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1 Introduction

The timed input/output automaton (TIOA) framework [3, 4] is a mathematical modeling framework
that supports the description and analysis of timed systems. The TIOA language is a formal
language for specifying timed systems and their properties within the TIOA framework.

The TIOA language is a variant of the IOA language [2], which supports the description of basic
I/O automata with no timing information. The TIOA language does not provide the full generality
of the mathematical TIOA framework [3] with respect to defining dynamic types and trajectories;
for example, it restricts differential equations in trajectory definitions to those in which d(v) equals
the value of some expression.

2 TIOA Language

The TIOA language is based on the IOA language, but extends, simplifies, and differs from it in
the following respects.

• TIOA contains notations for time-related aspects of timed I/O automata: both discrete and
continuous types, stopping conditions for transitions, and trajectories.

• In TIOA, notations for operators on datatypes are defined using a new vocabulary construct.
In IOA, such notations were defined in auxiliary files, written in the Larch Shared Language
(LSL). This change has two advantages:

– Complete TIOA specifications can be written in a single file and can be checked statically
without the need for auxiliary files. (TIOA specifications can still be distributed over
several files, if the so user wishes).

– TIOA is more amenable than IOA for use with theorem provers (e.g., PVS) other than
the Larch Prover. It allows axioms for abstract data types to be expressed in languages
appropriate for those theorem provers, rather than requiring them to be written in LSL.

– Definitions of automata and vocabularies use the same parameterization mechanism (in
IOA, auxiliary LSL specifications used a different mechanism).

• TIOA contains notations for defining functions and derived variables.
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• TIOA contains notations for new NDR (nondeterminism resolution) constructs. These are
used to provide scheduling information for the TIOA simulator.

• TIOA contains notations for guiding the (paired) simulation of trajectories.

This paper defines the syntax and semantics of TIOA using the conventions of the IOA Man-
ual [2]. The syntax of TIOA is the same as that of IOA, unless explicitly stated otherwise. The
syntax and semantics of language constructs not explained in this paper can be found in [2].

2.1 Vocabularies

TIOA does not use any of the IOA keywords specific to LSL, nor does it use the keyword axioms.
Instead of using an axioms statement to refer to separate LSL specifications containing definitions
of types and operators, it uses a vocabulary definition to introduce types and operators.

2.1.1 Surface Syntax

spec ::= (funcDecls | vocabDef | automatonDef | assertion)+

vocabDef ::= ’vocabulary’ vocabId formals? defines?

imports? typeDcls? opDcls?

vocabId IDENTIFIER

formals ::= ’(’ formal,+ ’)’

formal ::= IDENTIFIER,+ ’:’ (type | ’type’)

defines ::= ’defines’ constructorDcl

imports ::= ’imports’ vocabRef,+

vocabRef ::= vocabId actuals?

actuals ::= ’(’ actual,+ ’)’

actual ::= term | ’type’ type

typeDcls ::= ’types’ typeDcl,*

typeDcl ::= type shorthand?

constructorDcl ::= typeConstructor ’[’ simpleType+ ’]’

opDcls ::= ’operators’ opDcl,*

opDcl ::= name,+ ’:’ signature ’,’?

The vocabulary of a vocabDef contains

• each type, typeConstructor, and operator defined in its defines, typeDcls, and opDcls,
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• the vocabulary of each shorthand in its typeDcls, and

• the appropriately renamed vocabulary of each imported vocabRef.1

The base vocabulary of a spec is the union of the vocabularies of TIOA’s built-in types. (This
vocabulary is simply called the vocabulary of the specification in [2].

2.1.2 Intermediate Language Syntax

vocabulary ::= ’(’ ’vocab’ vocabName formals? defines?

imports? sortDcls? opDcls? ’)’

vocabName ::= identifier

formals ::= ’(’ ’formals’ formal+ ’)’

defines ::= ’(’ ’defines’ sortId ’)’

imports ::= ’(’ ’imports’ vocabRef+ ’)’

sortDcls ::= ’(’ ’sorts’ sort+ ’)’

opDcls ::= ’(’ ’ops’ operator+ ’)’

2.1.3 Static Semantics

The simpleTypes in a constructorDcl must be distinct.
A vocabulary cannot have both formals and a defines clause.
Each type in a formal or signature must be in the vocabulary of the vocabDef.
More to come.

