language with
onstru
ts to express timing behavior, in
ludingupper and lower bounds on times for various events, and program
onstru
ts su
h as timeouts. Var-ious IOA tools, in parti
ular, the simulator must also be extended to handle these new
onstru
ts.In the longer run we also aim to provide language support for des
ribing and analyzing systemswith probabilisti
 automata and hybrid automata.3 Simulation of I/O automataThis se
tion des
ribes how the simulator is designed fo
using on the IOA language support that itrequires, and the algorithm that it follows to simulate an automaton. We do not treat details su
has the management of operator and sort implementations. The reader is referred to Se
tion 7 forfurther information about this and other software-related issues of the simulator.5

3.1 Simulation and nondeterminismIOA programs allow two kinds of nondeterminism: impli
it nondeterminism whi
h involves thes
heduling of a
tions, and, expli
it nondeterminism, whi
h arises from
hoose statements,
hooseparameters and
hoose expressions in initial assignments. For example:� an automaton
an have multiple enabled a
tions in a given state;� a given enabled a
tion
an have multiple transition de�nitions asso
iated with it;� a given transition de�nition
an take arbitrary a
tual parameter values, as long as they satisfyits where
lause; and� a transition de�nition
an
ontain one or more
hoose statements, ea
h of whi
h may evaluateto an arbitrary value that satis�es the
onstraint in the where
lause.3.2 Resolution of nondeterminismFrom the point of view of an IOA automaton spe
i�
ation, the sour
es of nondeterminism
an beregarded as a bla
k box that
an yield transitions to be s
heduled and values to be assigned tostatements whi
h involve nondeterministi

hoi
e. Thus, the problem of resolving nondeterminism
an be regarded as that of providing an algorithmi
 means of obtaining these values and transitionsas the need for them arises during the simulation of an automaton.The nondeterminism resolution approa
h adopted by the IOA simulator is to assign a program,
alled an NDR program, to ea
h sour
e of nondeterminism in an automaton. Ea
h su
h programis
apable of providing values that resolve a
hoi
e, or determining the transitions to be s
heduled,depending on the
ontext. There is an NDR program
orresponding to every
hoose statement inan automaton, and an NDR program for s
heduling the a
tions of the automaton. We illustrate thekey points of our approa
h by a series of examples based upon an automaton { Chooser { des
ribedas an IOA program.Example 3.1. The automaton Chooser has two a
tions (a
tion1 and a
tion2), and two state vari-ables
hosen and did_
hoose whi
h is initially set to false to indi
ate that no integer has yet been
hosen by the automaton. The transition de�nitions show that a
tion1 is always enabled. Its e�e
tis to nondeterministi
ally
hoose an integer greater than or equal to 10 and assign the variable
hosen to this integer. It also sets the state variable did_
hoose to true. The semanti
s of the IOAlanguage requires that the assignments to
hosen and did_
hoose o

ur atomi
ally. The transitionde�nition for a
tion2 has a parameter, and the a
tion is enabled when an integer has already been
hosen and n is equal to that integer. The o

urren
e of a
tion2 has no e�e
t on the state.automaton Choosersignatureoutput a
tion1output a
tion2 (n: Int)states
hosen : Int,did_
hoose : Bool := falsetransit ionsoutput a
tion1e f f
hosen :=
hoose x: Int where 10 � x;did_
hoose := trueoutput a
tion2 (n)pre did_
hoose ^ n =
hosen 6

This automaton exhibits both expli
it and impli
it nondeterminism. The
hoose statement in thede�nition of transition for a
tion1 is the sour
e of expli
it nondeterminism. After a
tion1 haso

urred at least on
e, both a
tion1 and a
tion2(n) be
ome enabled where the a
tual parametern is equal to the value
hosen by a
tion1. The possibility of more than one a
tion being enabledis the sour
e of impli
it nondeterminism in this automaton.3.2.1 NDR programsTo aid the simulator in resolving nondeterminism a user is required to augment the automatonspe
i�
ation with a s
hedule blo
k and det blo
ks ea
h of whi
h embodies an NDR program. Aprogram in a s
hedule or a det blo
k is used respe
tively for resolving automaton transitions andfor resolving the values of a
hoose statement. Note that this requires modi�
ation of the IOAlanguage syntax as dis
ussed in Se
tion 6.Example 3.2. The automaton Chooser
an be augmented as below with NDR programs.automaton Choosersignatureoutput a
tion1output a
tion2 (n: Int)states
hosen : Int,did_
hoose : Bool := falsetransit ionsoutput a
tion1e f f
hosen :=
hoose x: Int where 10 � xdet do% NDR program to be spe
ifiedod;did_
hoose := trueoutput a
tion2 (n)pre did_
hoose ^ n =
hosens
hedule do% NDR program to be spe
ifiedodThe NDR programs in s
hedule and det blo
ks
an evaluate arbitrary IOA terms to de
ide whi
htransitions to s
hedule, or whi
h values to yield for a
hoi
e. Additionally, they
an evaluateoperators whose implementations perform pseudorandom number generation, or user prompting,to produ
e a result. Two forms of statements { �re statements and yield statements { have beenintrodu
ed to IOA as essential building blo
ks of NDR programs.3.2.2 Fire statementsS
hedule blo
ks use �re statements to spe
ify how the a
tions will be s
heduled by the simulator.A �re statement spe
i�es the parameters of an a
tion and whether it is an input, output or aninternal a
tion. The parameters in these statements may depend on the values of state variablesof the automaton. The NDR me
hanism also supports �re statements with no arguments. Theseare useful under
ir
umstan
es when it would be tedious to write a
omplete s
hedule by hand.When the simulator en
ounters a �re statement without arguments in an NDR
ontext, it
hoosesan appropriate transition to s
hedule a

ording to the following me
hanism. It �rst examines inturn ea
h lo
ally-
ontrolled transition de�nition of the automaton with no parameters. For ea
h of7

them, it evaluates the pre
ondition to see if it is enabled. It
hooses one of the enabled transitionsrandomly and exe
utes it.In the spe
ial
ase of an automaton where all transitions are non-parameterized, the simulator
an be run without a s
hedule blo
k. At ea
h step the simulator exe
utes one of the enabledtransitions. However, there are no guarantees about randomness or
ompleteness. Note that were
ommend the use of s
hedule blo
ks as part of a good programming dis
ipline for simulation.3.2.3 Yield statementsA yield statement is used to spe
ify the values of
hoi
e in a
hoose statement. When the simulatoren
ounters a
hoose statement, it starts exe
uting the NDR program until it en
ounters a yieldstatement. At this point, it uses the value provided by the statement as the value of the
hoosestatement. The
urrent statement of the NDR program is re
orded by the simulator so that thenext time it en
ounters the same
hoose statement, the simulator does not start its NDR programfrom the beginning; rather, it resumes exe
uting it where it left o�. 2Example 3.3. This example illustrates the use of yield and �re statements in NDR programs.The parti
ular det blo
k we have added
auses the
hoi
e to be resolved su

essively to 11, 12,and 13. The s
hedule blo
k has been
oded su
h that the simulator interleaves the exe
utions ofa
tion1 and a
tion2.automaton Choosersignatureoutput a
tion1output a
tion2 (n: Int)states
hosen : Int,did_
hoose : Bool := falsetransit ionsoutput a
tion1e f f
hosen :=
hoose x: Int where 10 � xdet doyield 10; yield 11; yield 12od;did_
hoose := trueoutput a
tion2 (n)pre did_
hoose ^ n =
hosens
hedule dowhile true dof i r e output a
tion1;f i r e output a
tion2(
hosen)ododIt may appear surprising to have a nonterminating while loop in the s
hedule blo
k. This, however,does not
ause a problem sin
e the simulator has been designed so that the number of simulationsteps are spe
i�ed by the user at the beginning of simulation. Se
tion A.1 on page 43 shows theex
erpts from the output of the simulator on the automaton Chooser. The simulator takes as
ommand line arguments the number of transitions to simulate, the name of the automaton tosimulate, and the name of a �le
ontaining the IOA spe
i�
ation of the automaton. For everystep taken by the automaton (in
luding the initialization step), the simulator reports the transitionthat was exe
uted, and the state variables that
hanged. The sample output has been obtained by2The semanti
s of yield and �re statements were inspired by the iterator
onstru
t in the programming languageCLU [LAB+81℄. 8

simulating the automaton for 100 steps. The example in Se
tion 5 gives a detailed explanation ofhow to use the simulator.3.2.4 Labeling transition de�nitionsThe IOA Language allows multiple transition de�nitions to share the same a
tion type, nameand a
tual parameter sorts. In the absen
e of a me
hanism to disambiguate these de�nitions,spe
ifying a
tion names in �re statements alone would not be suÆ
ient to resolve nondeterminism.As a solution to this problem, the simulator in
orporates a fa
ility whereby a user
an augmenta
tion names with
ase indi
ators.Example 3.4. The
ase indi
ator of the transition is lo
al to the primitive automaton in whi
h itis de�ned, and it
an be a number or an alphanumeri
 identi�er as shown in the example below.automaton Unde
idedsignatureoutput hellostatesb: Booltransit ionsoutput hello
ase 1e f f b := trueoutput hello
ase 2e f f b := falses
hedule dowhile true dof i r e output hello
ase 1;f i r e output hello
ase 2odod3.2.5 Alternative methods of resolving nondeterminismIt is sometimes desirable to resolve
hoi
es and s
hedule transitions using pseudorandomness oruser input as information. This issue
an be addressed by providing extra operators that evaluateas random number generators and user prompters. One way to do this is to use a trait su
h asthe one in Se
tion B on page 51. Ea
h of these operators is either
urrently implemented by thesimulator, or is easy to implement with the
urrent software support.Example 3.5. This version of the Chooser automaton uses an operator that yields an integer be-tween 20 and 30 rather than spe
ifying the integers as was the
ase in Example 3.3.uses NonDetautomaton Choosersignatureoutput a
tion1output a
tion2 (n: Int)states
hosen : Int,did_
hoose : Bool := falsetransit ionsoutput a
tion1e f f
hosen :=
hoose x: Int where 10 � xdet doyield randomInt (20,30)9

od;did_
hoose := trueoutput a
tion2 (n)pre did_
hoose ^ n =
hosens
hedule dowhile true dof i r e output a
tion1;f i r e output a
tion2(
hosen)ododNote that it is also possible to prompt the user to
hoose an integer at the point where the operatorrandomInt is used in this example.3.2.6 Simulation errorsThe simulator requires NDR programs to only �re transitions that are enabled, and yield
hoi
evalues that make the
orresponding where
lause true. If the simulator en
ounters a situationwhere either of these
onditions does not hold, it issues an error message and halts the simulation.3.3 The simulator algorithmSo far, we have pointed out that it is ne
essary to resolve nondeterminism to be able to simulateIOA programs. There are, however, other requirements for an IOA program to be in the right formfor simulation. The users are expe
ted to transform programs into this required restri
ted formbefore using the IOA simulator.3.3.1 Simulability
onditions for programsQuanti�ers The simulator has the ability to handle quanti�ers only when the quanti�ed variableis of enumeration type. This implies that the variable has a �nite number of possible values.Existential or universal quanti�ers whi
h do not satisfy this
ondition are not permitted anywherein the IOA automaton to be simulated. The e�e
t of an existential quanti�er
an often be a
hievedusing a suitably
onstrained
hoose statement as des
ribed in [Che98℄, thereby redu
ing the problemof evaluating su
h quanti�ers to the problem of nondeterminism resolution for
hoose statements.Evaluating universal quanti�ers would require an essentially di�erent me
hanism.Transition parameters There are restri
tions on the a
tual parameters in transition de�nitions:ea
h of them must be either a pure variable, or a term that
ontains no variables, so that it evaluatesto a
onstant. As explained in [Che98℄, this is not a drasti
 restri
tion, sin
e expression parameters
an be repla
ed by variables that are suitably
onstrained by the where
lause of the transition.It would not be diÆ
ult to modify the
urrent implementation to remove this
onstraint, but some
orresponding
hanges to the NDR me
hanisms would be ne
essary.Looping
onstru
ts No for loops are permitted anywhere in the automaton to be simulated. Itis often possible to use a while loop instead. For example, for i:Nat where i < 20 do : : : od
an berepla
ed by while i < 20 do i:= i+1; : : : od. Note that while does not in
orporate a me
hanismfor de
laring a variable; the variable i must be de
lared and initialized outside the loop.
10