2.2 Function Definitions

A new construct enables the definition of functions at various points in a TIOA specification. Such
definitions can occur as a specification unit (analogous to vocabDefs and automatonDefs), following
the definition of state variables (see Section 2.3), or at the beginning of a transition or trajectory
definition (see Sections 2.5 and 2.6).

2.2.1 Surface Syntax

funcDecls ::= ’let’ funcDecl;+

funcDecl ::= funcName ’(’ variableList,+ ’)’ ’=’ term

funcName ::= IDENTIFIER

The domain of the function defined in a funcDecl consists of the sequence of types associated
with the variables in its variableLists, and the range of the function is the type of the defining
term.

1To regain functionality present in IOA and LSL, the definitions of formal and actual may be enhanced to allow
type constructors and operators, and the definition of actuals may be enhanced to allow renamings of types, type
constructors, and operators that do not appear as formals.

3



2.2.2 Intermediate Language Syntax

funcDecls ::= ’(’ ’let’ funcDecl+ ’)’

funcDecl ::= ’(’ opId varId* term ’)’

2.2.3 Static Semantics

Each variable in a variableList of a funcDecl must be distinct from all other such variables, that
is, they must differ either in their IDENTIFIERs or their types.

The type of each such variable must be in the base vocabulary of the specification or, if the
funcDecl occurs within an automaton definition, in the vocabulary of that automaton.

When a funcDecl occurs outside an automaton definition, each constant, operator, or variable in
its defining term must be in the base vocabulary of the specification or declared in a variableList
in the funcDecl.

When a funcDecl occurs within an automaton definition, each variable in its variableLists
must differ from any automatonFormal and from any stateVariable; furthermore, each constant,
operator, or variable in its defining term must be in the vocabulary of the automaton or declared
in a variableList in the funcDecl.

When a funcDecl occurs within a transition or trajectory definition, each variable in its
variableLists must differ from any parameter of that transition or trajectory definition; fur-
thermore, each constant, operator, or variable its defining term must be in the vocabulary of the
automaton, declared in a variableList in the funcDecl, or a parameter of that transition or
trajectory.

2.3 Primitive Automaton Definitions

A primitive TIOA is defined by its action signature, its states, its transitions, its trajectories, and
its tasks. Trajectory, task, and schedule specifications are optional.

The naive translation of any IOA program is a legal TIOA program provided that the variables
of type Real are interpreted as of new built-in type DiscreteReal.

2.3.1 Surface Syntax

automatonDef ::= ’automaton’ automatonName formals?

imports? (basicAutomaton | composition)

basicAutomaton ::= ’signature’ formalActions+ states funcDecls?

transitions trajectories? tasks? schedule?
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2.3.2 Intermediate Language Syntax

automaton ::= ’(’ ’automaton’ automatonName formals where? ?

imports? automatonDef ’)’

primitive ::= ’(’ ’(’ ’actions’ action+ ’)’ states funcDecls?

( ’(’ ’transitions transition+ ’)’ )?

( ’(’ ’trajectories trajectory+ ’)’ )?

( ’(’ ’tasks’ task+ ’)’ )?

schedule? ’)’

2.3.3 Semantics

Section 2.6 defines the semantics for trajectory definitions.

2.4 State Variables

State variables in TIOA are declared exactly as in IOA. Static types in TIOA correspond to types in
IOA. Dynamic types in TIOA have no counterpart in IOA. Dynamic types of variables in TIOA are
declared implicitly (and can be inferred by TIOA implementations automatically) for all built-in
simple types and for a predefined class of compound types as explained below. The dynamic type
of all other built-in and user-defined types consists of the piecewise constant functions.

State variables may have a new built-in type AugmentedReal for the set R ∪ {∞,−∞}.2

2.4.1 Semantics

• If v is a variable of type Real or AugmentedReal, then the dynamic type of v (dtype(v))
is the pasting closure of the set of continuous functions from left-closed intervals of time to
the set of reals (piecewise continuous functions). If v is a variable of type DiscreteReal
or DynamicAugmentedReal, then dtype(v) is the pasting closure of the set of constant
functions from left-closed intervals of time to the set of reals (piecewise constant functions).