Composition The simulator only supports primitive automaton spe
i�
ations. There is a proje
tin progress on the development of a tool whi
h takes an IOA automaton
omposition spe
i�
ationas an input, and transforms it to an equivalent IOA spe
i�
ation of a primitive automaton. On
ethis
omposer implementation is
omplete it
an be used in
onjun
tion with the simulator. Com-posite automata
an be simulated by providing the ne
essary NDR programs for the output of the
omposer.Data types The simulator
urrently has implementations for several built-in primitive IOA types(Bool, Natural, Real, Char, String) and it supports user-de�ned types formed from the
onstru
-tors Array (for one-dimensional arrays), Seq (sequen
e), Set, Mset(multiset), and Map
onstru
torsand synta
ti
 shorthands enumeration, tuple, and union shorthands, and those formed from the.These types,
onstru
tors and shorthands are des
ribed in the IOA Manual [GLV01℄. There is
urrently no implementation for the two dimensional use of Array. Spe
i�
ations and implemen-tations for the parameterized datatypes Sta
k, Tree and PQ(priority queue) are also available foruse with the simulator even though they are not yet a part of the language spe
i�ed in the IOAManual [GLV01℄. Note also that it is possible to add new data types to the Simulator as explainedin Se
tion 7.3.3.2 Pseudo
odeA good way to understand how the simulator interprets NDR programs is through a des
ription ofthe algorithm that it follows. On Page 11 we present a table whi
h summarizes the abbreviationsand the notation we use in des
ribing the algorithm. Page 12 in
ludes the pseudo
ode des
riptionof the simulator algorithm whi
h is organized into three pro
edures. The main one is Simulate(A),where A is the primitive automaton spe
i�
ation to be simulated. This pro
edure in turn uses twoauxiliary ones, Exe
uteS
hed and EvalChoi
e also presented in the �gure. The algorithm does notdes
ribe the details of evaluating IOA programs or terms but fo
uses on the NDR me
hanisms.Evaluating a term requires every operator in the term to have a simulator implementation; refer toSe
tion 7 for the details on mat
hing operators and sorts with their implementations.NotationA:ndr The s
hedule NDR program for automaton spe
i�
ation A.A:p
 A program
ounter for A:ndr .Its value
an be a statement in A:ndr or null .A:invs The list of invariants of A.A:simpleTrans The set of transition de�nitions in A with
onstant a
tual parameters.t:pre The pre
ondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�e
t program for a transition de�nition t.
:ndr The
hoi
e NDR program for a
hoose statement
.
:p
 A program
ounter for
:ndr .Its value
an be a statement in
:ndr or null .
:var The dummy variable in a
hoose statement
.
:where The where term in a
hoose statement
.trans(A; t; n;
) The transition de�nition of type t, name n and
aselabel
 in automaton A.eval (t) The result of evaluating a term t.
11

Simulate(A)[A: IOA primitive automaton℄initialize a program
ounter
:p
 for ea
h
hoose statement
 in Ainitialize a program
ounter A:p
 for the s
hedule blo
k of Awhile A:p
 6= null do
all Exe
uteS
hed(A,A:p
)advan
e A:p
 to the next statement in A:ndrExe
uteS
hed(A; s) [A: IOA primitive automaton, s: statement in A:ndr℄if s is not a �re statement then exe
ute s(s is an assignment, a
onditional, or a while
onstru
t;the semanti
s for these types of statements are the obvious ones)else if s = ``�re a
tionType a
tionName(a
tionA
tuals)
ase
'' thenlet t := trans(A; a
tionType ; a
tionName ;
)assign a
tionA
tuals to the formal parameter variables of tif eval (t:pre) = true and eval (t:where) = true thenexe
ute the statements in t:e� following IOA semanti
s;when a
hoose statement
 needs to be evaluated,
all EvalChoi
e(
)else halt with an errorfor ea
h t 2 A:invs su
h that eval (t) = false doissue an invariant failure warningelse if s = ``�re'' thenlet S = ft 2 A:simpleTrans j eval(t:pre) = truegif S 6= ; then
hoose t 2 S uniformly at randomexe
ute the statements in t:e� following IOA semanti
s;when a
hoose statement
 needs to be evaluated,
all EvalChoi
e(
)EvalChoi
e(
) [
:
hoi
e statement℄forever doif
:p
 is not a yield statement thenexe
ute
:p
 (
:p
 is an assignment, a
onditional, or a while
onstru
t)advan
e
:p
 to the next statement in
:ndrelse if
:p
 is of the form ``yield t'', where t is a term thenlet v = eval (t)assign v to
:varif eval (
:where) 6= false thenadvan
e
:p
 to the next statement in
:ndrexit EvalChoi
eelse halt with an errorFigure 1: Simulator Algorithm
12

3.4 Invariant
he
kingThe simulator has the
apability of
he
king whether the invariants of an automaton, stated usingthe IOA syntax, hold throughout an exe
ution. This is done simply by evaluating ea
h of theinvariants found in the IOA spe
i�
ation after ea
h transition is exe
uted, and issuing a warningmessage if any of them fail. The Exe
uteS
hed routine of the pseudo
ode of the algorithm presentedin Se
tion 3.3 in
ludes a part for dealing with invariant
he
king.Example 3.6. The
ode in this example is an IOA spe
i�
ation of an automaton, along with twoproposed invariants of its state and suitable NDR programs.automaton Fibona

isignatureinternal
omputestatesa: Int := 1,b: Int := 0,
: Int := 1transit ionsinternal
omputee f fa := b;b :=
;
 := a + binvariant of Fibona

i : % true invarianta + b =
invariant of Fibona

i : % false invarianta - b =
Se
tion A.2 on page 44 gives the simulator output for 5 steps of exe
ution. It shows that one ofthe invariants did not hold for this parti
ular exe
ution.3.5 Dynami
 dete
tion of invariantsThis se
tion des
ribes the
onne
tion between the IOA simulator and Daikon { an invariant dis-
overy tool developed by the Program Analysis Group at the MIT Laboratory for Computer S
i-en
e [PAG℄.3.5.1 DaikonDaikon is a dynami
 program analysis tool whi
h extra
ts information from exe
utions of a program.As input, Daikon requires a set of de
larations and data tra
es. A de
laration �le
ontains listsof program points
onsidered interesting to users and a list of variables in s
ope at ea
h programpoint. Data tra
e �les re
ord information about the values the variables take on during exe
ution.For ea
h exe
ution of a program point, the tra
e �le
ontains the name of the point and the valuesof the variables at that point. The output generated by Daikon is a list of invariants dete
ted tohold in all re
orded exe
utions. These are only potential invariants in that Daikon
annot guaranteetheir truth for all possible exe
utions.3.5.2 Purpose of
onne
ting IOA to DaikonThere are mainly two motivations for
onne
ting the IOA simulator with an invariant dis
overytool su
h as Daikon. First of these
on
erns
orre
tness proofs for automata. If the dis
overedinvariants turn out to be veri�able, they
an assist the proofs in several ways. One possibility is13

that Daikon dis
overs invariants that are not readily dete
table by users. In this
ase Daikon helpsproofs by dis
overing those invariants that would have remained unnoti
ed by users. At the otherextreme lie the invariants that are easily dete
table by users even without the help of Daikon. Theautomati
 dis
overy of su
h invariants is
onsidered also useful, sin
e it saves users the e�ort of�nding and formulating these simple invariants.Se
ond, Daikon might suggest invariants whi
h are known to be not always true, pointing toshort
omings in the simulation. The IOA
ode and NDR programs should then be examined to
orre
t errors or to in
rease the simulator's
overage of possible exe
utions.3.5.3 Interfa
e to DaikonDaikon has initially been designed to dis
over invariants for sequential programs written in lan-guages su
h as C or Java. It is however possible to make use of Daikon in dis
overing invariantsfor programs written in other languages so long as it is supplied with suitable de
larations anddata tra
es regarding a program. The simulator provides the ne
essary ma
hinery for this. In thepre
eding se
tions we have des
ribed how the IOA simulator exe
utes I/O automata written in theIOA Language. The ne
essary input for Daikon
an be generated by the simulator by re
ordingdata tra
es while exe
uting I/O automata. This is a
hieved by running the simulator with a spe
ialoption ({daikon) as des
ribed in Se
tion 5.When run with the above mentioned option, the IOA simulator generates a de
laration �lewhi
h de
lares a program point for the entry and exit of every transition and a program point forthe automaton. De
laring entry and exit of every transition point as an interesting program pointallows Daikon to infer how a transition's pre-state relates to its post-state. The program point atthe top level allows Daikon to dete
t invariants that hold at all times, not just at
ertain entryand exit points in the automaton. Te
hni
al issues regarding the implementation
an be foundin [Dea01, WS01℄.3.6 Future resear
h ideasIn this se
tion we des
ribe how we intend to
ontinue our work on the IOA simulator. Our exper-iments
onvin
e us that the
urrent state of the IOA simulator allows it to be used for nontrivialtasks in distributed system design and analysis. The future resear
h will mostly
on
ern user
onvenien
e and keeping the simulator in tandem with the extensions to the IOA language.3.6.1 S
heduling poli
iesThe users of the IOA simulator are required to en
ode s
heduling poli
ies expli
itly by means ofNDR programs. It would be possible alleviate this burden on the users if the simulator was giventhe
apability to make s
heduling de
isions. We outline below a method for enhan
ing the IOAsimulator with su
h a
apability.The syntax and the semanti
s of s
hedule blo
ks are rede�ned so that the users are requiredonly to resolve expli
it nondeterminism, provide a list of
onditional
lauses that spe
ify the set ofsele
ted transitions and their parameter values. They sele
t a s
heduling poli
y prior to simulationand
ommuni
ate this
hoi
e to the simulator. Whenever multiple transitions are enabled duringthe exe
ution, the s
heduler sele
ts a transition to be exe
uted a

ording to the s
heduling poli
ythat has been
hosen by the user.This idea has appeared in Chefter's design of the simulator, however it is not supported bythe IOA simulator yet. A

ording to this design the user has a
hoi
e of three s
heduling poli
ies:randomized, round-robin, and one based on time estimates for ea
h a
tion. Moreover, the user is14

required to spe
ify a weight (w) or time estimate for ea
h transition to be used by the s
heduler inthe
ase of
hoosing the randomized poli
y or the poli
y based on time estimates respe
tively.For the randomized s
heduler, the simulator
omputes the total t of the weights of all spe
i�edtransitions, and at ea
h step of the exe
ution sele
ts a transition with weight w with probabilityw=t.The round-robin s
heduler keeps tra
k of the number of times a transition was enabled but notsele
ted for exe
ution and maintains a queue of these
ounts. It always sele
ts the transition withthe greatest
ount. The
ount is reset to zero after the transition is exe
uted.In time based s
heduling time estimates are used for determining the probability of ea
h a
tionbeing s
heduled su
h that the smaller the time estimate, the higher the probability that the a
tionwill be s
heduled. Time estimates allow one to model the running of a system on multiple pro
essorswith di�erent speeds. For example, if an a
tion is intended to be run on a fast pro
essor the timeestimate asso
iated would be smaller than that of other a
tions whi
h are intended to be run onslower pro
essors. Similarly, time estimates
an be used to model
omputation laten
y or therate at whi
h an environment generates a
tions. Spe
i�
ally, if times for n a
tions are given by nintegers time1; time2; : : : timen, then the s
heduler determines whi
h of the n a
tions to perform bythe following pro
edure:1. Find the least
ommon multiple m of time1; time2; : : : timen2. Assign a weight to ea
h sele
ted a
tion as follows:weight i = (m=time i)=Pn�1j=0 (m=timej).3. Divide the interval [0 : : : 1℄ into n parts[0 : : :weight0℄; [weight0 : : :weight0 + weight1℄; : : : ; [Pn�2j=0 (weight j) : : : 1℄and s
hedule the ith a
tion if the random number is in the range[Pi�1j=0 : : :Pij=0weight j℄.The I/O automaton task partition
an be thought of as an abstra
t des
ription of threads of
ontrolwithin an automaton, and is used to de�ne fairness
onditions su
h that ea
h of the tasks is givenfair turns during exe
ution. The simulator does not support task partitions, however it would beuseful to devise a two-level me
hanism for s
heduling where the �rst level sele
ts the next task tobe s
heduled and the se
ond level sele
ts a parti
ular a
tion within a task.3.6.2 NDR librariesThe
urrent me
hanism for nondeterminisim resolution might lead to repetitive
ode fragmentss
attered over the automaton des
ription (one NDR program for ea
h
hoose statements) and
omplex s
hedule blo
ks. More important, it is the user who has to provide these programs. Ifthe IOA simulator provided a library of NDR programs or some default NDR programs, the userswould be relieved from having to do this. For ea
h
ommonly en
ountered sort in IOA programs,su
h as natural numbers or booleans, the simulator
ould spe
ify a default NDR program to beused when no NDR program is provided by the user. The similar idea applies to the predi
ates in
hoose statements. For example, many
hoose statements have where predi
ates that restri
t therange of the
hosen value to some �xed �nite set of numbers. It would be possible to determinesome patterns for predi
ates su
h as p : Int � q ^ q : Int ^ r : Int and have the simulator providea library of NDR programs whi
h resolve nondeterminism su
h that the predi
ate holds.15

3.6.3 Alternatives to NDR programsIt is possible to resolve some of the nondeterminism in an automaton to be simulated by modifyingits IOA spe
i�
ation. For example, the user
an augment the automaton with new state variables
ontaining s
heduling information,
an add extra
onstraints involving the new s
heduling variablesto the pre
onditions of transitions, and
an add extra statements to the e�e
ts of transitions tomaintain the s
heduling variables. This
onversion must be done manually, without the help of theNDR programs. We are
onsidering the relative advantages of resolving nondeterminism with NDRprograms as explained throughout this do
ument or within the IOA language itself as mentionedabove. We are planning to
ontinue our work by evaluating the e�e
ts of alternative nondeterminismresolution s
hemes on the IOA programs with respe
t to user
onvenien
e, reusability of
ode withinthe toolkit and elegan
e.3.6.4 Theorem proving using Daikon-dete
ted invariantsA group of us are investigating how to make invariants dis
overed by Daikon more relevant toproofs of
orre
tness of distributed systems. Toh Ne Win has re
ently �nished an experiment onusing Daikon-dis
overed invariants in the veri�
ation of a mutual ex
lusion algorithm [Win02℄. By
arrying out similar but more advan
ed experiments, we aim to identify when an invariant should be
onsidered useful. Our ultimate aim is to make
orre
tness proofs more automati
 by feeding theseinvariants into the theorem prover. Our
urrent e�orts are based on the Lar
h Prover. However,we are potentially interested in using other theorem provers su
h as ACL2, Isaballe or HOL.4 Paired simulationIn the study of distributed systems, it is
ommon for
omplex systems to be analyzed throughsu

essive re�nements: in the presen
e of an abstra
t spe
i�
ation A, one would like to show thatanother spe
i�
ation B is an implementation of A. If A and B are I/O automata, this is modeledby the statement that tra
es(B) � tra
es(A).To prove a statement of this form, it is almost inevitable to use an argument by indu
tion onthe length of a �nite pre�x of an exe
ution of B. This indu
tive reasoning on automaton exe
utionshas been abstra
ted, yielding the method of simulation relations. Using this method, one seeks to
onstru
t a simulation relation f from B to A. For a formal de�nition of simulation relations seeSe
tion 2.4.1 Simulation relationsThe IOA Language in
ludes syntax for asserting simulation relations between automaton spe
i�
a-tions. One of the goals of IOA is to provide software tools to assist the analysis of I/O automata.For example, given a proposed simulation relation f from B to A, it would be useful to test itsvalidity when restri
ted to a parti
ular exe
ution of B. As in the
ase of invariants, a single exe-
ution in whi
h f is observed not to hold would suÆ
e to show that f is invalid. While
ontinuedveri�
ation of f in di�erent exe
utions of B does not prove the
orre
tness of f , it does provideempiri
al eviden
e that f may be true, before the user spending the ne
essary e�ort to prove its
orre
tness.In this se
tion, we des
ribe how the simulator des
ribed so far in the paper was extended toallow simulation of a pair of automata related by a mathemati
al simulation relation. The keyproblem here is the following: the simulation relation itself, being merely a predi
ate that relates16

the states of two automata, is not suÆ
ient to spe
ify how ea
h step in the implementation au-tomaton
orresponds to a sequen
e of steps in the spe
i�
ation automaton. In general, there mightbe multiple step
orresponden
es that realize a given valid simulation relation between automata,and even if there is only one, it
an be diÆ
ult to �nd it. From this point of view, the problem ofderiving a spe
i�
ation-level exe
ution from an implementation-level exe
ution is analogous to thatof deriving a deterministi
 exe
ution of a single automaton from a spe
i�
ation that allows non-determinism. Not surprisingly, the problem of programmati
ally spe
ifying a step
orresponden
eadmits a similar solution.4.2 En
oding step
orresponden
esA step
orresponden
e needs to spe
ify, for a given low level transition, a high level exe
utionfragment su
h that the simulation relation holds between the respe
tive �nal states of the transitionand the exe
ution fragment. Thus, a step
orresponden
e
an be seen as an \attempted proof"of the simulation relation, missing only the reasoning that shows that the simulation relation ispreserved. To spe
ify the proposed proof of a simulation relation, the
urrent syntax of the IOA
onstru
t forward simulation was extended to in
lude a new se
tion
alled proof for spe
ifyingthe step
orresponden
e. This se
tion
ontains one entry for ea
h possible transition de�nition inthe low level automaton, and ea
h entry en
odes an algorithm for produ
ing a high level exe
utionfragment, using a program similar to the NDR programs used in automaton s
hedule blo
ks. Inaddition to these entries, the proof se
tion also
ontains an initialization blo
k, whi
h spe
i�es howto set the variables of the high level automaton given the initial state of the low-level automaton,and an optional states se
tion that de
lares auxiliary variables used by the step
orresponden
e.Figure 2 on Page 18 shows the general high level stru
ture of a simulation proof en
oded usingthis language. Note that this syntax extends the syntax for forward simulation relations in IOA.Some of the se
tions in the proof blo
k have a more
exible syntax than is depi
ted here, and some
an be omitted; refer to Se
tion 6 for the detailed grammar. The states blo
k introdu
es auxiliaryvariables used in the proof, and their initial values. The initially blo
k spe
i�es how to initializethe state variables of the spe
i�
ation automaton as a fun
tion of the implementation automaton'sinitial state, so as to satisfy the simulation relation.Ea
h proofEntryi is either the keyword ignore or a proof program, surrounded by do and oddelimiters. Su
h a program is essentially an NDR program, of the form allowed in an automaton'ss
hedule blo
k, ex
ept that the �re statements must now provide additional information to resolvethe
hoose statements of the spe
i�
ation automaton. If a proof program is present, the simulatorwill exe
ute it from beginning to end to produ
e a high-level exe
ution fragment for that
ase, usingthe �re statements to s
hedule transitions in the spe
i�
ation automaton. A proof entry equal toignore is equivalent to a proof program with no statements, and it is used to represent an emptyhigh-level exe
ution fragment.The �re statements allowed in proof programs have the stru
ture depi
ted in Figure 3 onpage 18. This general �re statement has the meaning: \s
hedule the transition of type a
tionType ,name a
tionName with a
tual parameters a
tionA
tuals , using the values of the terms term1 totermn to resolve the
hoose statements in the e�e
t of the transition having dummy variables v1to vn". If present, the
aseId label is used to disambiguate between transition de�nitions with thesame signature.This design imposes a
onstraint not present in the single automaton
ase: it must be requiredthat, for a given transition de�nition in the spe
i�
ation automaton, the
hoi
e statements in ithave dummy variable names whi
h are distin
t. While in general it is undesirable to pla
e unique-naming
onstraints for lo
al dummy variables, we justify this design de
ision by arguing that, in17

forward simulationfrom autImpl to autSpe
 :simPredi
ateproofstatesauxV ar1 : sort1,auxV ar2 : sort2,...auxV arm : sortm,initiallyvar1 := term1;var2 := term2;...varn := termnfor a
tType1 a
tName1(a
tFormals1)
ase
aseId1proofEntry1for a
tType2 a
tName2(a
tFormals2)
ase
aseId2proofEntry2...for a
tTypep a
tNamep(a
tFormalsp)
ase
aseIdpproofEntryp Figure 2: Syntax of step
orresponden
e
�re a
tionType a
tionName(a
tionA
tuals)
ase
aseIdusing term1 for v1,term2 for v2,...termk for vk Figure 3: �re statements in proof blo
ks

18

the
ase of paired simulation, these are not just dummy variables, but serve also as natural namesfor the
hoi
es in a high-level transition. An alternative design would be to add syntax for expli
itlynaming the
hoose statements.Example 4.1. The automaton GreeterSpe
 is a spe
i�
ation for automata that produ
e the outputa
tion hello any, perhaps in�nite, number of times. The automaton FiniteGreeter is a spe
ializa-tion of this { an automaton that only produ
es a �nite (bounded by the value of maxGreets) numberof hello outputs. Note the use of dummy variable sg in the
hoose statement. FiniteGreeter hasexa
tly one
hoi
e point, whi
h o

urs in its initialization of the maxGreets variable. To be able tosimulate it, it has been augmented with an NDR program that yields 100 as the value of
hoi
e.axioms NonDetautomaton GreeterSpe
signatureoutput hellostatesstillGoing : Booltransit ionsoutput hellopre stillGoinge f f stillGoing :=
hoose sgautomaton FiniteGreetersignatureoutput hellostatesmaxGreets : Int
hoose x:Int det do yield 100 od,
ount: Int := 0transit ionsoutput hellopre
ount < maxGreetse f f
ount :=
ount + 1forward simulationfrom FiniteGreeter to GreeterSpe
 :GreeterSpe
 . stillGoing ,(FiniteGreeter .
ount < FiniteGreeter . maxGreets)proofi n i t i a l l yGreeterSpe
 . stillGoing :=(FiniteGreeter .
ount < FiniteGreeter .maxGreets)for output hello dof i r e output hellousing (FiniteGreeter .
ount < FiniteGreeter .maxGreets) for sgodThe forward simulation blo
k embodies a simulation predi
ate, whi
h states that the value ofthe variable stillGoing for automaton GreeterSpe
 is required to be true if the value of
ount inautomata FiniteGreeterhas not rea
hed the value of maxGreets yet, and false otherwise. The proofblo
k initializes the value of stillGoing and states the step
orresponden
e suggested by the user.A

ording to the user, ea
h hello a
tion exe
uted by the low-level automaton (FiniteGreeter),
an be mimi
ked by a hello a
tion of the high-level automaton Greeter if the dummy variable is
hosen to be the value of the predi
ate (FiniteGreeter.
ount < FiniteGreeter.maxGreets). It isthe simulator's responsibility to
he
k whether the simulation predi
ate holds and the tra
es of thelow-level and high-level exe
utions are the same.19

Se
tion A.3 on page 45
ontains the output of the paired simulator for 100 steps. As in the
aseof non-paired simulation, it outputs the transitions taken and state variables modi�ed for everystep of the implementation automaton. In addition, it outputs the transitions of the spe
i�
ationautomaton indu
ed by ea
h implementation step. For ea
h transition taken in either automaton,the simulator outputs the variables that were
hanged by the transition's e�e
t. The absen
e ofsimulator error messages in the output indi
ates that the simulation relation was veri�ed to hold,in this parti
ular run, with this proposed step
orresponden
e. We refer the reader to Se
tion 5 fora detailed des
ription of how to run the paired simulator.4.3 The paired simulator algorithmIn this se
tion we present the pseudo
ode for the paired simulator on pages 21 and 22, as we didin Se
tion 3.3 for the single automaton
ase. The pseudo
ode is organized into several pro
edures,of whi
h SimulatePair is the main one. The reader is referred to Page 21 for the abbreviations andthe notation used.The pro
edure SimulatePair invokes the algorithm for single-automaton exe
ution des
ribed inSe
tion 3.3, ex
ept that it
alls pro
edure Exe
Corresponding for every low-level transition t thatis s
heduled. The pro
edure Exe
Corresponding follows the proof program asso
iated with t in theproof blo
k of the simulation relation, exe
uting ea
h of the high level transitions determined by�re statements. In addition, Exe
Corresponding veri�es that the indu
ed high level transitions havethe same tra
e as t, and
alls Che
kSimRel to determine if the simulation relation holds at theend of the step. The pro
edure Exe
Spe
E�e
t,
alled by Exe
Corresponding for ea
h high-leveltransition, exe
utes the e�e
t program of the transition as in the single-automaton
ase, ex
eptthat pro
edure EvalSpe
Choi
e is
alled for every expli
it
hoi
e. The latter pro
edure evaluates a
hoose statement using the value provided in the using part of the �re statement that determinedthe high level transition, provided that it satis�es the where predi
ate.Noti
e that the low level step is taken in full before its
orresponding proof entry is examined,and the prior state of the low level automaton is not re
orded. This means that the proof program
an only refer to the low level state after the low level step has taken pla
e. Nevertheless, it is easyto modify an implementation automaton to make it keep tra
k of relevant parts of its old state, orof the
hoi
es it makes. In this way, the proof
an refer to this information, and the language
anbe very expressive. A possibility for future expansion is to extend the syntax so that it
an referexpli
itly to the state before and after the low level step, and to the
hoi
es taken during the step.4.4 Future resear
h ideasThere are many dire
tions for future work on the paired simulation tool. We present below somesuggestions for possible proje
ts.4.4.1 Improving the step
orresponden
e languageThe language des
ribed in this se
tion is already substantially
exible, and it might be argued thattogether with auxiliary automaton state variables and auxiliary variables in the step
orrespon-den
e, it allows one to express most of what is usually expressed in simulation proofs. However, tomake easier to use, it might be desirable to have expli
it syntax for:� referring to state variable values both before and after the low-level transition, and,� referring to the a
tual value to whi
h an expli
it
hoi
e was resolved in the low-level automa-ton. 20