• If v is a variable of any other simple type, then dtype(v) is the pasting closure of the set of
constant functions from left-closed intervals of time to the set of reals.

• If v is a variable of one of the following compound types:

1. Array[I1, . . . , In,E]: n-dimensional array of elements of type E indexed by element of
types I1, . . . , In where the indices are of finite types.

2The AugmentedReal trait permits comparisons of real numbers with augmented real numbers; it also permits
arithmetic operators to be applied to one real and one augmented real number, so there is no need to cast reals
explicitly to augmented reals. Similarly, it is also possible to apply arithmetic operators to arguments that have
either discrete or continuous types, with the result type being discrete if both arguments are discrete.

Eventually, TIOA may allow users to define dynamic types, e.g., by defining a topology (or metric) on the set of
elements in a data type and using that topology (or metric) for the definition of continuity. With this approach,
piecewise constant functions are the same thing as piecewise continuous functions in a discrete topology. Hence, it
might make more sense to have the default dynamic type be piecewise continuous and the default toplogy be the
discrete topology.
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2. Map[D1, . . . , Dn,E]: finite partial mapping of an n-dimensional domain with type
D1 × . . .× Dn to elements of a range with type E. Mappings differ from arrays in that
they are defined only for finitely many elements of their domains (and hence may not
be totally defined).

3. Tuple of I1: E1, . . . In: En: n-tuple with fields I1, . . . , In with types, respectively,
E1, . . . En.

4. Seq[E]: finite sequence of elements of type E.

then dtype(v) is defined recursively as follows. All of the above-listed datatypes can be
viewed as functions from a domain Dom such that Dom = {v1, . . . , vk} for some finite integer
k. Then, dtype(v) is defined as the set of functions f from left-closed intervals of time to
type(v) such that f.vi ∈ dtype(vi) for each i ∈ {1, . . . k}. We use f.vi to denote the function
that gives f(t)(vi) for all t in the domain of f .

Example 2.1 Consider the following type definition in TIOA.

type T tuple [a: Real , b: Nat , c: DiscreteReal]

Suppose that variable v is declared to be of type T. Then dtype(v) is the set of functions f from
left-closed intervals of time to T such that f.a is a piecewise continuous function with real values,
f.b is a piecewise constant functions with natural values, and f.c is a piecewise constant function
with real values.

Example 2.2 Consider the following type definitions in TIOA. The type Matrix represents a
two-dimensional array of integers. [[Steve: It is not currently possible to define Matrix in
this way.]]

vocabulary matrices
types Row enumeration [p1 , p2 , p3],

Column enumeration [q1 , q2 , q3],
Matrix Array[Row ,Column ,Int]

Suppose that variable v is declared to be of type Matrix. The objects of type Matrix can be
viewed as functions from the set {p1, p2, p3} to a set of elements of type Array[Column,Int].
Each of these elements in turn can be viewed as a function from the set {q1, q2, q3} to the set
of integers. The dynamic type of Matrix is interpreted recursively as explained above.

Example 2.3 The automaton A(u1, u2: Real) below, the code of which has not been provided in
full, has three state variables: continue, now, and deadlinea. By the semantic rules, the dynamic
type of continue is the pasting closure of the set of constant functions from left closed intervals
of time to the set of booleans, and the dynamic type of now is the pasting closure of the set of
continous functions from left closed intervals of time to the reals. The type of deadlinea gives
us specific information about the dynamic type of deadlinea. We know not only that they are
piecewise continuous but also that they are piecewise constant.

automaton A(u1 , u2:Real)
signature

internal a, end
s tates
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continue: bool := true ,
now: Real := 0,
deadlinea: DiscreteReal := u1

trans i t ions
internal a

% omitted from this example
internal end

% omitted from this example
t ra jec tor i e s

% omitted from this example

2.5 Transition Definitions

Transition definitions in TIOA can contain urgency predicates.

2.5.1 Surface Syntax

Urgency predicates in TIOA transition definitions begin with the new keywords urgent when.
transitions ::= ’transitions’ transition+

transition ::= actionHead funcDecls? precondition? urgency? effect?

actionHead ::= actionType actionName (actionActuals where?)?

actionActuals ::= ’(’ term,+ ’)’

precondition ::= ’pre’ predicate

urgency ::= ’urgent’ ’when’ predicate

Transition definitions for input actions cannot have urgency predicates associated with them.

2.5.2 Intermediate Language Syntax

transition ::= ’(’ transitionId caseName actionId

( actionActuals locals where? )?

funcDecls? precondition? urgency? effect? ’)’

urgency ::= ’(’ ’urgent’ predicate ’)’

2.5.3 Semantics

Consider a transition definition with a parameterized action name a. Let h be a set of parameter
values for a satisfying the where clause, and let b be the action corresponding to the pair (a, h).
We call the urgency predicate associated with b, urgent(b) and the precondition associated with
b, pre(b). If there is no urgency predicate specified for b, then we assume that urgent(b) = false
and if there is no precondition specified for b, then we assume that pre(b) = true. The complete
definition of the semantics of urgency predicates is given in 2.6.
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[[Dilsun: The code is explained in full when its specification is given in full. That
is, in section on trajectories. Move it to here???]]

Example 2.4 The automaton A(u1, u2: Real) below has two transition definitions. The action
a is enabled when the flag continue is set to true and now is not equal u2. The urgency predicate
of a implies that if a is enabled and now is equal to deadlinea, then time may not advance before
this or some other action has occured. The variable deadlinea is incremented by u1 as a result of
action a. The transition definition for action end has no urgency predicate specified. It is enabled
whenever continue is set to true and now becomes equal to u2. The action end sets continue to
false when it is performed.

automaton A(u1 , u2: Real)
signature

internal a, end
s tates

continue: bool := true ,
now: Real := 0,
deadlinea: DiscreteReal := u1

trans i t ions
internal a

pre continue ∧ now �= u2
urgent when now = deadlinea
e f f deadlinea := deadlinea + u1

internal end
pre continue ∧ now = u2
e f f continue := false

t ra jec tor i e s % omitted from this example

2.6 Trajectory Definitions

Trajectory definitions specify the trajectories of a TIOA by using differential and algebraic equa-
tions, invariants, and stopping conditions. Since IOA has no language construct for specifying
trajectories, most of the constructs introduced in this section are new additions to the IOA lan-
guage. They have been derived from the language constructs that appear in [5, 6, 3].

2.6.1 Surface Syntax

Trajectories are specified by a list of trajectory definitions each of which consists of a name, an
optional invariant, an optional stopping condition, and a set of algebraic and differential equations
and inequalities, which may written with the aid of function definitions.
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trajectories ::= ’trajectories’ trajectory+

trajectory ::= trajHead funcDecls? invariant? stopCond? evolve

trajHead ::= ’trajdef’ trajDefName

trajDefName ::= IDENTIFIER

invariant ::= ’invariant’ predicate

stopCond ::= ’stop’ ’when’ predicate

evolve ::= ’evolve’ evolvePred;+

evolvePred ::= evolveValue (’=’ | comparison) term

::= | term comparison (evolveValue | term)

evolveValue ::= lvalue | ’d’ ’(’ lvalue ’)’

comparison ::= ’<’ | ’<=’ | ’>’ | ’>=’

2.6.2 Intermediate Language Syntax

trajectory ::= ’(’ trajId IDENTIFIER funcDecls?

( ’(’ ’invariant’ predicate ’)’ )?

( ’(’ ’stop’ predicate ’)’ )?

’(’ ’evolve’ term+ ’)’ ’)’

trajId ::= id

2.6.3 Static Semantics

Each variable in an evolvePred must be an automaton parameter or a state variable.
Each term in an evolvePred must have type Real or AugmentedReal.
The lvalue in an evolveValue must have type Real.
[[Steve: Currently, values of type Int must be cast explicitly to values of type

Real using the operator int2real, which has been added to the trait defining the Real
datatype. Consider changing the Real datatype, as well as the type-checking rules for
constructs such as assignments, to allow mixing elements of type Nat, Int, or Real,
e.g., by defining operators such as + :Int,Real-¿Real.]]