NotationR:proof The proof blo
k in simulation relation RR:impl The implementation-level automaton in simulation relation RR:spe
 The spe
i�
ation-level automaton in Rt:pre The pre
ondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�e
t program for a transition de�nition t.
:var The dummy variable in a
hoose statement
.
:where The where term in a
hoose statement
.trans(A; t; n;
) The transition de�nition of type t, name n and
ase label
 in automaton Aeval (t) The result of evaluating a term t.proofProg(R; t) The proof program
orresponding to t in R:proof .t must be a transition of R:implSimulatePair(R):[R: IOA simulation relation℄let A := R:impl, B := R:spe
, p := R:proof
all Initialize(R)simulate A as des
ribed in Se
tion 3, ex
ept that:for ea
h transition t exe
uted in A
all Exe
Corresponding(R,t)Initialize(R):[R:IOA simulation relation℄let A := R:impl, B := R:spe
, p := R:proofinitialize the state of A (using its NDR me
hanism if ne
essary)initialize the auxiliary variables in the states blo
k of pinitialize the state of B a

ording to the initially blo
k of p
all Che
kSimRel(R)Exe
Corresponding(R; t):[R: IOA simulation relation,t: a transition of R:impl℄p := proofProg(R; t)let ` be an empty sequen
e of transitionsfor ea
h statement s in p doif s is not a �re statement thenexe
ute s (s is an assignment, a
onditional, or a while
onstru
t)elset0 := trans(S:spe
; a
tionType ; a
tionName ;
aseId)
all Exe
Spe
E�e
t(R; s; t0)append t0 to `
all Che
kSimRel(R)if tra
e(`) 6= tra
e(t) thenhalt with an error Figure 4: Paired Simulator Algorithm (1)21

Exe
Spe
E�e
t(R; s; t):[R:IOA simulation relation,s:a �re statement of the form given in Figure 3,t:the transition of R:spe

orresponding to s℄assign a
tionA
tuals to the formal parameters of tif eval (t:pre) = true and eval (t:where) = true thenexe
ute the statements in t:e� following IOA semanti
s;when a
hoose statement
 needs to be evaluated,
all EvalSpe
Choi
e(R; s; t;
)elsehalt with an errorEvalSpe
Choi
e(R; s; t;
)[R:IOA simulation relation,s:a,�re statement of the form given in Figure 3,t:the transition of R:spe

orresponding to s,
:a
hoose statement in t:e� ℄let r := eval (termi), where vi is the name of
:varassign r to
:varif eval (
:where) = false thenhalt with an errorChe
kSimRel(R)[R:IOA simulation relation℄if eval (R:pred) = false thenhalt with an error Figure 5: Paired Simulator Algorithm (2)Neither of these two additions should be hard to implement. For example, prior and posterior valuesof variables
ould be distinguished with a prime de
oration on variable names. Referen
es to low-level expli
it
hoi
e values
ould be done using another unique-naming-per-transition
onvention,this time in the low-level automaton.4.4.2 Interfa
ing with a
omputer-assisted theorem proverThe paired simulator may provide
ounterexample exe
utions where the proposed step
orrespon-den
e does not hold, but it will never
ompletely
ertify the proof, even if it provides empiri
aleviden
e of its
orre
tness after multiple simulations. However, a version of this language
ould beused as an interfa
e between the simulation relation stated in IOA and a theorem prover: the proofprogram
an be used to drive the theorem prover in the major overall steps of the proof, redu
ingthe amount of routine work that the user has to do. We refer the reader to [KCD+℄ for an examplethat illustrates the promise of this dire
tion.4.4.3 Adding syntax for providing a
omplete proofAs it stands, the proof blo
k is not a really a proof, sin
e it is missing the reasoning that shows thatea
h high-level exe
ution fragment produ
ed by a for blo
k in the proof preserves the simulationrelation, assuming the relation held true in the immediately pre
eding state. An interesting proje
twould be to add syntax that would allow the in
lusion of this reasoning, in a form suitable forautomated proof veri�
ation. 22

REM

TRY

CRIT

EXITFigure 6: Cy
le of regions for a single user5 Mutual ex
lusion: A Tutorial exampleIn the pre
eding se
tions we introdu
ed the basi

on
epts
on
erning the simulation of I/O au-tomata and presented simple examples to illustrate the simulation language (an extension of IOA)supported by the IOA simulator. This se
tion is intended to serve as a tutorial for using the IOAtoolkit for simulating IOA programs. The instru
tions for obtaining the toolkit
an be found atURL http://theory.l
s.mit.edu/tds/ioa.html.We take a well-known problem in distributed algorithms resear
h { the mutual ex
lusion problem{ and pro
eed with the reader through multiple levels of abstra
tion in spe
ifying the problem andderiving a low-level algorithm that implements mutual ex
lusion. We use the simulation tools to
he
k that our algorithms work as expe
ted and to in
rease our
on�den
e in the
orre
tness of theproposed simulation relations between di�erent levels in the abstra
tion hierar
hy.5.1 The Mutual ex
lusion problemThe mutual ex
lusion problem involves the allo
ation of a single, indivisible, non-shareable resour
eamong n pro
esses. The resour
e
ould be, for example, an output devi
e that requires ex
lusivea

ess to produ
e sensible output or a data stru
ture that requires ex
lusive a

ess in order to avoidinterferen
e among the operations of di�erent pro
esses.A pro
ess with a

ess to the resour
e is modeled as being in a
riti
al region, whi
h is adesignated subset of its states. When a pro
ess is not involved in any way with the resour
e, itis said to be in the remainder region. In order to gain admittan
e to its
riti
al region, a pro
essexe
utes a trying proto
ol, and after it is done with the resour
e, it exe
utes an exit proto
ol. Thispro
edure
an be repeated, so that ea
h pro
ess follows a
y
le, moving from its remainder region(R) to its trying region (T), then to its
riti
al region (C), then to its exit region (E), and thenba
k to its remainder region. This
y
le is shown in Figure 6.In our example, we
onsider mutual ex
lusion algorithms within the shared memory model [Lyn96℄.The shared memory system
ontains n pro
esses, numbered 1; : : : ; n. The inputs to pro
ess i arethe tryi a
tion whi
h models a request for a

ess to the resour
e by pro
ess i, and the exiti a
tion,whi
h models an announ
ement that pro
ess i is done with the resour
e. The outputs of pro
ess i23

Pro
essi exititryi
ritiremiFigure 7: External interfa
e of a pro
essare
riti whi
h models the granting of a

ess to pro
ess i, and remi whi
h tells the pro
ess i thatit
an
ontinue with the remainder of its work.The try;
rit; exit, and rem a
tions are the only external a
tions of the shared memory system.The pro
esses are responsible for performing the trying and exit proto
ols. The external interfa
eof pro
ess i is depi
ted in Figure 7.5.2 Spe
i�
ation of mutual ex
lusion for three pro
essesThe automaton Mutex below is the IOA spe
i�
ation for a mutual ex
lusion servi
e in a system ofthree pro
esses.type Index = enumeration of p1, p2, p3type Region = enumeration of rem , try,
rit , exitautomaton Mutexsignatureinput try(p:Index)output
rit (p:Index)input exit (p:Index)output rem(p:Index)statesregionMap : Array[Index, Region ℄ :=
onstant (rem)transit ionsinput try(p: Index)e f f regionMap [p℄ := tryoutput
rit (p: Index)pre (regionMap [p℄ = try)^ 8 u: Index ((p 6= u)) (regionMap [u℄ 6=
rit))e f f regionMap [p℄ :=
ritinput exit (p: Index)e f f regionMap [p℄ := exitoutput rem(p: Index)pre regionMap [p℄ = exite f f regionMap [p℄ := remExplanation of
ode The
ode above assumes that the pro
esses in the system are referred toby indi
es p1, p2 and p3 and the regions whi
h
onstitute the
y
le used in modeling the exe
utionof a pro
ess are
alled rem, try,
rit and exit. The de�nitions for types Index and Region are usedto express these assumptions in IOA. 24

The signature of Mutex
orresponds to the expression of the the external interfa
e in the IOAlanguage of a pro
ess shown in Figure 7. The state variable regionMap maps pro
ess indi
es toregions and is used to keep tra
k of the
urrent region of a pro
ess. Ea
h pro
ess is assumed to bein its remainder region initially, hen
e the initialization of regionMap to
onstant(rem).The transition de�nitions are mostly self-explanatory. Ea
h a
tion
auses the variable regionMapto be updated to re
ord the region that is entered upon its exe
ution. The transition de�nition for
rit warrants more attention as it is this de�nition whi
h imposes the mutual ex
lusion
ondition.A pro
ess in a trying region is allowed to enter its
riti
al region only if there is no other pro
esswhi
h is also in region
rit.5.2.1 The EnvironmentWe have hitherto assumed that ea
h pro
ess obeys the
y
li
 region proto
ol. Formally, we de�nea sequen
e of tryi;
riti; exiti and remi a
tions to be well-formed for pro
ess i if it is a pre�x ofthe
y
li
ally ordered sequen
e tryi;
riti; exiti; remi; tryi; : : : In this se
tion we no longer assumebut enfor
e the
ondition that the intera
tion of the automaton Mutex with its environment iswell-formed by spe
ifying the behavior of the environment by means of the automaton Env. Thesignature of Env is similar to that of Mutex. The point to noti
e is that the input a
tions of Mutexare output a
tions for Env and the output a
tions of Env are input a
tions for Mutex.type Region = enumeration of rem , try,
rit , exittype Index = enumeration of p1, p2, p3automaton Envsignatureoutput try(p: Index)input
rit (p: Index)output exit (p: Index)input rem(p: Index)statesregionMap : Array[Index, Region ℄ :=
onstant (rem)transit ionsoutput try(p)pre regionMap [p℄ = reme f f regionMap [p℄ := tryinput
rit (p)e f f regionMap [p℄ :=
ritoutput exit (p)pre regionMap [p℄ =
rite f f regionMap [p℄ := exitinput rem(p)e f f regionMap [p℄ := rem5.2.2 Well-formed intera
tion with the environmentThe automaton MutexEnv below is an automaton whi
h has been obtained by
omposing Mutex andEnv a

ording to the de�nition of
omposition from Se
tion 2. The resulting automaton MutexEnvis the IOA spe
i�
ation of mutual ex
lusion for three pro
esses where the well-formedness of inter-a
tion with the environment is guaranteed. The invariant at the very end asserts mutual ex
lusion.type Index = enumeration of p1, p2, p3type Region = enumeration of rem , try,
rit , exit25

automaton MutexEnvsignatureoutput try(p: Index)output
rit (p: Index)output exit (p: Index)output rem(p: Index)statesregionMap : Array[Index, Region ℄ :=
onstant (rem)transit ionsoutput try(p)pre regionMap [p℄ = reme f f regionMap [p℄ := tryoutput
rit (p)pre regionMap [p℄ = try^ 8 u: Index (p 6= u) regionMap [u℄ 6=
rit)e f f regionMap [p℄ :=
ritoutput exit(p)pre regionMap [p℄ =
rite f f regionMap [p℄ := exitoutput rem(p)pre regionMap [p℄ = exite f f regionMap [p℄ := reminvariant of MutexEnv : % asserts mutual ex
lusion8 p: Index(regionMap [p℄ =
rit) 8 u: Index (p 6= u) regionMap [u℄ 6=
rit))5.2.3 Syntax and semanti

he
king with ioaChe
kEa
h IOA program needs to pass through a syntax
he
king phase before it is subje
ted to furtherstudy with ba
k-end tools su
h as the simulator. The tool for syntax
he
king
an be used byrunning the shell s
ript ioaChe
k. Note that this program also performs some semanti

he
ks onthe
ode. To
he
k your
ode with ioaChe
k:1. Pla
e the
ode in a �le with extension .ioa. For example: MutexEnv.ioa2. At the
ommand line type> ioaChe
k MutexEnv.ioaThe result of using ioaChe
k without any options is either a message on the standard outputthat indi
ates a su

essful
he
k (Finished
he
king spe
ifi
ations) or errors. The
ommandioaChe
k
an also be used to
he
k LSL spe
i�
ations pla
ed in a �le with the extension.lsl. Thefollowing is the list of options available for running ioaChe
k.UsageioaChe
k [option℄ sour
e-fileOptions-il translate to intermediate language-p prettyprint sour
e files-path <dirlist> use <dirlist> to find sour
e files (default '.')-sorts print sorts in first sour
e file (LSL only)-syms print symbols in first sour
e file (LSL only)-debug print debugging information-verbose print verbose debugging information26