[[Steve: The current syntax defines an evolvePred to be a term, and static semantic
checks ensure that this term has the proper form. This was done to avoid making the
grammar either ambiguous or overly complicated. Investigate changing the grammar.]]

[[Steve: Allow an evolvePred to have the form a < b < c , so that users are not
forced to write two evolvePreds (i.e., a < b; b < c).]]

[[Steve: Change the grammar for terms to use the standard precedence for arith-
metic operators, so that users can write 2 ∗ a + b < c instead of ((2 ∗ a) + b) < c, as is
required in LSL and IOA.]]
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2.6.4 Semantics

If no trajectories are specified for an automaton, then the values of its state variables are con-
strained only by their dynamic types. If all variables in such an automaton are discrete, then the
automaton is timing-independent; i.e., its trajectories are constant-valued functions over left-closed
time intervals with left endpoint 0.

2.6.5 Conditions on algebraic expressions

If an evolveValue of the form d(v) appears in an evolvePred, then the term in that evolvePred
must be integrable.

[[Steve: The front-end will perform a static check for integrability if it can. Other-
wise, it will generate a proof obligation—ideally, one that could be checked by a tool
such as Macsyma.]]

2.6.6 Conditions on invariants

The invariants (invariant) in trajectory definitions must be mutually exclusive. (Mutual exclu-
sivity is needed to preserve prefix suffix and concatenation closure [5, 6].)

[[Steve: The front-end will generate proof obligations that express these condi-
tions.]]

2.7 Trajectories

[[Steve: We need to say what a trajectory is (domain, range, limit time).]]
The trajectory definitions and urgency predicates collectively determine the set of trajectories

for an automaton.
Notation: Suppose that τ is a fixed trajectory over some set of variables V and v ∈ V . We use
the variable name v to denote the function that gives the value of v at all times during trajectory
τ .

Given an urgency predicate and precondition for each locally contolled action, a trajectory
definition a with invariant inv(a), stopping predicate stop(a), and a set of differential and algebraic
equations daes(a), defines a set of trajectories, say traj(a). A trajectory τ belongs to traj(a) if:

• For each t ∈ dom(τ), τ(t) ∈ inv(a),

• If (t ∈ dom(τ)) ∧ (τ(t) ∈ stop(a) ∨ (∃b.τ(t) ∈ urgent(b) ∧ pre(b))), then t is the limit time of
τ ,

• τ satisfies the set of differential and algebraic equations in daes(a), and

• For each v of a simple type other than Real, v(t) = v(0) for each t ∈ dom(τ). (For each v
of one of the compound types listed in Section 2.4.1, we can determine a set of constituents
{v1, . . . vn} of a simple type by recursing on the structure of v. We require that the above
condition holds for each vi for 1 ≤ i ≤ n.)

If inv(a) and stop(a) are omitted from the specification, then they are assumed to be true
and false, respectively. A trajectory τ satisfies daes(a) if at all times in dom(τ), all the locally
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controlled variables of type real satisfy the differential and algebraic equations (or inequalities) in
daes(a) with τ(0) defining the initial valuations.

Let A be an automaton and TNA be the set of names of trajectory definitions of A. Then the
set of trajectories TA for A is defined as the concatenation closure of the functions in

⋃
a∈TN traj(a).

Figure 2.1 summarizes the rules which determine if a trajectory τ satisfies some given algebraic
and differential equations or inequalities. In the figure v is a locally controlled variable of type real,
e is a real valued algebraic expression, and τ.e(t) is a function with domain dom(τ) that gives the
value of e at t. Note that the figure does not cover all the possible inequalities one can form using
the given syntax. The rest of the possible inequalities can be interpreted in the obvious way, using
the same idea.