5.3 Levels of abstra
tion and simulationIn this se
tion we present the IOA
ode of two algorithms that implement mutual ex
lusion spe
i�edby the automaton MutexEnv. The automaton Dijkstra des
ribes the mutual ex
lusion algorithmdesigned by Dijkstra [Lyn96℄. The automaton DijkstraInt is a simpler version of Dijkstra's algo-rithm that abstra
ts from those parts in the original algorithm dedi
ated to dealing with liveness.In other words, we have an abstra
tion hierar
hy where the automata MutexEnv, DijkstraInt andDijkstra lie respe
tively at the top, intermediate and lowest levels.Figure 8 summarizes how we pro
eed in the rest of this se
tion. We �rst present the IOA
ode forthe intermediate level algorithm and use the IOA simulator to
he
k whether it works as expe
ted.To in
rease our
on�den
e that it
omplies with the spe
i�
ation of mutual ex
lusion, we proposea forward simulation relation from DijkstraInt to MutexEnv. We then use the paired simulatorto
he
k that the proposed relation holds for the sele
ted exe
utions. We follow a similar line ofa
tion for the lower level algorithm. In this
ase we propose and
he
k a forward simulation relationfrom Dijkstra to DijkstraInt. We know by Theorem 2.1 that if there is a forward simulation fromDijkstraInt to MutexEnv and from Dijkstra to DijkstraInt, then tra
es(Dijkstra) must be a subsetof tra
es(MutexEnv). That is to say all observable behaviors of Dijkstra are a subset of observablebehaviors of MutexEnv and therefore satisfy mutual ex
lusion.5.3.1 Intermediate level algorithmThe following is an IOA program whi
h in
ludes the des
ription of the intermediate level algorithmand a s
hedule blo
k to simulate the automaton DijkstraInt.axioms NonDettype Index = enumeration of p1, p2, p3type Region = enumeration of rem , try,
rit , exittype P
Value = enumeration of rem , setflag01 , setflag2 ,
he
k, leavetry ,
rit , reset , leaveexittype Stage = enumeration of stage01 , stage2automaton DijkstraIntsignatureoutput try(p: Index)output
rit (p: Index)output exit (p: Index)output rem(p: Index)internal setflag01 (p: Index)internal setflag2 (p: Index)internal
he
k(p: Index , u: Index)internal reset(p: Index)statesflag : Array[Index, Stage℄ :=
onstant (stage01),p
: Array[Index, P
Value ℄ :=
onstant (rem),S: Array[Index, Set[Index ℄℄ :=
onstant ({})transit ionsoutput try(p)pre p
[p℄ = reme f f p
[p℄ := setflag01internal setflag01 (p)pre p
[p℄ = setflag01e f f flag [p℄ := stage01;p
[p℄ := setflag2internal setflag2 (p)pre p
[p℄ = setflag2 27

(Dijkstra)

 (MutexEnv)

(DijkstraInt)

Problem specification

Intermediate level algorithm

Low level algorithm

Step 1

Step 2

Step 4

Step 3Step 1: single-automaton simulation with simStep 2: paired simulation with psimStep 3: single-automaton simulation with simStep 4: paired simulation with psimFigure 8: Abstra
tion hierar
hy
28

e f f flag [p℄ := stage2;S[p℄ := {p};p
[p℄ :=
he
kinternal
he
k(p, u)pre p
[p℄ =
he
k ^ :(u 2 S[p℄)e f f i f flag[u℄ = stage2 then S[p℄ := {};p
[p℄ := setflag01e lse S[p℄ := S[p℄ [{u};i f size (S[p℄) = 3 then p
[p℄ := leavetryf if ioutput
rit (p)pre p
[p℄ = leavetrye f f p
[p℄ :=
ritoutput exit (p)pre p
[p℄ =
rite f f p
[p℄ := reset;internal reset(p)pre p
[p℄ = resete f f flag [p℄ := stage01;S[p℄ := {};p
[p℄ := leaveexitoutput rem(p)pre p
[p℄ = leaveexite f f p
[p℄ := rems
hedulestates pi
k : Int,p: Indexdo while true dopi
k := randomInt (1,3);i f pi
k = 1 then p := p1e l s e i f pi
k = 2 then p := p2e lse p := p3f i ;i f p
[p℄ = rem then f i r e output try(p)e l s e i f p
[p℄ = setflag01 then f i r e internal setflag01 (p)e l s e i f p
[p℄ = setflag2 then f i r e internal setflag2 (p)e l s e i f p
[p℄ =
he
k then i f :(p1 2 S[p℄) then f i r e internal
he
k(p,p1)e l s e i f :(p2 2 S[p℄) then f i r e internal
he
k(p,p2)e l s e i f :(p3 2 S[p℄) then f i r e internal
he
k(p,p3) f ie l s e i f p
[p℄ = leavetry then f i r e output
rit (p)e l s e i f p
[p℄ =
rit then f i r e output exit (p)e l s e i f p
[p℄ = reset then f i r e internal reset(p)e lse f i r e output rem(p)f iododExplanation of
ode The automaton DijkstraInt makes use of the types P
Value and Stagein addition to those that we have already introdu
ed. The values of type P
Value represent thepossible program
ounter values for the pro
ess while values of type Stage represent the stages ofthe algorithm. The phrase axioms NonDet is in
luded to allow the use of operations spe
i�ed bythe trait NonDet.The signature of DijkstraInt has three internal a
tions along with those of MutexEnv. It alsohas some state variables whi
h are not present in MutexEnv. The algorithm spe
i�ed by DijkstraInt29

has two stages. The �rst stage stage01 indi
ates that a pro
ess is either ina
tive or is about to enterthe se
ond stage. The se
ond stage stage2 embodies the
ru
ial steps and determines whether apro
ess is allowed to enter the its
riti
al region. A pro
ess
an enter its
riti
al region only if allother pro
esses are in the �rst stage of the algorithm. The transition de�nition for a
tion
he
kdetails how this is
he
ked. The state variables flag and p
 are used respe
tively to re
ord the stageof the algorithm for ea
h pro
ess and to
ontrol the order of o

urren
e of the a
tions mimi
king theprogram
ounter of a pro
ess. The s
hedule blo
k implements a randomized s
heduling poli
y forthree pro
esses. One of the three pro
esses is pi
ked randomly ea
h time the while loop is exe
uted.When p
[p℄ is
he
k then the s
hedule blo
k de
ides the pro
ess to be
he
ked by p, by looking atS[p℄ and yielding the pro
ess with the smallest identi�er that is not already in S[p℄. Su
h a pro
essis guaranteed to exist be
ause p
[p℄ is no longer
he
k on
e S[p℄
ontains all pro
esses.5.3.2 Running the simulator with simTo simulate your
ode with sim:1. Pla
e your
ode in a �le with extension .ioa, for example DijkstraInt.ioa2. Che
k the
ode for syntax and semanti
 errors with ioaChe
k3. At the
ommand line type> sim 100 DijkstraInt.ioawhere the �rst argument to sim is the number of required simulation steps and the se
ondargument is the sour
e �le. The
hoi
e of number 100 here is arbitrary.A sample output is presented in Se
tion A.4 of the Appendix.The following is the list of options available for running sim.Usagesim [option℄ <# steps> [<automaton name>℄ <IL filename>Options[-big℄ Use BigInteger and BigReal for all
al
ulations[-
onfig <string>℄+ Use the given
onfiguration file(s) for options[-daikon℄ Turn on Daikon instrumentation on[-dbg <string>℄+ Turn on debug information for a java
lass or pa
kage.[-debug℄ Turn on debug information globally[-ignoreFirst℄ Ignore first program point (init states) during Daikon instrumentation[-noIl℄ Do not send il output to a file (if reading an IOA file)[-o <string>℄ Set base name for output[-ode
ls <string>℄ Set destination file for de
ls output[-odtra
e <string>℄ Set destination file for dtra
e output[-oil <string>℄ Set destination for il output[-rseed <number>℄ Set randomizer seed for regression resting[-state℄ Show all state variables during exe
ution[-tra
es℄ Show only tra
es during exe
ution[-tra
esOnly℄ Show only tra
es during exe
ution5.3.3 Forward simulation from DijkstraInt to MutexEnvThe
ode below de�nes a forward simulation relation in IOA and
ontains a proof blo
k for thatrelation. Together with the IOA des
riptions of Mutex and DijkstraInt augmented with the NDR30

programs from Se
tion 5.3.1, this blo
k allows one to use the paired simulator to
he
k whetherthe relation holds in the simulated exe
utions.forward simulation from DijkstraInt to MutexEnv :8 i: Index (DijkstraInt .p
[i℄ = setflag01 _ DijkstraInt .p
[i℄ = setflag2 _DijkstraInt .p
[i℄ =
he
k _ DijkstraInt .p
[i℄ = leavetry, MutexEnv .regionMap [i℄ = try);8 i: Index (DijkstraInt .p
[i℄ =
rit , MutexEnv .regionMap [i℄ =
rit);8 i: Index (DijkstraInt .p
[i℄ = rem , MutexEnv .regionMap [i℄ = rem);8 i: Index (DijkstraInt .p
[i℄ = reset _ DijkstraInt .p
[i℄ = leaveexit, MutexEnv .regionMap [i℄ = exit);proofi n i t i a l l y MutexEnv .regionMap :=
onstant (rem)for output try(p:Index) do f i r e output try(p) odfor output
rit (p:Index) do f i r e output
rit (p) odfor output exit (p:Index) do f i r e output exit (p) odfor output rem(p:Index) do f i r e output rem(p) odfor internal setflag01 (p:Index) ignorefor internal setflag2 (p:Index) ignorefor internal
he
k(p:Index,u:Index) ignorefor internal reset(p:Index) ignoreExplanation of
ode The
andidate relation in this example is based on the relation between thevalues of the state variable p
 of the low-level automaton and those of the state variable regionMapof the spe
i�
ation automaton. The intuition behind this relation is as follows. For ea
h region inthe spe
i�
ation of mutual ex
lusion there are
ertain a
tions that
an be performed by the low-level automaton. These a
tions are determined by the p
 values. The relation states that wheneverthe program
ounter of a pro
ess at the low-level automaton is set to one of setflag01, setflag2,
he
k, or leavetry, the regionMap of the spe
i�
ation automaton must show region try for thesame pro
ess. The rest of the relation is de�ned similarly. The delimiter \;"
an be interpreted as
onjun
tion.In paired simulation, the simulation of the low-level algorithm drives the simulation of the high-level one. For ea
h external a
tion performed by the low-level automaton, the proof blo
k dire
tsthe simulator to �re the a
tion with the spe
i�ed name at the high-level. The internal a
tionsare mat
hed by empty exe
ution fragments indi
ated by ignore statements. The simulator
he
kswhether the proposed simulation relation holds after the a
tions are performed.5.3.4 Running the paired simulator with psimTo run the paired simulator:1. Pla
e the
ode is in a �le with extension .ioa, for example InttoMutex.ioa2. Che
k the
ode for syntax and semanti
 errors with ioaChe
k3. At the
ommand line type> psim 100 DijkstraInt MutexEnv InttoMutex.ioawhere the �rst argument to psim is the number of simulation steps, the se
ond argument isthe name of the low-level (implementation) automaton and the third argument is the nameof the high-level (spe
i�
ation) automaton and the fourth one is the name of the sour
e �le.The
hoi
e for number 100 in this example is arbitrary.31

A sample output is presented in Se
tion A.5 of the Appendix.The following is the list of options available for running psim.Usagesim [option℄ <numSteps> <implAut> <spe
Aut> <filename>Options[-big℄ Use BigInteger and BigReal for all
al
ulations[-
onfig <string>℄+ Use the given
onfiguration file(s) for options[-daikon℄ Turn on Daikon instrumentation on[-dbg <string>℄+ Turn on debug information for a java
lass or pa
kage.[-debug℄ Turn on debug information globally[-ignoreFirst℄ Ignore first program point (init states) during Daikon instrumentation[-noIl℄ Do not send il output to a file (if reading an IOA file)[-o <string>℄ Set base name for output[-ode
ls <string>℄ Set destination file for de
ls output[-odtra
e <string>℄ Set destination file for dtra
e output[-oil <string>℄ Set destination for il output[-rseed <number>℄ Set randomizer seed for regression resting[-state℄ Show all state variables during exe
ution[-tra
es℄ Show only tra
es during exe
ution[-tra
esOnly℄ Show only tra
es during exe
ution5.3.5 Forward simulation from Dijkstra to DijkstaIntIn this se
tion we present the IOA
ode written for use with the paired simulator on automataDijkstra and DijkstaInt. Note that the low-level automaton Dijkstra is presented for the �rsttime. We do not explain it in detail as it is similar in many aspe
ts to DijkstraInt. The maindi�eren
e is that Dijkstra has three stages as opposed to two in Dijkstra. The additional stage isne
essary to deal with the turn variable whose purpose is to guarantee that a pro
ess eventuallyenters its
riti
al region. The internal a
tions whi
h are present in Dijkstra but not in DijkstraIntall deal with testing and setting the variable turn.type P
ValueLow = enumeration of rem, setflag1 , testturn , testflag , setturn ,setflag2 ,
he
k, leavetry ,
rit , reset,leaveexittype StageLow = enumeration of stage0 , stage1 , stage2automaton Dijkstrasignatureoutput try(p:Index)output
rit (p:Index)output exit (p:Index)output rem(p:Index)internal setflag1 (p: Index)internal setflag2 (p: Index)internal testturn (p: Index)internal testflag (p, u: Index)internal setturn (p: Index)internal
he
k(p: Index , u: Index)internal reset(p : Index)statesturn : Index, 32

flag : Array[Index, StageLow ℄ :=
onstant (stage0),p
: Array[Index, P
ValueLow ℄ :=
onstant (rem),whose_flag : Array[Index , Index℄,S: Array[Index, Set[Index ℄℄ :=
onstant ({})transit ionsoutput try(p: Index)pre p
[p℄ = reme f f p
[p℄ := setflag1internal setflag1 (p: Index)pre p
[p℄ = setflag1e f f flag [p℄ := stage1;p
[p℄ := testturninternal testturn (p: Index)pre p
[p℄ = testturne f f i f turn = p then p
[p℄ := setflag2e lse p
[p℄ := testflag ;whose_flag [p℄ := turnf iinternal testflag (p, u: Index)pre p
[p℄ = testflag ^ whose_flag [p℄ = ue f f i f flag[u℄ = stage0 then p
[p℄ := setturne lse p
[p℄ := testturnf iinternal setturn (p: Index)pre p
[p℄ = setturne f f turn := p;p
[p℄ := setflag2internal setflag2 (p: Index)pre p
[p℄ = setflag2e f f flag [p℄ := stage2;S[p℄ := {p};p
[p℄ :=
he
kinternal
he
k(p, u: Index)pre p
[p℄ =
he
k ^ :(u 2 S[p℄)e f f i f flag[u℄ = stage2 then S[p℄ := {};p
[p℄ := setflag1e lse S[p℄ := S[p℄ [{u};i f size (S[p℄) = 3 then p
[p℄ := leavetry f if ioutput
rit (p: Index)pre p
[p℄ = leavetrye f f p
[p℄ :=
ritoutput exit (p: Index)pre p
[p℄ =
rite f f p
[p℄ := resetinternal reset(p: Index)pre p
[p℄ = resete f f flag [p℄ := stage0;S[p℄ := {};p
[p℄ := leaveexitoutput rem(p: Index)pre p
[p℄ = leaveexite f f p
[p℄ := rems
hedulestates pi
k : Int,p: Indexdo while true dopi
k := randomInt (1,3); 33

i f pi
k = 1 then p := p1e l s e i f pi
k = 2 then p := p2e lse p := p3f i ;i f p
[p℄ = rem then f i r e output try(p)e l s e i f p
[p℄ = setflag1 then f i r e internal setflag1 (p)e l s e i f p
[p℄ = testturn then f i r e internal testturn (p)e l s e i f (p
[p℄ = testflag ^ whose_flag [p℄ 6= p) thenf i r e internal testflag (p,whose_flag [p℄)e l s e i f p
[p℄ = setturn then f i r e internal setturn (p)e l s e i f p
[p℄ = setflag2 then f i r e internal setflag2 (p)e l s e i f p
[p℄ =
he
k then i f :(p1 2 S[p℄) then f i r e internal
he
k(p,p1)e l s e i f :(p2 2 S[p℄) then f i r e internal
he
k(p,p2)e l s e i f :(p3 2 S[p℄) then f i r e internal
he
k(p,p3)f ie l s e i f p
[p℄ = leavetry then f i r e output
rit (p)e l s e i f p
[p℄ =
rit then f i r e output exit(p)e l s e i f p
[p℄ = reset then f i r e internal reset(p)e lse f i r e output rem(p)f iododforward simulation from Dijkstra to DijkstraInt :(Dijkstra .S = DijkstraInt .S);8 p:Index (Dijkstra .flag [p℄ = stage0 _ Dijkstra .flag [p℄ = stage1, DijkstraInt .flag [p℄ = stage01);8 p:Index (Dijkstra .flag [p℄ = stage2 , DijkstraInt .flag [p℄ = stage2);8 p:Index (Dijkstra .p
[p℄ = rem , DijkstraInt .p
[p℄ = rem);8 p:Index (Dijkstra .p
[p℄ = setflag1 , DijkstraInt .p
[p℄ = setflag01);8 p:Index (Dijkstra .p
[p℄ = testturn _ Dijkstra .p
[p℄ = testflag _Dijkstra .p
[p℄ = setturn _ Dijkstra .p
[p℄ = setflag2, DijkstraInt .p
[p℄ = setflag2);8 p:Index (Dijkstra .p
[p℄ =
he
k , DijkstraInt .p
[p℄ =
he
k);8 p:Index (Dijkstra .p
[p℄ = leavetry , DijkstraInt .p
[p℄ = leavetry);8 p:Index (Dijkstra .p
[p℄ =
rit , DijkstraInt .p
[p℄ =
rit);8 p:Index (Dijkstra .p
[p℄ = reset , DijkstraInt .p
[p℄ = reset);8 p:Index (Dijkstra .p
[p℄ = leaveexit , DijkstraInt .p
[p℄ = leaveexit);proofi n i t i a l l yDijkstraInt .flag :=
onstant (stage01);DijkstraInt .p
 :=
onstant (rem);DijkstraInt .S :=
onstant ({})for output try(p:Index) do f i r e output try(p) odfor internal setflag1 (p:Index) do f i r e internal setflag01 (p) odfor internal testturn (p:Index) ignorefor internal testflag (p,u:Index) ignorefor internal setturn (p:Index) ignorefor internal setflag2 (p:Index) do f i r e internal setflag2 (p) odfor internal
he
k(p,u:Index) do f i r e internal
he
k(p,u) odfor output
rit (p:Index) do f i r e output
rit (p) odfor output exit (p:Index) do f i r e output exit (p) odfor internal reset(p:Index) do f i r e internal reset(p) odfor output rem(p:Index) do f i r e output rem(p) od34

Explanation of
ode The forward simulation relation is based on the idea that the �rst twostages (stage0 and stage1) of algorithm Dijkstra are represented by a single stage in DijkstraInt(stage01). The rest of the
ode should be self-explanatory. The paired simulation
an be
arriedout by pla
ing the
ode for DijkstraInt from Se
tion 5.3.1 in the same �le as the
ode for Dijkstrawith the s
hedule blo
k and the proposed simulation relation.6 Simulator-related extensions to the IOA languageIn this se
tion we revisit those parts of the IOA language that were modi�ed in order a

ommodatethe language
onstru
ts on whi
h the IOA simulator depends. The modi�
ations to the IOA syntaxare des
ribed formally using a BNF grammar. We also
omment on the semanti

onstraints forthe extensions to the IOA language. The reader is referred to [GLV01℄ for the rest of the IOAgrammar, the grammar syntax
onventions used here and the semanti
s of the IOA Language.6.1 Resolution of nondeterminismAs explained in Se
tion 3, our approa
h to resolution of nondeterminism requires programmers tospe
ify how the nondeterminism in an automaton is to be resolved by the simulator. The ne
essarymodi�
ation to the IOA Language has two parts:1. Addition of syntax for sequential programs that spe
ify the values to
hoose or the transitionsto s
hedule (\NDR programs").2. Extensions to the existing syntax for automaton and
hoose that in
orporate these sequentialprograms.The resulting grammar is very similar to the existing program grammar in IOA, ex
ept that itpermits the new �re and yield statements, used by the NDR me
hanisms to s
hedule automatona
tions and determine values of
hoi
es, as well as the while statement, whi
h provides a looping
onstru
t with simple deterministi
 semanti
s.Extension to primitive automaton syntax: This extension is straightforward: it simply pro-vides a pla
e to spe
ify the s
hedule of a primitive automaton.Original:basi
Automaton ::= 'signature' formalA
tions+ states transitions tasks?Modi�ed:basi
Automaton ::= 'signature' formalA
tions+ states transitions tasks? s
hedule?s
hedule ::= 's
hedule' states? 'do' NDRProgram 'od'NDRProgram ::= NDRStatement;*NDRStatement ::= assignmentj NDRConditionalj NDRWhilej NDRFireNDRConditional ::= 'if' predi
ate 'then' NDRProgram('elseif' predi
ate 'then' NDRProgram)*('else' NDRProgram)? 'fi'NDRWhile ::= 'while' predi
ate 'do' NDRProgram 'od'NDRFire ::= 'fire' a
tionType a
tionName a
tionA
tuals? transCase?j 'fire' 35

An assignment in a s
hedule blo
k may assign a value to any of the s
hedule's state variables, butit may not assign values to variables inside the automaton. This
onstraint is veri�ed during stati

he
king.Determining values within a
hoose: This extension is also mostly straightforward. Besidesproviding a pla
e to hold the NDRProgram, however, it does two additional things: �rst, it spe
i�es ashorthand notation for a (presumably)
ommon form of
hoi
e determination, and se
ond, it allowsfor a
hoose statement to spe
ify a variable name without a
onstraining where predi
ate. This isne
essary for paired simulation, sin
e the names of the
hosen values in the spe
i�
ation automa-ton are still ne
essary to
arry out the step
orresponden
e, even in the absen
e of a where predi
ate.Original:
hoi
e ::= '
hoose' (variable 'where' predi
ate)?Modi�ed:
hoi
e ::= '
hoose' (variable ('where' predi
ate)?)?
hoi
eNDR?
hoi
eNDR ::= 'det' 'do' NDRProgramY 'od'j NDRYieldNDRProgramY ::= NDRStatementY;*NDRStatementY ::= assignmentj NDRConditionalYj NDRWhileYj NDRYieldNDRConditionalY ::= 'if' predi
ate 'then' NDRProgramY('elseif' predi
ate 'then' NDRProgramY)*('else' NDRProgramY)? 'fi'NDRWhileY ::= 'while' predi
ate 'do' NDRProgramY 'od'NDRYield ::= 'yield' termThe only statements appearing in a yield
ontext are those that return values; spe
i�
ally �restatements are disallowed.6.2 Labeling transition de�nitionsAs explained in Se
tion 3, our approa
h to resolution of nondeterminism requires a way to refer toa transition de�nition in a primitive automaton. In general, it is not enough for this to spe
ify thename and parameters of the transition: it is possible for two transitions with identi
al signatureand where
lause to be enabled in the same state. This addition to the IOA syntax remedies thesituation by providing an expli
it naming me
hanism:Original:transition ::= a
tionHead
hooseFormals? pre
ondition? effe
t?a
tionHead ::= a
tionType a
tionName (a
tionA
tuals where?)?Modi�ed:transition ::= a
tionHead
hooseFormals? pre
ondition? effe
t?a
tionHead ::= a
tionType a
tionName (a
tionA
tuals where?)?transCase?transCase ::= '
ase' idOrNumeral 36

The user is free to de�ne, for a given a
tion, two transitions with the same parameters and
asename. The semanti

he
ker does not issue an error message unless a s
hedule blo
k for theautomaton refers to su
h a dupli
ate transition. In
ase a dupli
ate transition is referred to, itindi
ates that more than one transition mat
hes the given des
ription, just as it would if there wereno
ase names given.6.3 Labeling invariantsIt is
onvenient for invariants to have a name, so that the simulator
an refer to the spe
i�
 invari-ant in
ase it fails. This was a

omplished with the following grammar
hange, whi
h allows anynumeral or identi�er to be given as the name for an invariant.Original:invariant ::= 'invariant' 'of' automatonName ':' predi
ateModi�ed:invariant ::= 'invariant' idOrNumeral? 'of' automatonName ':' predi
ateBe
ause invariant labels exist only for the user's
onvenien
e in reading the simulator's output, theuser is free to
hoose any (alphanumeri
) name desired; no semanti

he
ks are performed. Forexample, the user may give all invariants of an automaton the same name | this is
onsidered aslegal although it should obviously be avoided.6.4 Paired simulationIn addition to the mathemati
al statement of a simulation relation between automata, the simulatoralso needs a step
orresponden
e between the automata whi
h realizes the simulation relation.Hen
e, it was ne
essary to develop a language for spe
ifying these
orresponden
es. See Se
tion 4for the semanti
s of this language, and for justi�
ation of the approa
h and terminology.The syntax of IOA has been extended with forward simulations to permit the spe
i�
ationof a \proof", whi
h embodies the step
orresponden
e. This proof spe
i�es, for ea
h transitionthat the implementation automaton might take, a way to produ
e a sequen
e of transitions for thespe
i�
ation automaton. The following are the additions:Original:simulation ::= ('forward' j 'ba
kward') 'simulation' 'from'automatonName 'to' automatonName ':' predi
ateModi�ed:simulation ::= ('forward' j 'ba
kward') 'simulation' 'from'automatonName 'to' automatonName ':' predi
atesimProof?simProof ::= 'proof' states? ('initially' (variable ':=' term);+)?simProofEntry+simProofEntry ::= 'for' a
tionType a
tionNamea
tionFormals? transCase?(('do' simProofProgram 'od') j 'ignore')simProofProgram ::= simProofStatement;+ 37

simProofStatement ::= assignmentj simProofConditionalj simProofWhilej simProofFiresimProofConditional ::= 'if' predi
ate 'then' simProofProgram('elseif' predi
ate 'then' simProofProgram)*('else' simProofProgram)? 'fi'simProofWhile ::= 'while' predi
ate 'do' simProofProgram 'od'simProofFire ::= 'fire' a
tionType a
tionNamea
tionA
tuals? transCase?('using' (term 'for' variable),+)?The left-hand side of an assignment in a simProofInit blo
k must refer to a state variable of thespe
i�
ation automaton. The user assumes the burden of ensuring that the initially assignmentsresult in a rea
hable state of the spe
i�
ation automaton.7 Implementation of the simulator7.1 The IOA toolkit ar
hite
tureThe simulator is part of the IOA toolkit, whi
h is written in Java. The toolkit is split into twoparts: the front end and the ba
k end. The front end in
ludes the IOA parser and syntax
he
ker,while the ba
k end in
ludes the simulator, a
ode generator (to Java) and a translator to LSL. Thetools share many
omponents, and the shared parts are designed to fa
ilitate adding new tools withminimal e�ort. The
omponents
an be divided into three
ategories:� Intermediate language and syntax trees All ba
k end tools use the same syntax tree torepresent the IOA language stru
tures as Java data stru
tures. The front end generates anintermediate language (IL) representation of IOA, and ba
k end libraries parse this IL intothe shared syntax tree.3� Data stru
tures for exe
utable IOA In addition to the simulator, the IOA
ode generator
an also exe
ute IOA programs4. To prevent redundant
ode and to ensure similar behavior,the toolkit programs that
an exe
ute IOA all use the same Java pa
kage for IOA datastru
tures and fun
tions.� Shared utility
omponents To provide similar behavior a
ross all the IOA tools, many userinterfa
e and other features are implemented in shared libraries. In addition to the IL parserand syntax tree des
ribed below, the tools share an error handling me
hanism, a
ommandline argument pro
essor and debug output generator.Of
ourse, all the tools are di�erent in the ways they work with IOA. Spe
i�
ally, some toolsrequire only a subset of the language. For example, the simulator has no need for assert
lauses inLSL spe
i�
ations for data stru
tures, but requires s
hedule and det blo
ks for nondeterminismresolution. In
ontrast, the the translator to LSL needs the assert
lauses, but does not neednondeterminism resolution. We use the following rules for handling these implementation issues:3Note that the front end has to have a syntax tree to parse IOA, but this tree is di�erent from the ba
k end tree,and does not intera
t with the ba
k end. We shall hen
eforth
all the front end parser the IOA parser and the ba
kend IL parser the IL parser.4Using the same ideas for nondeterminism resolution and s
heduling that are presented in this paper38