Equation Interpretation

v = e ∀t ∈ dom(τ), (τ ↓ v)(t) = τ.e(t)

e ≥ v ∀t ∈ dom(τ), τ.e(t) ≥ (τ ↓ v)(t)

e ≤ v ≤ e′ ∀t ∈ dom(τ), τ.e(t) ≤ (τ ↓ v)(t) ≤ τ.e′(t)

d(v) = e ∀t ∈ dom(τ), (τ ↓ v)(t) = (τ ↓ v)(0) +
∫ t

0
τ.e(t′) dt′

e > d(v) ∀t ∈ dom(τ), (τ ↓ v)(0) +
∫ t

0
τ.e(t′) dt′ > (τ ↓ v)(t)

e ≤ d(v) ≤ e′ ∀t1, t2 ∈ dom(τ),
∫ t2

t1
τ.e(t′)dt′ ≤ (τ ↓ v)(t2) − (τ ↓ v)(t1) ≤

∫ t2
t1

τ.e′(t′)dt′.

Figure 2.1: Interpretation of differential and algebraic equations and inequalities

We do not impose any conditions for solvability or well-definedness. The set of differential and
algebraic equations may not be complete or some of the real variables may not be constrained at
all.

Example 2.5
The automaton A(u1,u2:Real) has a single trajectory definition that states that time cannot

progress beyond the point where now reaches value u2 and that now evolves at the same rate as real-
time. Supposing that u1 <u2, this automaton can do a within u1 time units of the start and can
keep doing a within u1 time units of a’s last occurrence as long as now <u2. The urgency predicate
for a enforces that either time stops or a is performed when now reaches the current deadline for
a. Time cannot go beyond the point when now reaches u2. The only action that is enabled at that
point is end, which sets continue to false and hence disables both of the discrete actions.

automaton A(u1 , u2: Real)
signature internal a, end
s tates

continue: bool := true ,
now: Real := 0,
deadlinea: DiscreteReal := u1
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trans i t ions
internal a

pre continue ∧ now �= u2
urgent when now = deadlinea
e f f

deadlinea := deadlinea + u1
internal end

pre continue ∧ now = u2
e f f

continue := false
t ra jec tor i e s

tra jdef always
stop when now = u2
evolve d(now) = 1

Example 2.6 The automaton T(u,l,K,h:Real) below specifies a thermostat [1]. Since the trajec-
tories specify the continuous evolution of the temperature rather than timing related components,
it would be more appropriate to call this a hybrid automaton rather than a timed automaton. Our
goal in using this example is to illustrate that the syntax for algebraic and differential equations in
TIOA is general enough to express non-trivial continuous evolution for state variables.
vocabulary locType

type locType enumeration [on , off]

automaton T(u:Real , l:Real , K:Real , h:Real)
imports locType
signature

internal on , off
s tates

x: Real := u
loc:locType := on

trans i t ions
internal on

pre x = l and loc = off
e f f loc = on

internal off
pre x = u and loc = on
e f f loc = off

t ra jec tor i e s
tra jdef heaterOn

invariant x ≤ u and loc = on
stop when x = u
evolve d(x) = K(h-x)

tra jdef heaterOff
invariant x ≥ l and loc = off
stop when x = l
evolve d(x) = -Kx

The temperature x, is governed by differential equations. When the heater is on the temperature
follows the function x(t) = τ(0).xe−Kt+h(1−e−Kt), when the heater is off the temperature follows:
x(t) = τ(0).xe−Kt.
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2.8 Simulator

The set of NDR statements for the simulator is extended by a new follow statement, for use in
simulating the effects of trajectories.

2.8.1 Surface Syntax

NDRStatement ::= assignment | NDRConditional | NDRWhile

| NDRFire | NDRFollow

NDRFollow ::= ’follow’ IDENTIFER ’for’ term

2.8.2 Intermediate Language Syntax

statement ::= assignment | conditional | loop

| simfire | ndrfire | ndrfollow | ndrwhile

ndrfollow ::= ’(’ follow trajectoryId term ’)’

2.8.3 Static Semantics

The identifier in a follow statement must be the name of a trajectory defined in the automaton.
Each variable in the term in a follow statement must be an automaton parameter or a state

variable.
The type of the term in a follow statement must be Real.
[[Steve: Still to come – notations for paired simulations.]]
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