� The IOA front end parser understands all extensions of the language and writes IL �les
ontaining all the relevant information.� The IL parser understands the
ore part of IOA, su
h as automaton signature, state variablesand transition de�nitions.� For a language stru
ture that is spe
i�
 to a parti
ular tool, the tool is responsible for parsingand
reating syntax trees for the stru
ture.The advantage of the above rules is that it makes the tools more independent from ea
h otherand the IL more robust to
hanges. The disadvantage is that implementing global features (likeunparsing) is more diÆ
ult with respe
t to syntax trees.7.2 The Intermediate language and IL parserThe IL is written to a text �le by the IOA parser after an IOA �le is read. It is meant to be \self
ontained": unlike an IOA �le, it does not refer to external de�nitions su
h as LSL traits.The format of the IL is parenthesized symboli
 expressions (S-expressions), whi
h are easilyparsed and allow human reading and editing for debugging.The
onvention is that the IOA parser and the IL parser do not write/read dire
tly to/fromtext format. Instead, they parse/unparse the into S-expressions and then let a utility write totext form. This separates the steps involved in text pro
essing and low-level parsing from thehigh-level re
ognition of IOA syntax stru
tures. Another advantage of this is that the formattingand appearan
e of IL is the same when it is being generated by the IOA parser or the IL parser5.Lastly, when the IL parser �nds an error in the IL, it uses the error handler
ommon to all tools.7.2.1 The spe
 obje
tEvery IL �le
ontains a top level obje
t
alled the spe
:(ioa *sort-table* *operator-table* *variable-table**automaton-definition* ...*annotations*)The spe
 is a an S-expression list (S-list) that begins with the word ioa, and
ontains thesymbol tables (one for data type sorts, one for operators and one for variable names), followed bythe automaton de�nitions (more than one automaton
an be de�ned), followed by any additionalannotations for the spe
.The IL de�nes spe
i�
 pla
es where tool-spe
i�
 extensions of the language may be pla
ed: theyare always at the end of S-lists and are written as S-lists following globally-re
ognized elements.The IL Parser delegates the parsing of tool-spe
i�
 extensions ba
k to the tool that invoked it.5Even though they use di�erent syntax trees, both of them generate S-expressions
39

7.2.2 Symbol tablesThe IOA
he
ker and parser resolve all name and s
ope issues, so that variables and operators shareone
at namespa
e. The symbol tables map from this
at name spa
e to the original IOA namespa
e. The Simulator uses the
at namespa
e, but reports a
tions using the symbol table so users
an refer to state variables and operators by their original names. For example in the followingsymbol tables:(ioa(sorts ;; *sort-table*(s0 "Bool" ())...(s3 "Int" () lit)...)(ops ;; *operator-table*(op1 (infix "=") ((s0 s0) s0) (s
ope 0))...(op452 (infix "=") ((s3 s3) s0) (s
ope 22))...)The operator op452 is the = operator that operates on two arguments of type Int and returnsa type Bool. Sin
e the equality operator for integers is expli
itly named, ba
k end tools do nothave to determine what a parti
ular usage of = is. This is
onvenient be
ause two data types mayde�ne and operator like * to mean di�erent things (e.g.
on
atenation vs. multipli
ation).7.2.3 Additional annotationsThe two major types of annotations re
ognized by the shared IL parser in the spe
 obje
t areshorthand sorts (su
h as tuple de�nitions) and invariant statements. Simulation relations betweenautomata are annotations that are parsed only by the simulator and LSL generators.7.2.4 Automaton de�nitionsEa
h automaton de�nition is an S-list that
onsists of a des
ription of the a
tions, the state variables(and their initializations), the possible transitions followed by tool-spe
i�
 annotations. The onlyannotation the simulator uses is a s
hedule blo
k for nondeterminism resolution.(automaton "Channel"((a
tions(a0 input "send" (formals v1))(a1 output "re
eive" (formals v1)))(states *state-variables*)(transitions *transitions-list*)(s
hedule *s
hedule-blo
k*)))Laura Dean's thesis [Dea01℄
ontains the formal BNF spe
i�
ation of the IL, along with thesimulator-spe
i�
 extensions. 40

7.3 Implementation of the ILIn this se
tion, we brie
y look at the way the IL syntax tree is implemented. For a more detailedview, see Ramirez's thesis [RR00℄.Every obje
t in the IL tree is a Java interfa
e that inherits from ioa.il.ILElement. For exam-ple, ioa.il.Program is an ioa.il.ILElement that
ontains multiple ioa.il.Statements. Ea
hof these interfa
es is implemented with Java obje
ts that inherit from ioa.il.Basi
ILElement.There are two reasons for using interfa
es rather than obje
ts for the IL:� Tools
an
hoose to implement the IL in a
ompletely di�erent way from the default obje
tsunder ioa.il.Basi
IlElement.� Java does not permit multiple inheritan
e in obje
ts, so using interfa
es provides more
exi-bility for tools that want to extend obje
t fun
tionality.Ea
h ba
k-end tool
an
hoose to dire
tly use
lasses in ioa.il to implement its fun
tionality, orit
an extend some of the obje
ts derived from ioa.il.Basi
ILElement and
reate a parallel syntaxtree for itself. The
onvention is to delegate standard fun
tionality to ioa.il obje
ts wheneverpossible. Therefore , for example, ioa.simulator.SimChoi
e extends ioa.il.NDRChoi
e whi
hextends ioa.il.Basi
Value. ioa.simulator.SimChoi
e does not dire
tly extendioa.simulator.SimValue (whi
h extends ioa.il.Basi
Value).To parse and generate IL tree obje
ts, the fa
tory design pattern is used. The ILParser is asubroutine
alled by ba
k-end tools that does the a
tual parsing. ILParser generates obje
ts inthe tree as needed by asking an ILFa
tory. By default, the ILParser uses ioa.il.Basi
ILFa
torywhi
h produ
es
hildren of ioa.il.Basi
ILElement. Ba
k-end tools that want to repla
e IL treeobje
ts with
ustomized ones just have to
hange the fa
tory that is used to a
ustom one. Thesimulator thus uses a ioa.simulator.SimILFa
tory.7.4 Simulator data typesThe Simulator shares runtime type libraries with the IOA Code Generator to ensure similar
odebehavior and to redu
e repeated
ode. The toolkit refers to these as abstra
t data types (ADTs)and Mi
hael Tsai in \ADTs for IOA Code Generation" [Tsa01℄ des
ribes the pro
ess in detail.Data types and asso
iated operators used in IOA are spe
i�ed either expli
itly (in LSL �les) orimpli
itly (built in) to the IOA parser and
he
ker. These spe
i�
ations are implemented by ADTsin the runtime libraries. When an IOA program is run and an operator or data type is
onstru
tedin the IL tree, the Simulator looks up the appropriate implementation in an ADT \Registry" thatmaps operator and sort spe
i�
ations to implementations. The implementation sort or operator isthen used when working with data values.7.4.1 The ADT registryBefore the Registry is used, it must be told whi
h IOA operators and sorts are being implemented bywhat. This is done by a set of registration
lasses. For example, the registration
lass for IntSorttells the Registry that: the IOA data type Int will be implemented by the Java
lass IntSort, andthe operators that work on Int (su
h as +) will be implemented by methods in IntSort.41

A registration
lass may register for any number of operators or sorts, but the
onvention is touse one registration
lass for ea
h IOA data type and its asso
iated operators. For fun
tions thatoperate on multiple sorts, registration
an be done by any of the sorts' registration
lasses.Sin
e spe
i�
ations are separate from implementation, users
an
hoose to have an alternateset of data type implementations. This is done by
on�guring the Registry to use a di�erent set ofregistration
lasses in the .ioar

on�guration �le.It is important to note that with this
exible registration me
hanism, mismat
hes in registrationare not dete
ted at
ompile time. For example, if an ADT was missing and a registration
lassreferred to it, the registration
lass would still
ompile. Only when the simulator is run would thiserror be dete
ted. This makes good testing and error
he
king vital (see below).7.5 Testing and implementationThe IOA toolkit also shares testing infrastru
ture between its tools. There are two types of tests:� Unit tests These test a few
lasses for their expe
ted fun
tionality by themselves. This isdone using Junit[JUn02℄. Currently, all the ADT implementations and some shared interfa
elibraries are tested this way. Testing the ADTs with unit tests is important as it would betroublesome to generate IOA �les that
all every method in an ADT implementation.� Regression tests All the output generated by IOA tools is
ompared to the expe
ted outputusing a test suite of more than 30 tests. These tests
he
k for
orre
t implementation of IOAdata and language stru
tures, and ea
h test is run for ea
h tool.Extensions to the Simulator or other tools should also add the appropriate unit and regressiontests to ensure veri�
ation of
orre
t operation.

42

A Simulator outputsThis se
tion in
ludes the simulator outputs for the examples presented throughout this paper.(Note: some of them need to be updated).A.1 Simulator output for Chooser[[[[Begin initialization [[[[%%%% Modified state variables:
hosen --> 87did_
hoose --> false℄℄℄℄ End initialization ℄℄℄℄[[[[Begin step 1 [[[[transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 11did_
hoose --> true℄℄℄℄ End step 1 ℄℄℄℄[[[[Begin step 2 [[[[transition: output a
tion2(11) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 2 ℄℄℄℄[[[[Begin step 3 [[[[transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 12did_
hoose --> true℄℄℄℄ End step 3 ℄℄℄℄[[[[Begin step 4 [[[[transition: output a
tion2(12) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 4 ℄℄℄℄[[[[Begin step 5 [[[[transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 13did_
hoose --> true℄℄℄℄ End step 5 ℄℄℄℄...[[[[Begin step 95 [[[[transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 13did_
hoose --> true℄℄℄℄ End step 95 ℄℄℄℄[[[[Begin step 96 [[[[transition: output a
tion2(13) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 96 ℄℄℄℄[[[[Begin step 97 [[[[transition: output a
tion1 in automaton Chooser43

%%%% Modified state variables:
hosen --> 11did_
hoose --> true℄℄℄℄ End step 97 ℄℄℄℄[[[[Begin step 98 [[[[transition: output a
tion2(11) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 98 ℄℄℄℄[[[[Begin step 99 [[[[transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 12did_
hoose --> true℄℄℄℄ End step 99 ℄℄℄℄[[[[Begin step 100 [[[[transition: output a
tion2(12) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 100 ℄℄℄℄No errorsA.2 Simulator output for Fibona

i[[[[Begin initialization [[[[%%%% Modified state variables:a --> 1b --> 0
 --> 1℄℄℄℄ End initialization ℄℄℄℄[[[[Begin step 1 [[[[transition: internal
ompute in automaton Fibona

i%%%% Modified state variables:a --> 0b --> 1
 --> 1>>>> Invariant B failed℄℄℄℄ End step 1 ℄℄℄℄[[[[Begin step 2 [[[[transition: internal
ompute in automaton Fibona

i%%%% Modified state variables:a --> 1b --> 1
 --> 2>>>> Invariant B failed℄℄℄℄ End step 2 ℄℄℄℄[[[[Begin step 3 [[[[transition: internal
ompute in automaton Fibona

i%%%% Modified state variables:a --> 1b --> 2
 --> 3>>>> Invariant B failed℄℄℄℄ End step 3 ℄℄℄℄[[[[Begin step 4 [[[[44

transition: internal
ompute in automaton Fibona

i%%%% Modified state variables:a --> 2b --> 3
 --> 5>>>> Invariant B failed℄℄℄℄ End step 4 ℄℄℄℄[[[[Begin step 5 [[[[transition: internal
ompute in automaton Fibona

i%%%% Modified state variables:a --> 3b --> 5
 --> 8>>>> Invariant B failed℄℄℄℄ End step 5 ℄℄℄℄**** Some errors o

ured during simulationA.3 Forward simulation from FiniteGreeter to GreeterSpe
[[[[Begin initialization [[[[%%%% Modified state variables for impl automaton:maxGreets --> 100
ount --> 0%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End initialization ℄℄℄℄[[[[Begin step 1 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 1Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End step 1 ℄℄℄℄[[[[Begin step 2 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 2Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End step 2 ℄℄℄℄[[[[Begin step 3 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 3Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End step 3 ℄℄℄℄[[[[Begin step 4 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:45

ount --> 4Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End step 4 ℄℄℄℄...[[[[Begin step 15 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 15Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End step 15 ℄℄℄℄[[[[Begin step 16 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 16Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End step 16 ℄℄℄℄...[[[[Begin step 99 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 99Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ End step 99 ℄℄℄℄[[[[Begin step 100 [[[[Exe
uted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 100Exe
uted spe
 transition: output hello in automaton GreeterSpe
 using false for sg%%%% Modified state variables for spe
 automaton:stillGoing --> false℄℄℄℄ End step 100 ℄℄℄℄>>>> No errorsA.4 Simulator output for DijkstraInt[[[[Begin initialization [[[[%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01))p
 --> (ArraySort (ConstantValue rem))S --> (ArraySort (ConstantValue ()))℄℄℄℄ End initialization ℄℄℄℄ 46

[[[[Begin step 1 [[[[transition: output try(p3) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p3 setflag01))℄℄℄℄ End step 1 ℄℄℄℄[[[[Begin step 2 [[[[transition: output try(p2) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p2 setflag01) (p3 setflag01))℄℄℄℄ End step 2 ℄℄℄℄[[[[Begin step 3 [[[[transition: output try(p1) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 setflag01) (p3 setflag01))℄℄℄℄ End step 3 ℄℄℄℄[[[[Begin step 4 [[[[transition: internal setflag01(p1) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage01))p
 --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 setflag01) (p3 setflag01))℄℄℄℄ End step 4 ℄℄℄℄...[[[[Begin step 52 [[[[transition: internal setflag2(p2) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage2))p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2
he
k) (p3 leavetry))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2)) (p2 (p2)) (p3 (p1 p2 p3)))℄℄℄℄ End step 52 ℄℄℄℄[[[[Begin step 53 [[[[transition: output
rit(p3) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2
he
k) (p3
rit))℄℄℄℄ End step 53 ℄℄℄℄[[[[Begin step 54 [[[[transition: internal
he
k(p2, p1) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2 setflag01) (p3
rit))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2)) (p2 ()) (p3 (p1 p2 p3)))℄℄℄℄ End step 54 ℄℄℄℄[[[[Begin step 55 [[[[transition: output exit(p3) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2 setflag01) (p3 reset))℄℄℄℄ End step 55 ℄℄℄℄[[[[Begin step 56 [[[[transition: internal reset(p3) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage01))p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2 setflag01) (p3 leaveexit))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2)) (p2 ()) (p3 ()))℄℄℄℄ End step 56 ℄℄℄℄ 47

[[[[Begin step 57 [[[[transition: internal
he
k(p1, p3) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1 leavetry) (p2 setflag01) (p3 leaveexit))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2 p3)) (p2 ()) (p3 ()))℄℄℄℄ End step 57 ℄℄℄℄....[[[[Begin step 62 [[[[transition: output
rit(p1) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2 setflag2) (p3 leaveexit))℄℄℄℄ End step 62 ℄℄℄℄[[[[Begin step 63 [[[[transition: output rem(p3) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2 setflag2) (p3 rem))℄℄℄℄ End step 63 ℄℄℄℄[[[[Begin step 64 [[[[transition: internal setflag2(p2) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage01))p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2
he
k) (p3 rem))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2 p3)) (p2 (p2)) (p3 ()))℄℄℄℄ End step 64 ℄℄℄℄[[[[Begin step 65 [[[[transition: internal
he
k(p2, p1) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2 setflag01) (p3 rem))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2 p3)) (p2 ()) (p3 ()))℄℄℄℄ End step 65 ℄℄℄℄[[[[Begin step 66 [[[[transition: internal setflag01(p2) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage01) (p3 stage01))p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2 setflag2) (p3 rem))℄℄℄℄ End step 66 ℄℄℄℄[[[[Begin step 67 [[[[transition: output try(p3) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1
rit) (p2 setflag2) (p3 setflag01))℄℄℄℄ End step 67 ℄℄℄℄[[[[Begin step 68 [[[[transition: output exit(p1) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1 reset) (p2 setflag2) (p3 setflag01))℄℄℄℄ End step 68 ℄℄℄℄[[[[Begin step 69 [[[[transition: internal reset(p1) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage01) (p3 stage01))p
 --> (ArraySort (ConstantValue rem) (p1 leaveexit) (p2 setflag2) (p3 setflag01))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 ()) (p3 ()))48

℄℄℄℄ End step 69 ℄℄℄℄...[[[[Begin step 81 [[[[transition: output
rit(p3) in automaton DijkstraInt%%%% Modified state variables:p
 --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 setflag2) (p3
rit))℄℄℄℄ End step 81 ℄℄℄℄...[[[[Begin step 100 [[[[transition: internal setflag2(p3) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage2))p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2 leavetry) (p3
he
k))S --> (ArraySort (ConstantValue ()) (p1 (p1)) (p2 (p1 p2 p3)) (p3 (p3)))℄℄℄℄ End step 100 ℄℄℄℄No errorsA.5 Forward simulation from DijkstraInt to MutexEnv[[[[Begin initialization [[[[%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01))p
 --> (ArraySort (ConstantValue rem))S --> (ArraySort (ConstantValue ()))%%%% Modified state variables for spe
 automaton:regionMap --> (ArraySort (ConstantValue rem))℄℄℄℄ End initialization ℄℄℄℄[[[[Begin step 1 [[[[Exe
uted impl transition: output try(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p2 setflag01))Exe
uted spe
 transition: output try(p2) in automaton MutexEnv%%%% Modified state variables for spe
 automaton:regionMap --> (ArraySort (ConstantValue rem) (p2 try))℄℄℄℄ End step 1 ℄℄℄℄[[[[Begin step 2 [[[[Exe
uted impl transition: output try(p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 setflag01))Exe
uted spe
 transition: output try(p1) in automaton MutexEnv%%%% Modified state variables for spe
 automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 try))℄℄℄℄ End step 2 ℄℄℄℄[[[[Begin step 3 [[[[Exe
uted impl transition: output try(p3) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 setflag01) (p3 setflag01))Exe
uted spe
 transition: output try(p3) in automaton MutexEnv%%%% Modified state variables for spe
 automaton:49

regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 try) (p3 try))℄℄℄℄ End step 3 ℄℄℄℄...[[[[Begin step 9 [[[[Exe
uted impl transition: output
rit(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2
rit) (p3 setflag01))Exe
uted spe
 transition: output
rit(p2) in automaton MutexEnv%%%% Modified state variables for spe
 automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2
rit) (p3 try))℄℄℄℄ End step 9 ℄℄℄℄...[[[[Begin step 59 [[[[Exe
uted impl transition: internal
he
k(p2, p3) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2 leavetry) (p3 setflag2))S --> (ArraySort (ConstantValue ()) (p1 (p1)) (p2 (p1 p2 p3)) (p3 ()))℄℄℄℄ End step 59 ℄℄℄℄[[[[Begin step 60 [[[[Exe
uted impl transition: output
rit(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1
he
k) (p2
rit) (p3 setflag2))Exe
uted spe
 transition: output
rit(p2) in automaton MutexEnv%%%% Modified state variables for spe
 automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2
rit) (p3 try))℄℄℄℄ End step 60 ℄℄℄℄[[[[Begin step 61 [[[[Exe
uted impl transition: internal
he
k(p1, p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2
rit) (p3 setflag2))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 (p1 p2 p3)) (p3 ()))℄℄℄℄ End step 61 ℄℄℄℄[[[[Begin step 62 [[[[Exe
uted impl transition: internal setflag01(p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage2) (p3 stage01))p
 --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2
rit) (p3 setflag2))℄℄℄℄ End step 62 ℄℄℄℄[[[[Begin step 63 [[[[Exe
uted impl transition: output exit(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 reset) (p3 setflag2))Exe
uted spe
 transition: output exit(p2) in automaton MutexEnv%%%% Modified state variables for spe
 automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 exit) (p3 try))℄℄℄℄ End step 63 ℄℄℄℄[[[[Begin step 64 [[[[Exe
uted impl transition: internal setflag2(p3) in automaton DijkstraInt%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage2) (p3 stage2))50

p
 --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 reset) (p3
he
k))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 (p1 p2 p3)) (p3 (p3)))℄℄℄℄ End step 64 ℄℄℄℄[[[[Begin step 65 [[[[Exe
uted impl transition: internal reset(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage01) (p3 stage2))p
 --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 leaveexit) (p3
he
k))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 ()) (p3 (p3)))℄℄℄℄ End step 65 ℄℄℄℄...[[[[Begin step 100 [[[[Exe
uted impl transition: internal
he
k(p3, p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p
 --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2
he
k) (p3 setflag01))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 (p2)) (p3 ()))℄℄℄℄ End step 100 ℄℄℄℄>>>> No errorsB Trait NonDetNonDet : tra i tintrodu
esrandomNat : Nat , Nat ! Nat% uniformly random natural number in given rangequeryNat : Nat , Nat ! Nat% query user for natural number in given rangerandomInt : Int , Int ! Int% uniformly random integer in given rangequeryInt : Int , Int ! Int% query user for integer in given rangerandomBool : ! Bool% random boolean (ea
h value with probability 0.5)Referen
es[Che98℄ A. E. Chefter. A simulator for the IOA language. Master's thesis, Massa
husetts Instituteof Te
hnology, Cambridge, MA, 1998.[Dea01℄ Laura G. Dean. Improved simulation of Input/Output automata. Master's thesis, Mas-sa
husetts Institute of Te
hnology, 2001.[GL98℄ Stephen J. Garland and Nan
y A. Lyn
h. The IOA language and toolset: Support for de-signing, analyzing, and building distributed systems. Te
hni
al Report MIT/LCS/TR-762, Laboratory for Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cam-bridge, MA, August 1998. URL http://theory.l
s.mit.edu/tds/papers/Lyn
h/IOA-TR-762.ps.
51

[GL00℄ Stephen J. Garland and Nan
y A. Lyn
h. Using I/O automata for developing distributedsystems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based Systems,
hapter 13, pages 285{312. Cambridge University Press, USA, 2000.[GLV01℄ S. Garland, N. Lyn
h, and M. Vaziri. IOA: A Language for Spe
ifying, Programming,and Validating Distributed Systems. MIT Laboratory for Computer S
ien
e, Cambridge,MA, 2001. URL http://theory.l
s.mit.edu/tds/ioa.html.[JUn02℄ JUnit. Junit. www.junit.org, 2002.[KCD+℄ D. Kaynar, A. Chefter, L. Dean, S. Garland, N. Lyn
h, T. Ne Win, andA. Ram��rezRobredo. Simulating nondeterministi
 systems at multiple-levels of abstra
-tion. Submitted for publi
ation.[LAB+81℄ B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C. Sha�ert, R. S
hei
er, and A. Snyder.CLU Referen
e Manual. Springer-Verlag, 1981.[LT89℄ N. Lyn
h and M. Tuttle. An introdu
tion to input/output automata. CWI-Quarterly,2(3):219{246, 1989.[Lyn96℄ N. Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.[PAG℄ PAG. Home page of the Daikon invariant dete
tor proje
t. Maintained by the ProgramAnalysis Group at MIT Laboratory for Computer S
ien
e (leader Mi
hael Ernst). URLhttp://pag.l
s.mit.edu/daikon/.[RR00℄ J. Antonio Ram�rez-Robredo. Paired simulation of I/O automata. Master's thesis,Massa
husetts Institute of Te
hnology, 2000.[TDS℄ TDS. Home page of the IOA proje
t. Maintained by the Theory of Distributed SystemsGroup at MIT Laboratory for Computer S
ien
e (leader Nan
y Lyn
h). URL http://theory.l
s.mit.edu/tds/ioa.html.[Tsa01℄ Mi
hael Tsai. Abstra
t data types for IOA
ode generation. Te
hni
al report, MITLaboratory for Computer S
ien
e, 2001.[Win02℄ Toh Ne Win. Assisting IOA design and veri�
ation with Daikon. Presentation Slides,Mar
h 2002.[WS01℄ Toh Ne Win and Gustavo Santos. The IOA-Daikon
onne
tion: Enabling dynami
invariant dis
overy in IOA programs. Te
hni
al report, MIT Laboratory for ComputerS
ien
e, 2001.

52

